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ABSTRACT

The process of imputation of missing data typically relies on generative and re-
gression models. These approaches often operate on the unrealistic assumption
that all of the data features are directly related with one another, and use all of
the available features to impute missing values. In this paper, we propose a novel
Markov Blanket discovery approach to determine the optimal feature set for a
given variable by considering both observed variables and missingness of partially
observed variables to account for systematic missingness. We then incorporate
this method to the learning process of the state-of-the-art MissForest imputation
algorithm, such that it informs MissForest which features to consider to impute
missing values, depending on the variable the missing value belongs to. Experi-
ments across different case studies and multiple imputation algorithms show that
the proposed solution improves imputation accuracy, both under random and sys-
tematic missingness.

1 INTRODUCTION

Dealing with missing data values represents a common practice across different scientific domains,
especially in clinical (Little et al., 2012; Austin et al., 2021), genomics (Petrazzini et al., 2021) and
ecological studies (Alsaber et al., 2021; Zhang & Thorburn, 2022). It represents a problem that can
be difficult to address accurately, and this is because missingness can be caused by various known
and unknown factors, including machine fault, privacy restriction, data corruption, inconsistencies
in the way data are recorded, as well as purely due to human error.

Rubin (1976) categorised the problem of missing data into three classes known as Missing Com-
pletely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR).
We say data is MCAR when the missingness is purely random, i.e., the missing mechanism is in-
dependent of both the observed and unobserved values. On the other hand, data is MAR when the
missingness is dependent on the observed values but independent of the unobserved values given the
observed values; implying that MAR data can be effectively imputed by relying on observed data
alone. Lastly, data is said to be MNAR when it is neither MCAR nor MAR and hence, missingness
is dependent on both the observed and unobserved values. While it is tempting to simply remove
data rows that contain empty data cells, a process often referred to as list-wise deletion or complete
case analysis, past studies have shown that such an approach is ineffective since it tends to lead to
poorly trained models (Wilkinson, 1999; Baraldi & Enders, 2010). On this basis, the problem of
missingness is typically handled by imputation approaches which estimate the missing values, often
using regression or generative models, and return a complete data set.

The imputation algorithms are often classified as either statistical or machine learning methods (Lin
& Tsai, 2020). Statistical imputation methods include Mean/Mode, which is one of the simplest
methods where the imputation is derived by the mean or mode of the observed values found in
the same data column. A more advanced statistical method is the Expectation-Maximization (EM)
algorithm (Honaker et al., 2011). EM computes the expectation of sufficient statistics given the
observed data at the E-step (Expectation), and then maximizes likelihood at the M-step (Maxi-
mization). It iterates over these two steps until convergence, at which point the converged pa-
rameters are used along with the observed data to impute missing values. Another statistical al-
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gorithm is the one proposed by Hastie et al. (2015), called softImpute, which treats imputation as
a matrix completion problem and solves it by finding a rank-restricted singular value decompo-
sition. Multiple imputation is another popular statistical method for handling missing data, and
considers the uncertainty of missing values. Some classic multiple-imputation algorithms include
the Multivariate Normal Imputation (MVNI) (Lee & Carlin, 2010), Multiple Imputation by Chained
Equations (MICE) (Van Buuren & Groothuis-Oudshoorn, 2011), and Extreme Learning Machine
(ELM) (Sovilj et al., 2016).

On the other hand, one of the earliest imputation methods that come from the Machine Learning
(ML) field include the k-nearest neighbour (k-NN) (Zhang, 2012), which imputes empty cells ac-
cording to their k-nearest observed data points. A well-established ML imputation algorithm is
MissForest (Stekhoven & Bühlmann, 2012), which trains a Random Forest (RF) regression model
recursively given the observed data, for every variable containing missing values, and uses the
trained RF model to impute missing values. Recently, deep generative networks have also been
used for imputing missing data values. Yoon et al. (2018) proposed the Generative Adversarial
Imputation Nets (GAIN) algorithm which trains the generator to impute missing data and the dis-
criminator to distinguish original data and imputed data, and was shown to have higher imputation
accuracy compared to previous approaches. Other ML techniques used for imputation include the
optimal transport (Muzellec et al., 2020), a neural network with causal regularizer (Kyono et al.,
2021), and automatic model selection (Jarrett et al., 2022).

