
Knowledge Distillation of Uncertainty
using Deep Latent Factor Model

Sehyun Park
Department of Statistics

Seoul National University
ps_hyen@snu.ac.kr

Jongjin Lee
Samsung Research
ga0408@snu.ac.kr

Yunseop Shin
Department of Statistics

Seoul National University
dbstjq48@snu.ac.kr

Ilsang Ohn
Department of Statistics

Inha University
ilsang.ohn@inha.ac.kr

Yongdai Kim∗

Department of Statistics
Seoul National University
ydkim0903@gmail.com

Abstract

Deep ensembles deliver state-of-the-art, reliable uncertainty quantification, but their
heavy computational and memory requirements hinder their practical deployments
to real applications such as on-device AI. Knowledge distillation compresses an
ensemble into small student models, but existing techniques struggle to preserve
uncertainty partly because reducing the size of DNNs typically results in variation
reduction. To resolve this limitation, we introduce a new method of distribution
distillation (i.e. compressing a teacher ensemble into a student distribution instead
of a student ensemble) called Gaussian distillation, which estimates the distribution
of a teacher ensemble through a special Gaussian process called the deep latent
factor model (DLF) 2 by treating each member of the teacher ensemble as a
realization of a certain stochastic process. The mean and covariance functions in
the DLF model are estimated stably by using the expectation-maximization (EM)
algorithm. By using multiple benchmark datasets, we demonstrate that the proposed
Gaussian distillation outperforms existing baselines. In addition, we illustrate that
Gaussian distillation works well for fine-tuning of language models and distribution
shift problems.

1 Introduction

While DNNs have succeeded tremendously in various AI tasks, the rapid increase in their model sizes
has raised a concern about high computational resource demands, which limits their applications to
real world applications such as on-device AI [1], and thus developers have increasingly compressed
large-scale language models into much smaller models [1, 2, 3, 4]. A representative tool for compres-
sion is knowledge distillation (KD), which constructs a smaller DNN that mimics a given large-scale
DNN [5].

Another concern is that the inherent over-parameterization of a single DNN makes them susceptible
to overfitting, leading to overconfident predictions. When training predictive models, it is essential
to learn models not only accurate but also reliable. For reliable prediction, proper quantification of
uncertainty has become an important topic in AI research [6, 7, 8]. Deep ensemble (an ensemble
of multiple DNNs) has received much attention not only for its strong predictive performance but

∗Corresponding author.
2The source code of DLF is publicly available at https://github.com/sehyun1094/DLF

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/sehyun1094/DLF

also for its ability to quantify prediction uncertainty [9, 10]. An ensemble of DNNs can mitigate
overconfident predictions by reflecting the uncertainty (i.e., the variation of multiple predictions made
by members of an ensemble) when making a final decision.

Since deep ensemble requires even more computational resources than DNNs, KD of deep ensemble
is necessary for improving its applicability. Several works have focused on distilling a given teacher
ensemble to a student ensemble instead of distilling a teacher ensemble to a single student DNN to
keep the uncertainty as much as possible [8, 11, 12, 13, 14, 15]. Algorithms for KD of deep ensemble
can be roughly categorized into two approaches: one-to-one distillation and distribution distillation.
One-to-one distillation compresses each member in a teacher ensemble to a smaller DNN, which
becomes a member of a student ensemble. Various weight-sharing architectures for student DNNs,
along with their corresponding learning algorithms, have been proposed [11, 13, 14, 16]. On the other
hand, distribution distillation treats each ensemble member in a teacher ensemble as an independent
realization of a certain distribution whose parameters are modeled by a student DNN. [17] and [18]
assume that the conditional class probability vector of each member in a teacher ensemble follows
a Dirichlet distribution and devise a method to estimate the parameters in the Dirichlet distribution
using a student DNN.

There are still limitations in existing KD methods for deep ensemble. One-to-one distillation methods
tend to lose a significant amount of uncertainty in a teacher ensemble when they compress large
DNNs into smaller ones, while performance of Dirichlet distillation (the distribution distillation with
a Dirichlet distribution) is inferior to one-to-one distillation partly [11, 14] because of instability in
learning the parameters in the Dirichlet distribution.

The aim of this paper is to propose a new distribution distillation method that is numerically stable in
learning and superior to other baselines in uncertainty quantification. In our proposed method, we
treat each member in a teacher ensemble as an independent realization of a Gaussian process and
estimate the mean and covariance functions of the Gaussian process based on observed predictions of
members in a teacher ensemble. For this purpose, we propose the deep latent factor (DLF) model
where the mean and covariance functions are modeled by a student DNN and implement an EM
algorithm to estimate the maximum likelihood estimator (MLE) of the student DNN. We call our
method Gaussian distillation.

Our contributions are summarized as follows.

• We propose a new distribution distillation method based on a specially designed Gaussian
process called the DLF model that achieves superior performance in uncertainty quantifica-
tion to other baselines.

• We develop an EM algorithm to estimate the student DNN in the DLF model. In particular,
we propose a way of finding a good initial solution by maximizing the penalized complete
log-likelihood.

• We do numerical experiments to show that Gaussian distillation outperforms other baselines
for both regression and classification. We also illustrate that Gaussian distribution is a useful
tool for fine-tuning language models.

• We apply the pre-trained DLF to distribution shift problems and show numerically that it
outperforms baselines.

2 Preliminaries

2.1 Prediction uncertainty

In a nutshell, quantifying prediction uncertainty in supervised tasks involves efficiently estimating
the predictive distribution of the output y given a new input denoted as p(y|xnew). The variation in
the predictive distribution can be used as a measure of uncertainty in prediction.

A typical way of estimating the predictive distribution begins with a parametric generative model
for the input and output pair. Let p(y|x, θ) be the conditional distribution of the output y ∈ Y given
an input x ∈ X ⊂ Rd, where θ ∈ Θ is an unknown parameter. Then, we try to estimate θ based on
training data (x1, y1), . . . , (xm, ym) such that p(y|x, θ̂) is as close as possible to p∗(y|x), where θ̂

2

is an estimate of θ and p∗(y|x) is the true conditional distribution. For example, the MLE minimizes
the empirical KL divergence between p(y|x, θ) and p∗(y|x).

