
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WERE RNNS ALL WE NEEDED?

Anonymous authors
Paper under double-blind review

ABSTRACT

The introduction of Transformers in 2017 reshaped the landscape of deep learning.
Originally proposed for sequence modelling, Transformers have since achieved
widespread success across various domains. However, the scalability limitations
of Transformers—particularly with respect to sequence length—have sparked re-
newed interest in novel recurrent models that are parallelizable during training,
offer comparable performance, and scale more effectively. In this work, we revisit
sequence modelling from a historical perspective, focusing on Recurrent Neural
Networks (RNNs), which dominated the field for two decades before the rise of
Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We
demonstrate that by simplifying these models, we can derive minimal versions
(minLSTMs and minGRUs) that (1) use fewer parameters than their traditional
counterparts, (2) are fully parallelizable during training, and (3) achieve surpris-
ingly competitive performance on a range of tasks, rivalling recent models includ-
ing Transformers.

1 INTRODUCTION

Since the 1990s, Recurrent Neural Networks (RNNs) (Elman, 1990), such as Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) networks and later Gated Recurrent Units
(GRUs) (Cho et al., 2014), have been go-to methods for sequence modelling tasks like machine
translation and text generation. However, their inherently sequential nature, which limits paral-
lelization, made these models computationally inefficient and too slow to train on long sequences, a
common challenge in real-world applications.

In 2017, Transformers (Vaswani et al., 2017) revolutionized deep learning by introducing a paral-
lelizable training mechanism through self-attention, achieving immediate success in sequence mod-
elling. This breakthrough led to the development of popular large language models and quickly
extended to other domains, including computer vision (Dosovitskiy et al., 2021), reinforcement
learning (Chen et al., 2021), and bioinformatics (Jumper et al., 2021). However, while self-attention
allows for efficient modelling of token-to-token interactions, it suffers from quadratic computa-
tional complexity, making Transformers prohibitively expensive for long sequences, especially in
resource-constrained settings. To address this, numerous approaches have focused on improving
Transformer efficiency, exploring ideas such as sparsity (Kitaev et al., 2019), low-rank approxima-
tions (Wang et al., 2020), and tiling (Dao et al., 2022).

Recently, the scalability limitations of Transformers have sparked renewed interest in alternative ap-
proaches: novel recurrent models that are parallelizable and scale more efficiently. Several promis-
ing methods have emerged in this space, including state-space models (Gu et al., 2021), linearized
attention (Peng et al., 2023), and more recently, linear recurrent neural networks (Orvieto et al.,
2023). Notably, these state-of-the-art recurrent models leverage input-dependent transitions and
demonstrate strong performance similar to Transformers. These methods have shown success not
only in scaling to large language models but also in extending to other domains, such as image (Zhu
et al., 2024a) and graph-based data (Wang et al., 2024a).

In this work, we revisit sequence modelling from a historical perspective, focusing on the RNNs
that dominated the field for two decades before the rise of Transformers. Specifically, we explore
LSTMs (1997) and GRUs (2014), which are early examples of input-dependent recurrent models.
We show that by removing the dependencies of their gates on previous states, we can train these
models in parallel. Further simplification leads to minimal versions (minLSTMs and minGRUs)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during
training, and (3) achieve surprisingly competitive performance on a range of tasks despite their
simplicity, challenging the prevailing trend in the community toward increasing architectural and
algorithmic complexity. In the appendix, we provide implementations of minGRU and minLSTM in
plain PyTorch, with just a few lines of code, making these models lightweight and highly adaptable
for beginners, practitioners, and researchers.

2 BACKGROUND

In this section, we review traditional recurrent neural networks (RNNs). RNNs are sequence models
that maintain a hidden state across time steps, capturing temporal dependencies. As such, they are
particularly well-suited for tasks involving sequential data, such as time series forecasting, natural
language processing, and other tasks where context from previous steps informs current predictions.
However, vanilla RNNs (Elman, 1990) face challenges related to vanishing and exploding gradients,
which limit their ability to learn long-term dependencies.

2.1 LSTM

To address these issues, Hochreiter & Schmidhuber (1997) introduced Long Short-Term Memory
(LSTM) networks. LSTMs are a highly successful type of RNN specifically designed to mitigate
the vanishing gradient problem, enabling the model to effectively capture long-term dependencies.
LSTMs are computed as follows:

(Hidden State) ht = ot ⊙ tanh(ct)

(Output Gate) ot = σ(Lineardh
([xt,ht−1]))

(Cell State Recurrence) ct = ft ⊙ ct−1 + it ⊙ c̃t

(Forget Gate) ft = σ(Lineardh
([xt,ht−1]))

(Input Gate) it = σ(Lineardh
([xt,ht−1]))

(Candidate Cell State) c̃t = tanh(Lineardh
([xt,ht−1]))

where ⊙ denotes element-wise multiplication of vectors, t is the current timestep, and ht is the
outputted hidden state. [xt,ht−1] represents the concatenation of the input vector xt at time step t
with the previous hidden state ht−1. dh denotes the size of the hidden state, while ct is the cell state,
which carries information across time steps, and c̃t is the candidate cell state that will be added to
the cell state.

The gates it, ft, and ot control the flow of information through the LSTM. The input gate it deter-
mines how much new information from the candidate cell state c̃t should be added to the cell state
ct. The forget gate ft determines what portion of the previous cell state ct−1 should be discarded.
The output gate ot determines what information from the cell state should be output as the hidden
state ht. The functions σ (sigmoid) and tanh are used for scaling the values, ensuring that the out-
puts do not explode or vanish during training. An LSTM module maintains both a cell state and a
hidden state, and, in total, contains O(4dh(dx + dh)) parameters, where dx is the input size.

2.2 GRU

Simplifying LSTM, Cho et al. (2014) introduced the Gated Recurrent Unit (GRU), which uses only
two gates and a single state (hidden state), in contrast to the LSTM’s three gates and two states
(hidden state and cell state). This reduced complexity allows GRUs to achieve faster training and
inference times while still performing competitively on many tasks. GRUs are computed as follows:

(Hidden State Recurrence) ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(Update Gate) zt = σ(Lineardh
([xt,ht−1]))

(Reset Gate) rt = σ(Lineardh
([xt,ht−1]))

(Candidate Hidden State) h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where h̃t represents the candidate hidden state, a potential new value for the hidden state. GRU
combines the forget and input gates of LSTM into a single update gate, zt ∈ (0, 1), which determines
how much of the past information should be carried forward (i.e., 1 − zt) and how much new
information from the candidate hidden state should be added (i.e., zt). Additionally, GRU removes
LSTM’s output gate and introduces a reset gate rt, which controls how much of the past hidden state
ht−1 is used when computing the candidate hidden state h̃t.

By reducing the number of gates and states, GRU also decreases the total number of parameters and
computations, requiring only O(3dh(dx + dh)) parameters. However, both GRUs and LSTMs are
still sequential-only models. As such, they require backpropagation through time (BPTT) during
training, resulting in linear training time and limiting their ability to scale to long contexts.

2.3 PARALLEL SCAN

Due to this limitation, the introduction of Transformers in 2017 revolutionized the field by replacing
LSTMs and GRUs as the de facto method for sequence modelling. Transformers leverage par-
allelization during training, overcoming the sequential bottleneck of traditional recurrent models.
However, instead, Transformers have a quadratic complexity with respect to the sequence length,
limiting their ability to scale to very long contexts, especially in resource-constrained settings.

In response, a resurgence of new recurrent sequence models has emerged, offering alternatives to
Transformers. These models achieve comparable performance while being trainable in parallel and
avoid the backpropagation through time (BPTT) issues that plagued traditional RNNs (e.g., LSTMs
and GRUs). Among these innovations, many architectures rely on the parallel prefix scan algo-
rithm (Blelloch, 1990) for efficient training.

