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ABSTRACT

The introduction of Transformers in 2017 reshaped the landscape of deep learning.
Originally proposed for sequence modelling, Transformers have since achieved
widespread success across various domains. However, the scalability limitations
of Transformers—particularly with respect to sequence length—have sparked re-
newed interest in novel recurrent models that are parallelizable during training,
offer comparable performance, and scale more effectively. In this work, we revisit
sequence modelling from a historical perspective, focusing on Recurrent Neural
Networks (RNNs), which dominated the field for two decades before the rise of
Transformers. Specifically, we examine LSTMs (1997) and GRUs (2014). We
demonstrate that by simplifying these models, we can derive minimal versions
(minLSTMs and minGRUs) that (1) use fewer parameters than their traditional
counterparts, (2) are fully parallelizable during training, and (3) achieve surpris-
ingly competitive performance on a range of tasks, rivalling recent models includ-
ing Transformers.

1 INTRODUCTION

Since the 1990s, Recurrent Neural Networks (RNNs) (Elman, 1990), such as Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) networks and later Gated Recurrent Units
(GRUs) (Cho et al., 2014), have been go-to methods for sequence modelling tasks like machine
translation and text generation. However, their inherently sequential nature, which limits paral-
lelization, made these models computationally inefficient and too slow to train on long sequences, a
common challenge in real-world applications.

In 2017, Transformers (Vaswani et al., 2017) revolutionized deep learning by introducing a paral-
lelizable training mechanism through self-attention, achieving immediate success in sequence mod-
elling. This breakthrough led to the development of popular large language models and quickly
extended to other domains, including computer vision (Dosovitskiy et al., 2021), reinforcement
learning (Chen et al., 2021), and bioinformatics (Jumper et al., 2021). However, while self-attention
allows for efficient modelling of token-to-token interactions, it suffers from quadratic computa-
tional complexity, making Transformers prohibitively expensive for long sequences, especially in
resource-constrained settings. To address this, numerous approaches have focused on improving
Transformer efficiency, exploring ideas such as sparsity (Kitaev et al., 2019), low-rank approxima-
tions (Wang et al., 2020), and tiling (Dao et al., 2022).

Recently, the scalability limitations of Transformers have sparked renewed interest in alternative ap-
proaches: novel recurrent models that are parallelizable and scale more efficiently. Several promis-
ing methods have emerged in this space, including state-space models (Gu et al., 2021), linearized
attention (Peng et al., 2023), and more recently, linear recurrent neural networks (Orvieto et al.,
2023). Notably, these state-of-the-art recurrent models leverage input-dependent transitions and
demonstrate strong performance similar to Transformers. These methods have shown success not
only in scaling to large language models but also in extending to other domains, such as image (Zhu
et al., 2024a) and graph-based data (Wang et al., 2024a).

In this work, we revisit sequence modelling from a historical perspective, focusing on the RNNs
that dominated the field for two decades before the rise of Transformers. Specifically, we explore
LSTMs (1997) and GRUs (2014), which are early examples of input-dependent recurrent models.
We show that by removing the dependencies of their gates on previous states, we can train these
models in parallel. Further simplification leads to minimal versions (minLSTMs and minGRUs)
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that (1) use fewer parameters than their traditional counterparts, (2) are fully parallelizable during
training, and (3) achieve surprisingly competitive performance on a range of tasks despite their
simplicity, challenging the prevailing trend in the community toward increasing architectural and
algorithmic complexity. In the appendix, we provide implementations of minGRU and minLSTM in
plain PyTorch, with just a few lines of code, making these models lightweight and highly adaptable
for beginners, practitioners, and researchers.

2 BACKGROUND

In this section, we review traditional recurrent neural networks (RNNs). RNNs are sequence models
that maintain a hidden state across time steps, capturing temporal dependencies. As such, they are
particularly well-suited for tasks involving sequential data, such as time series forecasting, natural
language processing, and other tasks where context from previous steps informs current predictions.
However, vanilla RNNs (Elman, 1990) face challenges related to vanishing and exploding gradients,
which limit their ability to learn long-term dependencies.

2.1 LSTM

To address these issues, Hochreiter & Schmidhuber (1997) introduced Long Short-Term Memory
(LSTM) networks. LSTMs are a highly successful type of RNN specifically designed to mitigate
the vanishing gradient problem, enabling the model to effectively capture long-term dependencies.
LSTMs are computed as follows:

(Hidden State) ht = ot ⊙ tanh(ct)

(Output Gate) ot = σ(Lineardh
([xt,ht−1]))

(Cell State Recurrence) ct = ft ⊙ ct−1 + it ⊙ c̃t

(Forget Gate) ft = σ(Lineardh
([xt,ht−1]))

(Input Gate) it = σ(Lineardh
([xt,ht−1]))

(Candidate Cell State) c̃t = tanh(Lineardh
([xt,ht−1]))

where ⊙ denotes element-wise multiplication of vectors, t is the current timestep, and ht is the
outputted hidden state. [xt,ht−1] represents the concatenation of the input vector xt at time step t
with the previous hidden state ht−1. dh denotes the size of the hidden state, while ct is the cell state,
which carries information across time steps, and c̃t is the candidate cell state that will be added to
the cell state.

The gates it, ft, and ot control the flow of information through the LSTM. The input gate it deter-
mines how much new information from the candidate cell state c̃t should be added to the cell state
ct. The forget gate ft determines what portion of the previous cell state ct−1 should be discarded.
The output gate ot determines what information from the cell state should be output as the hidden
state ht. The functions σ (sigmoid) and tanh are used for scaling the values, ensuring that the out-
puts do not explode or vanish during training. An LSTM module maintains both a cell state and a
hidden state, and, in total, contains O(4dh(dx + dh)) parameters, where dx is the input size.

2.2 GRU

Simplifying LSTM, Cho et al. (2014) introduced the Gated Recurrent Unit (GRU), which uses only
two gates and a single state (hidden state), in contrast to the LSTM’s three gates and two states
(hidden state and cell state). This reduced complexity allows GRUs to achieve faster training and
inference times while still performing competitively on many tasks. GRUs are computed as follows:

(Hidden State Recurrence) ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(Update Gate) zt = σ(Lineardh
([xt,ht−1]))

(Reset Gate) rt = σ(Lineardh
([xt,ht−1]))

(Candidate Hidden State) h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

2
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where h̃t represents the candidate hidden state, a potential new value for the hidden state. GRU
combines the forget and input gates of LSTM into a single update gate, zt ∈ (0, 1), which determines
how much of the past information should be carried forward (i.e., 1 − zt) and how much new
information from the candidate hidden state should be added (i.e., zt). Additionally, GRU removes
LSTM’s output gate and introduces a reset gate rt, which controls how much of the past hidden state
ht−1 is used when computing the candidate hidden state h̃t.

By reducing the number of gates and states, GRU also decreases the total number of parameters and
computations, requiring only O(3dh(dx + dh)) parameters. However, both GRUs and LSTMs are
still sequential-only models. As such, they require backpropagation through time (BPTT) during
training, resulting in linear training time and limiting their ability to scale to long contexts.

2.3 PARALLEL SCAN

Due to this limitation, the introduction of Transformers in 2017 revolutionized the field by replacing
LSTMs and GRUs as the de facto method for sequence modelling. Transformers leverage par-
allelization during training, overcoming the sequential bottleneck of traditional recurrent models.
However, instead, Transformers have a quadratic complexity with respect to the sequence length,
limiting their ability to scale to very long contexts, especially in resource-constrained settings.

In response, a resurgence of new recurrent sequence models has emerged, offering alternatives to
Transformers. These models achieve comparable performance while being trainable in parallel and
avoid the backpropagation through time (BPTT) issues that plagued traditional RNNs (e.g., LSTMs
and GRUs). Among these innovations, many architectures rely on the parallel prefix scan algo-
rithm (Blelloch, 1990) for efficient training.

