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ABSTRACT

The scalability limitations of Transformers regarding sequence length have re-
newed interest in recurrent sequence models that are parallelizable during train-
ing. As a result, many novel recurrent architectures, such as S4, Mamba, and
Aaren, have been proposed that achieve comparable performance. In this work,
we revisit traditional recurrent neural networks (RNNs) from over a decade ago:
LSTMs (1997) and GRUs (2014). While these models were slow due to requiring
to backpropagate through time (BPTT), we show that by removing their hidden
state dependencies from their input, forget, and update gates, LSTMs and GRUs
no longer need to BPTT and can be efficiently trained in parallel. Building on
this, we introduce minimal versions (minLSTMs and minGRUs) that (1) use sig-
nificantly fewer parameters than their traditional counterparts and (2) are fully
parallelizable during training (175× faster for a sequence of length 512). Lastly,
we show that these stripped-down versions of decade-old RNNs match the empir-
ical performance of recent sequence models.

1 INTRODUCTION

Over the past few years, Transformers (Vaswani et al., 2017) have been the dominant architecture
in many areas, leading to advancements in tasks like machine translation (Devlin et al., 2019), text
generation (Brown et al., 2020), and more. However, Transformers have a quadratic computational
complexity in the sequence length, making them prohibitively expensive for long sequences, es-
pecially in low-resource settings. As such, numerous works have investigated the design of more
efficient alternatives that achieve competitive performance with that of Transformers. Recently, there
has been a renewed interest in recurrent sequence models that can be trained efficiently processing
their context in parallel (Tiezzi et al., 2024a;b). These models (1) during training require only
linear memory in the sequence length and (2) at inference time are rolled out recurrently token-by-
token, requiring only constant memory. As a result, these models can scale to significantly longer
sequences than Transformers1.

A family of efficiently trainable recurrent sequence models that has recently gained much traction
is that of state-space models, specifically the recently proposed Mamba (Gu & Dao, 2024). Mamba
(S6) is a state-space model that differentiates itself from prior works by leveraging input-dependent
transitions. The recent success of Mamba and the proposals of many new variants of state-space
models has led to several survey papers (Wang et al., 2024; Patro & Agneeswaran, 2024; Qu et al.,
2024). Another extensively explored group of methods is those based on attention. Peng et al. (2023)
proposed a linear attention model that can be written recurrently while being trained in parallel. Feng
et al. (2024) showed that softmax attention (and Transformers) can be viewed as a recurrent neural
network (RNN). Building on their RNN formulation of attention, they proposed Aaren, a softmax
attention model, that can be computed in parallel for efficient training or unrolled sequentially as
an RNN for efficient inference. Although many recurrent models have been proposed with vastly
different architectures, these recent state-of-the-art methods are all efficiently trainable using the
same algorithm – the parallel prefix scan algorithm (Blelloch, 1990).

Inspired by the striking algorithmic similarities between the numerous recently proposed sequence
models, we revisit LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs (Cho et al., 2014) from a
modern lens. As traditional RNNs from over a decade ago, LSTMs and GRUs are only computable
sequentially and require to backpropagate through time (BPTT) during training. As such, LSTMs

1The title of this paper pays tribute to the original Transformers paper, “Attention is All You Need”.
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and GRUs were far too slow to scale beyond a few hundred tokens, resulting in their deprecation. Re-
visiting these models, we show that by removing hidden state dependencies from their input, forget,
and update gates, LSTMs and GRUs no longer need to BPTT and can be trained efficiently using the
parallel scan algorithm. Building on this, we simplify LSTMs and GRUs further by removing their
constraints on output range, (i.e., their use of tanh) and ensuring their output is time-independent in
scale. These steps result in minimal versions (minLSTMs and minGRUs) that (1) use significantly
fewer parameters than their traditional counterpart and (2) are trainable in parallel (175× faster for
a context length of 512). Finally, we show that these stripped-down versions of decade-old RNNs
match the empirical performance of modern recurrent sequence models, challenging the prevailing
trend in the community toward increasing architectural and algorithmic complexity.

2 BACKGROUND

In this section, we review recurrent neural networks (RNNs). RNNs are recurrent sequence models
that maintain a hidden state across time steps, capturing temporal dependencies. As such, RNNs are
particularly suitable for sequence modelling settings such as those involving time series, natural lan-
guage processing, and other sequential tasks where context from previous steps informs the current
prediction. Vanilla RNNs (Elman, 1990), however, struggle with issues of vanishing and exploding
gradients, limiting their ability to learn long-term dependencies.

2.1 LSTM

Addressing this limitation, Hochreiter & Schmidhuber (1997) introduced Long Short-Term Memory
(LSTM) networks. LSTMs are enhanced RNNs designed to mitigate the vanishing gradient problem,
allowing the model to learn long-term dependencies. LSTMs are computed as follows:

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

ot = σ(Lineardh
([xt,ht−1]))

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

where ⊙ represents an element-wise multiplication of vectors, t is the current timestep, ht is the
outputted hidden state, [xt,ht−1] represents the concatenation of xt with ht−1, dh is the size of the
hidden state, ct is a cell state that maintains information over the sequence, and c̃t is the candidate
cell state to be added, it, ft, and ot are gating mechanisms. The input gate it controls how much
new information from the candidate cell state is added. The forget gate ft determines the proportion
of information in the cell gate to discard. The output gate ot decides what information from the cell
state should be outputted. The σ and tanh are used for scaling to ensure that the output does not
explode/vanish. An LSTM module maintains both a cell and a hidden state and, in total, contains
O(4dh(dx + dh)) parameters.

2.2 GRU

Simplifying LSTM, Cho et al. (2014) introduced Gated Recurrent Unit (GRU) which only uses
two gates and a single state instead of LSTM’s three gates and two states (hidden and cell state).
GRU’s reduced complexity leads to faster training and inference times while achieving competitive
performance in many tasks. GRUs are computed as follows:

zt = σ(Lineard([xt,ht−1]))

rt = σ(Lineard([xt,ht−1]))

h̃t = tanh(Lineard([xt, rt ⊙ ht−1]))

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t
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where h̃t is the candidate hidden state that represents a potential new value for the hidden state. GRU
combines LSTM’s forget and input gates into a single update gate zt ∈ (0, 1) which decides how
much of the past information to carry forward (i.e., 1−zt) and how much new information from the
candidate hidden state to add (i.e., zt). Additionally, LSTM’s output gate is removed and instead,
a reset gate rt is added that controls how much past information is used in computing the candi-
date hidden state. GRU reduces the total number of parameters and computations, requiring only
O(3dh(dx + dh)) parameters. However, GRUs and LSTMs are only computable sequentially. As a
result, during training they require backpropagating their gradients through time (BPTT), requiring
linear training time and greatly limiting their ability to scale to long contexts.

2.3 PARALLEL SCAN

Due to this limitation, Transformers replaced LSTMs and GRUs as the defacto sequence mod-
elling method for years by leveraging parallelization during training. However, Transformers have a
quadratic complexity in the sequence length, limiting their ability to scale to long contexts. Recently,
a resurgence of many new recurrent models have been proposed as replacements for Transformers
that achieve comparable performance and are trainable in parallel, while avoiding the BPTT issue
that traditional RNNs (e.g., LSTMs and GRUs) faced. Although many different architectures have
been proposed, many of these models are efficiently trained using the parallel prefix scan algo-
rithm (Blelloch, 1990).