It is well known, however, that the variation in p(y|x, θ̂) is smaller than that in p∗(y|x) because
p(y|x, θ̂) does not take into account the uncertainty in estimating θ̂. Thus, making a decision solely
with p(y|x, θ̂) would lead in overconfident results. A proper uncertainty quantification in prediction
should consider not only uncertainty in p∗(y|x) (aleatory) [6, 7] but also uncertainty in θ̂ (epistemic).

A popular way of considering both aleatory and epistemic uncertainties in prediction is to use an
ensemble. We construct multiple estimates θ̂1, . . . , θ̂n of θ and then estimate the predictive distribution
as p̂(y|x) =

∑n
i=1 p(y|x, θ̂i)/n, which we call the averaged prediction model. For deep learning,

the two most representative methods of constructing multiple estimates are deep ensemble [9, 19, 20]
and Bayesian DNNs [21, 22, 23, 24, 25, 26, 27]. Deep ensemble generates multiple estimates by
learning a DNN with different initial parameter, while Bayesian DNNs generate θ̂s from the posterior
distribution. In this paper, we focus on deep ensemble, but our proposed method can be applied to
Bayesian DNNs without modification.

2.2 Review of ensemble distillation

As mentioned in Introduction, deep ensemble has an intrinsic limitation in its practical applications
due to high computational costs and times along with demands for substantial memory to store and
process multiple prediction models. To resolve this problem, KD of deep ensemble has received much
attention [5, 8, 11, 12, 13, 14, 15, 17]. A basic idea of KD of deep ensemble is to approximate large
DNNs in a teacher ensemble by smaller student DNNs. A naive approach of KD of deep ensemble
is to approximate the averaged prediction model p̂(y|x) of a teacher ensemble by a small single
DNN [15, 28, 29]. This naive approach, however, does not perform well since it is hard to distill the
uncertainty in p̂(y|x) into a single student DNN.

A remedy is to distill a teacher ensemble into a student ensemble. Several methods have been proposed
for this purpose, which can be roughly divided into two categories that are explained in the subsequent
subsections.

2.2.1 One-to-one distillation

The main idea of one-to-one distillation is to construct multiple student models, each of which
corresponds to each teacher model. That is for given n many teacher models p(t)i (y|x), i = 1, . . . , n,

n many student models p(s)i (y|x) are constructed. To save computation time and memory further,
various special neural network architectures for n student models p(s)i (y|x), i = 1, . . . , n have been
proposed. Examples are Hydra [11], Batch Ensembles (BE) and Latent Batch Ensemble (LBE)
[12, 14]. See Appendix A.1 for details.

2.2.2 Distribution distillation

Distribution distillation assumes that teacher models are independent realizations of a stochastic
model with unknown parameters modeled by a student DNN and estimates the student DNN based on
the prediction values of the teacher models [17, 18]. To be more specific, for classification problems,
we assume that

(
p
(t)
i (y|x

)
, y = 1, . . . , c), i = 1, . . . , n for a given x are independently generated

from the Dirichlet distribution with parameters α1(x), . . . , αc(x) and model these parameters by a
student DNN. Once the student DNN is learned, ensemble members are generated from the learned
Dirichlet distribution and aggregated in the prediction phase. We call this method Dirichlet distillation.
See Appendix A.2 for details.

3 The Proposed Method

We propose a new method of distribution distillation. The main idea of the proposed method is that we
treat members in a teacher ensemble as independent realizations of a Gaussian process and estimate
the mean and covariance functions of the Gaussian process by a student DNN. Then, in the inference

3

phase, we generate ensemble members from the estimated Gaussian process. We call our proposed
method Gaussian distillation. See Figure 1 for the overall process of Gaussian distillation.

Figure 1: Overall process of Gaussian distillation

A technical difficulty of this idea is to model and estimate the covariance function. To resolve this
problem, we use the DLF, which is an extension of the standard linear factor model [30], where the
mean and factor loading are modeled by a student DNN.

For the probabilistic model of data, we consider y = f(x) + ϵ, where ϵ ∼ N (0, σ2
ϵ) for regression

problems and p(y|x) = exp(fy(x))/
∑c

v=1 exp(fv(x)) for classification problems. Thus, a teacher
ensemble for regression problems consists of multiple teacher models for f as well as multiple
estimates of σ2

ϵ , while a teacher ensemble for classification problems consists of multiple teacher
models for multivariate functions f(·) = (f1(·), . . . , fc(·)).

3.1 Deep Latent Factor model

In this subsection, we introduce special Gaussian processes for f(·) and f(·), respectively.

Univariate case The DLF model for a univariate random function f : X → R is defined as
f(·) = µθ(·) + Φθ(·)⊤Z, (1)

where µθ(·) : X → R is the mean function, Φθ(·) : X → Rq is the factor loading function and
Z ∼ Nq(0, Iq) is the latent factor. Here, Nq is the q-dimensional Gaussian distribution and Iq is
the q-dimensional identity matrix. In the DLF model, we set (µθ(·),Φθ(·)⊤) by a student DNN
parameterized by θ which has q + 1 output nodes.

It is easy to see that the DLF is a Gaussian process with mean function µθ(·) and covariance function
Σθ(·, ·) = Φθ(·)⊤Φθ(·). Once we have n many teacher models f1(·), . . . , fn(·), we assume them to
be independent realizations of the DLF model and estimate the mean and factor loading functions.

Multivariate case The DLF model for a multivariate function f(·) = (f1(·), . . . , fc(·))⊤ is defined
as

f(·) = µθ(·) + LZΦθ(·), (2)
where µθ(·) : X → Rc is the mean function, Φθ(·) : X → Rq is the factor loading function,
L ∈ Rc×c is a lower-triangular matrix and Z ∼ MN c,q(0, Ic, Iq). Here, MN c,q(0, Ic, Iq) is a
matrix-variate Gaussian distribution. It can be shown that the DLF model is a multivariate Gaussian
processMGPc(µθ,Σ,Λ) with the mean function µθ(·), covariance function Σ(·, ·) = Φθ(·)⊤Φθ(·)
and parameter matrix Λ = LL⊤. For the definition of multivariate Gaussian process, see [31].