The parallel scan algorithm is a parallel computation method for computing N prefix computations
from N sequential data points via an associative operator ⊕ (e.g., + and ×). The algorithm effi-
ciently computes the sequence of prefix sums {

⊕k
i=1 ui}Nk=1 from the input sequence {uk}Nk=1. One

important application of the parallel scan algorithm is in computing a popular class of recurrence
relations of the form vt = atvt−1+ bt, where vt, at, and bt are real numbers and v0 ← b0 (Martin &
Cundy, 2018). This method takes as input the sequences a1, . . . , an and b0, b1, . . . , bn, and computes
the sequence v1, . . . , vn in parallel. This approach naturally extends to vector-valued recurrences,
such as vt = at ⊙ vt−1 + bt, where ⊙ denotes element-wise multiplication.

3 METHODOLOGY

Interestingly, we can see that the GRU’s hidden state and LSTM’s cell state recurrences resemble the
vector formulation. In this section, we demonstrate that GRUs and LSTMs are trainable via parallel
scan by removing their previous state dependencies from their various gates. Building on this, we
further simplify these RNNs by removing their constraints on output range (i.e., tanh). Combining
the steps, we describe minimal versions of GRUs and LSTMs (minGRUs and minLSTMs) that are
trainable in parallel.

3.1 A MINIMAL GRU: MINGRU

3.1.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting GRU’s hidden state recurrence which works as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

We can observe that the recurrence resembles the aforementioned parallel scan’s formulation vt =
at ⊙ vt−1 + bt where at ← (1 − zt), bt ← zt ⊙ h̃t, and vt ← ht. However, zt and h̃t

are dependent on the previous hidden state ht−1, i.e., zt = σ(Lineardh
([xt,ht−1])) and h̃t =

tanh(Lineardh
([xt, rt ⊙ ht−1])). As a result, it is not possible to apply the parallel scan as is since

the algorithm’s inputs a1, . . . ,an and b1, . . . , bn are conditional on already knowing its outputs
h1, . . . ,hn−1.

A simple remedy to this is to simplify GRU by removing their previous hidden state (i.e., ht−1)
dependencies. Specifically, the changes are as follows:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒
zt = σ(Lineardh

(xt))

h̃t = tanh(Lineardh
(xt))

By removing the dependence on ht−1 from the candidate hidden state h̃t, the reset gate rt that
would control ht−1 weight is also no longer needed and is removed. Without the dependencies on
previous hidden states, the inputs to the algorithm a1, . . . ,an and b1, . . . , bn are all easily computed
in parallel and can thus be used to compute h1, . . . ,hn efficiently via the parallel scan.

Although there have been theoretical concerns about the absence of previous state dependen-
cies (Merrill et al., 2024), there has also been substantial empirical evidence supporting the effec-
tiveness of models that omit these dependencies, such as xLSTM (Beck et al., 2024) and Mamba (Gu
& Dao, 2024). Instead of explicitly modelling dependencies on previous states to capture long-range
dependencies, these kinds of recurrent models can learn them by stacking multiple layers. Notably,
in the xLSTM paper, their fully parallelized version (xLSTM[1:0]), which eliminates hidden state
dependencies, performed similarly to — and in some cases, better than — versions that retain these
dependencies (e.g., xLSTM[7:1]).

3.1.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

In GRU’s hidden state recurrence, the proportion carried over from the previous hidden state (1−zt)
and the amount added for the new candidate hidden state (zt) sum to 1. As a result, the scale of
GRU’s hidden state value is time-independent. Instead, the scale of its hidden state depends on that
of its candidate hidden states h̃t. The hyperbolic tangent function (tanh) plays a crucial role in
LSTMs and GRUs, restricting the range of (candidate) hidden states, i.e., h̃t,ht ∈ (−1, 1)dh . The
tanh helps stabilize the training and mitigates vanishing gradients that result from applying sigmoid
(σ) activations to linear transformations of the hidden state (e.g., zt = σ(Lineardh

([xt,ht−1]))). In
the previous step, these hidden state dependencies were removed. As such, we simplify GRU further
by removing the range restriction (tanh) on the (candidate) hidden states as follows:

h̃t = tanh(Lineardh
(xt)) ⇒ h̃t = Lineardh

(xt)

3.1.3 MINGRU

Combining the two simplification steps results in a minimal version of GRU (minGRU):

GRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒

minGRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

The resulting model is significantly more efficient than the original GRU, requiring only O(2dhdx)
parameters, compared to GRU’s O(3dh(dx + dh)) parameters, where dx and dh denote the sizes of
the input xt and the hidden state ht, respectively. In RNNs, state expansion is often used (i.e., dh =
αdx, where α ≥ 1), which helps the models better capture features from the input data. minGRU
uses approximately 33%, 22%, 17%, and 13% of the parameters of a GRU when α = 1, 2, 3, 4,
respectively.

Additionally, the minimal version of GRU can now be trained in parallel using the parallel scan
algorithm, bypassing the need for backpropagation through time (BPTT). Pseudocode and a simple
PyTorch implementation are included in the Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 A MINIMAL LSTM: MINLSTM

3.2.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting LSTM’s cell state recurrence which works as follows:

ct = ft ⊙ ct−1 + it ⊙ c̃t

Similar to GRU’s hidden state, we can see that LSTM’s cell state recurrence resembles the afore-
mentioned parallel scan’s formulation vt = at ⊙ vt−1 + bt where at ← ft, bt ← it ⊙ c̃t, and
vt ← ct. However, ft, it and c̃t are dependent on the previous hidden state ht. As such, LSTM’s
cell state recurrence is unable to apply the parallel scan algorithm as is. We can address this in a
similar fashion to GRU by removing their hidden state dependencies as follows:

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒
ft = σ(Lineardh

(xt))

it = σ(Lineardh
(xt))

c̃t = tanh(Lineardh
(xt))

3.2.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

Similar to GRUs, LSTMs leverage the hyperbolic tangent function (tanh) to restrict the range of
its states between (−1, 1). LSTMs apply the range restriction twice: once when computing the
candidate cell state and once when computing its hidden state. In this step, we drop both as follows:

c̃t = tanh(Lineardh
(xt))

ht = ot ⊙ tanh(ct)
⇒

c̃t = Lineardh
(xt)

ht = ot ⊙ ct

3.2.3 STEP 3: SIMPLIFYING SCALING OF OUTPUT

Continuing the trend of simplification, we drop the output gate ot which scales the hidden state.
Without the output gate, the normalized hidden state is equal to the cell state, i.e., ht = ot ⊙ ct ⇒
ht = ct, making having both a hidden and cell state unnecessary. As such, we drop the cell state as
well, resulting in the following modification:

ht = ot ⊙ ct

ot = σ(Lineardh
(xt))

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = Lineardh
(xt)

⇒
ht = ft ⊙ ht−1 + it ⊙ h̃t

h̃t = Lineardh
(xt)

In many sequence modelling settings (e.g., text generation), the optimization objective/target is time-
independent in scale. Recall LSTM’s cell state recurrence ct = ft ⊙ ct−1 + it ⊙ c̃t where it,ft ∈
(0, 1)dh , and GRU’s hidden state recurrence1, hGRU

t = (1 − zt) ⊙ hGRU
t−1 + zt ⊙ h̃GRU

t where
zt ∈ (0, 1)dh . GRUs retain (1 − zt) ∈ (0, 1) of the previous hidden state and add zt of the
new candidate state. Since these proportions sum to 1, the model ensures its outputs (i.e., hidden
states) are time-independent in scale. In contrast, LSTM’s forget and input gates are computed
independently (e.g., ft, it → 1 or ft, it → 0), making its states time-dependent in scale2. For
tasks where time-independence is important, we can ensure LSTM’s output is time-independent in
scale by simply normalizing its input and forget gates, i.e., f ′

t , i
′
t ←

ft

ft+it
, it
ft+it

, ensuring that
f ′
t + i′t = 1 and the scale of LSTM’s state is time-independent.