The parallel scan algorithm is a parallel computation method for computing N prefix computations
from N sequential data points via an associative operator ⊕ (e.g., + and ×). The algorithm effi-
ciently computes {

⊕k
i=1 ui}Nk=1 from {uk}Nk=1. In particular, we can apply the parallel scan method

for efficiently computing a popular family of functions: vt = atvt−1 + bt where vt, at, bt ∈ R and
v0 ← b0 (Martin & Cundy, 2018; Heinsen, 2023). The method takes as input a1, . . . , an and
b0, b1, . . . , bn and computes via parallel scans v1, . . . , vn.

3 METHODOLOGY

Naturally, the aforementioned algorithm also extends to vectors: vt = at ⊙ vt−1 + bt where ⊙ is
the element-wise multiplication. Interestingly, we can see that the GRU and LSTM state recurrences
resemble the vector formulation. In this section, we show that GRUs and LSTMs are trainable via
parallel scan by simplifying and removing several hidden state dependencies from their various
gates. Building on this, we further simplify these RNNs by removing their constraints on output
range, (i.e., tanh) and ensuring the outputs are time-independent in scale. Combining the steps, we
describe minimal versions of GRUs and LSTMs (minGRUs and minLSTMs) that are trainable via
parallel scan and perform comparably to Transformers and recently proposed sequence methods.

3.1 A MINIMAL GRU: MINGRU

3.1.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting GRU’s hidden state recurrence which works as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

We can observe that the recurrence resembles the aforementioned parallel scan’s formulation where
at ← (1− zt), bt ← zt ⊙ h̃t, and vt ← ht. However, zt and h̃t are dependent on previous hidden
states ht−1, i.e., zt = σ(Lineardh

([xt,ht−1])) and h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1])). As a

result, it is not possible to apply the parallel scan as is since the algorithm’s inputs a1, . . . ,an and
b1, . . . , bn are conditional on already knowing its outputs h1, . . . ,hn−1.

We can remedy this by simplifying GRUs, removing their previous hidden state (i.e., ht−1) depen-
dencies. Specifically, the changes are as follows:

zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒
zt = σ(Lineardh

(xt))

h̃t = tanh(Lineardh
(xt))

3
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By removing the dependence on ht−1 from the candidate hidden state h̃t, the reset gate rt that
would control ht−1 weight is also no longer needed and is removed. Without the dependencies on
previous hidden states, the inputs to the algorithm a1, . . . ,an and b1, . . . , bn are all easily computed
in parallel and can thus be used to compute h1, . . . ,hn efficiently via the parallel scan.

Although there are theoretical concerns about the absence of hidden state dependencies (Merrill
et al., 2024), there is substantial empirical evidence supporting the effectiveness of models that omit
these dependencies, such as xLSTM (Beck et al., 2024) and Mamba (Gu & Dao, 2024). Notably,
in the xLSTM paper, their fully parallelized version (xLSTM[1:0]), which eliminates hidden state
dependencies, performed similarly to — and in some cases, better than — versions that retain these
dependencies (e.g., xLSTM[7:1]). Rather than explicitly modelling dependencies, these models can
learn long-range dependencies by stacking multiple layers.

3.1.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

In GRU’s hidden state recurrence, the proportion carried over from the previous hidden state (1−zt)
and the amount added for the new candidate hidden state (zt) sum to 1. As a result, the scale of
GRU’s hidden state value is time-independent. Instead, the scale of its hidden state depends on that
of its candidate hidden states h̃t. The hyperbolic tangent function (tanh) plays a crucial role in
LSTMs and GRUs, restricting the range of (candidate) hidden states, i.e., h̃t,ht ∈ (−1, 1)dh . The
tanh helps stabilize the training and mitigates vanishing gradients that result from applying sigmoid
(σ) activations to linear transformations of the hidden state (e.g., zt = σ(Lineardh

([xt,ht−1]))). In
the previous step, these hidden state dependencies were removed. As such, we can simplify GRU
further by removing the range restriction (tanh) on the (candidate) hidden states as follows:

h̃t = tanh(Lineardh
(xt)) ⇒ h̃t = Lineardh

(xt)

3.1.3 MINGRU

Combining the two simplification steps results in a minimal version of GRU (minGRU):

GRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒

minGRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

The resulting model is significantly more efficient than the original GRU (1) requiring only
O(2dhdx) parameters instead of GRU’s O(3dh(dx + dh)) parameters where dx, dh corresponds
to the sizes of xt and ht respectively. In terms of training, minGRU (2) can be trained in paral-
lel using the parallel scan algorithm, speeding up training significantly. In Section 4.1, we show
that this corresponded to a 175× speedup in training steps for a sequence length of 512 on a T4
GPU. The parameter efficiency gains are also significant. Typically, in RNNs, state expansion is
performed (i.e., dh = αdx where α ≥ 1) allowing the models to more readily learn features from
their inputs. minGRU uses approximately 33%, 22%, 17%, or 13% of parameters compared to GRU
when α = 1, 2, 3, or 4 respectively.

3.2 A MINIMAL LSTM: MINLSTM

3.2.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting LSTMs, we focus on their cell state recurrence which works as follows:

4
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ct = ft ⊙ ct−1 + it ⊙ c̃t

Similar to GRU’s hidden state, we can see that LSTM’s cell state recurrence resembles the afore-
mentioned parallel scan’s formulation vt = at ⊙ vt−1 + bt where at ← ft, bt ← it ⊙ c̃t, and
vt ← ct. However, ft, it and c̃t are dependent on the previous hidden state ht. As such, LSTM’s
cell state recurrence is unable to apply the parallel scan algorithm as is. We can address this in a
similar fashion to GRU by removing their hidden state dependencies as follows:

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒
ft = σ(Lineardh

(xt))

it = σ(Lineardh
(xt))

c̃t = tanh(Lineardh
(xt))

3.2.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

Similar to GRUs, LSTMs leverage the hyperbolic tangent function (tanh) to restrict the range of
its states between (−1, 1). LSTMs apply the range restriction twice: once when computing the
candidate cell state and once computing its hidden state. In this step, we drop both as follows:

c̃t = tanh(Lineardh
(xt))

ht = ot ⊙ tanh(ct)
⇒

c̃t = Lineardh
(xt)

ht = ot ⊙ ct

3.2.3 STEP 3: ENSURE OUTPUT IS TIME-INDEPENDENT IN SCALE

In many sequence modelling settings (e.g., text generation), the optimization objective/target is time-
independent in scale. Recall LSTM’s cell state recurrence ct = ft ⊙ ct−1 + it ⊙ c̃t where it,ft ∈
(0, 1)dh , and GRU’s hidden state recurrence2, hGRU

t = (1 − zt) ⊙ hGRU
t−1 + zt ⊙ h̃GRU

t where
zt ∈ (0, 1)dh . GRUs retain (1 − zt) ∈ (0, 1) of the previous hidden state and add zt of the
new candidate state. Since these proportions sum to 1, the model ensures its outputs (i.e., hidden
states) are time-independent in scale. In contrast, LSTM’s forget and input gates are computed
independently (e.g., ft, it → 1 or ft, it → 0), making its cell states time-dependent in scale3 and
optimization more difficult. As such, we ensure LSTM’s output is time-independent in scale.