3.2 Estimation of the mean and factor loading

The main idea of Gaussian distillation is to estimate the mean and factor loading functions by maxi-
mizing the corresponding log-likelihood, assuming that teacher models are independent realizations

4

of the DLF. For optimization, we use the EM algorithm [32]. In this section, we explain the EM
algorithm for Gaussian distillation. For ease of notation, we only consider the univariate DLF model,
and refer to Appendix B.2.2 for the multivariate DLF.

Suppose that n many teacher models f1(·), . . . , fn(·) are given. Gaussian distillation consists of
three steps. The first step is to choose m-many design points Ddesign = {x(d)

1 , . . . ,x
(d)
m }. We will

discuss how to choose the design points in Section 3.4. The second step is to calculate the vectors of
prediction values of each teacher model at the design points to have f i =

(
fi(x

(d)
j), j = 1, . . . ,m

)⊤
for i = 1, . . . , n. The final step is to estimate the parameter θ in the DLF model assuming that
f1(·), . . . , fn(·) are independent realizations of a random function following the DLF model. Since
f is are independent Gaussian random vectors, the MLE can be obtained by use of the EM algorithm
as follows.

To make the EM algorithm numerically stable, we consider the noisy DLF model which assumes that
f i = f̃ i+vi, where vi ∼ Nm(0, σ2

f Im) and f̃ i = (f̃i(x1), . . . , f̃i(xm))⊤ with f̃i(·)s following the
DLF model. Specifically, each f̃i is expressed as f̃i(·) = µθ(·) + Φθ(·)⊤zi, where zi ∼ Nq(0, Iq)
denotes the latent factor corresponding to the i-th function realization. Then, we obtain the MLE of
the parameter θ in the mean and factor loading functions as well as σ2

f . We abuse the notation to
write θ = (θ, σ2

f) unless there is any confusion.

The complete log-likelihood is given as

ℓcom(θ|f1:n, z1:n) =−
nm

2
log(2πσ2

f)−
nq

2
log(2π)−

∑n
i=1 z

⊤
i zi

2

−
∑n

i=1(f i − µθ −Φθzi)
⊤(f i − µθ −Φθzi)

2σ2
f

,

(3)

where f1:n = {f1, . . . ,fn}, z1:n = {z1, . . . ,zn},µθ = (µθ(x
(d)
1), . . . , µθ(x

(d)
m))⊤ and Φθ =

(Φθ(x
(d)
1), . . . ,Φθ(x

(d)
m))⊤ is an m× q matrix.

For a given parameter θ(t−1) at time t− 1, the E-step is to calculate the conditional expectation of
the complete log-likelihood Q(θ|θ(t−1)) = Ez1:n|f1:n,θ

(t−1) [ℓcom(θ|f1:n, z1:n)], whose formula is
given in Appendix B. In the M-step, we update θ(t) by a stochastic gradient descent algorithm on
mini-batches. The EM algorithm is summarized in Algorithm 1 in Appendix B.

Choice of the initial parameter Note that the EM algorithm may converge to a local optimum, and
the choice of an initial solution significantly impacts the final estimate. For the DLF model, where
the factor loading involves a complex DNN structure, this issue becomes even worse. Moreover, the
identifiability issue of the factor loading makes initializing the EM algorithm from a well-chosen
starting point become even more crucial.

For searching a good initial solution, we pretrain the DLF model by maximizing the following
penalized complete log-likelihood with respect to θ and zis where

ℓpen(θ, z1:n|f1:n) = ℓcom(θ|f1:n, z1:n)− λDMMD(z1:n, z
′
1:n) (4)

for λ > 0, where z′
1:n are samples generated from the standard Gaussian distribution and DMMD

is the Maximum Mean Discrepancy (MMD) with the RBF kernel. The term MMD is introduced to
make the distribution of the estimated z1:n similar to the standard Gaussian distribution.

KD for σ2
ϵ For regression problems, we need a KD method for σ2

ϵ . Let σ2
ϵ,1, . . . , σ

2
ϵ,n be estimators

of σ2
ϵ provided by each teacher model. We assume that σ2

ϵ,i, i = 1, . . . , n are independently generated
from the inverse gamma distribution and estimate the parameter in the distribution accordingly. In the
inference phase, we generate ensemble members of σ2

ϵ from the estimated inverse gamma distribution.

3.3 Comparison with other baselines

Comparison with Hydra Recall that we model (µθ(·),Φθ(·)⊤)⊤ by a DNN with q + 1 many
heads. Note that the DLF model assumes fi(·) = µθ(·) + Φθ(·)⊤zi for i = 1, . . . , n, and thus we

5

can interpret (µθ(·),Φθ(·)⊤)⊤ as the body and zis as the model-specific weights at the head. In view
of sharing the body, the DLF model is quite similar to the conventional multi-head structure used
in Hydra [11]. The main difference is that the DLF model treats zis as random quantities and thus
integrates out before estimating the MLE while Hydra treats zis as fixed effects and estimates θ and
zis simultaneously by minimizing a given loss. It is well-known that treating random effects as fixed
effects is highly susceptible to bias [33, 34, 35, 36]. Our experimental results in Section 5 amply
demonstrate that treating zis as random is better than treating zis as fixed effects.

Comparison with Dirichlet distillation At least, there are two advantages of Gaussian distilla-
tion compared to Dirichlet distillation. Gaussian distillation can be applied to both regression and
classification models while Dirichlet distillation is only applicable to classification problems. The
second advantage is that estimation of the mean and factor loading in the DLF model is easier than
estimation of the parameter in the Dirichlet distribution owing to the nice EM algorithm. This stability
makes Gaussian distillation perform better than Dirichlet distillation. The inferior performance of
Dirichlet distillation compared to one-to-one distillation, as reported in [11, 13], is confirmed by our
experiments in Section 5.