All of the aforementioned algorithms assume that all the variables in the data correlate with each
other, and use all the variables to impute the missing values. Considering all of the data variables
increases the risk of over-fitting, but which can be minimised through L1 and L2 regularization
methods often employed by ML algorithms. However, regularization leads to models that tend to
lack interpretability and theoretical guarantees of correctness. Because this paper focuses on inter-
pretable models, such as those produced by structure learning algorithms, we shall focus on causal
feature selection which maintains interpretability, rather than regularization. This is also partly moti-
vated by Dzulkalnine & Sallehuddin (2019) who showed that using uncorrelated variables to impute
missing values not only decreases learning efficiency, but also degrades imputation accuracy. On
this basis, it has recently been suggested to include a feature selection phase that prunes off poten-
tially unrelated variables, for each variable containing missing values, prior to imputation (Bu et al.,
2016; Liu et al., 2020; Hieu Nguyen et al., 2021).

Relevant studies that focus on feature selection for imputation include the work by Doquire & Ver-
leysen (2012) who used Mutual Information (MI) to measure the dependency between variables.
They used a greedy forward search procedure to construct the feature subset, which is an itera-
tive process that constructs feature sets that maximise MI with the dependent variable. Sefidian &
Daneshpour (2019) also estimate the dependency between variables using MI, and chose to select
a set of variables that increase MI above a given threshold, as the features of a given dependent
variable. On the other hand, the algorithm proposed by Dzulkalnine & Sallehuddin (2019) applies
a fuzzy Principle Component Analysis (PCA) approach to the complete data cases to remove irrel-
evant variables from the feature set, followed by a SVM classification feature selection task that
returns the set of features that maximise accuracy on the dependent variable. Lastly, evolutionary
optimisation algorithms have also been adopted for feature selection in imputation, and include dif-
ferential evolution (Tran et al., 2018), genetic algorithms (Awawdeh et al., 2022), and particle swarm
optimisation (Jin et al., 2022).

Recently, causal information has also been adopted to feature selection for missing data imputation.
Kyono et al. (2021) proposed to impute missing values of a variable given its causal parents derived
from the weights of the input layer in the neural network. Similarly, Yu et al. (2022) proposed the
MimMB framework that learns Markov Blankets (MBs) to be used for feature selection in imputa-
tion, which is an iterative process that learns MBs from the imputed data and updates the learned
MB after each iteration. Note that while MimMB is related to our work, since we also use MB con-
struction for feature selection, an important distinction between the two is that MimMB combines
MBs with imputed data whereas, as we later describe in Section 3, the learning phase of MBs that
we propose is separated from imputation, accounts for partially observed variables, and improves
computational efficiency.

In this paper, we use the graphical expression of missingness proposed by Mohan et al. (2013),
known as m-graph, which is a graph that captures observed variables in conjunction with the possible
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causes of missingness as parents of the partially observed variables. We first show that an original
version of the Grow and Shrink (GS) algorithm by Margaritis (2003) is capable of discovering
the MBs in m-graphs containing partially observed variables, when applied to test-wise deleted
data. Because this approach relies on CI tests with large conditioning sets, we modify GS such
that the number of conditioning sets considered for CI tests is reduced. We provide proof that the
modified GS is capable of discovering the MBs of partially observed variables in m-graphs, under
the same assumptions as with the original GS. We then propose a new imputation algorithm, which
we call Markov-Blanket Miss-Forest (MBMF), that combines the modified GS with the state-of-
the-art MissForest (MF) imputation algorithm. We evaluate the effectiveness of MBMF on both
synthetic and real-world data sets. The empirical experiments show that MBMF outperforms MF,
and other relevant state-of-the-art imputation algorithms, under most experiments.

2 PRELIMINARIES

2.1 BAYESIAN NETWORK

A Bayesian network ⟨G,P⟩ is a probabilistic graphical model represented by a Directed Acyclic
Graph (DAG) G = (V ,E) and associated probability distributions P over V . In DAG G, a path is
a sequence of distinct nodes such that every pair of nodes is adjacent in G. A node Vi is called a
collider on a path p if at least two of its neighbouring nodes on p are parents of Vi in G. We denote
a node Vj as a descendant of Vi if there is a path from Vi to Vj such that all arrowheads of the edges
on that path are from Vi to Vj . A key concept of DAG is d-separation, which defines the conditional
independence (CI) between variables in DAG.

D-separation: Two variables X and Y are d-separated conditional on a variable set Z if every path
between X and Y has a node W that satisfies one of the following two conditions: i) W is not a
collider and W ∈ Z, or ii) W is a collider and none of W or its descendant are in Z (Pearl, 1988).