3.2.4 MINLSTM

Combining the three steps results in a minimal version of LSTM (minLSTM):

1A superscript is added to differentiate GRU’s hidden state from LSTM’s.
2For example, ct → c0 +

∑t
i=1 c̃t when f1:t, i1:t → 1, growing in scale as the sequence length increases.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Training runtime (left), speedup (middle), and memory footprint (right) on a T4 GPU for a
batch size of 64. In the training runtime plot (left), minGRU, minLSTM, and Mamba lines overlap.
These methods are approximately the same in training runtime.

LSTM

ht = ot ⊙ tanh(ct)

ot = σ(Lineardh
([xt,ht−1]))

ct = ft ⊙ ct−1 + it ⊙ c̃t

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒

minLSTM

ht = ft ⊙ ht−1 + it ⊙ h̃t

ft = σ(Lineardh
(xt))

it = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

where time-independent outputs can be achieved using a hidden state recurrence ht = f ′
t ⊙ht−1 +

i′t ⊙ h̃t with normalized forget f ′
t and input it gates computed as f ′

t , i
′
t ←

ft

ft+it
, it
ft+it

.

The resulting model is significantly more efficient than the original LSTM, requiring only O(3dhdx)
parameters compared to LSTM’s O(4dh(dx + dh)). Considering state expansion (i.e., dh = αdx,
where α ≥ 1), minLSTM uses approximately 38%, 25%, 19%, or 15% of the parameters of a LSTM
when α = 1, 2, 3, or 4 respectively.

Additionally, the minimal version of LSTM can now be trained in parallel using the parallel scan
algorithm, bypassing the need for backpropagation through time (BPTT). Pseudocode and a simple
PyTorch implementation are included in the Appendix.

4 WERE RNNS ALL WE NEEDED?

In this section, we compare the minimal versions (minLSTMs and minGRUs) with their traditional
counterparts (LSTMs and GRUs) and modern sequence models. Pseudocode, PyTorch implementa-
tion, and detailed information regarding the experiment setup are available in the Appendix.

4.1 MINIMAL LSTMS AND GRUS ARE EFFICIENT

At test time, recurrent sequence models are typically rolled out sequentially, which makes inference
relatively efficient. However, the main bottleneck for traditional RNNs lies in their training, which
requires linear time due to backpropagation through time (BPTT). This computational inefficiency
contributed to the eventual deprecation of many earlier RNN-based models.

In this section, we compare the resource requirements for training traditional RNNs (LSTM and
GRU), their simplified counterparts (minLSTM and minGRU)3, and Mamba (using the official im-
plementation), a recent popular recurrent sequence model.

For these experiments, a fixed batch size of 64 was used while varying the sequence length. We
measure both the total runtime and memory complexity involved in performing a forward pass,

3See Appendix for the PyTorch implementations of minLSTM and minGRU written in a few lines.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

computing the loss, and performing backpropagation to compute gradients. To ensure a fair and
direct comparison, all models were tested with the same number of layers.

Runtime. We would like to highlight that inference speed can vary depending on hardware and
implementation. PyTorch’s built-in RNNs are highly optimized low-level GPU implementations.
For a more fair comparison, in these experiments, minGRU, minLSTM, GRU, and LSTM were all
written in plain Pytorch. In terms of runtime (see Figure 1 (left)), the simplified versions of LSTM
and GRU (minLSTM and minGRU) Mamba achieve similar runtimes. Averaging over 100 runs, the
runtime for sequence lengths of 512 for minLSTM, minGRU, and Mamba were 2.97, 2.72, and 2.71
milliseconds respectively. For a sequence with length 4096, the runtime were 3.41, 3.25, and 3.15
respectively. In contrast, the traditional RNN counterparts (LSTMs and GRUs) required a runtime
that scaled linearly with respect to sequence length. For a sequence length of 512, minGRUs and
minLSTMs were 175× and 235× faster per training step (see Figure 1 (middle)) than GRUs and
LSTMs on a T4 GPU. The improvement is even more significant as sequences grow in length with
minGRUs and minLSTMs being 1324× and 1361× faster for a sequence length of 4096. As such,
in a setting where minGRU would take a day to finish training for a fixed number of epochs, its
traditional counterpart GRU could take over 3 years.

Memory. By leveraging a parallel scan algorithm to compute the outputs in parallel efficiently,
minGRU, minLSTM, and Mamba create a larger computational graph, thus needing more memory
compared to traditional RNNs (see Figure 1 (right)). The minimal variants (minGRU and minL-
STM) use ∼ 88% more memory compared to their traditional counterparts (GRU and LSTM).
Mamba uses 56% more memory compared to minGRU. In practice, however, runtime is often the
bottleneck when training RNNs.

Effect of removing ht−1. The original LSTM and GRU compute their various gates using their
inputs xt and previous hidden states ht−1. These models leverage their time-dependent gates to
learn complex functions. However, minLSTM and minGRU’s training efficiencies are achieved by
dropping their gates’ dependencies on the previous hidden states ht−1. As a result, minLSTM and
minGRU’s gates are dependent only on their inputs xt, resulting in a simpler recurrent module. As
such, the gates of a model consisting of a single layer of minLSTM or minGRU are time-independent
due to being conditioned on time-independent inputs x(1)

1:n.

Model # Layers Accuracy

MinLSTM
1 37.6 ± 2.0
2 85.7 ± 5.8
3 96.0 ± 2.8

MinGRU
1 37.0 ± 2.3
2 96.8 ± 3.2
3 99.5 ± 0.2

Table 1: Comparison of the number of
layers on the Selective Copying Task (Gu
& Dao, 2024).

However, in deep learning, models are constructed by
stacking modules. Although the inputs to the first layer
x
(1)
1:n is time-independent, its outputs h

(1)
1:n are time-

dependent and are used as the inputs to the second layer,
i.e., x(2)

1:n ← h
(1)
1:n. As such, beginning from the second

layer onwards, minLSTM and minGRU’s gates will also
be time-dependent, resulting in the modelling of more
complex functions. In Table 1, we compare the perfor-
mance of the models with varying numbers of layers on
the Selective Copying Task from the Mamba paper (Gu
& Dao, 2024). We can immediately see the impact of
the time dependencies: increasing the number of layers
to 2 or more drastically increases performance.

Training Stability. Another effect of the number of lay-
ers is increased stability with decreased variance in the accuracy as the number of layers increases
(see Table 1). Furthermore, although minLSTM and minGRU both solve the Selective Copying
task, we can see that minGRU is an empirically more stable method than minLSTM, solving the
task with more consistency and lower variance. minLSTM discards old information and adds new
information, controlling the ratio with two sets of parameters (forget and input gate). During train-
ing, the two sets of parameters are tuned in different directions, making the ratio harder to control
and optimize. In contrast, minGRU’s discarding and adding of information is controlled by a single
set of parameters (update gate).

4.2 MINIMAL RNNS PERFORM SURPRISINGLY WELL

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset DT DS4 DAaren DMamba minLSTM minGRU
HalfCheetah-M 42.6 42.5 42.2 42.8 42.7 ± 0.7 43.0 ± 0.4

Hopper-M 68.4 54.2 80.9 83.5 85.0 ± 4.4 79.4 ± 8.2
Walker-M 75.5 78.0 74.4 78.2 72.0 ± 7.5 73.3 ± 3.3

HalfCheetah-M-R 37.0 15.2 37.9 39.6 38.6 ± 1.1 38.5 ± 1.1
Hopper-M-R 85.6 49.6 77.9 82.6 88.5 ± 4.7 90.5 ± 0.9
Walker-M-R 71.2 69.0 71.4 70.9 69.7 ± 10.7 72.8 ± 8.9

HalfCheetah-M-E 88.8 92.7 75.7 91.9 85.4 ± 1.7 86.3 ± 0.5
Hopper-M-E 109.6 110.8 103.9 111.1 110.3 ± 1.6 109.7 ± 2.7
Walker-M-E 109.3 105.7 110.5 108.3 110.3 ± 0.5 110.3 ± 0.4

Average 76.4 68.6 75.0 78.8 78.1 78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng
et al., 2024) and Decision Transformer (Chen et al., 2021).