The parallel scan algorithm is a parallel computation method for computing N prefix computations
from N sequential data points via an associative operator ⊕ (e.g., + and ×). The algorithm effi-
ciently computes the sequence of prefix sums {

⊕k
i=1 ui}Nk=1 from the input sequence {uk}Nk=1. One

important application of the parallel scan algorithm is in computing a popular class of recurrence
relations of the form vt = atvt−1+ bt, where vt, at, and bt are real numbers and v0 ← b0 (Martin &
Cundy, 2018). This method takes as input the sequences a1, . . . , an and b0, b1, . . . , bn, and computes
the sequence v1, . . . , vn in parallel. This approach naturally extends to vector-valued recurrences,
such as vt = at ⊙ vt−1 + bt, where ⊙ denotes element-wise multiplication.

3 METHODOLOGY

Interestingly, we can see that the GRU’s hidden state and LSTM’s cell state recurrences resemble the
vector formulation. In this section, we demonstrate that GRUs and LSTMs are trainable via parallel
scan by removing their previous state dependencies from their various gates. Building on this, we
further simplify these RNNs by removing their constraints on output range (i.e., tanh). Combining
the steps, we describe minimal versions of GRUs and LSTMs (minGRUs and minLSTMs) that are
trainable in parallel.

3.1 A MINIMAL GRU: MINGRU

3.1.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting GRU’s hidden state recurrence which works as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

We can observe that the recurrence resembles the aforementioned parallel scan’s formulation vt =
at ⊙ vt−1 + bt where at ← (1 − zt), bt ← zt ⊙ h̃t, and vt ← ht. However, zt and h̃t

are dependent on the previous hidden state ht−1, i.e., zt = σ(Lineardh
([xt,ht−1])) and h̃t =

tanh(Lineardh
([xt, rt ⊙ ht−1])). As a result, it is not possible to apply the parallel scan as is since

the algorithm’s inputs a1, . . . ,an and b1, . . . , bn are conditional on already knowing its outputs
h1, . . . ,hn−1.

A simple remedy to this is to simplify GRU by removing their previous hidden state (i.e., ht−1)
dependencies. Specifically, the changes are as follows:
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zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒
zt = σ(Lineardh

(xt))

h̃t = tanh(Lineardh
(xt))

By removing the dependence on ht−1 from the candidate hidden state h̃t, the reset gate rt that
would control ht−1 weight is also no longer needed and is removed. Without the dependencies on
previous hidden states, the inputs to the algorithm a1, . . . ,an and b1, . . . , bn are all easily computed
in parallel and can thus be used to compute h1, . . . ,hn efficiently via the parallel scan.

Although there have been theoretical concerns about the absence of previous state dependen-
cies (Merrill et al., 2024), there has also been substantial empirical evidence supporting the effec-
tiveness of models that omit these dependencies, such as xLSTM (Beck et al., 2024) and Mamba (Gu
& Dao, 2024). Instead of explicitly modelling dependencies on previous states to capture long-range
dependencies, these kinds of recurrent models can learn them by stacking multiple layers. Notably,
in the xLSTM paper, their fully parallelized version (xLSTM[1:0]), which eliminates hidden state
dependencies, performed similarly to — and in some cases, better than — versions that retain these
dependencies (e.g., xLSTM[7:1]).

3.1.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

In GRU’s hidden state recurrence, the proportion carried over from the previous hidden state (1−zt)
and the amount added for the new candidate hidden state (zt) sum to 1. As a result, the scale of
GRU’s hidden state value is time-independent. Instead, the scale of its hidden state depends on that
of its candidate hidden states h̃t. The hyperbolic tangent function (tanh) plays a crucial role in
LSTMs and GRUs, restricting the range of (candidate) hidden states, i.e., h̃t,ht ∈ (−1, 1)dh . The
tanh helps stabilize the training and mitigates vanishing gradients that result from applying sigmoid
(σ) activations to linear transformations of the hidden state (e.g., zt = σ(Lineardh

([xt,ht−1]))). In
the previous step, these hidden state dependencies were removed. As such, we simplify GRU further
by removing the range restriction (tanh) on the (candidate) hidden states as follows:

h̃t = tanh(Lineardh
(xt)) ⇒ h̃t = Lineardh

(xt)

3.1.3 MINGRU

Combining the two simplification steps results in a minimal version of GRU (minGRU):

GRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
([xt,ht−1]))

rt = σ(Lineardh
([xt,ht−1]))

h̃t = tanh(Lineardh
([xt, rt ⊙ ht−1]))

⇒

minGRU

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

The resulting model is significantly more efficient than the original GRU, requiring only O(2dhdx)
parameters, compared to GRU’s O(3dh(dx + dh)) parameters, where dx and dh denote the sizes of
the input xt and the hidden state ht, respectively. In RNNs, state expansion is often used (i.e., dh =
αdx, where α ≥ 1), which helps the models better capture features from the input data. minGRU
uses approximately 33%, 22%, 17%, and 13% of the parameters of a GRU when α = 1, 2, 3, 4,
respectively.

Additionally, the minimal version of GRU can now be trained in parallel using the parallel scan
algorithm, bypassing the need for backpropagation through time (BPTT). Pseudocode and a simple
PyTorch implementation are included in the Appendix.
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3.2 A MINIMAL LSTM: MINLSTM

3.2.1 STEP 1: DROP PREVIOUS STATE DEPENDENCIES FROM GATES

Revisiting LSTM’s cell state recurrence which works as follows:

ct = ft ⊙ ct−1 + it ⊙ c̃t

Similar to GRU’s hidden state, we can see that LSTM’s cell state recurrence resembles the afore-
mentioned parallel scan’s formulation vt = at ⊙ vt−1 + bt where at ← ft, bt ← it ⊙ c̃t, and
vt ← ct. However, ft, it and c̃t are dependent on the previous hidden state ht. As such, LSTM’s
cell state recurrence is unable to apply the parallel scan algorithm as is. We can address this in a
similar fashion to GRU by removing their hidden state dependencies as follows:

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒
ft = σ(Lineardh

(xt))

it = σ(Lineardh
(xt))

c̃t = tanh(Lineardh
(xt))

3.2.2 STEP 2: DROP RANGE RESTRICTION OF CANDIDATE STATES

Similar to GRUs, LSTMs leverage the hyperbolic tangent function (tanh) to restrict the range of
its states between (−1, 1). LSTMs apply the range restriction twice: once when computing the
candidate cell state and once when computing its hidden state. In this step, we drop both as follows:

c̃t = tanh(Lineardh
(xt))

ht = ot ⊙ tanh(ct)
⇒

c̃t = Lineardh
(xt)

ht = ot ⊙ ct

3.2.3 STEP 3: SIMPLIFYING SCALING OF OUTPUT

Continuing the trend of simplification, we drop the output gate ot which scales the hidden state.
Without the output gate, the normalized hidden state is equal to the cell state, i.e., ht = ot ⊙ ct ⇒
ht = ct, making having both a hidden and cell state unnecessary. As such, we drop the cell state as
well, resulting in the following modification:

ht = ot ⊙ ct

ot = σ(Lineardh
(xt))

ct = ft ⊙ ct−1 + it ⊙ c̃t

c̃t = Lineardh
(xt)

⇒
ht = ft ⊙ ht−1 + it ⊙ h̃t

h̃t = Lineardh
(xt)

In many sequence modelling settings (e.g., text generation), the optimization objective/target is time-
independent in scale. Recall LSTM’s cell state recurrence ct = ft ⊙ ct−1 + it ⊙ c̃t where it,ft ∈
(0, 1)dh , and GRU’s hidden state recurrence1, hGRU

t = (1 − zt) ⊙ hGRU
t−1 + zt ⊙ h̃GRU

t where
zt ∈ (0, 1)dh . GRUs retain (1 − zt) ∈ (0, 1) of the previous hidden state and add zt of the
new candidate state. Since these proportions sum to 1, the model ensures its outputs (i.e., hidden
states) are time-independent in scale. In contrast, LSTM’s forget and input gates are computed
independently (e.g., ft, it → 1 or ft, it → 0), making its states time-dependent in scale2. For
tasks where time-independence is important, we can ensure LSTM’s output is time-independent in
scale by simply normalizing its input and forget gates, i.e., f ′

t , i
′
t ←

ft

ft+it
, it
ft+it

, ensuring that
f ′
t + i′t = 1 and the scale of LSTM’s state is time-independent.