Conditional independence entailed by a given DAG via d-separation is not always equivalent to
the conditional independence of the corresponding probability distribution. However, we assume
the Markov and faithfulness conditions described below, where the DAG and the corresponding
distribution express the same set of conditional independence.

Markov condition: Given a DAG G over V , every variable in V is independent of its non-
descendants conditional on its parents.

Faithfulness condition: Given a DAG G over V , a probability distribution P is faithful to G if and
only if the conditional independence relationships in P are exactly the same as the independences
entailed by d-separation in G.

Given the faithfulness condition, a variable is conditionally independent of all the other variables
given its MB, which contains all its parents, children and parents of its children. We denote MB of
a variable Vi as MB (Vi).

2.2 MISSINGNESS MECHANISM AS AN M-GRAPH

We adopt the graphical representation of the mechanism of missing data known as m-graph, pro-
posed by Mohan et al. (2013), and which makes a slightly stronger assumption on MAR and MNAR
scenarios compared to the definition proposed by Rubin (1976). Given a missing data set, the ob-
served variables V can be partitioned into fully observed variables V o and partially observed vari-
ables V m. In an m-graph, there is an auxiliary indicator variable Ri for each partially observed
variable Vi ∈ V m that specifies the missingness of Vi, such that Ri = 1 when Vi is missing and
Ri = 0 when Vi is observed. We have MCAR if R ⊥⊥ V o ∪ V m, MAR if R ⊥⊥ V m | V o,
otherwise MNAR. We denote RS over a set of variables S as RS = ∪Vi∈S {Ri | Vi ∈ V m}. We
also make the Assumption 1 and Assumption 2 for indicator variables, as described below and based
on (Mohan et al., 2013).
Assumption 1. No missing indicator variable Ri can be a parent of observed variables or other
indicator variables, i.e., Ri could only be a leaf node in m-graph.
Assumption 2. In an m-graph, no edge can exist from a partially observed variable Vi to its corre-
sponding indicator variable Ri.
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Figure 1: M-graphs under MCAR, MAR and MNAR conditions respectively. Shaded nodes repre-
sent partially observed variables.

Given Assumption 1, if two variables Vi and Vj are d-separated by a variable set S, they are still
d-separated given S∪R. Given Assumption 2, we exclude the situation that there is a causal relation
between Vi and Ri in order to avoid performing CI test between Vi and Ri. Figure 1 presents three
m-graph examples under different mechanisms of missingness.

3 MARKOV BLANKET BASED FEATURE SELECTION FOR IMPUTATION

Given the description of the m-graph and causal faithfulness assumption, the problem of feature
selection under incomplete data can be converted into a MB discovery problem over m-graphs that
contain partially observed variables and missing indicators1. Because of the possible causal links
between partially observed variables V m and indicator variables R (i.e., in the case of MNAR), the
MB of a partially observed variable is likely to contain both observed and indicator variables. For
example, in Figure 1c, the MB of V1 is {V2, V3, V4, V5, V6, R3}.
We show that the Grow and Shrink (GS) algorithm with test-wise deletion is capable of discovering
the m-graph MB of any variable from incomplete data. Here, unlike list-wise deletion which re-
moves all data rows containing at least one missing value, we use test-wise deletion which removes
data cases containing missing values in any of the variables involved in the current CI test. The
pseudo-code of GS (Margaritis, 2003) is presented in Algorithm 1. Note that we slightly modify
the Grow phase, i.e., line 4-6, of GS to eliminate its dependency on the order of the variables in the
data (Kitson & Constantinou, 2022).

Given the faithfulness condition, Assumption 1 and Assumption 2, Proposition 1 describes the cor-
rectness of GS with test-wise deletion.

Proposition 1. Given the faithfulness condition and Assumptions 1 and 2, for any observed variable
Vi in a m-graph G, the output of GS(Vi, V o ∪ V m ∪R− {Vi, Ri} , D) is the MB (Vi) in G.

The proof of Proposition 1 is provided in Appendix A. Therefore, an intuitive way to determine the
relevant features for a given variable is to apply the function GS(Vi, V o ∪V m ∪R− {Vi, Ri} , D)
on every Vi ∈ V m. However, this is impractical since the maximum size of the conditioning sets
used for CI testing is |V o|+ 2|V m| − 3. In practice, the accuracy of CI tests drops dramatically as
we increase the size of the conditional set (Tsamardinos et al., 2003). To address this, we propose
the Markov Blanket Feature Selection (MBFS, Algorithm 2) that aims to restrict the maximum size
of the conditional set used by CI tests to |V o|+ |V m| − 1.