To do so, we can simply normalize the two gates, i.e., f ′
t , i

′
t ←

ft
ft+it

, it
ft+it

, ensuring that f ′
t+i′t =

1 and the scale of LSTM’s cell state is time-independent. Ensuring that the hidden state is time-
independent in scale, we also drop the output gate ot which scales the hidden state. Without the
output gate, the normalized hidden state is equal to the cell state, i.e., ht = ot ⊙ ct ⇒ ht = ct,
making having both a hidden and cell state unnecessary. As such, we drop the cell state as well. In
summary, the modifications are as follows:

ht = ot ⊙ ct

ot = σ(Lineardh
(xt))

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = Lineardh
(xt)

⇒

ht = f ′
t ⊙ ht−1 + i′t ⊙ h̃t

h̃t = Lineardh
(xt)

f ′
t , i

′
t ←

ft

ft + it
,

it
ft + it

Notably, GRUs do not need this step as their outputs are already time-independent in scale.

3.2.4 MINLSTM

Combining the three steps results in a minimal version of LSTM (minLSTM):

2A superscript is added to differentiate GRU’s hidden state from LSTM’s.
3For example, ct → c0 +

∑t
i=1 c̃t when f1:t, i1:t → 1, growing in scale as the sequence length increases.

5
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Figure 1: Training runtime (left), speedup (middle), and memory footprint (right) on a T4 GPU for a
batch size of 64. In the training runtime plot (left), minGRU, minLSTM, and Mamba lines overlap.
These methods are approximately the same in training runtime.

LSTM

ht = ot ⊙ tanh(ct)

ot = σ(Lineardh
([xt,ht−1]))

ct = ft ⊙ ct−1 + it ⊙ c̃t

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒

minLSTM

ht = f ′
t ⊙ ht−1 + i′t ⊙ h̃t

ft = σ(Lineardh
(xt))

it = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

f ′
t , i

′
t ←

ft

ft + it
,

it
ft + it

The minimal version (minLSTM) is significantly more efficient (1) requiring only O(3dhdx) param-
eters compared to LSTM’s O(4dh(dx + dh)). Furthermore, minLSTM (2) can be trained in parallel
using the parallel scan algorithm, speeding up training significantly. For example, in Section 4.1,
we found that minLSTM corresponded to a 235× speedup for a sequence of length 512 compared
to LSTM on a T4 GPU. In terms of parameter efficiency, minLSTM uses only 38%, 25%, 19%, or
15% of parameters compared to LSTM when α = 1, 2, 3, or 4 respectively where dh = αdx.

4 WERE RNNS ALL WE NEEDED?

In this section, we compare the minimal versions (minLSTMs and minGRUs) with their traditional
counterparts (LSTMs and GRUs) and modern sequence models. Pseudocode, PyTorch implementa-
tion, and detailed information regarding the experiment setup are available in the Appendix.

4.1 MINIMAL LSTMS AND GRUS ARE VERY EFFICIENT

At test time, recurrent sequence models are typically rolled out sequentially, which makes inference
relatively efficient. However, the main bottleneck for traditional RNNs lies in their training, which
requires linear time due to backpropagation through time (BPTT). This computational inefficiency
contributed to the eventual deprecation of many earlier RNN-based models. Recent advances, how-
ever, have sparked renewed interest in recurrent sequence models, driven by new architectures that
enable parallelized training (Gu et al., 2021).

In this section, we compare the resource requirements for training traditional RNNs (LSTM and
GRU), their simplified counterparts (minLSTM and minGRU), and a recent state-of-the-art sequence
model, specifically Mamba (Gu & Dao, 2024), which has gained significant popularity in recent
work.

For our experiments, we use a batch size of 64 and vary the sequence length. We measure both the
total runtime and memory complexity involved in performing a forward pass, computing the loss,
and performing backpropagation to compute gradients. To ensure a fair and direct comparison, all
models were tested with the same number of layers.
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Runtime. In terms of runtime (see Figure 1 (left)), the simplified versions of LSTM and GRU
(minLSTM and minGRU) Mamba achieve similar runtimes. Averaging over 100 runs, the runtime
for sequence lengths of 512 for minLSTM, minGRU, and Mamba were 2.97, 2.72, and 2.71 mil-
liseconds respectively. For a sequence with length 4096, the runtime were 3.41, 3.25, and 3.15
respectively. In contrast, the traditional RNN counterparts (LSTMs and GRUs) required a runtime
that scaled linearly with respect to sequence length. For a sequence length of 512, minGRUs and
minLSTMs were 175× and 235× faster per training step (see Figure 1 (middle)) than GRUs and
LSTMs on a T4 GPU. The improvement is even more significant as sequences grow in length with
minGRUs and minLSTMs being 1324× and 1361× faster for a sequence length of 4096. As such,
in a setting where minGRU would take a day to finish training for a fixed number of epochs, its
traditional counterpart GRU could take over 3 years.

Memory. By leveraging a parallel scan algorithm to compute the outputs in parallel efficiently,
minGRU, minLSTM, and Mamba create a larger computational graph, thus needing more memory
compared to traditional RNNs (see Figure 1 (right)). The minimal variants (minGRU and minL-
STM) use ∼ 88% more memory compared to their traditional counterpart. Mamba uses 56% more
memory compared to minGRU. In practice, however, runtime is the bottleneck when training RNNs.

Effect of removing ht−1. The original LSTM and GRU compute their various gates using their
inputs xt and previous hidden states ht−1. These models leverage their time-dependent gates to
learn complex functions. However, minLSTM and minGRU’s training efficiencies are achieved by
dropping their gates’ dependencies on the previous hidden states ht−1. As a result, minLSTM and
minGRU’s gates are dependent only on their inputs xt, resulting in a simpler recurrent module. As
such, the gates of a model consisting of a single layer of minLSTM or minGRU are time-independent
due to being conditioned on time-independent inputs x(1)

1:n.

Model # Layers Accuracy

MinLSTM
1 37.6 ± 2.0
2 85.7 ± 5.8
3 96.0 ± 2.8

MinGRU
1 37.0 ± 2.3
2 96.8 ± 3.2
3 99.5 ± 0.2

Table 1: Comparison of the number of
layers on the Selective Copying Task (Gu
& Dao, 2024).

However, in deep learning, models are constructed by
stacking modules. Although the inputs to the first layer
x
(1)
1:n is time-independent, its outputs h

(1)
1:n are time-

dependent and are used as the inputs to the second layer,
i.e., x(2)

1:n ← h
(1)
1:n. As such, beginning from the second

layer onwards, minLSTM and minGRU’s gates will also
be time-dependent, resulting in the modelling of more
complex functions. In Table 1, we compare the perfor-
mance of the models with varying numbers of layers on
the Selective Copying Task from the Mamba paper (Gu
& Dao, 2024). We can immediately see the impact of
the time dependencies: increasing the number of layers
to 2 or more drastically increases the model’s perfor-
mance.