In this section, we focus on the empirical performance of these minimal versions of decades-old
models LSTMs (1997) and GRUs (2014), comparing them to several modern sequence models.
It is important to note that the primary goal of our work is not to attain the best performance on
specific tasks but to demonstrate that simplifying traditional architectures can yield competitive
results, comparable to those of recent sequence models.

Model Layer Accuracy
H3 Hyena 30.1

Mamba Hyena 28.4
S4 S4 18.3
H3 S4 57.0

Mamba S4 56.4
S4 S6 97.0
H3 S6 99.7

Mamba S6 99.8
minGRU minGRU 99.5 ± 0.2

minLSTM minLSTM 96.0 ± 2.8

Table 2: Selective Copy Task. minL-
STM, minGRU, and Mamba’s S6 (Gu &
Dao, 2024) are capable of solving this task.
Other methods such as S4, H3, and Hyena
at best only partially solve the task.

Selective Copy. We begin by considering the Selec-
tive Copying task, originally introduced in the influ-
ential Mamba paper (Gu & Dao, 2024). This task
served as a key benchmark that demonstrated the im-
provements made by Mamba’s state-space model, S6,
over previous state-of-the-art models such as S4 (Gu
et al., 2021) and Hyena (Poli et al., 2023). The task
requires models to perform content-aware reasoning,
where they must selectively memorize relevant tokens
while filtering out irrelevant ones.

In Table 2, we compare the simplified versions of
LSTMs and GRUs (minLSTM and minGRU) with sev-
eral well-known recurrent sequence models that can
be trained in parallel, including S4 (Gu et al., 2021),
H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
Mamba (S6) (Gu & Dao, 2024). The results for these
baselines are directly quoted from the Mamba paper.
Among these, only Mamba’s S6 model succeeds in
solving the task.

Both minGRU and minLSTM are able to solve the Se-
lective Copying task as well, achieving performance
comparable to S6 and surpassing the other modern baselines, highlighting the effectiveness of these
traditional models LSTMs and GRUs, which utilize content-aware gating mechanisms.

Reinforcement Learning. Next, we consider the MuJoCo locomotion tasks from the D4RL bench-
mark (Fu et al., 2020). Specifically, we consider the three environments: HalfCheetah, Hopper, and
Walker. For each environment, the models are trained on three datasets of varying data quality:
Medium (M), Medium-Replay (M-R), and Medium-Expert (M-E).

In Table 3, we compare minLSTM and minGRU with various Decision Transformer variants, in-
cluding the original Decision Transformer (DT) (Chen et al., 2021), Decision S4 (DS4) (David
et al., 2023), Decision Mamba (Ota, 2024), and (Decision) Aaren (Feng et al., 2024). The base-
line results are retrieved from the Decision Mamba and Aaren papers. minLSTM and minGRU

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

outperform Decision S4 and achieve performance competitive with Decision Transformer, Aaren,
and Mamba. Unlike other recurrent methods, Decision S4 is a model whose recurrence transitions
are not input-aware, affecting their performance. In terms of average score across the 3 × 3 = 9
datasets, minLSTM and minGRU outperform all the baselines except for Decision Mamba where
the difference is marginal.

Figure 2: Language Modelling results on the Shakespeare dataset. Minimal versions of decade-
old RNNs (LSTMs and GRUs) performed comparably to Mamba and Transformers. Transformers
required ∼ 2.5× more training steps to achieve comparable performance, overfitting eventually.

Language Modelling. Finally, we consider a language modelling task. In this setting, we train
a character-level GPT on the works of Shakespeare using the nanoGPT (Karpathy, 2022) frame-
work. In Figure 2, we plot the learning curves with a cross-entropy loss comparing the proposed
minimal LSTM and GRU (minLSTM and minGRU) with Mamba and Transformers. We found that
minGRU, minLSTM, Mamba, and Transformers achieved comparable test losses of 1.548, 1.555,
1.575, and 1.547 respectively. Mamba performed slightly worse than the other models but trained
faster, particularly in the early stages, achieving its best performance at 400 steps while minGRU
and minLSTM continued training until 575 and 625 steps respectively. In contrast, Transform-
ers trained significantly slower, requiring 2000 steps (∼ 2.5×) more training steps than minGRU
to achieve comparable performance, making it significantly slower and more resource-intensive to
train (quadratic complexity compared to minGRU, minLSTM, and Mamba’s linear complexity).

5 RELATED WORK

In this section, we provide a brief overview of recent efficient recurrent sequence models that have
demonstrated strong empirical performance, rivalling Transformers, while offering better scalability.
For a more comprehensive discussion on the resurgence of efficient recurrent models, we refer the
reader to recent surveys (Tiezzi et al., 2024). Broadly speaking, these models have evolved in three
key directions:

(Deep) State-Space Models (SSMs). Building on continuous-time linear systems, Gu et al. (2021)
introduced S4, a state-space model that can be unrolled like an RNN during inference and trained
similarly to a convolutional neural network. S4’s success paved the way for numerous subsequent
developments in the field (Gu et al., 2022; Gupta et al., 2022; Hasani et al., 2023; Smith et al., 2023)
and their applications across various domains such as language processing (Mehta et al., 2023) and
audio analysis (Goel et al., 2022). More recently, Mamba emerged as a significant breakthrough in
SSMs, surpassing previous models and attracting considerable attention. One of the key innovations
in Mamba was the introduction of S6, a state-space model with input-dependent transition matrices,
contrasting with earlier models that used input-independent transition matrices. The success of
Mamba and other state-space models has led to the publication of several comprehensive surveys on
the topic (Wang et al., 2024b; Patro & Agneeswaran, 2024; Qu et al., 2024).

Recurrent Versions of Attention. Another popular direction is that of attention, specifically related
to linear attention (Katharopoulos et al., 2020). For example, Sun et al. (2023) and Qin et al. (2023)
introduced linear attention models that use an input-independent gating mechanism (decay factor).
In contrast, Katsch (2023) and Yang et al. (2024) proposed linear attention variants that use input-
dependent gating. Recently, Feng et al. (2024) showed that softmax attention can also be viewed as
an RNN and proposed a recurrent model based on their RNN formulation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Parallelizable RNNs. Our work is closely related to several notable papers that parallelize RNNs.
Bradbury et al. (2017) modified classical gated RNNs to leverage convolutional layers for efficiency,
applying them temporally. Martin & Cundy (2018) demonstrated that RNNs with linear dependen-
cies can be efficiently trained using a parallel scan. Building on this work, the authors introduced
GILR, a gated linear RNN, where the outputs can serve as a surrogate for the previous state depen-
dencies in traditional RNNs (e.g., LSTMs), enabling parallel training. Notably, minGRU is equiv-
alent to GILR but without an activation function. More recently, Orvieto et al. (2023) proposed
a linear gated RNN that leverages complex diagonal recurrences and an exponential parameteri-
zation, achieving comparable performance to state-space models. Qin et al. (2024b) introduced
HGRN whose token mixer HGRU is a linear gated RNN augmented with complex value (polar co-
ordinate) recurrences, lower bounds on their forget gate, and an output gate. HGRN2 (Qin et al.,
2024a) improved HGRN by incorporating state expansion. Beck et al. (2024) extends LSTM using
exponential gating and a normalizer state. Their xLSTM consists of parallelizable (mLSTM) and
sequential-only (sLSTM) versions. mLSTM removes the hidden state dependencies to enable paral-
lelization, introduces a matrix memory cell, and uses a query vector for retrieval from the memory.
Zhu et al. (2024b) builds on insights from HGRN and revisits GRUs, introducing a parallelizable
token mixer that removes matrix multiplications and leverages ternary weight quantization.