3.2.4 MINLSTM

Combining the three steps results in a minimal version of LSTM (minLSTM):

1A superscript is added to differentiate GRU’s hidden state from LSTM’s.
2For example, ct → c0 +

∑t
i=1 c̃t when f1:t, i1:t → 1, growing in scale as the sequence length increases.
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Figure 1: Training runtime (left), speedup (middle), and memory footprint (right) on a T4 GPU for a
batch size of 64. In the training runtime plot (left), minGRU, minLSTM, and Mamba lines overlap.
These methods are approximately the same in training runtime.

LSTM

ht = ot ⊙ tanh(ct)

ot = σ(Lineardh
([xt,ht−1]))

ct = ft ⊙ ct−1 + it ⊙ c̃t

ft = σ(Lineardh
([xt,ht−1]))

it = σ(Lineardh
([xt,ht−1]))

c̃t = tanh(Lineardh
([xt,ht−1]))

⇒

minLSTM

ht = ft ⊙ ht−1 + it ⊙ h̃t

ft = σ(Lineardh
(xt))

it = σ(Lineardh
(xt))

h̃t = Lineardh
(xt)

where time-independent outputs can be achieved using a hidden state recurrence ht = f ′
t ⊙ht−1 +

i′t ⊙ h̃t with normalized forget f ′
t and input it gates computed as f ′

t , i
′
t ←

ft

ft+it
, it
ft+it

.

The resulting model is significantly more efficient than the original LSTM, requiring only O(3dhdx)
parameters compared to LSTM’s O(4dh(dx + dh)). Considering state expansion (i.e., dh = αdx,
where α ≥ 1), minLSTM uses approximately 38%, 25%, 19%, or 15% of the parameters of a LSTM
when α = 1, 2, 3, or 4 respectively.

Additionally, the minimal version of LSTM can now be trained in parallel using the parallel scan
algorithm, bypassing the need for backpropagation through time (BPTT). Pseudocode and a simple
PyTorch implementation are included in the Appendix.

4 WERE RNNS ALL WE NEEDED?

In this section, we compare the minimal versions (minLSTMs and minGRUs) with their traditional
counterparts (LSTMs and GRUs) and modern sequence models. Pseudocode, PyTorch implementa-
tion, and detailed information regarding the experiment setup are available in the Appendix.

4.1 MINIMAL LSTMS AND GRUS ARE EFFICIENT

At test time, recurrent sequence models are typically rolled out sequentially, which makes inference
relatively efficient. However, the main bottleneck for traditional RNNs lies in their training, which
requires linear time due to backpropagation through time (BPTT). This computational inefficiency
contributed to the eventual deprecation of many earlier RNN-based models.

In this section, we compare the resource requirements for training traditional RNNs (LSTM and
GRU), their simplified counterparts (minLSTM and minGRU)3, and Mamba (using the official im-
plementation), a recent popular recurrent sequence model.

For these experiments, a fixed batch size of 64 was used while varying the sequence length. We
measure both the total runtime and memory complexity involved in performing a forward pass,

3See Appendix for the PyTorch implementations of minLSTM and minGRU written in a few lines.
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computing the loss, and performing backpropagation to compute gradients. To ensure a fair and
direct comparison, all models were tested with the same number of layers.

Runtime. We would like to highlight that inference speed can vary depending on hardware and
implementation. PyTorch’s built-in RNNs are highly optimized low-level GPU implementations.
For a more fair comparison, in these experiments, minGRU, minLSTM, GRU, and LSTM were all
written in plain Pytorch. In terms of runtime (see Figure 1 (left)), the simplified versions of LSTM
and GRU (minLSTM and minGRU) Mamba achieve similar runtimes. Averaging over 100 runs, the
runtime for sequence lengths of 512 for minLSTM, minGRU, and Mamba were 2.97, 2.72, and 2.71
milliseconds respectively. For a sequence with length 4096, the runtime were 3.41, 3.25, and 3.15
respectively. In contrast, the traditional RNN counterparts (LSTMs and GRUs) required a runtime
that scaled linearly with respect to sequence length. For a sequence length of 512, minGRUs and
minLSTMs were 175× and 235× faster per training step (see Figure 1 (middle)) than GRUs and
LSTMs on a T4 GPU. The improvement is even more significant as sequences grow in length with
minGRUs and minLSTMs being 1324× and 1361× faster for a sequence length of 4096. As such,
in a setting where minGRU would take a day to finish training for a fixed number of epochs, its
traditional counterpart GRU could take over 3 years.

Memory. By leveraging a parallel scan algorithm to compute the outputs in parallel efficiently,
minGRU, minLSTM, and Mamba create a larger computational graph, thus needing more memory
compared to traditional RNNs (see Figure 1 (right)). The minimal variants (minGRU and minL-
STM) use ∼ 88% more memory compared to their traditional counterparts (GRU and LSTM).
Mamba uses 56% more memory compared to minGRU. In practice, however, runtime is often the
bottleneck when training RNNs.

Effect of removing ht−1. The original LSTM and GRU compute their various gates using their
inputs xt and previous hidden states ht−1. These models leverage their time-dependent gates to
learn complex functions. However, minLSTM and minGRU’s training efficiencies are achieved by
dropping their gates’ dependencies on the previous hidden states ht−1. As a result, minLSTM and
minGRU’s gates are dependent only on their inputs xt, resulting in a simpler recurrent module. As
such, the gates of a model consisting of a single layer of minLSTM or minGRU are time-independent
due to being conditioned on time-independent inputs x(1)

1:n.

Model # Layers Accuracy

MinLSTM
1 37.6 ± 2.0
2 85.7 ± 5.8
3 96.0 ± 2.8

MinGRU
1 37.0 ± 2.3
2 96.8 ± 3.2
3 99.5 ± 0.2

Table 1: Comparison of the number of
layers on the Selective Copying Task (Gu
& Dao, 2024).

However, in deep learning, models are constructed by
stacking modules. Although the inputs to the first layer
x
(1)
1:n is time-independent, its outputs h

(1)
1:n are time-

dependent and are used as the inputs to the second layer,
i.e., x(2)

1:n ← h
(1)
1:n. As such, beginning from the second

layer onwards, minLSTM and minGRU’s gates will also
be time-dependent, resulting in the modelling of more
complex functions. In Table 1, we compare the perfor-
mance of the models with varying numbers of layers on
the Selective Copying Task from the Mamba paper (Gu
& Dao, 2024). We can immediately see the impact of
the time dependencies: increasing the number of layers
to 2 or more drastically increases performance.

Training Stability. Another effect of the number of lay-
ers is increased stability with decreased variance in the accuracy as the number of layers increases
(see Table 1). Furthermore, although minLSTM and minGRU both solve the Selective Copying
task, we can see that minGRU is an empirically more stable method than minLSTM, solving the
task with more consistency and lower variance. minLSTM discards old information and adds new
information, controlling the ratio with two sets of parameters (forget and input gate). During train-
ing, the two sets of parameters are tuned in different directions, making the ratio harder to control
and optimize. In contrast, minGRU’s discarding and adding of information is controlled by a single
set of parameters (update gate).