Training Stability. Another effect of the number of layers is increased stability with decreased
variance in the accuracy as the number of layers increases (see Table 1). Furthermore, although
minLSTM and minGRU both solve the Selective Copying task, we can see that minGRU is an em-
pirically more stable method than minLSTM, solving the task with more consistency and lower
variance. minLSTM discards old information and adds new information, controlling the ratio with
two sets of parameters (forget and input gate). During training, the two sets of parameters are tuned
in different directions, making the ratio harder to control and optimize. In contrast, minGRU’s dis-
carding and adding of information is controlled by a single set of parameters (update gate), making
it easier to optimize.

4.2 MINIMAL RNNS PERFORM SURPRISINGLY WELL

In the previous section, we highlighted the substantial efficiency gains achieved by simplifying tra-
ditional RNNs. In this section, we focus on the empirical performance of these minimal versions
of LSTMs and GRUs, comparing them to several well-known sequence models. It is important to
note that the primary goal of our work is not to attain the best performance on specific tasks but to
demonstrate that simplifying traditional RNN architectures can yield competitive results, compara-
ble to those of modern, state-of-the-art sequence models.
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Dataset DT DS4 DAaren DMamba minLSTM minGRU
HalfCheetah-M 42.6 42.5 42.2 42.8 42.7 ± 0.7 43.0 ± 0.4

Hopper-M 68.4 54.2 80.9 83.5 85.0 ± 4.4 79.4 ± 8.2
Walker-M 75.5 78.0 74.4 78.2 72.0 ± 7.5 73.3 ± 3.3

HalfCheetah-M-R 37.0 15.2 37.9 39.6 38.6 ± 1.1 38.5 ± 1.1
Hopper-M-R 85.6 49.6 77.9 82.6 88.5 ± 4.7 90.5 ± 0.9
Walker-M-R 71.2 69.0 71.4 70.9 69.7 ± 10.7 72.8 ± 8.9

HalfCheetah-M-E 88.8 92.7 75.7 91.9 85.4 ± 1.7 86.3 ± 0.5
Hopper-M-E 109.6 110.8 103.9 111.1 110.3 ± 1.6 109.7 ± 2.7
Walker-M-E 109.3 105.7 110.5 108.3 110.3 ± 0.5 110.3 ± 0.4

Average 76.4 68.6 75.0 78.8 78.1 78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng
et al., 2024) and Decision Transformer (Chen et al., 2021).

Model Layer Accuracy
H3 Hyena 30.1

Mamba Hyena 28.4
S4 S4 18.3
H3 S4 57.0

Mamba S4 56.4
S4 S6 97.0
H3 S6 99.7

Mamba S6 99.8
minGRU minGRU 99.5 ± 0.2

minLSTM minLSTM 96.0 ± 2.8

Table 2: Selective Copy Task. minL-
STM, minGRU, and Mamba’s S6 (Gu &
Dao, 2024) are capable of solving this task.
Other methods such as S4, H3, and Hyena
at best only partially solve the task.

Selective Copy. We begin by considering the Selec-
tive Copying task, originally introduced in the influ-
ential Mamba paper (Gu & Dao, 2024). This task
served as a key benchmark that demonstrated the im-
provements made by Mamba’s state-space model, S6,
over previous state-of-the-art models such as S4 (Gu
et al., 2021) and Hyena (Poli et al., 2023). The task
requires models to perform content-aware reasoning,
where they must selectively memorize relevant tokens
while filtering out irrelevant ones.

In Table 2, we compare the simplified versions of
LSTMs and GRUs (minLSTM and minGRU) with sev-
eral well-known recurrent sequence models that can
be trained in parallel, including S4 (Gu et al., 2021),
H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
Mamba (S6) (Gu & Dao, 2024). The results for these
baselines are directly quoted from the Mamba paper.
Among these, only Mamba’s S6 model succeeds in
solving the task.

Both minGRU and minLSTM are able to solve the Se-
lective Copying task as well, achieving performance comparable to S6 and surpassing all other
baseline models. The success of these minimal versions highlights the effectiveness of LSTMs and
GRUs, which utilize content-aware gating mechanisms. This enables the simplified architectures to
solve the task—something that many other modern sequence models fail to achieve.

Reinforcement Learning. Next, we consider the MuJoCo locomotion tasks from the D4RL bench-
mark (Fu et al., 2020). Specifically, we consider the three environments: HalfCheetah, Hopper, and
Walker. For each environment, the models are trained on three datasets of varying data quality:
Medium (M), Medium-Replay (M-R), and Medium-Expert (M-E).

In Table 3, we compare minLSTM and minGRU with various Decision Transformer variants, in-
cluding the original Decision Transformer (DT) (Chen et al., 2021), Decision S4 (DS4) (David
et al., 2023), Decision Mamba (Ota, 2024), and (Decision) Aaren (Feng et al., 2024). The base-
line results are retrieved from the Decision Mamba and Aaren papers. minLSTM and minGRU
outperform Decision S4 and achieve performance competitive with Decision Transformer, Aaren,
and Mamba. Unlike other recurrent methods, Decision S4 is a model whose recurrence transitions
are not input-aware, affecting their performance. In terms of average score across the 3 × 3 = 9
datasets, minLSTM and minGRU outperform all the baselines except for Decision Mamba where
the difference is marginal.
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Figure 2: Language Modelling results on the Shakespeare dataset. Minimal versions of decade-
old RNNs (LSTMs and GRUs) performed comparably to Mamba and Transformers. Transformers
required ∼ 2.5× more training steps to achieve comparable performance, overfitting eventually.

Language Modelling. Finally, we consider a language modelling task. In this setting, we train
a character-level GPT on the works of Shakespeare using the nanoGPT (Karpathy, 2022) frame-
work. In Figure 2, we plot the learning curves with a cross-entropy loss comparing the proposed
minimal LSTM and GRU (minLSTM and minGRU) with Mamba and Transformers. We found that
minGRU, minLSTM, Mamba, and Transformers achieved comparable test losses of 1.548, 1.555,
1.575, and 1.547 respectively. Mamba performed slightly worse than the other models but trained
faster, particularly in the early stages, achieving its best performance at 400 steps while minGRU
and minLSTM continued training until 575 and 625 steps respectively. In contrast, Transform-
ers trained significantly slower, requiring 2000 steps (∼ 2.5×) more training steps than minGRU
to achieve comparable performance, making it significantly slower and more resource-intensive to
train (quadratic complexity compared to minGRU, minLSTM, and Mamba’s linear complexity).

5 RELATED WORK

In this section, we briefly discuss the similarities and differences between recently proposed effi-
cient recurrent sequence models and our simplified versions of traditional RNNs, minLSTM and
minGRU. An extended version of this section is included in the Appendix. For a more comprehen-
sive overview of the resurgence of efficient recurrent sequence models, we refer the reader to recent
survey works (Tiezzi et al., 2024a;b). Roughly speaking, recent recurrent sequence models have
been developed in three directions:

(Deep) State-Space Models (SSMs). Building on continuous-time linear systems, Gu et al. (2021)
introduced S4, a state-space model that can be unrolled like an RNN during inference and trained
similarly to a convolutional neural network. S4’s success paved the way for numerous subsequent
developments in the field (Gu et al., 2022; Gupta et al., 2022; Hasani et al., 2023; Smith et al., 2023)
and their applications across various domains such as language processing (Mehta et al., 2023) and
audio analysis (Goel et al., 2022). More recently, Mamba emerged as a significant breakthrough in
SSMs, surpassing previous models and attracting considerable attention. One of the key innovations
in Mamba was the introduction of S6, a state-space model with input-dependent transition matrices,
contrasting with earlier models that used input-independent transition matrices. The success of
Mamba and other state-space models has led to the publication of several comprehensive surveys on
the topic (Wang et al., 2024; Patro & Agneeswaran, 2024; Qu et al., 2024).