MBFS involves two phases, where the first phase involves learning the intrinsic MB of each partially
observed variable. Given a m-graph G, we define the intrinsic MB of a variable Vi as the set of
variables that are still in the MB of Vi after removing all indicator variables from G. We denote
the intrinsic MB of Vi by iMB (Vi). Note that iMB (Vi) is not necessarily equivalent to the set of
observed variables in MB (Vi). This is because the missing indicators might be a common effect
of two observed variables. For example, the intrinsic MB of V1 in Figure 1c is {V2, V3, V4, V5},

1To impute the missing values of an incomplete variable, we consider its MB, rather than only its parent
variables, for two reasons. Firstly, the parents of an incomplete (or even a complete) variable are not guaranteed
to be identifiable from observational data. Secondly, the MB contains the set of nodes that can make the given
variable independent over all other variables present in the input data.
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Algorithm 1 The Grow and Shrink (GS) algorithm with test-wise deletion
Input target variable X , candidate variables set S, data D
Output candidate Markov Blanket CMB of X

1: procedure GS(X,S, D)
2: CMB← ∅
3: repeat ▷ Grow phase
4: if any X ⊥̸⊥ Si | CMB,R{X,Si}∪CMB = 0 for Si ∈ S then
5: add Si with the lowest p-value to CMB
6: remove Si from S
7: end if
8: until CMB stays unchanged
9: for each Y ∈ CMB do ▷ Shrink phase

10: if X ⊥⊥ Y | CMB− {Y } ,R{X}∪CMB = 0 then
11: remove Y from CMB
12: end if
13: end for
14: return CMB
15: end procedure

whereas the standard MB would have also included V6 and R3. It is worth noting that, during phase
1, some nodes that do not belong in iMB (Vi) may still be included in the output CMB. However, as
we show in Appendix B, these nodes are still in the MB (Vi) in m-graph. The phase 2 aims to learn all
the parents of the missing indicators, in order to complete the feature set of MB (Vi). Proposition 2
states that MBFS is capable of learning MB (Vi) from missing data for any Vi ∈ V m in a m-graph
and thus, it could serve as an effective feature selection approach for imputation algorithms.

Algorithm 2 Markov Blanket-based Feature Selection (MBFS)
Input partially observed variable Vi, data D
Output candidate Markov Blanket CMB of Vi

1: procedure MBFS(Vi, D)
▷ Phase 1 (discover intrinsic MB)

2: CMB← GS (Vi,V
o ∪ V m − {Vi} , D)

▷ Phase 2 (discover other variables in MB caused by indicators)
3: for each Rj ∈ R− {Ri} do
4: CPS← V o ∪ V m − {Vj}
5: for each Vk ∈ CPS do
6: if Rj ⊥⊥ Vk | S,R{Vk}∪S = 0 for any S ⊆ CPS then
7: remove Vk from CPS
8: end if
9: end for

10: if Vi ∈ CPS then
11: CMB← CMB ∪ {Rj} ∪ CPS
12: end if
13: end for
14: return CMB
15: end procedure

Proposition 2. Given the faithfulness condition, Assumptions 1 and 2, for any observed variable Vi

in a m-graph G, MBFS(Vi, D) returns MB(Vi) in G.

The proof of Proposition 2 is provided in Appendix B. Appendix C discusses the implications on
the learning performance of MBFS when the Assumptions 1 and 2 are violated. We then propose a
modified version of MissForest that incorporates MBFS as a feature selection process. The modified
version of MissForest, which we call Markov Blanket MissForest (MBMF), takes the feature set
MBFS (Vi, D) for each partially observed variables Vi, as opposed to considering all of the other
observed variables as the explanatory features of Vi in the Random Forest regression model used in
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MissForest. In other words, MBMF accounts for the possible causal relationships between partially
observed variables and the missing indicators, to minimise the risk of considering irrelevant observed
variables for imputation by MissForest.

4 EXPERIMENTS

We test the proposed MBMF algorithm with reference to the standard version of MissForest (MF),
the commonly used imputation algorithms Mean and Mode, the K-Nearest Neighbour (KNN), and
two state-of-the-art algortihms; the softImpute and GAIN algorithms. While the evaluation includes
experiments on both continuous and categorical data, some of the other algorithms can only pro-
cess one of the two types of input data and hence, their application is restricted to continuous data
(Mean and GAIN) or categorical data (Mode). We use the scikit-learn python package (Pedregosa
et al., 2011) to test the Mean, Mode and KNN algorithms, the MissForest R package (Stekhoven &
Stekhoven, 2013) to test MF, the softImpute R package (Hastie et al., 2015) to test SoftImpute, and
the publicly available source code of GAIN. The implementation of MBMF, described in this paper,
is available at: https://github.com/Enderlogic/Markov-Blanket-based-Feature-Selection.