4.2 MINIMAL RNNS PERFORM SURPRISINGLY WELL
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Dataset DT DS4 DAaren DMamba minLSTM minGRU
HalfCheetah-M 42.6 42.5 42.2 42.8 42.7 ± 0.7 43.0 ± 0.4

Hopper-M 68.4 54.2 80.9 83.5 85.0 ± 4.4 79.4 ± 8.2
Walker-M 75.5 78.0 74.4 78.2 72.0 ± 7.5 73.3 ± 3.3

HalfCheetah-M-R 37.0 15.2 37.9 39.6 38.6 ± 1.1 38.5 ± 1.1
Hopper-M-R 85.6 49.6 77.9 82.6 88.5 ± 4.7 90.5 ± 0.9
Walker-M-R 71.2 69.0 71.4 70.9 69.7 ± 10.7 72.8 ± 8.9

HalfCheetah-M-E 88.8 92.7 75.7 91.9 85.4 ± 1.7 86.3 ± 0.5
Hopper-M-E 109.6 110.8 103.9 111.1 110.3 ± 1.6 109.7 ± 2.7
Walker-M-E 109.3 105.7 110.5 108.3 110.3 ± 0.5 110.3 ± 0.4

Average 76.4 68.6 75.0 78.8 78.1 78.2

Table 3: Reinforcement Learning results on the D4RL (Fu et al., 2020) datasets. We report the expert
normalized returns (higher is better), following (Fu et al., 2020), averaged across five random seeds.
The minimal versions of LSTM and GRU, minLSTM and minGRU outperform Decision S4 (David
et al., 2023) and perform comparably with Decision Mamba (Ota, 2024), (Decision) Aaren (Feng
et al., 2024) and Decision Transformer (Chen et al., 2021).

In this section, we focus on the empirical performance of these minimal versions of decades-old
models LSTMs (1997) and GRUs (2014), comparing them to several modern sequence models.
It is important to note that the primary goal of our work is not to attain the best performance on
specific tasks but to demonstrate that simplifying traditional architectures can yield competitive
results, comparable to those of recent sequence models.

Model Layer Accuracy
H3 Hyena 30.1

Mamba Hyena 28.4
S4 S4 18.3
H3 S4 57.0

Mamba S4 56.4
S4 S6 97.0
H3 S6 99.7

Mamba S6 99.8
minGRU minGRU 99.5 ± 0.2

minLSTM minLSTM 96.0 ± 2.8

Table 2: Selective Copy Task. minL-
STM, minGRU, and Mamba’s S6 (Gu &
Dao, 2024) are capable of solving this task.
Other methods such as S4, H3, and Hyena
at best only partially solve the task.

Selective Copy. We begin by considering the Selec-
tive Copying task, originally introduced in the influ-
ential Mamba paper (Gu & Dao, 2024). This task
served as a key benchmark that demonstrated the im-
provements made by Mamba’s state-space model, S6,
over previous state-of-the-art models such as S4 (Gu
et al., 2021) and Hyena (Poli et al., 2023). The task
requires models to perform content-aware reasoning,
where they must selectively memorize relevant tokens
while filtering out irrelevant ones.

In Table 2, we compare the simplified versions of
LSTMs and GRUs (minLSTM and minGRU) with sev-
eral well-known recurrent sequence models that can
be trained in parallel, including S4 (Gu et al., 2021),
H3 (Fu et al., 2023), Hyena (Poli et al., 2023), and
Mamba (S6) (Gu & Dao, 2024). The results for these
baselines are directly quoted from the Mamba paper.
Among these, only Mamba’s S6 model succeeds in
solving the task.

Both minGRU and minLSTM are able to solve the Se-
lective Copying task as well, achieving performance
comparable to S6 and surpassing the other modern baselines, highlighting the effectiveness of these
traditional models LSTMs and GRUs, which utilize content-aware gating mechanisms.

Reinforcement Learning. Next, we consider the MuJoCo locomotion tasks from the D4RL bench-
mark (Fu et al., 2020). Specifically, we consider the three environments: HalfCheetah, Hopper, and
Walker. For each environment, the models are trained on three datasets of varying data quality:
Medium (M), Medium-Replay (M-R), and Medium-Expert (M-E).

In Table 3, we compare minLSTM and minGRU with various Decision Transformer variants, in-
cluding the original Decision Transformer (DT) (Chen et al., 2021), Decision S4 (DS4) (David
et al., 2023), Decision Mamba (Ota, 2024), and (Decision) Aaren (Feng et al., 2024). The base-
line results are retrieved from the Decision Mamba and Aaren papers. minLSTM and minGRU
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outperform Decision S4 and achieve performance competitive with Decision Transformer, Aaren,
and Mamba. Unlike other recurrent methods, Decision S4 is a model whose recurrence transitions
are not input-aware, affecting their performance. In terms of average score across the 3 × 3 = 9
datasets, minLSTM and minGRU outperform all the baselines except for Decision Mamba where
the difference is marginal.

Figure 2: Language Modelling results on the Shakespeare dataset. Minimal versions of decade-
old RNNs (LSTMs and GRUs) performed comparably to Mamba and Transformers. Transformers
required ∼ 2.5× more training steps to achieve comparable performance, overfitting eventually.

Language Modelling. Finally, we consider a language modelling task. In this setting, we train
a character-level GPT on the works of Shakespeare using the nanoGPT (Karpathy, 2022) frame-
work. In Figure 2, we plot the learning curves with a cross-entropy loss comparing the proposed
minimal LSTM and GRU (minLSTM and minGRU) with Mamba and Transformers. We found that
minGRU, minLSTM, Mamba, and Transformers achieved comparable test losses of 1.548, 1.555,
1.575, and 1.547 respectively. Mamba performed slightly worse than the other models but trained
faster, particularly in the early stages, achieving its best performance at 400 steps while minGRU
and minLSTM continued training until 575 and 625 steps respectively. In contrast, Transform-
ers trained significantly slower, requiring 2000 steps (∼ 2.5×) more training steps than minGRU
to achieve comparable performance, making it significantly slower and more resource-intensive to
train (quadratic complexity compared to minGRU, minLSTM, and Mamba’s linear complexity).

5 RELATED WORK

In this section, we provide a brief overview of recent efficient recurrent sequence models that have
demonstrated strong empirical performance, rivalling Transformers, while offering better scalability.
For a more comprehensive discussion on the resurgence of efficient recurrent models, we refer the
reader to recent surveys (Tiezzi et al., 2024). Broadly speaking, these models have evolved in three
key directions:

(Deep) State-Space Models (SSMs). Building on continuous-time linear systems, Gu et al. (2021)
introduced S4, a state-space model that can be unrolled like an RNN during inference and trained
similarly to a convolutional neural network. S4’s success paved the way for numerous subsequent
developments in the field (Gu et al., 2022; Gupta et al., 2022; Hasani et al., 2023; Smith et al., 2023)
and their applications across various domains such as language processing (Mehta et al., 2023) and
audio analysis (Goel et al., 2022). More recently, Mamba emerged as a significant breakthrough in
SSMs, surpassing previous models and attracting considerable attention. One of the key innovations
in Mamba was the introduction of S6, a state-space model with input-dependent transition matrices,
contrasting with earlier models that used input-independent transition matrices. The success of
Mamba and other state-space models has led to the publication of several comprehensive surveys on
the topic (Wang et al., 2024b; Patro & Agneeswaran, 2024; Qu et al., 2024).