3.4 Choice of design points

Let µ̂(·) and Σ̂(·, ·) be the estimate of µ∗(·) and Σ∗(·, ·) by the DLF model with design pointsDdesign.
For a given x ∈ X , let p̂x and p∗,x be the distributions of f(x) under the assumption that f(·) is a
Gaussian process with the parameters (µ̂, Σ̂) and (µ∗,Σ∗), respectively. In Theorem G.3 in Appendix
G.2, we prove that supx∈Ddesign d1(p̂x, p∗,x) converges to 0 as n→∞ if we choose the architecture
of a student DNN for (µθ(·),Φθ(·)⊤) appropriately, where d1 is the ℓ1 metric.

For x ̸∈ Ddesign, if µ̂ and µ∗, as well as Σ̂ and Σ∗ are (coordinate-wise) Lipschitz, it can be shown
that d1(p̂x, p∗,x) ≤ d1(p̂x(1)

, p∗,x(1)
) + C∥x − x(1)∥ for a positive constant C, where x(1) is the

nearest point in Ddesign to x. See Theorem G.3 in Appendix G.2. Note that the term ∥x− x(1)∥ is
affected by the choice of design points. Suppose that x is a realization of a random vector X ∼ P.
Then, the expected nearest-neighbor distance EX∼P∥X −X(1)∥ becomes smaller when the design
points are located in a higher-density region of P. This observation suggests that design points similar
to test data would be better. Validation data (dataset whose distribution is the same as the training
data used for learning a teacher ensemble) would be a promising candidate for the design points. See
Appendix D.1.1 for numerical experiments.

4 Application to distribution shift problems

The pre-trained DLF can be applied to distribution shift problems. We say that given new data is
shifted in distribution if the distribution of new data is different from that of training data. Distribution
shift problems, whose aim is to efficiently learn a prediction model on new data when the size of new
data is small, have been studied extensively [37, 38, 39, 40, 41, 42]. A popular method is to learn
a DNN on training data first and retrain the head of the DNN on new data while the body is fixed
[43, 44].

Note that the DLF model is given as

fj(·) = µ̂j(·) +
q∑

k=1

c∑
l=1

Φ̂k(·)L̂jlzjlk, (5)

for j = 1, . . . , c, where zjkls are independent standard Gaussian random variables. For distribution
shift problems, we can treat (µ̂(·), Φ̂(·)⊤, L̂) as a learned body and zjs are the weights in the
prediction head. Then we learn only the weights of the head on new data while fixing the body.
In Section 5.3, we show empirically that this method outperforms its competitors. The superior
performance of the DLF model for distribution shift problems indicates that Gaussian distillation is
good at not only uncertainty quantification but estimating the feature vector (µ̂(·), Φ̂(·)⊤).

6

5 Experiments

In this section, we investigate Gaussian distillation by analyzing multiple benchmark datasets. We
compare Gaussian distillation with existing baselines including the naive distillation (one-to-one
distillation without sharing weights between student DNNs, small-Ens), Hydra [11] and BE [12] for
regression and classification problems as well as fine-tuning of language models in view of uncertainty
quantification. For classification, we also evaluate Proxy–Dirichlet Distillation (Proxy-End2) [18]
and Ensemble Distillation via Flow Matching (EDFM) [45]. In addition, we show that a pre-trained
DLF outperforms its competitors for distribution shift problems.

5.1 Uncertainty quantification for regression and classification problems

5.1.1 Regression case

Datasets We analyze six benchmark datasets from the UCI repository [46] including Boston
housing, Concrete, Energy, Wine, Power Plant, and Kin8nm. Each dataset is randomly split into 90%
training and 10% testing, and teacher models are trained following the experimental protocol of [47].
We repeat this procedure 10 times to obtain 10 measures of the evaluation metrics of each methods
and report the averages (with the standard errors). See Appendix C.1 for details of implementation.

Results Table 1 presents the results of the four evaluation metrics (see Appendix C.1.2 for the
definitions) for performance and uncertainty quantification. DLF outperforms Hydra and BE in most
cases. Even when it is not the best, DLF is at least the second best. The coverage probabilities of
Hydra and BE are sometimes much lower than those of DLF (Boston housing and Concrete for Hydra,
and Boston housing and kim8nm for BE), which suggests that deterministic distillation methods
fail to fully preserve the uncertainty in a teacher ensemble. This observation is not surprising since
variation of smaller models is in general smaller than that of larger models and weight sharing would
reduce the variation further. Thus, a way of adding additional uncertainty to a student ensemble is
needed, and distribution distillation is such a solution.

Table 1: Results on UCI benchmark datasets. (∗ : closer to the coverage probability of a teacher
ensemble is better)

Metric Method
Datasets

Boston housing Concrete Energy Wine Power Kin8nm

RMSE ↓

Teachers 2.5786 5.6191 0.5692 0.5497 4.2197 0.0794
small-Ens 2.7280 (0.0184) 5.6952 (0.0494) 0.6367 (0.0182) 0.6002 (0.0083) 4.2430 (0.0864) 0.0865 (0.0007)
Hydra 2.8346 (0.0835) 6.0558 (0.1366) 0.6549 (0.0360) 0.5689 (0.0114) 4.2284 (0.0074) 0.0932 (0.0023)
BE 2.8375 (0.0729) 5.9777 (0.1475) 0.6661 (0.0354) 0.556 (0.0187) 4.2367 (0.0041) 0.0962 (0.0059)
DLF 2.6687 (0.1700) 5.6047 (0.1771) 0.5659 (0.0239) 0.5506 (0.0104) 4.2211 (0.0010) 0.0825 (0.0010)

NLL ↓

Teachers 2.3850 3.1134 0.8533 0.7980 2.8586 -1.1109
small-Ens 2.4150 (0.0085) 3.1672 (0.0167) 0.9829 (0.0263) 0.8861 (0.0160) 2.8622 (0.0191) -1.032 (0.0108)
Hydra 2.4843 (0.0478) 3.2586 (0.0293) 0.9914 (0.0660) 0.8322 (0.0166) 2.8604 (0.0017) -0.9434 (0.0307)
BE 2.4892 (0.0408) 3.2241 (0.0332) 0.9879 (0.0511) 0.8065 (0.0138) 2.8628 (0.0010) -0.9115 (0.0808)
DLF 2.4346 (0.1147) 3.1584 (0.0463) 0.8525 (0.0471) 0.8230 (0.0199) 2.8591 (0.0010) -1.0754 (0.0126)