6 CONCLUSION

In this work, we revisited the history of sequence modelling, focusing on traditional RNNs, specif-
ically LSTMs (1997) and GRUs (2014), which dominated the field for two decades before the rise
of Transformer models. We demonstrated that we can enable parallel training of traditional RNNs
by removing their gates’ dependencies on previous states. Further simplification of these archi-
tectures led to minimal versions—minLSTMs and minGRUs—which offer several advantages: (1)
fewer parameters than their traditional counterparts, (2) full parallelizability during training, and
(3) surprisingly competitive performance across a range of tasks, rivalling modern models despite
their simplicity. In the appendix, we provide implementations of minGRU and minLSTM in plain
PyTorch, requiring only a few lines of code. This makes them lightweight and accessible to begin-
ners, practitioners, and researchers alike. We hope this work sparks a broader conversation about
the evolution of sequence modelling, encouraging a reevaluation of simpler foundational models
like LSTM and GRU in light of newer, more complex architectures. Given the surprising effective-
ness of these minimal versions of decades-old RNNs, alongside the recent success of modern RNN
architectures, we pose the question: ”Were RNNs all we needed?”

LIMITATIONS

Modern models such as Mamba and xLSTM were run on modern A100 GPUs with 80 GB of mem-
ory. In contrast, our experiments were conducted on older GPUs (i.e., P100, T4, and Quadro 5000)
with only 16 GB of memory (roughly 20% of the memory available to the other models). These
hardware constraints impacted our ability to perform large-scale experiments. To accommodate the
memory limitations, we used gradient accumulation for training some tasks, reducing the effective
batch size by half, which resulted in significantly slower training times. While this approach al-
lowed us to run experiments within the available memory constraints, it also limited the scale of our
evaluations.

Despite these limitations, we believe that the conclusions drawn from our experiments are likely
to generalize to larger-scale settings. The minimal versions of traditional RNNs share fundamen-
tal similarities with many recent recurrent sequence models (e.g., input-dependent gating), which
suggests that their performance would likely be consistent on larger datasets given sufficient com-
putational resources.

REFERENCES

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Guy E Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of
Computer Science, Carnegie Mellon University, 1990.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural net-
works. In International Conference on Learning Representations, 2017.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical ma-
chine translation. In EMNLP, 2014.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision s4: Efficient
sequence-based rl via state spaces layers. In The Eleventh International Conference on Learning
Representations, 2023.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In The Eleventh International Conference on Learning Representations, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. ISSN 0364-
0213.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, and
Greg Mori. Attention as an rnn. arXiv preprint arXiv:2405.13956, 2024.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2024.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In The Eleventh International Conference
on Learning Representations, 2023.

Franz A Heinsen. Parallelization of an ubiquitous sequential computation. arXiv preprint
arXiv:2311.06281, 2023.

S Hochreiter and J Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
International Conference on Learning Representations, 2018.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. In The Eleventh International Conference on Learning Representations,
2023.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
In Forty-first International Conference on Machine Learning, 2024.

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. In Sil-
vio Ricardo Cordeiro, Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim (eds.),
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pp. 92–99, New Orleans, Louisiana,
USA, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-4013. URL
https://aclanthology.org/N18-4013.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

Badri Narayana Patro and Vijay Srinivas Agneeswaran. Mamba-360: Survey of state space models
as transformer alternative for long sequence modelling: Methods, applications, and challenges.
arXiv preprint arXiv:2404.16112, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

12

https://github.com/karpathy/nanoGPT
https://aclanthology.org/N18-4013


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Fei Yuan, Xiao Luo, et al. Scaling transnormer to 175 billion parameters. arXiv preprint
arXiv:2307.14995, 2023.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. Conference on Language Modeling, 2024a.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for se-
quence modeling. Advances in Neural Information Processing Systems, 36, 2024b.

Haohao Qu, Liangbo Ning, Rui An, Wenqi Fan, Tyler Derr, Xin Xu, and Qing Li. A survey of
mamba. arXiv preprint arXiv:2408.01129, 2024.

Dragomir R. Radev, Pradeep Muthukrishnan, and Vahed Qazvinian. The ACL Anthology network
corpus. In Min-Yen Kan and Simone Teufel (eds.), Proceedings of the 2009 Workshop on Text and
Citation Analysis for Scholarly Digital Libraries (NLPIR4DL), pp. 54–61, Suntec City, Singapore,
August 2009. Association for Computational Linguistics. URL https://aclanthology.
org/W09-3607.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021.

Matteo Tiezzi, Michele Casoni, Alessandro Betti, Marco Gori, and Stefano Melacci. State-space
modeling in long sequence processing: A survey on recurrence in the transformer era. arXiv
preprint arXiv:2406.09062, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30(2017), 2017.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024a.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong, Ju Huang,
Shihao Li, Haoxiang Yang, et al. State space model for new-generation network alternative to
transformers: A survey. arXiv preprint arXiv:2404.09516, 2024b.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In International Conference on Machine Learning,
2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. In
International Conference on Machine Learning, 2024a.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024b.

13

https://aclanthology.org/W09-3607
https://aclanthology.org/W09-3607


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS: VANILLA VERSION

In this section, we provide the pseudocode and equivalent PyTorch code for minGRU and minL-
STM. When performing repeated multiplications such as in many recurrent sequence models, nu-
merical instabilities are common, especially during training. As such, we trained using a log-space
implementation (see Section B) for improved numerical stability.

A.1 PSEUDOCODE: VANILLA VERSION

A.1.1 MINGRU: A MINIMAL GRU

Algorithm 1 Sequential Mode: Minimal Version of GRU (minGRU)

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← Lineardh
(xt)

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 2 Parallel Mode: Minimal Version of GRU (minGRU)

Input: x1:t,h0

Output: h1:t

z1:t ← σ(Lineardh
(x1:t))

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan((1− z1:t), [h0, z1:t ⊙ h̃1:t])

A.1.2 MINLSTM: A MINIMAL LSTM

Algorithm 3 Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← Lineardh
(xt)

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 4 Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

Input: x1:t,h0

Output: h1:t

f1:t ← σ(Lineardh
(x1:t))

i1:t ← σ(Lineardh
(x1:t))

f ′
1:t, i

′
1:t ←

f1:t

f1:t+i1:t
, i1:t
f1:t+i1:t

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan(f ′
1:t, [h0, i

′
1:t ⊙ h̃1:t])

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PYTORCH CODE: VANILLA VERSION

A.2.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z_t = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = self.linear_h(x_t)
7 h_t = (1 - z_t) * h_prev + z_t * h_tilde
8 return h_t

Listing 1: Sequential Mode: Minimal Version of GRU (minGRU)

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x))
6 h_tilde = self.linear_h(x)
7 h = parallel_scan((1 - z),
8 torch.cat([h_0, z * tilde_h], dim=1))
9 return h

Listing 2: Parallel Mode: Minimal Version of GRU (minGRU)

A.2.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = self.linear_h(x_t)
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 3: Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 f = torch.sigmoid(self.linear_f(x))
6 i = torch.sigmoid(self.linear_i(x))
7 tilde_h = self.linear_h(x)
8 f_prime = f / (f + i)
9 i_prime = i / (f + i)

10 h = parallel_scan(f_prime,
11 torch.cat([h_0, i_prime * tilde_h], dim=1))
12 return h

Listing 4: Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence scaling

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS: LOG-SPACE VERSION (ADDITIONAL
NUMERICAL STABILITY)

In this section, we detail the log-space version of minLSTM and minGRU for improved numeri-
cal stability. During training, the parallel modes are used to avoid backpropagation through time
(BPTT), speeding up the training time significantly. At inference time, the sequential modes are
used.