Recurrent Versions of Attention. Another popular direction is that of attention, specifically related
to linear attention (Katharopoulos et al., 2020). For example, Sun et al. (2023) and Qin et al. (2023)
introduced linear attention models that use an input-independent gating mechanism (decay factor).
In contrast, Katsch (2023) and Yang et al. (2024) proposed linear attention variants that use input-
dependent gating. Recently, Feng et al. (2024) showed that softmax attention can also be viewed as
an RNN and proposed a recurrent model based on their RNN formulation.

Parallelizable RNNs. Lastly, several papers have approached the problem by revisiting traditional
RNNs. Bradbury et al. (2017) modified classical gated RNNs to leverage convolutional layers for
efficiency, applying them temporally. Martin & Cundy (2018) showed that RNNs with linear depen-
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dencies can be efficiently trained via a parallel scan. Building on this, the authors propose to augment
LSTMs with a linear surrogate model allowing the LSTM to be trained via a parallel scan. More
recently, Orvieto et al. (2023) proposed an RNN that leverages complex diagonal recurrences and an
exponential parameterization, achieving comparable performance to state-space models. Beck et al.
(2024) proposed extends LSTM using exponential gating and a normalizer state, proposes xLSTM
consisting of parallelizable (mLSTM) and sequential-only (sLSTM) versions. Notably, mLSTM
removes the hidden state dependencies to enable parallelization, introduces a matrix memory cell,
and uses a query vector for retrieval from the memory. This makes mLSTM more efficient and
parallelizable but still retains considerable complexity.

6 CONCLUSION

A common trend in these sequence modelling developments — including state-space models like
Mamba and new RNN variants like xLSTM — is the increasing architectural and algorithmic com-
plexity designed to achieve parallelizability and competitive performance. In this work, we chal-
lenge this prevailing trend. By revisiting well-established RNNs (LSTMs and GRUs), we demon-
strate that removing the previous state dependencies from their gates enables efficient parallel train-
ing using the parallel scan algorithm. Further simplifying these models, we eliminate constraints
on their output range, resulting in minimal versions (minLSTM and minGRU). Our empirical re-
sults show that these simplified RNNs can achieve competitive performance and computational ef-
ficiency across a range of benchmarks compared to modern recurrent sequence models, challenging
the prevailing push towards greater complexity. Based on our findings, we ask: ”Were RNNs all we
needed?”

LIMITATIONS

Modern models such as Mamba and xLSTM were run on modern A100 GPUs with 80 GB of mem-
ory. In contrast, our experiments were conducted on older GPUs (i.e., P100, T4, and Quadro 5000)
with only 16 GB of memory (roughly 20% of the memory available to the other models). These hard-
ware constraints significantly impacted our ability to perform large-scale experiments, especially on
large datasets. To accommodate the memory limitations, we used gradient accumulation for training
some tasks, reducing the effective batch size by half, which resulted in significantly slower training
times. While this approach allowed us to run experiments within the available memory constraints,
it also limited the scale of our evaluations.

Despite these limitations, we believe that the conclusions drawn from our experiments are likely to
generalize to larger-scale settings. The minimal RNNs share fundamental similarities with many
state-of-the-art sequence models, which suggests that their performance would likely be consistent
with larger datasets given sufficient computational resources.
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A IMPLEMENTATION DETAILS: VANILLA VERSION

In this section, we provide the pseudocode and equivalent PyTorch code for minGRU and minL-
STM. When performing repeated multiplications such as in many recurrent sequence models, nu-
merical instabilities are common, especially during training. As such, we trained using a log-space
implementation (see Section B) for improved numerical stability.

A.1 PSEUDOCODE: VANILLA VERSION

A.1.1 MINGRU: A MINIMAL GRU

Algorithm 1 Sequential Mode: Minimal Version of GRU (minGRU)

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← Lineardh
(xt)

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 2 Parallel Mode: Minimal Version of GRU (minGRU)

Input: x1:t,h0

Output: h1:t

z1:t ← σ(Lineardh
(x1:t))

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan((1− z1:t), [h0, z1:t ⊙ h̃1:t])

A.1.2 MINLSTM: A MINIMAL LSTM

Algorithm 3 Sequential Mode: Minimal Version of LSTM (minLSTM)

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← Lineardh
(xt)

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 4 Parallel Mode: Minimal Version of LSTM (minLSTM)

Input: x1:t,h0

Output: h1:t

f1:t ← σ(Lineardh
(x1:t))

i1:t ← σ(Lineardh
(x1:t))

f ′
1:t, i

′
1:t ←

f1:t

f1:t+i1:t
, i1:t
f1:t+i1:t

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan(f ′
1:t, [h0, i

′
1:t ⊙ h̃1:t])
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A.2 PYTORCH CODE: VANILLA VERSION

A.2.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z_t = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = self.linear_h(x_t)
7 h_t = (1 - z_t) * h_prev + z_t * h_tilde
8 return h_t

Listing 1: Sequential Mode: Minimal Version of GRU (minGRU)

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x))
6 h_tilde = self.linear_h(x)
7 h = parallel_scan((1 - z),
8 torch.cat([h_0, z * tilde_h], dim=1))
9 return h

Listing 2: Parallel Mode: Minimal Version of GRU (minGRU)

A.2.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = self.linear_h(x_t)
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 3: Sequential Mode: Minimal Version of LSTM (minLSTM)

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 f = torch.sigmoid(self.linear_f(x))
6 i = torch.sigmoid(self.linear_i(x))
7 tilde_h = self.linear_h(x)
8 f_prime = f / (f + i)
9 i_prime = i / (f + i)

10 h = parallel_scan(f_prime,
11 torch.cat([h_0, i_prime * tilde_h], dim=1))
12 return h

Listing 4: Parallel Mode: Minimal Version of LSTM (minLSTM)
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B IMPLEMENTATION DETAILS: LOG-SPACE VERSION (ADDITIONAL
NUMERICAL STABILITY)

In this section, we detail the log-space version of minLSTM and minGRU for improved numeri-
cal stability. During training, the parallel modes are used to avoid backpropagation through time
(BPTT), speeding up the training time significantly. At inference time, the sequential modes are
used.

B.1 PARALLEL SCAN: LOG-SPACE IMPLEMENTATION

Recall that, the parallel scan’s objective is to compute h1:t where hk = ak ⊙ hk−1 + bk. In code,
the vanilla parallel scan function would take as input: coefficients a1:t and values b0:t. The function
then outputs h1:t. For numerical stability, we consider a log-space implementation which takes as
input log(a1:t) and log(b0:t) instead and outputs h1:t. The code for the parallel scan in log-space is
included below and is based on the code by Heinsen (2023).