CRPS ↓

Teachers 1.4425 2.9926 0.3137 0.2962 2.3360 0.0443
small-Ens 1.5233 (0.0087) 2.9953 (0.0304) 0.3461 (0.0077) 0.3307 (0.0067) 2.3392 (0.0321) 0.0475 (0.0005)
Hydra 1.6041 (0.0494) 3.3084 (0.0639) 0.3622 (0.0216) 0.3075 (0.0040) 2.3405 (0.0048) 0.0518 (0.0012)
BE 1.6158 (0.0490) 3.2320 (0.0894) 0.3617 (0.0168) 0.3020 (0.0059) 2.3483 (0.0024) 0.0532 (0.0035)
DLF 1.4317 (0.1029) 3.0622 (0.0954) 0.3163 (0.0119) 0.2980 (0.0043) 2.3364 (0.0010) 0.0458 (0.0005)

95%
Coverage

Probability ∗

Teachers 0.9608 0.9515 1.0000 0.9750 0.9697 0.9610
small-Ens 0.9408 (0.0016) 0.9431 (0.0041) 0.9921 (0.0011) 0.9569 (0.0042) 0.9669 (0.0012) 0.9649 (0.0016)
Hydra 0.8995 (0.0109) 0.9097 (0.0115) 0.9948 (0.0091) 0.9594 (0.0053) 0.9782 (0.0003) 0.9407 (0.0046)
BE 0.9093 (0.0090) 0.9282 (0.0099) 0.9922 (0.0110) 0.9612 (0.0092) 0.9778 (0.0014) 0.9080 (0.0213)
DLF 0.9240 (0.0154) 0.9291 (0.0125) 1.0000 (0.0000) 0.9681 (0.0055) 0.9711 (0.0053) 0.9761 (0.0036)

5.1.2 Classification case

Datasets CIFAR-10 and CIFAR-100 consist of 50,000 training and 10,000 test images. In this
experiment, the training data are further split into 80% training and 20% validation, and teacher
models are trained on the training data and the number of epochs is determined by the validation

7

data. Implementation details of the distillation methods are given in Appendix C.2. Experiments are
repeated with 5 different random initializations for each method.

Results As shown in Table 2, DLF outperforms the other baselines consistently in terms of not only
uncertainty quantification but also accuracy. In particular, improvements of DLF with respect to ECE
are noticeable. The definitions of the evaluation metrics are given in Appendix C.2.2.

Table 2: Results on CIFAR-10 and CIFAR-100.

dataset method Acc(%) ↑ NLL ↓ ECE(%) ↓

CIFAR-10

Teachers 94.24 0.1539 0.9
small-Ens 92.87 (0.35) 0.2377 (0.0019) 3.93 (0.14)
Hydra 93.16 (0.06) 0.2660 (0.0063) 4.15 (0.01)
LBE 93.25 (0.26) 0.2480 (0.0053) 4.11 (0.10)
Proxy-EnD2 90.92 (0.28) 0.2861 (0.0027) 2.08 (0.19)
EDFM 90.62 (0.23) 0.2858 (0.0025) 2.78 (0.17)
DLF 93.40 (0.14) 0.2246 (0.0023) 2.79 (0.20)

CIFAR-100

Teachers 81.36 0.7167 1.41
small-Ens 79.29 (0.26) 1.0413 (0.0145) 12.90 (0.24)
Hydra 77.42 (0.15) 1.2912 (0.0272) 12.70 (0.37)
LBE 79.58 (0.40) 1.0110 (0.0087) 13.42 (0.42)
Proxy-EnD2 67.62 (0.22) 1.2355 (0.0151) 7.35 (0.25)
EDFM 64.17 (0.32) 1.6741 (0.0242) 11.35 0.47)
DLF 79.68 (0.23) 0.8974 (0.0042) 9.45 (0.31)

5.2 Application to fine-tuning of language models

In this section, we apply the proposed distillation framework to downstream binary classification
tasks using pretrained language models. Given pre-trained teacher and student language models,
fine-tuned teacher and student models are obtained using Low-Rank Adaptation (LoRA) [48]. For
the teacher and student pre-trained language models, "RoBERTa" [49] and "DistilRoBERTa" [1] 3 are
used. As a teacher ensemble, we obtain four fine-tuned models by combining LoRA and RoBERTa
with randomly selected initializations for each task. Then, an ensemble of fine-tuned student language
models is constructed by applying LoRA to DistilRoBERTa for each distillation method.

Datasets We analyze three GLUE [50] and SuperGLUE [51] sub-tasks: RTE, MRPC, and WiC.
All three datasets are binary classification tasks. Implementation details of the distillation methods
are given in Appendix C.3.

Results As shown in Table 3, Gaussian distillation outperforms Hydra and LBE with large margins.
We conjecture that the performance gap of Gaussian distillation to Hydra and LBE would become
larger when the complexity gap between teacher and student models becomes larger. This is a
reasonable conjecture since smaller models could preserve less variations in teacher models. Gaussian
distillation would add additional variations to the student models through variations of the latent
vector Z.

5.3 Application to distribution shift problems

We compare DLF with two baselines which fine-tune only the head on new data while the body
is learned by either (1) a standard DNN or (2) applying Hydra on training data of CIFAR-10. For
distribution-shifted new data, we swap the labels of CIFAR-10 as is done by [44]. See implementation
details in Appendix C.4. The results are given in Figure 2 which amply show that DLF is superior. It
is interesting to see that DLF outperforms even when the sample size of the new data is large, which
implies that the learned body by DLF is qualitatively different from those by DNN and Hydra. We
do not know the reason but an implication is that Gaussian distillation is good at learning not only
quantifying uncertainty but also learning the feature vector (i.e. the body).