Recurrent Versions of Attention. Another popular direction is that of attention, specifically related
to linear attention (Katharopoulos et al., 2020). For example, Sun et al. (2023) and Qin et al. (2023)
introduced linear attention models that use an input-independent gating mechanism (decay factor).
In contrast, Katsch (2023) and Yang et al. (2024) proposed linear attention variants that use input-
dependent gating. Recently, Feng et al. (2024) showed that softmax attention can also be viewed as
an RNN and proposed a recurrent model based on their RNN formulation.

9
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Parallelizable RNNs. Our work is closely related to several notable papers that parallelize RNNs.
Bradbury et al. (2017) modified classical gated RNNs to leverage convolutional layers for efficiency,
applying them temporally. Martin & Cundy (2018) demonstrated that RNNs with linear dependen-
cies can be efficiently trained using a parallel scan. Building on this work, the authors introduced
GILR, a gated linear RNN, where the outputs can serve as a surrogate for the previous state depen-
dencies in traditional RNNs (e.g., LSTMs), enabling parallel training. Notably, minGRU is equiv-
alent to GILR but without an activation function. More recently, Orvieto et al. (2023) proposed
a linear gated RNN that leverages complex diagonal recurrences and an exponential parameteri-
zation, achieving comparable performance to state-space models. Qin et al. (2024b) introduced
HGRN whose token mixer HGRU is a linear gated RNN augmented with complex value (polar co-
ordinate) recurrences, lower bounds on their forget gate, and an output gate. HGRN2 (Qin et al.,
2024a) improved HGRN by incorporating state expansion. Beck et al. (2024) extends LSTM using
exponential gating and a normalizer state. Their xLSTM consists of parallelizable (mLSTM) and
sequential-only (sLSTM) versions. mLSTM removes the hidden state dependencies to enable paral-
lelization, introduces a matrix memory cell, and uses a query vector for retrieval from the memory.
Zhu et al. (2024b) builds on insights from HGRN and revisits GRUs, introducing a parallelizable
token mixer that removes matrix multiplications and leverages ternary weight quantization.

6 CONCLUSION

In this work, we revisited the history of sequence modelling, focusing on traditional RNNs, specif-
ically LSTMs (1997) and GRUs (2014), which dominated the field for two decades before the rise
of Transformer models. We demonstrated that we can enable parallel training of traditional RNNs
by removing their gates’ dependencies on previous states. Further simplification of these archi-
tectures led to minimal versions—minLSTMs and minGRUs—which offer several advantages: (1)
fewer parameters than their traditional counterparts, (2) full parallelizability during training, and
(3) surprisingly competitive performance across a range of tasks, rivalling modern models despite
their simplicity. In the appendix, we provide implementations of minGRU and minLSTM in plain
PyTorch, requiring only a few lines of code. This makes them lightweight and accessible to begin-
ners, practitioners, and researchers alike. We hope this work sparks a broader conversation about
the evolution of sequence modelling, encouraging a reevaluation of simpler foundational models
like LSTM and GRU in light of newer, more complex architectures. Given the surprising effective-
ness of these minimal versions of decades-old RNNs, alongside the recent success of modern RNN
architectures, we pose the question: ”Were RNNs all we needed?”

LIMITATIONS

Modern models such as Mamba and xLSTM were run on modern A100 GPUs with 80 GB of mem-
ory. In contrast, our experiments were conducted on older GPUs (i.e., P100, T4, and Quadro 5000)
with only 16 GB of memory (roughly 20% of the memory available to the other models). These
hardware constraints impacted our ability to perform large-scale experiments. To accommodate the
memory limitations, we used gradient accumulation for training some tasks, reducing the effective
batch size by half, which resulted in significantly slower training times. While this approach al-
lowed us to run experiments within the available memory constraints, it also limited the scale of our
evaluations.

Despite these limitations, we believe that the conclusions drawn from our experiments are likely
to generalize to larger-scale settings. The minimal versions of traditional RNNs share fundamen-
tal similarities with many recent recurrent sequence models (e.g., input-dependent gating), which
suggests that their performance would likely be consistent on larger datasets given sufficient com-
putational resources.
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A IMPLEMENTATION DETAILS: VANILLA VERSION

In this section, we provide the pseudocode and equivalent PyTorch code for minGRU and minL-
STM. When performing repeated multiplications such as in many recurrent sequence models, nu-
merical instabilities are common, especially during training. As such, we trained using a log-space
implementation (see Section B) for improved numerical stability.

A.1 PSEUDOCODE: VANILLA VERSION

A.1.1 MINGRU: A MINIMAL GRU

Algorithm 1 Sequential Mode: Minimal Version of GRU (minGRU)

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← Lineardh
(xt)

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 2 Parallel Mode: Minimal Version of GRU (minGRU)

Input: x1:t,h0

Output: h1:t

z1:t ← σ(Lineardh
(x1:t))

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan((1− z1:t), [h0, z1:t ⊙ h̃1:t])

A.1.2 MINLSTM: A MINIMAL LSTM

Algorithm 3 Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← Lineardh
(xt)

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 4 Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

Input: x1:t,h0

Output: h1:t

f1:t ← σ(Lineardh
(x1:t))

i1:t ← σ(Lineardh
(x1:t))

f ′
1:t, i

′
1:t ←

f1:t

f1:t+i1:t
, i1:t
f1:t+i1:t

h̃1:t ← Lineardh
(x1:t)

h1:t ← ParallelScan(f ′
1:t, [h0, i

′
1:t ⊙ h̃1:t])
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A.2 PYTORCH CODE: VANILLA VERSION

A.2.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z_t = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = self.linear_h(x_t)
7 h_t = (1 - z_t) * h_prev + z_t * h_tilde
8 return h_t

Listing 1: Sequential Mode: Minimal Version of GRU (minGRU)

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x))
6 h_tilde = self.linear_h(x)
7 h = parallel_scan((1 - z),
8 torch.cat([h_0, z * tilde_h], dim=1))
9 return h

Listing 2: Parallel Mode: Minimal Version of GRU (minGRU)

A.2.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = self.linear_h(x_t)
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 3: Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 f = torch.sigmoid(self.linear_f(x))
6 i = torch.sigmoid(self.linear_i(x))
7 tilde_h = self.linear_h(x)
8 f_prime = f / (f + i)
9 i_prime = i / (f + i)

10 h = parallel_scan(f_prime,
11 torch.cat([h_0, i_prime * tilde_h], dim=1))
12 return h

Listing 4: Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence scaling
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B IMPLEMENTATION DETAILS: LOG-SPACE VERSION (ADDITIONAL
NUMERICAL STABILITY)

In this section, we detail the log-space version of minLSTM and minGRU for improved numeri-
cal stability. During training, the parallel modes are used to avoid backpropagation through time
(BPTT), speeding up the training time significantly. At inference time, the sequential modes are
used.

B.1 PARALLEL SCAN: LOG-SPACE IMPLEMENTATION

Recall that, the parallel scan’s objective is to compute h1:t where hk = ak ⊙ hk−1 + bk. In code,
the vanilla parallel scan function would take as input: coefficients a1:t and values b0:t. The function
then outputs h1:t. For numerical stability, we consider a log-space implementation which takes as
input log(a1:t) and log(b0:t) instead and outputs h1:t. The code for the parallel scan in log-space is
included below and is based on the code by Heinsen (2023).

1 def parallel_scan_log(log_coeffs, log_values):
2 # log_coeffs: (batch_size, seq_len, input_size)
3 # log_values: (batch_size, seq_len + 1, input_size)
4 a_star = F.pad(torch.cumsum(log_coeffs, dim=1), (0, 0, 1, 0))
5 log_h0_plus_b_star = torch.logcumsumexp(
6 log_values - a_star, dim=1)
7 log_h = a_star + log_h0_plus_b_star
8 return torch.exp(log_h)[:, 1:]

Listing 5: Parallel scan based on Heinsen (2023). This function computes h1:t given log coefficients
log(a1:t) and log values log(b0:t).