1 def parallel_scan_log(log_coeffs, log_values):
2 # log_coeffs: (batch_size, seq_len, input_size)
3 # log_values: (batch_size, seq_len + 1, input_size)
4 a_star = F.pad(torch.cumsum(log_coeffs, dim=1), (0, 0, 1, 0))
5 log_h0_plus_b_star = torch.logcumsumexp(
6 log_values - a_star, dim=1)
7 log_h = a_star + log_h0_plus_b_star
8 return torch.exp(log_h)[:, 1:]

Listing 5: Parallel scan based on Heinsen (2023). This function computes h1:t given log coefficients
log(a1:t) and log values log(b0:t).

B.2 PSEUDOCODE: LOG-SPACE VERSION

For maximal numerical stability, we rewrite the log-space versions of minGRU and minLSTM.

B.2.1 MINGRU: A MINIMAL GRU

Recall minGRU’s recurrence is as follows ht ← (1−zt)⊙ht−1+zt⊙ h̃t. As such, at ← (1−zt)

and bt ← zt ⊙ h̃t where zt = σ(kt) and kt = Lineardh
(xt). As a result, log(at) ← log(1 − zt)

and log(bt)← log(zt) + log(h̃)t. We can break down these down as follows:

log(zt) = log(σ(kt))

= log

(
1

1 + exp(−kt)

)
= −Softplus(−kt)

log(1− zt) = log

(
exp(−kt)

1 + exp(−kt)

)
= log

(
1

1 + exp(kt)

)
= −Softplus(kt)

where kt = Lineardh
(xt). However, we need to compute log(h̃)t which is inconvenient if h̃t

has some negative values. We could use complex numbers and a complex number version of the
parallel scan, but this would result in the parallel scan increasing in complexity. Instead, we propose
to ensure that h̃t > 0. This be can done in a variety of ways. In our experiments, we added a
continuous activation function g replacing h̃t ← Lineardh

(xt) with h̃t ← g(Lineardh
(xt)) where

g(x) =

{
x+ 0.5, if x ≥ 0

σ(x), otherwise
and its log: log(g(x)) =

{
log(x+ 0.5), if x ≥ 0

−Softplus(−x), otherwise
.
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At inference time, the sequential mode (Algorithm 5) is used. During training, the parallel mode
(Algorithm 6) is used.

Algorithm 5 Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← g(Lineardh
(xt))

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 6 Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

Input: x1:t,h0

Output: h1:t

linear z← Lineardh

log z1:t ← −Softplus(linear z(−x1:t))
log coeffs← −Softplus(linear z(x1:t))
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log coeffs, [log h0, log z1:t + log h̃1:t)

B.2.2 MINLSTM: A MINIMAL LSTM

We also derive minLSTM’s log-space formulation as well. Recall minLSTM’s recurrence is as
follows ht ← f ′

t ⊙ ht−1 + i′t ⊙ h̃t. As such, at ← f ′
t and bt ← i′t ⊙ h̃t. As a result, log(at) ←

log(f ′
t) and log(bt)← log(i′t) + log(h̃t).

log(f ′
t) = log

(
ft

ft + it

)
= log

(
1

1 + it
ft

)

= − log

(
1 +

it
ft

)
= − log

(
1 + exp

(
log

(
it
ft

)))
= −Softplus

(
log

(
it
ft

))
= −Softplus (log(it)− log(ft))

Recall that it and ft are computed via sigmoid. In other words, it = σ(kt) and ft = σ(pt)
where kt = Lineardh

(xt) and pt = Lineardh
(xt). Furthermore, recall in minGRU’s derivation we

showed that log(σ(kt)) = −Softplus(−kt) Using this, we can simplify the computation as follows:

log(f ′
t) = −Softplus (log(σ(kt))− log(σ(pt)))

= −Softplus (Softplus(−pt)− Softplus(−kt)))
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Similarly, we also get that:

log(i′t) = −Softplus (Softplus(−kt)− Softplus(−pt)))

Combining these derivations, we get the parallel mode (Algorithm 8) for efficient training.

Algorithm 7 Sequential Mode: Minimal Version of LSTM (minLSTM) trained in log-space

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← g(Lineardh
(xt))

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 8 Parallel Mode: Minimal Version of LSTM (minLSTM) for training in log-space

Input: x1:t,h0

Output: h1:t

diff ← Softplus(−Lineardh
(x1:t))− Softplus(−Lineardh

(x1:t))
log f ′

1:t ← −Softplus(diff)
log i′1:t ← −Softplus(−diff)
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log f ′
1:t, [log h0, log i′1:t + log h̃1:t)

B.3 PYTORCH CODE: LOG-SPACE VERSION

1 def g(x):
2 return torch.where(x >= 0, x+0.5, torch.sigmoid(x))
3 def log_g(x):
4 return torch.where(x >= 0, (F.relu(x)+0.5).log(),
5 -F.softplus(-x))

Listing 6: The continuous function g ensures that h̃t ← g(Lineardh
(xt)) is positive.

B.3.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = g(self.linear_h(x_t))
7 h_t = (1 - z) * h_prev + z * h_tilde
8 return h_t

Listing 7: Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4
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5 k = self.linear_z(x)
6 log_z = -F.softplus(-k)
7 log_coeffs = -F.softplus(k)
8 log_h_0 = log_g(h_0)
9 log_tilde_h = log_g(self.linear_h(x))

10 h = parallel_scan_log(log_coeffs,
11 torch.cat([log_h_0, log_z + log_tilde_h], dim=1))
12 return h

Listing 8: Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

B.3.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = g(self.linear_h(x_t))
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 9: Sequential Mode: Minimal Version of LSTM (minLSTM) trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 diff = F.softplus(-self.linear_f(x)) \
6 - F.softplus(-self.linear_i(x))
7 log_f = -F.softplus(diff)
8 log_i = -F.softplus(-diff)
9 log_h_0 = torch.log(h_0)

10 log_tilde_h = log_g(self.linear_h(x))
11 h = parallel_scan_log(log_f,
12 torch.cat([log_h_0, log_i + log_tilde_h], dim=1))
13 return h

Listing 10: Parallel Mode: Minimal Version of LSTM (minLSTM) for training in log-space
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C DETAILED EXPERIMENT SETUP

In this section, we describe the experiment setup in detail.

C.1 DATASETS

Selective Copying. In this task, the model learns to extract data tokens from a sequence while disre-
garding noise tokens. Following Gu & Dao (2024), we consider a vocabulary of 16 and sequences of
length 4096. Each sequence includes 16 randomly placed data tokens. The remainder of the tokens
are noise.

Chomsky Hierarchy. In this task, we consider the Chomsky Hierarchy benchmark (Deletang et al.,
2023), which includes a variety of formal language tasks that span different levels of the Chom-
sky hierarchy. Additionally, we include the two additional tasks described in Beck et al. (2024):
Majority and Majority Count. Models are trained on tasks whose sequences vary in length up to
40. Evaluation is conducted for task lengths between 40 and 256 to assess the models’ ability to
generalize.

Long Range Arena. Our experiments on the Long Range Arena benchmark consist of three se-
quence modelling tasks with sequence lengths from 1024 to 4000, designed to evaluate architectures
on long-range modelling:

• Retrieval: Based on the ACL Anthology Network (Radev et al., 2009), the task is to
classify whether two citations, represented as integer token sequences, are equivalent. Se-
quences are of length 4000 with two possible classes.