3https://www.huggingface.co/distilroberta-base

8

https://www.huggingface.co/distilroberta-base

Table 3: Results on GLUE and SuperGLUE benchmark datasets

dataset method Acc (%) ↑ NLL ↓ ECE (%) ↓

RTE

Teachers 75.09 0.8401 17.70
small-Ens 67.15 (0.0057) 0.6739 (0.0124) 13.09 (0.0148)
Hydra 62.82 (0.1650) 0.9034 (0.1733) 23.31 (0.4907)
LBE 65.97 (0.1406) 0.9235 (0.0664) 25.63 (0.1909)
DLF 67.06 (0.1040) 0.6658 (0.0762) 9.74 (0.5050)

MRPC

Teachers 87.25 0.3435 4.77
small-Ens 83.092 (0.0172) 0.4596 (0.0396) 9.84 (0.0164)
Hydra 82.19 (0.0357) 0.6429 (0.1274) 11.79 (0.0136)
LBE 82.23 (0.0153) 0.6527 (0.0544) 13.6 (0.0114)
DLF 83.094 (0.0035) 0.4526 (0.0113) 10.72 (0.0392)

WiC

Teachers 68.03 0.6395 9.14
small-Ens 65.02 (0.0062) 0.7674 (0.0206) 16.69 (0.0116)
Hydra 65.05 (0.0210) 1.1628 (0.0355) 26.26 (0.0191)
LBE 65.36 (0.1209) 0.8809 (0.0950) 20.28 (0.0300)
DLF 66.18 (0.0146) 0.7706 (0.0543) 15.99 (0.0198)

Figure 2: Comparison of performances of the three learning algorithms (DNN, Hydra and DLF)
pretrained on CIFAR-10 and fine-tuned on CIFAR10-Flip as the sample size of CIFAR 10-Flip data
varies. The solid curves are the means and the shaded bands are the min-max spreads obtained from 5
training models on 5 randomly selected new data of CIFAR10-Flip.

5.4 Ablation studies

In Appendix D, we present the results of ablation studies including the sensitivity of Gaussian
distillation to the choice of design points, the dimension of latent factor, the architecture size of
student DNNs and the number of ensemble members used in a teacher and student ensemble. In
addition, we compare the results when the initial solution is randomly selected in Gaussian distillation.

6 Conclusion

We proposed a novel method for distilling deep ensembles, specifically addressing the challenges
associated with computational costs, inference time, and storage capacities inherent in traditional deep
ensemble approaches. The key innovation lies in modeling the covariance structure of deep ensembles
through the DLF model, enabling efficient preservation of uncertainty in a teacher ensemble with
significantly reduced inference costs.

There are several future research topics. First, in this paper, we only focused on deep ensembles.
It would be valuable to consider Bayesian DNNs, as they provide a framework for uncertainty
quantification [25, 26, 27] and can potentially serve as a prior for on-device posterior updates. Second,
for distillation of a fine-tuned language model, we used DistilRoBERTa [1], a pretrained distilled
language model. It would be promising to distill the pretrained language model and the model for
LoRA simultaneously. Third, the DLF could be used for online Bayesian learning by approximating
the posterior with respect to old data by the DLF and using it for the prior of new data. We will pursue
this idea in a near future.

9

Acknowledgements

This work was partly supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT) (No. 2022R1A5A7083908), the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (RS-2025-00556079), and by Institute of
Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) [NO.RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul
National University)].

References
[1] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[2] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. arXiv preprint arXiv:2306.08543, 2023.

[3] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[4] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[6] Yarin Gal et al. Uncertainty in deep learning. 2016.

[7] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances
in neural information processing systems, 31, 2018.

[8] Zelda E Mariet, Rodolphe Jenatton, Florian Wenzel, and Dustin Tran. Distilling ensembles
improves uncertainty estimates. In Third symposium on advances in approximate bayesian
inference, 2020.

[9] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[10] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[11] Linh Tran, Bastiaan S Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V Dillon, Jasper Snoek,
Stephan Mandt, Tim Salimans, Sebastian Nowozin, and Rodolphe Jenatton. Hydra: Preserving
ensemble diversity for model distillation. arXiv preprint arXiv:2001.04694, 2020.

[12] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

[13] Giung Nam, Jongmin Yoon, Yoonho Lee, and Juho Lee. Diversity matters when learning from
ensembles. Advances in neural information processing systems, 34:8367–8377, 2021.

[14] Giung Nam, Hyungi Lee, Byeongho Heo, and Juho Lee. Improving ensemble distillation with
weight averaging and diversifying perturbation. arXiv preprint arXiv:2206.15047, 2022.

[15] Hailin Zhang, Defang Chen, and Can Wang. Adaptive multi-teacher knowledge distillation with
meta-learning. In 2023 IEEE International Conference on Multimedia and Expo (ICME), pages
1943–1948. IEEE, 2023.

[16] Martin Ferianc and Miguel Rodrigues. Simple regularisation for uncertainty-aware knowledge
distillation. arXiv preprint arXiv:2205.09526, 2022.

10

[17] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution distillation. arXiv
preprint arXiv:1905.00076, 2019.

[18] Max Ryabinin, Andrey Malinin, and Mark Gales. Scaling ensemble distribution distillation
to many classes with proxy targets. Advances in Neural Information Processing Systems,
34:6023–6035, 2021.

[19] Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1–15. Springer, 2000.

[20] Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean-Marc Martinez, Andrei
Bursuc, and Gianni Franchi. Packed-ensembles for efficient uncertainty estimation. arXiv
preprint arXiv:2210.09184, 2022.

[21] Radford M Neal and Radford M Neal. Monte carlo implementation. Bayesian learning for
neural networks, pages 55–98, 1996.

[22] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

[23] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[24] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

[25] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
What are bayesian neural network posteriors really like? In International conference on machine
learning, pages 4629–4640. PMLR, 2021.

[26] Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do bayesian neural
networks need to be fully stochastic? In International Conference on Artificial Intelligence and
Statistics, pages 7694–7722. PMLR, 2023.

[27] Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek, and Yongdai Kim.
Masked bayesian neural networks: Theoretical guarantee and its posterior inference. In Interna-
tional conference on machine learning, pages 17462–17491. PMLR, 2023.

[28] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and Bhuvana
Ramabhadran. Efficient knowledge distillation from an ensemble of teachers. In Interspeech,
pages 3697–3701, 2017.