B.2 PSEUDOCODE: LOG-SPACE VERSION

For maximal numerical stability, we rewrite the log-space versions of minGRU and minLSTM.

B.2.1 MINGRU: A MINIMAL GRU

Recall minGRU’s recurrence is as follows ht ← (1−zt)⊙ht−1+zt⊙ h̃t. As such, at ← (1−zt)

and bt ← zt ⊙ h̃t where zt = σ(kt) and kt = Lineardh
(xt). As a result, log(at) ← log(1 − zt)

and log(bt)← log(zt) + log(h̃)t. We can break down these down as follows:

log(zt) = log(σ(kt))

= log

(
1

1 + exp(−kt)

)
= −Softplus(−kt)

log(1− zt) = log

(
exp(−kt)

1 + exp(−kt)

)
= log

(
1

1 + exp(kt)

)
= −Softplus(kt)

where kt = Lineardh
(xt). However, we need to compute log(h̃)t which is inconvenient if h̃t

has some negative values. We could use complex numbers and a complex number version of the
parallel scan, but this would result in the parallel scan increasing in complexity. Instead, we propose
to ensure that h̃t > 0. This be can done in a variety of ways. In our experiments, we added a
continuous activation function g replacing h̃t ← Lineardh

(xt) with h̃t ← g(Lineardh
(xt)) where

g(x) =

{
x+ 0.5, if x ≥ 0

σ(x), otherwise
and its log: log(g(x)) =

{
log(x+ 0.5), if x ≥ 0

−Softplus(−x), otherwise
.
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At inference time, the sequential mode (Algorithm 5) is used. During training, the parallel mode
(Algorithm 6) is used.

Algorithm 5 Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

Input: xt,ht−1

Output: ht

zt ← σ(Lineardh
(xt))

h̃t ← g(Lineardh
(xt))

ht ← (1− zt)⊙ ht−1 + zt ⊙ h̃t

Algorithm 6 Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

Input: x1:t,h0

Output: h1:t

linear z← Lineardh

log z1:t ← −Softplus(linear z(−x1:t))
log coeffs← −Softplus(linear z(x1:t))
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log coeffs, [log h0, log z1:t + log h̃1:t)

B.2.2 MINLSTM: A MINIMAL LSTM

We also derive minLSTM’s (with length independence scaling) log-space formulation as well.
Recall minLSTM’s (with length independence scaling) recurrence is as follows ht ← f ′

t ⊙
ht−1 + i′t ⊙ h̃t. As such, at ← f ′

t and bt ← i′t ⊙ h̃t. As a result, log(at) ← log(f ′
t) and

log(bt)← log(i′t) + log(h̃t).

log(f ′
t) = log

(
ft

ft + it

)
= log

(
1

1 + it
ft

)

= − log

(
1 +

it
ft

)
= − log

(
1 + exp

(
log

(
it
ft

)))
= −Softplus

(
log

(
it
ft

))
= −Softplus (log(it)− log(ft))

Recall that it and ft are computed via sigmoid. In other words, it = σ(kt) and ft = σ(pt)
where kt = Lineardh

(xt) and pt = Lineardh
(xt). Furthermore, recall in minGRU’s derivation we

showed that log(σ(kt)) = −Softplus(−kt) Using this, we can simplify the computation as follows:

log(f ′
t) = −Softplus (log(σ(kt))− log(σ(pt)))

= −Softplus (Softplus(−pt)− Softplus(−kt)))
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Similarly, we also get that:

log(i′t) = −Softplus (Softplus(−kt)− Softplus(−pt)))

Combining these derivations, we get the parallel mode (Algorithm 8) for efficient training.

Algorithm 7 Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling trained in log-space

Input: xt,ht−1

Output: ht

ft ← σ(Lineardh
(xt))

it ← σ(Lineardh
(xt))

f ′
t , i

′
t ←

ft

ft+it
, it
ft+it

h̃t ← g(Lineardh
(xt))

ht ← f ′
t ⊙ ht−1 + i′t ⊙ h̃t

Algorithm 8 Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling for training in log-space

Input: x1:t,h0

Output: h1:t

diff ← Softplus(−Lineardh
(x1:t))− Softplus(−Lineardh

(x1:t))
log f ′

1:t ← −Softplus(diff)
log i′1:t ← −Softplus(−diff)
log h0 ← log(h0)

log h̃1:t ← log g(Lineardh
(x1:t))

h1:t ← ParallelScanLog(log f ′
1:t, [log h0, log i′1:t + log h̃1:t)

B.3 PYTORCH CODE: LOG-SPACE VERSION

1 def g(x):
2 return torch.where(x >= 0, x+0.5, torch.sigmoid(x))
3 def log_g(x):
4 return torch.where(x >= 0, (F.relu(x)+0.5).log(),
5 -F.softplus(-x))

Listing 6: The continuous function g ensures that h̃t ← g(Lineardh
(xt)) is positive.

B.3.1 MINGRU: A MINIMAL GRU

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 z = torch.sigmoid(self.linear_z(x_t))
6 h_tilde = g(self.linear_h(x_t))
7 h_t = (1 - z) * h_prev + z * h_tilde
8 return h_t

Listing 7: Sequential Mode: Minimal Version of GRU (minGRU) trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
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3 # h_0: (batch_size, 1, hidden_size)
4

5 k = self.linear_z(x)
6 log_z = -F.softplus(-k)
7 log_coeffs = -F.softplus(k)
8 log_h_0 = log_g(h_0)
9 log_tilde_h = log_g(self.linear_h(x))

10 h = parallel_scan_log(log_coeffs,
11 torch.cat([log_h_0, log_z + log_tilde_h], dim=1))
12 return h

Listing 8: Parallel Mode: Minimal Version of GRU (minGRU) for training in log-space

B.3.2 MINLSTM: A MINIMAL LSTM

1 def forward(self, x_t, h_prev):
2 # x_t: (batch_size, 1, input_size)
3 # h_prev: (batch_size, 1, hidden_size)
4

5 f_t = torch.sigmoid(self.linear_f(x_t))
6 i_t = torch.sigmoid(self.linear_i(x_t))
7 tilde_h_t = g(self.linear_h(x_t))
8 f_prime_t = f_t / (f_t + i_t)
9 i_prime_t = i_t / (f_t + i_t)

10 h_t = f_prime_t * h_prev + i_prime_t * tilde_h_t
11 return h_t

Listing 9: Sequential Mode: Minimal Version of LSTM (minLSTM) with length independence
scaling trained in log-space

1 def forward(self, x, h_0):
2 # x: (batch_size, seq_len, input_size)
3 # h_0: (batch_size, 1, hidden_size)
4

5 diff = F.softplus(-self.linear_f(x)) \
6 - F.softplus(-self.linear_i(x))
7 log_f = -F.softplus(diff)
8 log_i = -F.softplus(-diff)
9 log_h_0 = torch.log(h_0)

10 log_tilde_h = log_g(self.linear_h(x))
11 h = parallel_scan_log(log_f,
12 torch.cat([log_h_0, log_i + log_tilde_h], dim=1))
13 return h

Listing 10: Parallel Mode: Minimal Version of LSTM (minLSTM) with length independence scaling
for training in log-space
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C DETAILED EXPERIMENT SETUP

In this section, we describe the experiment setup in detail.

C.1 DATASETS

Selective Copying. In this task, the model learns to extract data tokens from a sequence while disre-
garding noise tokens. Following Gu & Dao (2024), we consider a vocabulary of 16 and sequences of
length 4096. Each sequence includes 16 randomly placed data tokens. The remainder of the tokens
are noise.