B.1 PARALLEL SCAN: LOG-SPACE IMPLEMENTATION

Recall that, the parallel scan’s objective is to compute h1:t where hk = ak ⊙ hk−1 + bk. In code,
the vanilla parallel scan function would take as input: coefficients a1:t and values b0:t. The function
then outputs h1:t. For numerical stability, we consider a log-space implementation which takes as
input log(a1:t) and log(b0:t) instead and outputs h1:t. The code for the parallel scan in log-space is
included below and is based on the code by Heinsen (2023).

1 def parallel_scan_log(log_coeffs, log_values):
2 # log_coeffs: (batch_size, seq_len, input_size)
3 # log_values: (batch_size, seq_len + 1, input_size)
4 a_star = F.pad(torch.cumsum(log_coeffs, dim=1), (0, 0, 1, 0))
5 log_h0_plus_b_star = torch.logcumsumexp(
6 log_values - a_star, dim=1)
7 log_h = a_star + log_h0_plus_b_star
8 return torch.exp(log_h)[:, 1:]

Listing 5: Parallel scan based on Heinsen (2023). This function computes h1:t given log coefficients
log(a1:t) and log values log(b0:t).

B.2 PSEUDOCODE: LOG-SPACE VERSION

For maximal numerical stability, we rewrite the log-space versions of minGRU and minLSTM.

B.2.1 MINGRU: A MINIMAL GRU

Recall minGRU’s recurrence is as follows ht ← (1−zt)⊙ht−1+zt⊙ h̃t. As such, at ← (1−zt)

and bt ← zt ⊙ h̃t where zt = σ(kt) and kt = Lineardh
(xt). As a result, log(at) ← log(1 − zt)

and log(bt)← log(zt) + log(h̃)t. We can break down these down as follows:

log(zt) = log(σ(kt))

= log

(
1

1 + exp(−kt)

)
= −Softplus(−kt)

log(1− zt) = log

(
exp(−kt)

1 + exp(−kt)

)
= log

(
1

1 + exp(kt)

)
= −Softplus(kt)

where kt = Lineardh
(xt). However, we need to compute log(h̃)t which is inconvenient if h̃t

has some negative values. We could use complex numbers and a complex number version of the
parallel scan, but this would result in the parallel scan increasing in complexity. Instead, we propose
to ensure that h̃t > 0. This be can done in a variety of ways. In our experiments, we added a
continuous activation function g replacing h̃t ← Lineardh

(xt) with h̃t ← g(Lineardh
(xt)) where

g(x) =

{
x+ 0.5, if x ≥ 0

σ(x), otherwise
and its log: log(g(x)) =

{
log(x+ 0.5), if x ≥ 0

−Softplus(−x), otherwise
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

At inference time, the sequential mode (Algorithm 5) is used. During training, the parallel mode
(Algorithm 6) is used.

Algorithm 5 Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← g(Lineardh
(xt))

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 6 Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

Input: x1:t,h0

Output: h1:t

linear z← Lineardh

log z1:t ← −Softplus(linear z(−x1:t))
log coeffs← −Softplus(linear z(x1:t))
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log coeffs, [log h0, log z1:t + log h̃1:t)

B.2.2 MINLSTM: A MINIMAL LSTM

We also derive minLSTM’s (with length independence scaling) log-space formulation as well.
Recall minLSTM’s (with length independence scaling) recurrence is as follows ht ← f ′

t ⊙
ht−1 + i′t ⊙ h̃t. As such, at ← f ′

t and bt ← i′t ⊙ h̃t. As a result, log(at) ← log(f ′
t) and

log(bt)← log(i′t) + log(h̃t).

log(f ′
t) = log

(
ft

ft + it

)
= log

(
1

1 + it
ft

)

= − log

(
1 +

it
ft

)
= − log

(
1 + exp

(
log

(
it
ft

)))
= −Softplus

(
log

(
it
ft

))
= −Softplus (log(it)− log(ft))

Recall that it and ft are computed via sigmoid. In other words, it = σ(kt) and ft = σ(pt)
where kt = Lineardh

(xt) and pt = Lineardh
(xt). Furthermore, recall in minGRU’s derivation we

showed that log(σ(kt)) = −Softplus(−kt) Using this, we can simplify the computation as follows:

log(f ′
t) = −Softplus (log(σ(kt))− log(σ(pt)))

= −Softplus (Softplus(−pt)− Softplus(−kt)))

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Similarly, we also get that:

log(i′t) = −Softplus (Softplus(−kt)− Softplus(−pt)))

Combining these derivations, we get the parallel mode (Algorithm 8) for efficient training.

Algorithm 7 Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling trained in log-space

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← g(Lineardh
(xt))

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 8 Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling for training in log-space

Input: x1:t,h0

Output: h1:t

diff ← Softplus(−Lineardh
(x1:t))− Softplus(−Lineardh

(x1:t))
log f ′

1:t ← −Softplus(diff)
log i′1:t ← −Softplus(−diff)
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log f ′
1:t, [log h0, log i′1:t + log h̃1:t)

B.3 PYTORCH CODE: LOG-SPACE VERSION

1 def g(x):
2 return torch.where(x >= 0, x+0.5, torch.sigmoid(x))
3 def log_g(x):
4 return torch.where(x >= 0, (F.relu(x)+0.5).log(),
5 -F.softplus(-x))

Listing 6: The continuous function g ensures that h̃t ← g(Lineardh
(xt)) is positive.

B.3.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = g(self.linear_h(x_t))
7 h_t = (1 - z) * h_prev + z * h_tilde
8 return h_t

Listing 7: Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

3 # h_0: (batch_size, 1, hidden_size)
4

5 k = self.linear_z(x)
6 log_z = -F.softplus(-k)
7 log_coeffs = -F.softplus(k)
8 log_h_0 = log_g(h_0)
9 log_tilde_h = log_g(self.linear_h(x))

10 h = parallel_scan_log(log_coeffs,
11 torch.cat([log_h_0, log_z + log_tilde_h], dim=1))
12 return h

Listing 8: Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

B.3.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = g(self.linear_h(x_t))
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 9: Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 diff = F.softplus(-self.linear_f(x)) \
6 - F.softplus(-self.linear_i(x))
7 log_f = -F.softplus(diff)
8 log_i = -F.softplus(-diff)
9 log_h_0 = torch.log(h_0)

10 log_tilde_h = log_g(self.linear_h(x))
11 h = parallel_scan_log(log_f,
12 torch.cat([log_h_0, log_i + log_tilde_h], dim=1))
13 return h

Listing 10: Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence scaling
for training in log-space

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C DETAILED EXPERIMENT SETUP

In this section, we describe the experiment setup in detail.

C.1 DATASETS

Selective Copying. In this task, the model learns to extract data tokens from a sequence while disre-
garding noise tokens. Following Gu & Dao (2024), we consider a vocabulary of 16 and sequences of
length 4096. Each sequence includes 16 randomly placed data tokens. The remainder of the tokens
are noise.

Chomsky Hierarchy. In this task, we consider the Chomsky Hierarchy benchmark (Deletang et al.,
2023), which includes a variety of formal language tasks that span different levels of the Chom-
sky hierarchy. Additionally, we include the two additional tasks described in Beck et al. (2024):
Majority and Majority Count. Models are trained on tasks whose sequences vary in length up to
40. Evaluation is conducted for task lengths between 40 and 256 to assess the models’ ability to
generalize.

Long Range Arena. Our experiments on the Long Range Arena benchmark consist of three se-
quence modelling tasks with sequence lengths from 1024 to 4000, designed to evaluate architectures
on long-range modelling:

• Retrieval: Based on the ACL Anthology Network (Radev et al., 2009), the task is to
classify whether two citations, represented as integer token sequences, are equivalent. Se-
quences are of length 4000 with two possible classes.