MBMF is applied to continuous data using the Pearson’s correlation test for CI tests, and to categor-
ical data using the G-test statistic, both of which are the default choices for GS. We also consider the
default threshold for independence, which is 0.1 for CI p-value tests. The other algorithms are also
tested with their default hyper-parameters as implemented in their corresponding packages listed
above.

4.1 SYNTHETIC CASE STUDIES BASED ON REAL-WORLD BNS

We first evaluate the algorithms by applying them to synthetic data sampled from three BNs,
ECOLI70, MAGIC-IRRI and ARTH150, taken from the bnlearn repository (Scutari, 2010). De-
tails about these graphical networks can be found in Appendix D. We generate complete data sets
for each network with sample sizes 500, 1000, 2000 and 3000. Then, for each complete data set,
we create nine incomplete data sets composed of different combinations of missingness rates (i.e.,
10%, 30% and 50%) and missingness assumptions (i.e., MCAR, MAR and MNAR). Appendix E
describes the process we followed to generate data sets with different types of missingness.

4.2 EVALUATION PROCESS

The imputation accuracy is evaluated using two different approaches. The first approach involves
retrieving the Root Mean Squared Error (RMSE) between imputed data and complete data. Because
RMSE is sensitive to the discrepancy between absolute data values, we normalise the complete data
column-wise and re-scale the imputed data with the same normalisation parameters to eliminate
bias.

The second approach involves assessing the impact of imputation on structural learning accuracy.
We do this by comparing the Completed Partially Directed Acyclic Graphs (CPDAGs) learned by the
state-of-the-art GES causal structure learning algorithm (Chickering, 2002) from imputed data sets
produced by the different imputation algorithms. The second approach is helpful because, while it
is reasonable to assume that higher imputation accuracy helps causal machine learning, it is possible
that some imputed values are more important than others. Causal structure learning represents a
good approach to test this, and we use the F1 score to measure the accuracy of graphical structures
learned by GES, as follows:

F1 =
2TP

2TP + FP + FN
,

where TP,FP and FN represent the number of true positive, false positive and false negative edges
in the learned CPDAG, relative to the true CPDAG. For more information on how to retrieve the
CPDAG of a DAG, please refer to (Chickering, 2002). Readers are also referred to (Kitson et al.,
2023) for a review of structure learning.
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Figure 2: Average RMSE between complete and imputed data produced by the different algorithms.
A Lower score represents better performance.

4.3 RESULTS

Figure 2 depicts the average RMSE of imputed data produced by the different algorithms under
different sample sizes. Note that the results we report on GAIN are, to some degree, inconsistent
with the results presented in the original paper (Yoon et al., 2018) , but are consistent with the results
presented in follow-up studies (You et al., 2020; Nazabal et al., 2020; Kyono et al., 2021; Jarrett
et al., 2022). In general, the proposed MBMF algorithm is found to outperform the baseline MF
under all scenarios of missingness. Specifically, for MCAR and MAR scenarios with missing rate
10%, MBMF provides a considerable improvement over MF, but this improvement diminishes with
the higher missing rates of 30% and 50%. This is because a higher missing rate tends to decrease
the sample size of the test-wise deleted data, which in turn reduces the accuracy of CI tests and the
discovered MB set by MBFS. Importantly, MBMF outperforms MF considerably under all MNAR
settings, which better reflect real-world missingness that is generally systematic. None of the other
imputation algorithms provide satisfactory performance in terms of RMSE; at least relative to the
MBMF and MF algorithms.

Figure 3 presents the average F1 scores corresponding to the graphs learned by GES, given the
imputed data sets produced by the different imputation algorithms, and across the different sample
sizes. While this evaluation approach decreases the discrepancy in performance scores between the
top performing imputation algorithms, the results are consistent with those presented in Figure 2
since MBMF and MF are found to perform better than the other algorithms in almost all cases,
and MBNF performs better than MF in most experiments. Specifically, MBMF and MF produce
similar performance when the rate of missingness is lowest at 10%, with their performance being
close to that produced with complete data (dashed line). These results serve as empirical evidence
that both MFBF and MF imputation algorithms perform exceptionally well with relatively low rates
of missingness. When the rate of missingness increases to 30%, MBMF performs better than MF
in most cases. However, when the rate of missingness is highest, at 50%, there is no clear winner
between MBMF and MF.