[29] Kisoo Kwon, Hwidong Na, Hoshik Lee, and Nam Soo Kim. Adaptive knowledge distillation
based on entropy. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7409–7413. IEEE, 2020.

[30] David J Bartholomew, Martin Knott, and Irini Moustaki. Latent variable models and factor
analysis: A unified approach, volume 904. John Wiley & Sons, 2011.

[31] Zexun Chen, Jun Fan, and Kuo Wang. Multivariate gaussian processes: definitions, examples
and applications. Metron, 81(2):181–191, 2023.

[32] Donald B Rubin and Dorothy T Thayer. Em algorithms for ml factor analysis. Psychometrika,
47:69–76, 1982.

[33] Norman E Breslow and Xihong Lin. Bias correction in generalised linear mixed models with a
single component of dispersion. Biometrika, 82(1):81–91, 1995.

[34] Xihong Lin and Norman E Breslow. Bias correction in generalized linear mixed models
with multiple components of dispersion. Journal of the American Statistical Association,
91(435):1007–1016, 1996.

11

[35] Bas Engel. A simple illustration of the failure of pql, irreml and aphl as approximate ml methods
for mixed models for binary data. Biometrical Journal: Journal of Mathematical Methods in
Biosciences, 40(2):141–154, 1998.

[36] Anders Skrondal and Sophia Rabe-Hesketh. Generalized latent variable modeling: Multilevel,
longitudinal, and structural equation models. Crc Press, 2004.

[37] Qi Lei, Wei Hu, and Jason Lee. Near-optimal linear regression under distribution shift. In
International Conference on Machine Learning, pages 6164–6174. PMLR, 2021.

[38] Ruihan Wu, Chuan Guo, Yi Su, and Kilian Q Weinberger. Online adaptation to label distribution
shift. Advances in Neural Information Processing Systems, 34:11340–11351, 2021.

[39] Yong Bai, Yu-Jie Zhang, Peng Zhao, Masashi Sugiyama, and Zhi-Hua Zhou. Adapting to online
label shift with provable guarantees. Advances in Neural Information Processing Systems,
35:29960–29974, 2022.

[40] Dheeraj Baby, Saurabh Garg, Tzu-Ching Yen, Sivaraman Balakrishnan, Zachary Lipton, and Yu-
Xiang Wang. Online label shift: Optimal dynamic regret meets practical algorithms. Advances
in Neural Information Processing Systems, 36:65703–65742, 2023.

[41] Saurabh Garg, Nick Erickson, James Sharpnack, Alex Smola, Sivaraman Balakrishnan, and
Zachary Chase Lipton. Rlsbench: Domain adaptation under relaxed label shift. In International
Conference on Machine Learning, pages 10879–10928. PMLR, 2023.

[42] Elan Rosenfeld and Saurabh Garg. (almost) provable error bounds under distribution shift via
disagreement discrepancy. Advances in Neural Information Processing Systems, 36:28761–
28784, 2023.

[43] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

[44] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. arXiv preprint
arXiv:2210.11466, 2022.

[45] Jonggeon Park, Giung Nam, Hyunsu Kim, Jongmin Yoon, and Juho Lee. Ensemble distribution
distillation via flow matching. In Forty-second International Conference on Machine Learning.

[46] Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

[47] Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-Lobato, Yingzhen Li, and Richard
Turner. Deep gaussian processes for regression using approximate expectation propagation. In
International conference on machine learning, pages 1472–1481. PMLR, 2016.

[48] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[49] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[50] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[51] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[52] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

12

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[54] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[55] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[56] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.

[57] Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank
adaptation for large language models. arXiv preprint arXiv:2308.13111, 2023.

[58] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla, and Francisco
Herrera. A unifying view on dataset shift in classification. Pattern recognition, 45(1):521–530,
2012.

[59] Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[61] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[62] Minwoo Chae, Dongha Kim, Yongdai Kim, and Lizhen Lin. A likelihood approach to nonpara-
metric estimation of a singular distribution using deep generative models. Journal of Machine
Learning Research, 24(77):1–42, 2023.

[63] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu
activation function. 2020.

[64] Wing Hung Wong and Xiaotong Shen. Probability inequalities for likelihood ratios and
convergence rates of sieve mles. The Annals of Statistics, pages 339–362, 1995.

[65] Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks
for classification. Neural Networks, 138:179–197, 2021.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Introduction, we provide the method of this paper and its key contributions.
Abstract also briefly mentions these points.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss a potential limitation of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: In Appendix G, we provide the full set of assumption and a complete proof of
the main theorem in this paper. Also, for the theoretical claims in Section 3.4, we provide
complete mathematical proofs in Appendix G.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix C, we provide details of our experimental setups.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the source codes of our proposed algorithm in the supplementary
material. Furthermore, we will publicly upload them after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix C, we provide details of our experimental setups.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 5, we report the mean and standard deviation from multiple runs.
And in Section 5.3 and Appendix D, we also plot the max–min area in figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: In Appendix C, we report the number of parameters for each regression and
classification case. And we provide the used computing resources in Appendix C.5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We thoroughly and carefully checked the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We give several societal broader impacts of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We give several societal broader impacts of our work in Section 6.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention all the owners/references/urls of methods/codes/datasets used in
Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the source codes of our proposed algorithm in the supplementary
material. Furthermore, we will publicly upload them after acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

APPENDIX

A Review of Ensemble Distillation

A.1 One-to-one Distillation

For given teacher members p(t)i , i = 1, . . . , n, student p(s)i , i = 1, . . . , n are trained to minimize

n∑
i=1

Ex

[
KL
(
p
(t)
i (y|x)||p(s)i (y|x)

)]
where Ex is the expectation operator of a certain probability distribution on the input space X . The
following two methods use specially designed DNNs for student models which share the weights
between student models.

A.1.1 Hydra

Hydra [11] employs a multi-head architecture in which a single shared body network extracts common
features and a set of n distinct linear heads generates predictions for each ensemble member. Formally,
the student DNN is parameterized by

θhydra = {θbody, θhead,1, . . . , θhead,n},

where θbody is used across all heads. At inference, the body is evaluated once, and each head hθhead,i(·)
produces a member-specific output p(s)i (y | x) = hθhead,i

(
bθbody

(x)
)
. This design captures ensemble

diversity while reducing both computation and memory compared to maintaining n independent
networks.