• ListOps: An extended version of ListOps (Nangia & Bowman, 2018). The task is to
compute the result of a nested mathematical expression in prefix notation. Sequences are
of length 2048 with ten possible classes.

• G-Image: Based on CIFAR-10 (Krizhevsky, 2009), the task is to predict the class of 32×32
grayscale images (converted from RGB). Sequences are of length 1024 with ten possible
classes.

Reinforcement Learning. In this setting, we consider continuous control tasks from the D4RL
benchmark (Fu et al., 2020). These tasks based on MuJoCo comprise of three environments with
dense rewards: HalfCheetah, Hopper, and Walker. For each environment, three different datasets
are considered that have varying level represent varying levels of data quality:

• Medium (M): One million timesteps generated by a policy scoring about one-third of an
expert policy’s score.

• Medium-Replay (M-R): A replay buffer from an agent trained to perform like the Medium
policy.

• Medium-Expert (M-E): One million timesteps from the Medium policy combined with one
million from an expert policy.

Following Fu et al. (2020), reported scores are normalized such that 100 represents an expert policy
performance.

Language Modelling. In this setting, we consider the Shakespeare dataset, comprising a collection
of text data derived from the works of William Shakespeare. The training and testing data consists
of 1, 003, 854 and 111, 540 tokens respectively.

C.2 ARCHITECTURE

In our work, the primary goal was to demonstrate that simplified RNN architectures, such as minL-
STM and minGRU, can perform comparably to modern state-of-the-art sequence models. To achieve
this, we stick with a minimalistic architecture, following standard practices such as residual connec-
tions, normalization, and a downprojection layer for the RNN’s expanded hidden states. For more

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

complex tasks like language modeling and Long Range Arena, standard components (convolutional
layer and MLP) are added4.

Selective Copying: No additional components.

Chomsky Hierarchy: (Conv4 → minRNN), i.e., a convolutional layer with a kernel size of 4 is
applied temporally before the minimal RNN.

Long Range Arena: (Conv4→ minRNN→MLP)

Language Modelling: (Conv4→ minRNN→MLP)

Reinforcement Learning: (minRNN→MLP)5

C.3 HYPERPARAMETERS AND GENERAL EXPERIMENTAL DETAILS

Selective Copying. For this task, we closely follow the setup of Gu & Dao (2024), training the model
for 400k steps with a batch size of 64 and an input dimension of 64. Due to GPU memory constraints,
gradient accumulation is applied, where gradients for two batches of size 32 are accumulated before
each gradient update and clipped to 1.0. The optimizer used is Adam with a learning rate of 3×10−4

alongside early stopping. Each model consists of 3 layers with a dropout rate of 0.1. The minLSTM
and minGRU models have an expansion factor of 6. Baseline results are referenced from the Mamba
paper.

Long Range Arena. For this benchmark, we closely follow the setup of Beck et al. (2024). For
Retrieval, the models consisted of 6 blocks and an embedding dimension of 128 and were trained
with a batch size of 64. For ListOps, the models consisted of 8 blocks and an embedding dimension
of 128 and were trained with a batch size of 32. For G-Image, the models consisted of 6 blocks and
an embedding dimension of 512 and were trained with a batch size of 64. All models were trained
for 250k steps using AdamW optimizer with a learning rate of 0.001, weight decay of 0.05, 10%
linear warm-up steps, and cosine annealing.

Chomsky Hierarchy. For this benchmark, we closely follow the setup of Beck et al. (2024), training
models consisting of two blocks. The models were trained for 500k steps with a batch size of 256
and the AdamW optimizer with a learning rate of 3× 10−4 and weight decay of 0.01.

Language Modelling. The models are optimized using AdamW with a learning rate of 1 × 10−3.
Each model consists of three layers, a dropout ratio of 0.2, and an embedding dimension of 384.
Training is done with 5k steps using a batch size of 64 and evaluated every 25 steps. Gradients are
clipped to 0.25. The Transformer is configured with 6 heads. Mamba uses an SSM state expansion
factor of 16 and a block expansion factor of 2. Following Mamba, both minLSTM and minGRU
utilize an expansion factor of 2 as well.

Reinforcement Learning. We follow the hyperparameter settings outlined by Ota (2024). For
Hopper (Medium) and Hopper (Medium-Replay), an embedding dimension of 256 is used, while all
other environments utilize an embedding dimension of 128. The learning rate is set to 1× 10−4 for
Hopper (Medium), Hopper (Medium-Replay), and Walker (Medium). For all other environments
and datasets, the learning rate is 1× 10−3. The models are optimized using AdamW with a weight
decay of 1 × 10−4 and a linear warmup for 10, 000 steps. Each model consists of 3 layers and has
a dropout ratio of 0.1. The models are trained for 100k steps with a batch size of 64. Results for the
baselines are referenced from the Mamba and Aaren papers.

4There is a trend in modern recurrent sequence models of prepending a convolutional layer (kernel size of
4) before their recurrent unit – for example, see Mamba (Gu & Dao, 2024) and xLSTM (Beck et al., 2024)
Empirically, we found that including this convolutional layer also helped minRNNs.

5Note this is equivalent to the standard Decision Transformer framework for (Offline) RL, replacing the
self-attention module with minLSTM or minGRU.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 CHOMSKY HIERARCHY + LONG RANGE ARENA

In this section, we conduct experiments on both the Chomsky Hierarchy (Deletang et al., 2023)
and Long Range Arena (Tay et al., 2021) benchmarks, which are well-established in the literature
for evaluating sequence models. Together, these benchmarks provide a test of a model’s ability to
generalize and handle long-range dependencies, which are crucial for modern sequence modelling
tasks.

We compare Minimal RNNs against other fully parallelizable models, such as RWKV, Mamba, and
xLSTM[1:0] (using its parallelizable mLSTM module). Following Beck et al. (2024), we focus on
tasks from the Chomsky Hierarchy where models have achieved at least 30% accuracy, indicating
partial solvability. We closely followed the hyperparameter configurations outlined in the xLSTM
paper and averaged results over 3 seeds for consistency. The baseline results (accuracy – higher is
better) are taken from the xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long
Range Arena).

Our experiments (Table 4 and extended Table 5) show that Minimal RNNs achieve competitive per-
formance with state-of-the-art models (e.g., Mamba and xLSTM) across all tasks on these bench-
marks, outperforming other models such as Retention, Hyena, RWKV, and Llama.

D.2 INFERENCE RUNTIME COMPARISON

In these experiments, we compare the inference speeds of GRU, LSTM, minGRU, minLSTM, and
Mamba (using the official implementation). It is important to note that inference speed may vary
depending on the hardware and implementation used.

For this analysis, we tested different batch sizes (8, 16, 32, 64) and sequence lengths (up to 2048). In
Figure 3, we present the average inference speed across 50 runs, taking context tokens into account
before performing inference. Since GRU and LSTM models process context tokens sequentially,
their inference times are considerably slower than those of minGRU, minLSTM, and Mamba, all of
which benefit from parallel processing.

Overall, minLSTM and minGRU show inference speeds comparable to Mamba. Specifically, min-
GRU was 6.6%, 4.1%, 4.9%, and 2.9% faster than Mamba for batch sizes of 8, 16, 32, and 64,
respectively. On the other hand, minLSTM was 3.6%, 2.9%, 0%, and 1.3% slower than Mamba for
the same batch sizes.

Since minLSTM and minGRU are simplifications of LSTM and GRU, we expect them to generally
perform faster, including during inference. This is demonstrated in Figure 4, where we compare the
inference speed of minLSTM and minGRU with traditional LSTM and GRU models across varying
batch sizes. As expected, minGRU and minLSTM are 19.6% and 41.5% faster than GRU and LSTM
for a batch size of 64, respectively.