Lastly, we evaluate the computational efficiency of MBMF relative to the original MF. As shown in
Figure 4, MBMF is generally more efficient than MF. Note that while MBMF involves an additional
phase needed to perform feature selection, the additional time spent by MBMF in that phase is
countered by the reduced time MBMF spends to actually impute values. This is because MBMF
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Figure 4: Average execution time of MF and MBMF under different sample sizes, mechanisms of
missingness, and rates of missingness.

will almost always consider less features than MF during the imputation phase. Specifically, MBMF
is slower than MF at the lowest sample size, but becomes increasingly faster than MF with increasing
sample size. Averaging the results across the different mechanisms of missingness and missing rates
also shows that MBMF is, in general, more efficient than MF. Note that MF is slightly more efficient
when the rate of missingness is at its highest, 50%, since MF trains its RF regression model on
observed data rows only; implying that a higher rate of missingness decreases the training data
passed to the RF. The impact of the rate of missingness is higher on MF than MBMF since the
number of independent features considered by MF is, in general, considerably higher than those
considered by MBMF.

4.4 REAL-WORLD CASE STUDY

We repeat the evaluation by applying the imputation algorithms to six real-world data sets retrieved
from the UCI data repository (Dua & Graff, 2017). A summary of these data sets is given in Table 3
in Appendix F. We simulate missingness using the same strategy as described in Section 4.1. Specif-
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Mean/Mode KNN SoftImpute GAIN MF MBMF

Iris .284±.085 .103±.029 .198±.055 .164±.060 .092± .026 .092±.025
Breast .149±.012 .113±.009 .140±.040 .098±.029 .057± .009 .054±.009
Wine .123±.009 .109±.013 .101±.010 .106±.009 .039±.013 .040± .013
Game .563±.020 .501±.072 - - .505± .064 .496±.070
Car .675±.074 .613±.073 - - .655± .107 .593±.061
Mushroom .443±.062 .294±.083 - - .207± .060 .203±.058

Table 1: Average RMSE and PFC scores, and their standard deviations, for different imputation
algorithms and real-world data combinations. Lower RMSE and PFC scores represent better perfor-
mance.

ically, for each complete real data set, we generate nine incomplete data sets composed of different
rates and assumptions of missingness.

We use RMSE to evaluate the imputation accuracy when the algorithms are applied to continuous
data, and the Proportion of Falsely Classified entries (PFC) when applied to categorical data. Note
that the second evaluation approach, which involves investigating the impact of imputation accuracy
on causal structure learning as described in subsection 4.2, is unsuitable here since we do not have a
ground truth causal graph.

Table 1 presents the average scores and standard deviation. The results show that MBMF and MF
continue to outperform the other algorithms, and that MBMF continues to outperform MF in most
of the experiments. On this basis, we conclude that the results obtained from the real-world data sets
are consistent with the results obtained from the synthetic data sets.

5 CONCLUSION

This paper described a novel feature selection algorithm, called MBFS, that recovers the Markov
Blanket of partially observed variables based on the graphical expression of missingness known
as the m-graph, which captures observed variables together with missingness indicators and the
possible causal links between them. We then incorporated MBFS into the imputation process of
MissForest, to formulate a new algorithm suitable for imputation under both random and systematic
missingness, which we call MBMF.

Empirical experiments based on both synthetic and real-world data sets show that MBMF outper-
forms the baseline MissForest in most of the experimental settings, and outperforms considerably
other well-known or state-of-the-art imputation algorithms under both random and systematic miss-
ingness. Moreover, while MBMF incorporates an additional learning phase needed to perform fea-
ture selection for each partially observed variable found in the input data, the results show that
MBMF is generally more efficient than the baseline MissForest, especially at larger sample sizes
where efficiency matters the most. This is because the time saved during imputation due to prior
feature selection is higher than the additional time spent determining the best features for each par-
tially observed variable.

Because the feature selection phase can be independent of the imputation phase (i.e., by using the
MBFS algorithm alone), future research works could extend this work to different relevant direc-
tions where feature selection is deemed to be important. For example, MBFS could be combined
with other imputation algorithms, including those based on deep learning (Mattei & Frellsen, 2019;
Fortuin et al., 2020; Lin et al., 2022) which are generally powerful but which tend to be time con-
suming and to overfit the data, since they typically process large numbers of uncorrelated features.
Moreover, since each MB discovered by MBFS could be used to construct the complete m-graph
of the input data set, a rather different possible direction for future research would be to investigate
the capability of MBFS in recovering the entire m-graph of the input data. This task would require
structural rules to deal with collisions between MBs as well as cycles, and would essentially convert
MBFS into a structure learning algorithm.
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A PROOF OF PROPOSITION 1

Given Assumption 1 and Assumption 2, Ri is not an child of Vi nor a parent of any other variables.
Therefore, we do not need to consider Ri when learning MB (Vi).