Chomsky Hierarchy. In this task, we consider the Chomsky Hierarchy benchmark (Deletang et al.,
2023), which includes a variety of formal language tasks that span different levels of the Chom-
sky hierarchy. Additionally, we include the two additional tasks described in Beck et al. (2024):
Majority and Majority Count. Models are trained on tasks whose sequences vary in length up to
40. Evaluation is conducted for task lengths between 40 and 256 to assess the models’ ability to
generalize.

Long Range Arena. Our experiments on the Long Range Arena benchmark consist of three se-
quence modelling tasks with sequence lengths from 1024 to 4000, designed to evaluate architectures
on long-range modelling:

• Retrieval: Based on the ACL Anthology Network (Radev et al., 2009), the task is to
classify whether two citations, represented as integer token sequences, are equivalent. Se-
quences are of length 4000 with two possible classes.

• ListOps: An extended version of ListOps (Nangia & Bowman, 2018). The task is to
compute the result of a nested mathematical expression in prefix notation. Sequences are
of length 2048 with ten possible classes.

• G-Image: Based on CIFAR-10 (Krizhevsky, 2009), the task is to predict the class of 32×32
grayscale images (converted from RGB). Sequences are of length 1024 with ten possible
classes.

Reinforcement Learning. In this setting, we consider continuous control tasks from the D4RL
benchmark (Fu et al., 2020). These tasks based on MuJoCo comprise of three environments with
dense rewards: HalfCheetah, Hopper, and Walker. For each environment, three different datasets
are considered that have varying level represent varying levels of data quality:

• Medium (M): One million timesteps generated by a policy scoring about one-third of an
expert policy’s score.

• Medium-Replay (M-R): A replay buffer from an agent trained to perform like the Medium
policy.

• Medium-Expert (M-E): One million timesteps from the Medium policy combined with one
million from an expert policy.

Following Fu et al. (2020), reported scores are normalized such that 100 represents an expert policy
performance.

Language Modelling. In this setting, we consider the Shakespeare dataset, comprising a collection
of text data derived from the works of William Shakespeare. The training and testing data consists
of 1, 003, 854 and 111, 540 tokens respectively.

C.2 ARCHITECTURE

In our work, the primary goal was to demonstrate that simplified RNN architectures, such as minL-
STM and minGRU, can perform comparably to modern state-of-the-art sequence models. To achieve
this, we stick with a minimalistic architecture, following standard practices such as residual connec-
tions, normalization, and a downprojection layer for the RNN’s expanded hidden states. For more
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complex tasks like language modeling and Long Range Arena, standard components (convolutional
layer and MLP) are added4.

Selective Copying: No additional components.

Chomsky Hierarchy: (Conv4 → minRNN), i.e., a convolutional layer with a kernel size of 4 is
applied temporally before the minimal RNN.

Long Range Arena: (Conv4→ minRNN→MLP)

Language Modelling: (Conv4→ minRNN→MLP)

Reinforcement Learning: (minRNN→MLP)5

C.3 HYPERPARAMETERS AND GENERAL EXPERIMENTAL DETAILS

Selective Copying. For this task, we closely follow the setup of Gu & Dao (2024), training the model
for 400k steps with a batch size of 64 and an input dimension of 64. Due to GPU memory constraints,
gradient accumulation is applied, where gradients for two batches of size 32 are accumulated before
each gradient update and clipped to 1.0. The optimizer used is Adam with a learning rate of 3×10−4

alongside early stopping. Each model consists of 3 layers with a dropout rate of 0.1. The minLSTM
and minGRU models have an expansion factor of 6. Baseline results are referenced from the Mamba
paper.

Long Range Arena. For this benchmark, we closely follow the setup of Beck et al. (2024). For
Retrieval, the models consisted of 6 blocks and an embedding dimension of 128 and were trained
with a batch size of 64. For ListOps, the models consisted of 8 blocks and an embedding dimension
of 128 and were trained with a batch size of 32. For G-Image, the models consisted of 6 blocks and
an embedding dimension of 512 and were trained with a batch size of 64. All models were trained
for 250k steps using AdamW optimizer with a learning rate of 0.001, weight decay of 0.05, 10%
linear warm-up steps, and cosine annealing.

Chomsky Hierarchy. For this benchmark, we closely follow the setup of Beck et al. (2024), training
models consisting of two blocks. The models were trained for 500k steps with a batch size of 256
and the AdamW optimizer with a learning rate of 3× 10−4 and weight decay of 0.01.

Language Modelling. The models are optimized using AdamW with a learning rate of 1 × 10−3.
Each model consists of three layers, a dropout ratio of 0.2, and an embedding dimension of 384.
Training is done with 5k steps using a batch size of 64 and evaluated every 25 steps. Gradients are
clipped to 0.25. The Transformer is configured with 6 heads. Mamba uses an SSM state expansion
factor of 16 and a block expansion factor of 2. Following Mamba, both minLSTM and minGRU
utilize an expansion factor of 2 as well.

Reinforcement Learning. We follow the hyperparameter settings outlined by Ota (2024). For
Hopper (Medium) and Hopper (Medium-Replay), an embedding dimension of 256 is used, while all
other environments utilize an embedding dimension of 128. The learning rate is set to 1× 10−4 for
Hopper (Medium), Hopper (Medium-Replay), and Walker (Medium). For all other environments
and datasets, the learning rate is 1× 10−3. The models are optimized using AdamW with a weight
decay of 1 × 10−4 and a linear warmup for 10, 000 steps. Each model consists of 3 layers and has
a dropout ratio of 0.1. The models are trained for 100k steps with a batch size of 64. Results for the
baselines are referenced from the Mamba and Aaren papers.

4There is a trend in modern recurrent sequence models of prepending a convolutional layer (kernel size of
4) before their recurrent unit – for example, see Mamba (Gu & Dao, 2024) and xLSTM (Beck et al., 2024)
Empirically, we found that including this convolutional layer also helped minRNNs.

5Note this is equivalent to the standard Decision Transformer framework for (Offline) RL, replacing the
self-attention module with minLSTM or minGRU.
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D ADDITIONAL EXPERIMENTS

D.1 CHOMSKY HIERARCHY + LONG RANGE ARENA

In this section, we conduct experiments on both the Chomsky Hierarchy (Deletang et al., 2023)
and Long Range Arena (Tay et al., 2021) benchmarks, which are well-established in the literature
for evaluating sequence models. Together, these benchmarks provide a test of a model’s ability to
generalize and handle long-range dependencies, which are crucial for modern sequence modelling
tasks.

We compare Minimal RNNs against other fully parallelizable models, such as RWKV, Mamba, and
xLSTM[1:0] (using its parallelizable mLSTM module). Following Beck et al. (2024), we focus on
tasks from the Chomsky Hierarchy where models have achieved at least 30% accuracy, indicating
partial solvability. We closely followed the hyperparameter configurations outlined in the xLSTM
paper and averaged results over 3 seeds for consistency. The baseline results (accuracy – higher is
better) are taken from the xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long
Range Arena).

Our experiments (Table 4 and extended Table 5) show that Minimal RNNs achieve competitive per-
formance with state-of-the-art models (e.g., Mamba and xLSTM) across all tasks on these bench-
marks, outperforming other models such as Retention, Hyena, RWKV, and Llama.

D.2 INFERENCE RUNTIME COMPARISON

In these experiments, we compare the inference speeds of GRU, LSTM, minGRU, minLSTM, and
Mamba (using the official implementation). It is important to note that inference speed may vary
depending on the hardware and implementation used.

For this analysis, we tested different batch sizes (8, 16, 32, 64) and sequence lengths (up to 2048). In
Figure 3, we present the average inference speed across 50 runs, taking context tokens into account
before performing inference. Since GRU and LSTM models process context tokens sequentially,
their inference times are considerably slower than those of minGRU, minLSTM, and Mamba, all of
which benefit from parallel processing.