D.3 ARCHITECTURE ABLATION

In our work, the main objective was to demonstrate that simplified RNN architectures, such as
minLSTM and minGRU, can perform on par with modern state-of-the-art sequence models. To
achieve this, we adopted a minimalistic architectural design, incorporating standard practices such
as residual connections, normalization, and a downprojection layer for the RNN’s expanded hidden
states. For more complex tasks, like language modeling and Long Range Arena, we introduced a
convolutional layer and a multi-layer perceptron (MLP).

To better understand the impact of these architectural choices, we conducted an ablation study on
the ListOps (Long Range Arena) dataset of these additional components. The results, averaged
over 3 seeds, are shown in Table 6. The table highlights the effect of adding different layers to the
minLSTM model. For ListOps, incorporating a convolutional layer (Conv) and an MLP resulted in
improved performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Method
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Transformers Llama 0.92 0.08 0.04 1.0 0.37

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69
RWKV-4 0.54 0.21 0.13 1.0 0.63
xLSTM 0.97 0.33 0.86 1.0 0.74

Minimal
RNNs minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93

Method
Majority

Count Retrieval ListOps G-Image Average

Transformers Llama 0.13 0.85 0.38 0.54 0.48

Modern
RNNs

Mamba 0.45 0.90 0.33 0.69 0.64
RWKV-4 0.13 0.90 0.39 0.69 0.51
xLSTM 0.46 0.91 0.41 0.70 0.71

Minimal
RNNs minLSTM (Ours) 0.47 0.89 0.59 0.67 0.73

Table 4: Results for Chomsky Hierarchy and Long Range Arena Benchmarks. We compare
minLSTM against other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0]
(using the mLSTM module). The baseline results (accuracy – higher is better) are taken from the
xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long Range Arena). The results
demonstrate that minLSTM achieves competitive performance with state-of-the-art models such as
Mamba and xLSTM across all tasks on these benchmarks.

D.4 INITIALIZATION ANALYSES

In this set of experiments, we examine the effect of initialization on the model’s performance. De-
pending on the task at hand, it may be beneficial to encourage the model to retain information over
time. One way to achieve this is by increasing the bias term in the forget gate of the minLSTM,
which promotes information retention earlier in the training process. As a result, the forget gate ft
of the LSTM approaches a value of 1 due to this new initialization. As shown in Figure 5, increasing
the forget gate bias in minLSTM enhances training efficiency, leading to faster convergence and
greater stability during training.

E ADDITIONAL RELATED WORK

Parallel Scan. Generalizing across the families of methods (including minLSTM and minGRU),
these recent sequence models can be viewed as members of the same family of functions trainable
via a parallel scan: vt = at⊙vt−1+ bt (see Section 2.3) where at and bt are functions of the input
token xt. Improving upon the parallel scan algorithm, several models (Yang et al., 2024; Gu & Dao,
2024) such as Mamba have proposed specialized hardware-efficient methods that leverage GPU’s
memory hierarchy to reduce high I/O costs and speed up training. In our work, we implemented
minLSTM and minGRU in plain PyTorch. However, due to the structural similarities in recurrences
amongst the numerous methods that leverage parallel scan, many techniques such as chunking that
apply to one work for speeding up training can also apply to others such as minGRU and minLSTM.

Parameter Initializations. Unrolling the recurrences of these new recurrent sequence models over
time often results in their outputs and gradients vanishing/exploding (Wang et al., 2024b) due to time
dependency in their output’s scale. To ensure model stability, the parameters of many models such as
state-space models are initialized according to special distributions (Gu et al., 2020; 2022; Orvieto
et al., 2023). In contrast, we found that minLSTM and minGRU are already stable using the default
PyTorch initialization. Unlike SSMs, minLSTM and minGRU’s outputs are time-independent in
scale, avoiding potential instabilities.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Method Context Sensitive Regular xLSTM
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Majority
Count

Traditional
RNNs

GRU 0.54 0.29 0.94 1.0 0.60 0.42
LSTM 0.99 0.33 1.0 1.0 0.54 0.46

Transformers Llama 0.92 0.08 0.04 1.0 0.37 0.13

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69 0.45
Retention 0.13 0.03 0.05 0.51 0.36 0.12

Hyena 0.3 0.06 0.06 0.93 0.36 0.18
RWKV-4 0.54 0.21 0.13 1.0 0.63 0.13
RWKV-5 0.49 0.15 0.26 1.0 0.73 0.34
RWKV-6 0.96 0.23 0.31 1.0 0.76 0.24
xLSTM 0.97 0.33 0.86 1.0 0.74 0.46

Minimal
RNNs

minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93 0.47

Table 5: Extended Results for Chomsky Hierarchy Benchmark. The baseline results (accuracy
— higher is better) are taken from the xLSTM paper (Figure 4). We compare minLSTM against
other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0] (using the mLSTM
module). The results demonstrate that minLSTM achieves competitive performance with state-
of-the-art models such as Mamba and xLSTM, while outperforming other models like Retention,
Hyena, RWKV, and Llama across all tasks in the Chomsky Hierarchy benchmark.

Model Accuracy
minLSTM 0.46

minLSTM (+ Conv) 0.45
minLSTM (+ MLP) 0.52

minLSTM (+ Conv + MLP) 0.59

Table 6: Architecture Ablation on the ListOps (Long Range Arena) Dataset. Results (accuracy
– higher is better) are averaged over 3 seeds. The table shows the impact of adding different layers
to the minLSTM model. For more complex tasks like language modeling and Long Range Arena,
we incorporate a convolutional layer (Conv) and a multi-layer perceptron (MLP). The performance
increases when these components are added.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 3: Runtime Comparison of Inference with Context Tokens: Parallelizable RNNs (minL-
STM, minGRU, and Mamba) vs. Traditional RNNs (LSTM and GRU). As sequential models,
LSTM and GRU exhibit significantly slower inference times when processing an increasing number
of context tokens, compared to the parallelizable models minLSTM, minGRU, and Mamba.

Figure 4: Runtime Comparison of Inference: Minimal RNNs (minLSTM and minGRU) vs.
Traditional Counterparts (LSTM and GRU). As simplified versions of LSTM and GRU, minL-
STM and minGRU generally exhibit faster inference times, particularly with larger batch sizes, as
shown in the plots.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 5: Impact of Forget Gate Bias Initialization on Training Efficiency. The plot illustrates
how increasing the bias of the forget gate in minLSTM enhances training efficiency by promoting
earlier retention of information, leading to faster convergence and a more stable training process.

26


	Introduction
	Background
	LSTM
	GRU
	Parallel Scan

	Methodology
	A Minimal GRU: minGRU
	Step 1: Drop previous state dependencies from gates
	Step 2: Drop range restriction of candidate states
	minGRU

	A Minimal LSTM: minLSTM
	Step 1: Drop previous state dependencies from gates
	Step 2: Drop range restriction of candidate states
	Step 3: Simplifying scaling of output
	minLSTM


	Were RNNs All We Needed?
	Minimal LSTMs and GRUs are efficient
	Minimal RNNs perform surprisingly well

	Related Work
	Conclusion
	Implementation Details: Vanilla Version
	Pseudocode: Vanilla Version
	minGRU: A Minimal GRU
	minLSTM: A Minimal LSTM

	PyTorch Code: Vanilla Version
	minGRU: A Minimal GRU
	minLSTM: A Minimal LSTM


	Implementation Details: Log-Space Version (Additional Numerical Stability)
	Parallel Scan: Log-Space Implementation
	Pseudocode: Log-Space Version
	minGRU: A Minimal GRU
	minLSTM: A Minimal LSTM

	PyTorch Code: Log-Space Version
	minGRU: A Minimal GRU
	minLSTM: A Minimal LSTM


	Detailed Experiment Setup
	Datasets
	Architecture
	Hyperparameters and general experimental details

	Additional Experiments
	Chomsky Hierarchy + Long Range Arena
	Inference Runtime Comparison
	Architecture Ablation
	Initialization Analyses

	Additional Related Work