We first show that the output Candidate Markov Blanket (CMB; i.e., output of Algorithm 1) set
learned at the Grow phase contains all the variables of MB (Vi). Assume Y is a parent or child of
Vi, given the faithfulness condition, Vi ⊥̸⊥ Y | CMB,R{Vi,Y }∪CMB = 0 for any CMB ⊆ V o ∪
V m ∪R − {Vi, Ri}. Therefore, Y will always be added to CMB during the Grow phase. Assume
Z → Y and that Y is also a child of Vi. Once Y is added to CMB, Vi and Z will not be d-separated
by CMB ∪R{Vi,Y }∪CMB and thus, Z will also be added to CMB.

Lastly, we show that the Shrink phase preserves the variables in MB (Vi) only. Let us assume
that T is the first variable in MB (Vi) when the algorithm enters the Shrink phase and attempts
to remove variables in CMB, which have already been added during the Grow phase. Because
MB (Vi)− {T} ⊆ CMB, irrespective of T being a neighbour or a parent of a child of Vi, we always
have Vi ⊥̸⊥ T | CMB−{T} ,R{Vi}∪CMB = 0 given the faithfulness condition. Therefore, no variable
in MB (Vi) will be removed during the Shrink phase. On the other hand, if we assume T ̸∈ MB (Vi),
since MB (Vi) ⊆ CMB∪R{Vi}∪CMB−{T}, we have Vi ⊥⊥ T | CMB−{T} ,R{Vi}∪CMB = 0 given
the faithfulness condition and thus, T will be removed from CMB.

B PROOF OF PROPOSITION 2

For convenience, in this section we denote path p as the path being blocked by a variable set S
if there is at least one node on p that satisfies either 1) it is a non-collider and in S or 2) it is a
collider and neither it nor any of its descendants are in S. Thus, if all paths between Vi and Vj

are blocked by S, Vi and Vj are d-separated by S. We firstly show that the CMB returned by

12

https://doi.org/10.1145/3488055
https://doi.org/10.1145/3488055


Published as a conference paper at ICLR 2023

GS (Vi,V
o ∪ V m − {Vi} , D) (phase 1 of MBFS) contains all but only variables in iMB (Vi), in

addition to some other observed variables belonging to MB (Vi).

For the Grow phase in GS (Vi,V
o ∪ V m − {Vi} , D), assume that Y is a parent or child of Vi,

and that given the faithfulness condition, Vi ⊥̸⊥ Y | CMB,R{Vi,Y }∪CMB = 0 for any CMB ⊆
V o ∪ V m − {Vi}. Therefore, Y will be added in CMB. Assume that Z is a parent of an observed
variable Y , which is a child of Vi. After Y is added to CMB, Vi and Z can no longer be d-separated
by CMB ∪R{Vi,Y }∪CMB. Thus, Z will also be added to CMB eventually. As a result, all variables
in iMB (Vi) will be included in CMB at the end of the Grow phase.

For the Shrink phase, we prove two things: 1) that all the variables in iMB (Vi) will remain in CMB,
and 2) that all the variables not in the MB (Vi) will be removed from CMB.

1. Suppose that T is the first variable in iMB (Vi) that the algorithm attempts to remove from
CMB, and that Vi and T are connected by either a direct edge or a path through a collider in
iMB (Vi). Therefore, T and Vi cannot be d-separated by CMB ∪R{Vi}∪CMB − {T}, since
iMB (Vi) ⊆ CMB∪R{Vi}∪CMB−{T}. Then, we have Vi ⊥̸⊥ T | CMB−{T} ,R{Vi}∪CMB =
0 given the faithfulness condition.

2. Suppose that T is an observed variable in CMB such that T /∈ MB (Vi). Given the faith-
fulness condition, all we need to prove is that all paths between Vi and T are blocked by
CMB ∪R{Vi}∪CMB − {T}.

• For a path p between Vi and T composed by observed variables only, there is at least
one non-collider node on p that belongs to iMB (Vi), such that p is blocked by CMB∪
R{Vi}∪CMB − {T}, since iMB (Vi) ⊆ CMB ∪R{Vi}∪CMB − {T}.