Overall, minLSTM and minGRU show inference speeds comparable to Mamba. Specifically, min-
GRU was 6.6%, 4.1%, 4.9%, and 2.9% faster than Mamba for batch sizes of 8, 16, 32, and 64,
respectively. On the other hand, minLSTM was 3.6%, 2.9%, 0%, and 1.3% slower than Mamba for
the same batch sizes.

Since minLSTM and minGRU are simplifications of LSTM and GRU, we expect them to generally
perform faster, including during inference. This is demonstrated in Figure 4, where we compare the
inference speed of minLSTM and minGRU with traditional LSTM and GRU models across varying
batch sizes. As expected, minGRU and minLSTM are 19.6% and 41.5% faster than GRU and LSTM
for a batch size of 64, respectively.

D.3 ARCHITECTURE ABLATION

In our work, the main objective was to demonstrate that simplified RNN architectures, such as
minLSTM and minGRU, can perform on par with modern state-of-the-art sequence models. To
achieve this, we adopted a minimalistic architectural design, incorporating standard practices such
as residual connections, normalization, and a downprojection layer for the RNN’s expanded hidden
states. For more complex tasks, like language modeling and Long Range Arena, we introduced a
convolutional layer and a multi-layer perceptron (MLP).

To better understand the impact of these architectural choices, we conducted an ablation study on
the ListOps (Long Range Arena) dataset of these additional components. The results, averaged
over 3 seeds, are shown in Table 6. The table highlights the effect of adding different layers to the
minLSTM model. For ListOps, incorporating a convolutional layer (Conv) and an MLP resulted in
improved performance.
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Method
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Transformers Llama 0.92 0.08 0.04 1.0 0.37

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69
RWKV-4 0.54 0.21 0.13 1.0 0.63
xLSTM 0.97 0.33 0.86 1.0 0.74

Minimal
RNNs minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93

Method
Majority

Count Retrieval ListOps G-Image Average

Transformers Llama 0.13 0.85 0.38 0.54 0.48

Modern
RNNs

Mamba 0.45 0.90 0.33 0.69 0.64
RWKV-4 0.13 0.90 0.39 0.69 0.51
xLSTM 0.46 0.91 0.41 0.70 0.71

Minimal
RNNs minLSTM (Ours) 0.47 0.89 0.59 0.67 0.73

Table 4: Results for Chomsky Hierarchy and Long Range Arena Benchmarks. We compare
minLSTM against other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0]
(using the mLSTM module). The baseline results (accuracy – higher is better) are taken from the
xLSTM paper (Figure 4 for Chomsky Hierarchy and Table 6 for Long Range Arena). The results
demonstrate that minLSTM achieves competitive performance with state-of-the-art models such as
Mamba and xLSTM across all tasks on these benchmarks.

D.4 INITIALIZATION ANALYSES

In this set of experiments, we examine the effect of initialization on the model’s performance. De-
pending on the task at hand, it may be beneficial to encourage the model to retain information over
time. One way to achieve this is by increasing the bias term in the forget gate of the minLSTM,
which promotes information retention earlier in the training process. As a result, the forget gate ft
of the LSTM approaches a value of 1 due to this new initialization. As shown in Figure 5, increasing
the forget gate bias in minLSTM enhances training efficiency, leading to faster convergence and
greater stability during training.

E ADDITIONAL RELATED WORK

Parallel Scan. Generalizing across the families of methods (including minLSTM and minGRU),
these recent sequence models can be viewed as members of the same family of functions trainable
via a parallel scan: vt = at⊙vt−1+ bt (see Section 2.3) where at and bt are functions of the input
token xt. Improving upon the parallel scan algorithm, several models (Yang et al., 2024; Gu & Dao,
2024) such as Mamba have proposed specialized hardware-efficient methods that leverage GPU’s
memory hierarchy to reduce high I/O costs and speed up training. In our work, we implemented
minLSTM and minGRU in plain PyTorch. However, due to the structural similarities in recurrences
amongst the numerous methods that leverage parallel scan, many techniques such as chunking that
apply to one work for speeding up training can also apply to others such as minGRU and minLSTM.

Parameter Initializations. Unrolling the recurrences of these new recurrent sequence models over
time often results in their outputs and gradients vanishing/exploding (Wang et al., 2024b) due to time
dependency in their output’s scale. To ensure model stability, the parameters of many models such as
state-space models are initialized according to special distributions (Gu et al., 2020; 2022; Orvieto
et al., 2023). In contrast, we found that minLSTM and minGRU are already stable using the default
PyTorch initialization. Unlike SSMs, minLSTM and minGRU’s outputs are time-independent in
scale, avoiding potential instabilities.
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Method Context Sensitive Regular xLSTM
Bucket

Sort
Missing

Duplicate
Cycle
Nav.

Even
Pairs Majority

Majority
Count

Traditional
RNNs

GRU 0.54 0.29 0.94 1.0 0.60 0.42
LSTM 0.99 0.33 1.0 1.0 0.54 0.46

Transformers Llama 0.92 0.08 0.04 1.0 0.37 0.13

Modern
RNNs

Mamba 0.69 0.15 0.86 1.0 0.69 0.45
Retention 0.13 0.03 0.05 0.51 0.36 0.12

Hyena 0.3 0.06 0.06 0.93 0.36 0.18
RWKV-4 0.54 0.21 0.13 1.0 0.63 0.13
RWKV-5 0.49 0.15 0.26 1.0 0.73 0.34
RWKV-6 0.96 0.23 0.31 1.0 0.76 0.24
xLSTM 0.97 0.33 0.86 1.0 0.74 0.46

Minimal
RNNs

minLSTM (Ours) 0.94 0.26 0.79 1.0 0.93 0.47

Table 5: Extended Results for Chomsky Hierarchy Benchmark. The baseline results (accuracy
— higher is better) are taken from the xLSTM paper (Figure 4). We compare minLSTM against
other fully parallelizable models, including RWKV, Mamba, and xLSTM[1:0] (using the mLSTM
module). The results demonstrate that minLSTM achieves competitive performance with state-
of-the-art models such as Mamba and xLSTM, while outperforming other models like Retention,
Hyena, RWKV, and Llama across all tasks in the Chomsky Hierarchy benchmark.

Model Accuracy
minLSTM 0.46

minLSTM (+ Conv) 0.45
minLSTM (+ MLP) 0.52

minLSTM (+ Conv + MLP) 0.59

Table 6: Architecture Ablation on the ListOps (Long Range Arena) Dataset. Results (accuracy
– higher is better) are averaged over 3 seeds. The table shows the impact of adding different layers
to the minLSTM model. For more complex tasks like language modeling and Long Range Arena,
we incorporate a convolutional layer (Conv) and a multi-layer perceptron (MLP). The performance
increases when these components are added.
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Figure 3: Runtime Comparison of Inference with Context Tokens: Parallelizable RNNs (minL-
STM, minGRU, and Mamba) vs. Traditional RNNs (LSTM and GRU). As sequential models,
LSTM and GRU exhibit significantly slower inference times when processing an increasing number
of context tokens, compared to the parallelizable models minLSTM, minGRU, and Mamba.

Figure 4: Runtime Comparison of Inference: Minimal RNNs (minLSTM and minGRU) vs.
Traditional Counterparts (LSTM and GRU). As simplified versions of LSTM and GRU, minL-
STM and minGRU generally exhibit faster inference times, particularly with larger batch sizes, as
shown in the plots.
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Figure 5: Impact of Forget Gate Bias Initialization on Training Efficiency. The plot illustrates
how increasing the bias of the forget gate in minLSTM enhances training efficiency by promoting
earlier retention of information, leading to faster convergence and a more stable training process.
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