• ListOps: An extended version of ListOps (Nangia & Bowman, 2018). The task is to
compute the result of a nested mathematical expression in prefix notation. Sequences are
of length 2048 with ten possible classes.

• G-Image: Based on CIFAR-10 (Krizhevsky, 2009), the task is to predict the class of 32×32
grayscale images (converted from RGB). Sequences are of length 1024 with ten possible
classes.

Reinforcement Learning. In this setting, we consider continuous control tasks from the D4RL
benchmark (Fu et al., 2020). These tasks based on MuJoCo comprise of three environments with
dense rewards: HalfCheetah, Hopper, and Walker. For each environment, three different datasets
are considered that have varying level represent varying levels of data quality:

• Medium (M): One million timesteps generated by a policy scoring about one-third of an
expert policy’s score.

• Medium-Replay (M-R): A replay buffer from an agent trained to perform like the Medium
policy.

• Medium-Expert (M-E): One million timesteps from the Medium policy combined with one
million from an expert policy.

Following Fu et al. (2020), reported scores are normalized such that 100 represents an expert policy
performance.

Language Modelling. In this setting, we consider the Shakespeare dataset, comprising a collection
of text data derived from the works of William Shakespeare. The training and testing data consists
of 1, 003, 854 and 111, 540 tokens respectively.

C.2 ARCHITECTURE

In our work, the primary goal was to demonstrate that simplified RNN architectures, such as minL-
STM and minGRU, can perform comparably to modern state-of-the-art sequence models. To achieve
this, we stick with a minimalistic architecture, following standard practices such as residual connec-
tions, normalization, and a downprojection layer for the RNN’s expanded hidden states. For more
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complex tasks like language modeling and Long Range Arena, standard components (convolutional
layer and MLP) are added4.

Selective Copying: No additional components.

Chomsky Hierarchy: (Conv4 → minRNN), i.e., a convolutional layer with a kernel size of 4 is
applied temporally before the minimal RNN.

Long Range Arena: (Conv4→ minRNN→MLP)

Language Modelling: (Conv4→ minRNN→MLP)

Reinforcement Learning: (minRNN→MLP)5

C.3 HYPERPARAMETERS AND GENERAL EXPERIMENTAL DETAILS

Selective Copying. For this task, we closely follow the setup of Gu & Dao (2024), training the model
for 400k steps with a batch size of 64 and an input dimension of 64. Due to GPU memory constraints,
gradient accumulation is applied, where gradients for two batches of size 32 are accumulated before
each gradient update and clipped to 1.0. The optimizer used is Adam with a learning rate of 3×10−4

alongside early stopping. Each model consists of 3 layers with a dropout rate of 0.1. The minLSTM
and minGRU models have an expansion factor of 6. Baseline results are referenced from the Mamba
paper.

Long Range Arena. For this benchmark, we closely follow the setup of Beck et al. (2024). For
Retrieval, the models consisted of 6 blocks and an embedding dimension of 128 and were trained
with a batch size of 64. For ListOps, the models consisted of 8 blocks and an embedding dimension
of 128 and were trained with a batch size of 32. For G-Image, the models consisted of 6 blocks and
an embedding dimension of 512 and were trained with a batch size of 64. All models were trained
for 250k steps using AdamW optimizer with a learning rate of 0.001, weight decay of 0.05, 10%
linear warm-up steps, and cosine annealing.

Chomsky Hierarchy. For this benchmark, we closely follow the setup of Beck et al. (2024), training
models consisting of two blocks. The models were trained for 500k steps with a batch size of 256
and the AdamW optimizer with a learning rate of 3× 10−4 and weight decay of 0.01.

Language Modelling. The models are optimized using AdamW with a learning rate of 1 × 10−3.
Each model consists of three layers, a dropout ratio of 0.2, and an embedding dimension of 384.
Training is done with 5k steps using a batch size of 64 and evaluated every 25 steps. Gradients are
clipped to 0.25. The Transformer is configured with 6 heads. Mamba uses an SSM state expansion
factor of 16 and a block expansion factor of 2. Following Mamba, both minLSTM and minGRU
utilize an expansion factor of 2 as well.

Reinforcement Learning. We follow the hyperparameter settings outlined by Ota (2024). For
Hopper (Medium) and Hopper (Medium-Replay), an embedding dimension of 256 is used, while all
other environments utilize an embedding dimension of 128. The learning rate is set to 1× 10−4 for
Hopper (Medium), Hopper (Medium-Replay), and Walker (Medium). For all other environments
and datasets, the learning rate is 1× 10−3. The models are optimized using AdamW with a weight
decay of 1 × 10−4 and a linear warmup for 10, 000 steps. Each model consists of 3 layers and has
a dropout ratio of 0.1. The models are trained for 100k steps with a batch size of 64. Results for the
baselines are referenced from the Mamba and Aaren papers.

4There is a trend in modern recurrent sequence models of prepending a convolutional layer (kernel size of
4) before their recurrent unit – for example, see Mamba (Gu & Dao, 2024) and xLSTM (Beck et al., 2024)
Empirically, we found that including this convolutional layer also helped minRNNs.

5Note this is equivalent to the standard Decision Transformer framework for (Offline) RL, replacing the
self-attention module with minLSTM or minGRU.
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D ADDITIONAL EXPERIMENTS

D.1 CHOMSKY HIERARCHY + LONG RANGE ARENA

In this section, we conduct experiments on both the Chomsky Hierarchy (Deletang et al., 2023)
and Long Range Arena (Tay et al., 2021) benchmarks, which are well-established in the literature
for evaluating sequence models. Together, these benchmarks provide a test of a model’s ability to
generalize and handle long-range dependencies, which are crucial for modern sequence modelling
tasks.

We compare Minimal RNNs against other fully parallelizable models, such as RWKV, Mamba, and
xLSTM[1:0] (using its parallelizable mLSTM module). Following Beck et al. (2024), we focus on
tasks from the Chomsky Hierarchy where models have achieved at least 30% accuracy, indicating
partial solvability. We closely followed the hyperparameter configurations outlined in the xLSTM
paper and averaged results over 3 seeds for consistency. The baseline results (accuracy – higher is
better) are taken from the xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long
Range Arena).

Our experiments (Table 4 and extended Table 5) show that Minimal RNNs achieve competitive per-
formance with state-of-the-art models (e.g., Mamba and xLSTM) across all tasks on these bench-
marks, outperforming other models such as Retention, Hyena, RWKV, and Llama.

D.2 INFERENCE RUNTIME COMPARISON

In these experiments, we compare the inference speeds of GRU, LSTM, minGRU, minLSTM, and
Mamba (using the official implementation). It is important to note that inference speed may vary
depending on the hardware and implementation used.

For this analysis, we tested different batch sizes (8, 16, 32, 64) and sequence lengths (up to 2048). In
Figure 3, we present the average inference speed across 50 runs, taking context tokens into account
before performing inference. Since GRU and LSTM models process context tokens sequentially,
their inference times are considerably slower than those of minGRU, minLSTM, and Mamba, all of
which benefit from parallel processing.