• For a path p between Vi and T contains indicator variables, when an observed node
Vj is adjacent to Vi on p, at least one non-collider (either Vj or the parent of Vj) on
p will also be in iMB (Vi). This is because no indicator variable can be a parent of
Vj according to Assumption 1, which implies that p will be blocked by iMB (Vi) as
well as CMB ∪ R{Vi}∪CMB − {T}. If the adjacent node of Vi on p is an indicator
variable Rj , then according to Assumptions 1 and 2, Rj ̸= Ri and it must have
another parent Vk ̸= T on p since T /∈ MB (Vi). If Rj /∈ RCMB, path p is blocked by
CMB ∪R{Vi}∪CMB − {T}. If Rj ∈ RCMB, Vk must be included in CMB during the
Grow phase, and cannot be removed during the Shrink phase since Vi and Vk cannot
be d-separated by CMB ∪ R{Vi,Vk}∪CMB. Therefore, p is still blocked by CMB ∪
R{Vi}∪CMB − {T} since Vk is a non-collider on p in CMB ∪R{Vi}∪CMB − {T}.

In the phase 2 of MBFS, all the parents of each Rj should remain in CPS as they cannot be d-
separated from Rj given any set composed of observed variables. Besides, all of the other variables
should be removed from CPS as they can be d-separated from Rj given any set that contains all the
parents of Rj . As a result, CMB should return MB (Vi) at the end of phase 2.

C THE IMPLICATIONS OF VIOLATING ASSUMPTIONS 1 AND 2 OF MBFS

If the Assumption 1 is violated (e.g., when an indicator variable is also a parent of some other
variable), then both phases of MBFS may produce redundant variables in the CMB set. Let us
suppose that the true m-graph is the one shown in Figure 5. If we use MBFS to learn the MB of V1,
then V2 will be included in the CMB set of Phase 1, and this is because V1 and V2 are independent
only when conditioning on R4, whereas V4 and V1 are always independent. This implies that MBFS
will never test V1 and V2 for CI conditional on R4 during Phase 1. In Phase 2, V6 will be included
in the CPS set of R5 and thus, it will also be added in CMB of V1.

If Assumption 2 is violated (e.g., when a partially observed variable Vi is also the parent of its own
missingness indicator Ri), this will cause MBFS not to include Ri in the CMB of Vi, since MBFS
would not consider Vi as a candidate variable in the CPS of Ri during Phase 2.
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Figure 5: A hypothetical m-graph used to described the implications of violating Assumption 1 of
MBFS. Shaded nodes represent partially observed variables.

D SUMMARY OF THE REAL-WORLD BNS IN SYNTHETIC EXPERIMENTS

Number of variables Number of edges Data type

ECOLI70 46 70 Continuous
MAGIC-IRRI 64 102 Continuous
ARTH150 107 150 Continuous

Table 2: Summary of the real-world BNs used in Section 4.1.

E MISSING VALUE GENERATION PROCESS

We randomly choose 50% of the variables to be made partially observed. We use α to represent the
rate of missingness for each of those variables. This process differs depending on the underlying
assumption of missingness. Specifically,

1. For the MCAR condition, a value in Vi is removed with probability P (Ri = 1) = α.
2. For the MAR condition, a fully observed variable Vj ∈ V o is randomly assigned as the

parent of Ri. For continuous data, we denote the highest 10th-quantile of Vj as qj , and
remove values in Vi with the following conditional probabilities: P (Ri = 1 | Vj > qj) =
2α, P (Ri = 1 | Vj <= qj) = 8

9α. For categorical data, we select a set of states vj of
Vj such that α < P (Vj = vj) < 1, then we remove values in Vi with the following
conditional probabilities: P (Ri = 1 | Vj ̸= vj) = 2α, P (Ri = 1 | Vj = vj) = 2α −

α
P (Vj=vj)

.

3. For the MNAR condition, a partially observed variable Vj ∈ V m − {Vi} is randomly
assigned as the parent of Ri. Variable values are then removed for each Vi using the same
strategy as in the case of MAR.

F SUMMARY OF THE REAL-WORLD DATA SETS

Number of variables Number of instances Data type

Iris 4 150 Continuous
Breast 30 569 Continuous
Wine 11 1599 Continuous
Game 10 958 Categorical
Car 7 1728 Categorical
Mushroom 22 8124 Categorical

Table 3: Summary of the real-world data sets used in Section 4.4.
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