Overall, minLSTM and minGRU show inference speeds comparable to Mamba. Specifically, min-
GRU was 6.6%, 4.1%, 4.9%, and 2.9% faster than Mamba for batch sizes of 8, 16, 32, and 64,
respectively. On the other hand, minLSTM was 3.6%, 2.9%, 0%, and 1.3% slower than Mamba for
the same batch sizes.

Since minLSTM and minGRU are simplifications of LSTM and GRU, we expect them to generally
perform faster, including during inference. This is demonstrated in Figure 4, where we compare the
inference speed of minLSTM and minGRU with traditional LSTM and GRU models across varying
batch sizes. As expected, minGRU and minLSTM are 19.6% and 41.5% faster than GRU and LSTM
for a batch size of 64, respectively.

D.3 ARCHITECTURE ABLATION

In our work, the main objective was to demonstrate that simplified RNN architectures, such as
minLSTM and minGRU, can perform on par with modern state-of-the-art sequence models. To
achieve this, we adopted a minimalistic architectural design, incorporating standard practices such
as residual connections, normalization, and a downprojection layer for the RNN’s expanded hidden
states. For more complex tasks, like language modeling and Long Range Arena, we introduced a
convolutional layer and a multi-layer perceptron (MLP).

To better understand the impact of these architectural choices, we conducted an ablation study on
the ListOps (Long Range Arena) dataset of these additional components. The results, averaged
over 3 seeds, are shown in Table 6. The table highlights the effect of adding different layers to the
minLSTM model. For ListOps, incorporating a convolutional layer (Conv) and an MLP resulted in
improved performance.
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Method
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Transformers Llama 0.92 0.08 0.04 1.0 0.37

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69
RWKV-4 0.54 0.21 0.13 1.0 0.63
xLSTM 0.97 0.33 0.86 1.0 0.74

Minimal
RNNs minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93

Method
Majority

Count Retrieval ListOps G-Image Average

Transformers Llama 0.13 0.85 0.38 0.54 0.48

Modern
RNNs

Mamba 0.45 0.90 0.33 0.69 0.64
RWKV-4 0.13 0.90 0.39 0.69 0.51
xLSTM 0.46 0.91 0.41 0.70 0.71

Minimal
RNNs minLSTM (Ours) 0.47 0.89 0.59 0.67 0.73

Table 4: Results for Chomsky Hierarchy and Long Range Arena Benchmarks. We compare
minLSTM against other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0]
(using the mLSTM module). The baseline results (accuracy – higher is better) are taken from the
xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long Range Arena). The results
demonstrate that minLSTM achieves competitive performance with state-of-the-art models such as
Mamba and xLSTM across all tasks on these benchmarks.

D.4 INITIALIZATION ANALYSES

In this set of experiments, we examine the effect of initialization on the model’s performance. De-
pending on the task at hand, it may be beneficial to encourage the model to retain information over
time. One way to achieve this is by increasing the bias term in the forget gate of the minLSTM,
which promotes information retention earlier in the training process. As a result, the forget gate ft
of the LSTM approaches a value of 1 due to this new initialization. As shown in Figure 5, increasing
the forget gate bias in minLSTM enhances training efficiency, leading to faster convergence and
greater stability during training.

E ADDITIONAL RELATED WORK

Parallel Scan. Generalizing across the families of methods (including minLSTM and minGRU),
these recent sequence models can be viewed as members of the same family of functions trainable
via a parallel scan: vt = at⊙vt−1+ bt (see Section 2.3) where at and bt are functions of the input
token xt. Improving upon the parallel scan algorithm, several models (Yang et al., 2024; Gu & Dao,
2024) such as Mamba have proposed specialized hardware-efficient methods that leverage GPU’s
memory hierarchy to reduce high I/O costs and speed up training. In our work, we implemented
minLSTM and minGRU in plain PyTorch. However, due to the structural similarities in recurrences
amongst the numerous methods that leverage parallel scan, many techniques such as chunking that
apply to one work for speeding up training can also apply to others such as minGRU and minLSTM.

Parameter Initializations. Unrolling the recurrences of these new recurrent sequence models over
time often results in their outputs and gradients vanishing/exploding (Wang et al., 2024) due to time
dependency in their output’s scale. To ensure model stability, the parameters of many models such as
state-space models are initialized according to special distributions (Gu et al., 2020; 2022; Orvieto
et al., 2023). In contrast, we found that minLSTM and minGRU are already stable using the default
PyTorch initialization. Unlike SSMs, minLSTM and minGRU’s outputs are time-independent in
scale, avoiding potential instabilities.
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Method Context Sensitive Regular xLSTM
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Majority
Count

Traditional
RNNs

GRU 0.54 0.29 0.94 1.0 0.60 0.42
LSTM 0.99 0.33 1.0 1.0 0.54 0.46

Transformers Llama 0.92 0.08 0.04 1.0 0.37 0.13

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69 0.45
Retention 0.13 0.03 0.05 0.51 0.36 0.12

Hyena 0.3 0.06 0.06 0.93 0.36 0.18
RWKV-4 0.54 0.21 0.13 1.0 0.63 0.13
RWKV-5 0.49 0.15 0.26 1.0 0.73 0.34
RWKV-6 0.96 0.23 0.31 1.0 0.76 0.24
xLSTM 0.97 0.33 0.86 1.0 0.74 0.46

Minimal
RNNs

minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93 0.47

Table 5: Extended Results for Chomsky Hierarchy Benchmark. The baseline results (accuracy
— higher is better) are taken from the xLSTM paper (Figure 4). We compare minLSTM against
other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0] (using the mLSTM
module). The results demonstrate that minLSTM achieves competitive performance with state-
of-the-art models such as Mamba and xLSTM, while outperforming other models like Retention,
Hyena, RWKV, and Llama across all tasks in the Chomsky Hierarchy benchmark.

Model Accuracy
minLSTM 0.46

minLSTM (+ Conv) 0.45
minLSTM (+ MLP) 0.52

minLSTM (+ Conv + MLP) 0.59

Table 6: Architecture Ablation on the ListOps (Long Range Arena) Dataset. Results (accuracy
– higher is better) are averaged over 3 seeds. The table shows the impact of adding different layers
to the minLSTM model. For more complex tasks like language modeling and Long Range Arena,
we incorporate a convolutional layer (Conv) and a multi-layer perceptron (MLP). The performance
increases when these components are added.
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Figure 3: Runtime Comparison of Inference with Context Tokens: Parallelizable RNNs (minL-
STM, minGRU, and Mamba) vs. Traditional RNNs (LSTM and GRU). As sequential models,
LSTM and GRU exhibit significantly slower inference times when processing an increasing number
of context tokens, compared to the parallelizable models minLSTM, minGRU, and Mamba.

Figure 4: Runtime Comparison of Inference: Minimal RNNs (minLSTM and minGRU) vs.
Traditional Counterparts (LSTM and GRU). As simplified versions of LSTM and GRU, minL-
STM and minGRU generally exhibit faster inference times, particularly with larger batch sizes, as
shown in the plots.
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Figure 5: Impact of Forget Gate Bias Initialization on Training Efficiency. The plot illustrates
how increasing the bias of the forget gate in minLSTM enhances training efficiency by promoting
earlier retention of information, leading to faster convergence and a more stable training process.
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