A.1.2 Batch Ensemble and Latent Batch Ensemble

[12] introduces Batch Ensemble (BE) to reduce the memory and computational burden of deep
ensembles. In this architecture, all student networks share a core weight matrix W l at each layer,
while individual ensemble members are differentiated by rank-one perturbations. Specifically, for the
i-th student at layer l,

W l
i = W l ◦

(
rli s

l
i

⊤)
,

where rli ∈ Rdout and sli ∈ Rdin modulate the rows and columns of W l, respectively. This construc-
tion enables each sub-network to maintain member-specific behaviors while reusing the majority of
parameters, yielding significant savings in both storage and inference costs compared to training n
independent models.

Building on BE, [14] proposes Latent Batch Ensemble (LBE), which further compresses the ensemble
at inference time. Instead of maintaining n distinct perturbations, LBE computes the average rank-one
mask across all students:

W l
s = W l ◦

(
1

n

n∑
i=1

rlis
l
i

⊤
)
.

The resulting single student network requires only one forward pass per input while capturing the
ensemble’s mean perturbation in weight space. Empirical results demonstrate that LBE matches
or exceeds the calibration performance of standard BE, with inference cost reduced by a factor of
n. However, the proposed Latent Batch Ensemble is a specialized method designed for ensemble
distillation for classification problems.

A.2 Distribution Distillation

Distribution distillation frames the output of an ensemble at the input x as samples from an input-
dependent Dirichlet distribution [17, 18]. Let f i, i = 1, . . . , n be given teacher models for a classi-
fication task. For a given x, let πi(x) = softmax (f i(x)) , and we assume that π1(x), . . . ,πn(x)

21

independently follow the Dirichlet distribution with parameter α(x) = (α1(x), . . . , αc(x)). Then,
we model α(x) by a student DNN Ψ(x|θ) and estimate θ by maximizing

L(θ,Ddesign) =

m∑
j=1

n∑
i=1

[
ln p(πi(x

(d)
j)|Ψ(x

(d)
j |θ))

]
,

where p(π|α) is the density of the Dirichlet distribution with parameter α. See [17, 18] for details.

A.2.1 Proxy-Dirichlet Distillation

[18] proposed Proxy–Dirichlet Distillation (Proxy-EnD2) to mitigate the convergence difficulties of
standard Dirichlet distillation [17] when the number of classes is very high. The method constructs
a proxy Dirichlet distribution from the teacher models and trains the student DNN Ψ(x|θ) by
minimizing the reverse KL divergence between p(π|Ψ(x|θ)) and the proxy distribution.

The proxy distribution is obtained from teacher models as

β̂l(x) =
1

n

n∑
i=1

πil(x),

α̂l(x) =
β̂l(x) (c− 1)

2
∑c

l=1 β̂l(x)
(
ln β̂l(x)− 1

n

∑n
i=1 lnπil(x)

) , l = 1, 2, .. · · · , c.

Then, estimate θ by minimizing
m∑
j=1

KL
(
p
(
π | exp

(
Ψ(x

(d)
j | θ)

)) ∥∥∥ p(π | α̂(x
(d)
j) + 1

))
,

where α̂(·) = [α̂1(·), . . . , α̂c(·)] .

A.2.2 Ensemble Distribution Distillation via Flow Matching

Ensemble Distribution Distillation via Flow Matching (EDFM) [45] models a conditional distribution
of logits h1 given x over Rc. The method constructs the target distribution p1(h|x) as an empirical
distribution using f i(x).

They model using Flow matching such that

dht(x) = Ψθ(t,ht(x),x)dt, t ∈ [0, 1], h0(x) ∼ Nc(0, σ
2Ic) and h|x d≡ h1(x)

where Ψθ is student DNN.
Then, the network is trained by minimizing the conditional flow matching loss

m∑
j=1

E
h0,h1(x

(d)
j),t

[
λ(t)∥Ψθ(t,ht(x

(d)
j),x

(d)
j)− (h1(x

(d)
j)− h0)∥2

]
where h0 ∼ Nc(0, σ

2Ic),h1(x
(d)
j) ∼ p1(·|x(d)

j), t ∼ U [0, 1],ht(x
(d)
j) = th1(x

(d)
j) + (1 − t)h0

and λ denotes a time dependent weighting function.
Sampling proceeds by numerically integrating the learned flow Ψθ(t,ht(x),x) with a standard
ordinary differential equation (ODE) solver. For more detailed information, see [45].

B Details of Gaussian distillation

B.1 EM algorithm for the univariate DLF model

The main idea of Gaussian distillation is to estimate the mean and factor loading functions based
on given teacher models assuming that teacher models are independent realizations of the DLF and
estimate the parameter in the student DNNs by maximizing the corresponding log-likelihood. For
optimization, we use the EM algorithm [32].

22

Suppose that n many teacher models f1(·), . . . , fn(·) are given. Gaussian distillation consists of three
steps. The first step is to choose m-many design points Ddesign = {x(d)

1 , . . . ,x
(d)
m }. The second step

is to calculate the vectors of prediction values of each teacher model at the design points to have
f i =

(
fi(x

(d)
j), j = 1, . . . ,m

)⊤
for i = 1, . . . , n. The final step is to estimate the parameter θ in the

DLF by the MLE assuming that f1(·), . . . , fn(·) are independent realizations of a random function
following the DLF model. Since f is are independent Gaussian random vectors, the MLE can be
obtained by use of the EM algorithm as follows.

To make the EM algorithm numerically stable, we consider the noisy DLF model which assumes that
f i = f̃ i+vi, where vi ∼ Nm(0, σ2

f Im) and f̃ i = (f̃i(x1), . . . , f̃i(xm))⊤ with f̃i(·)s following the
DLF model. Specifically, each f̃i is expressed as f̃i(·) = µθ(·) + Φθ(·)⊤zi, where zi ∼ Nq(0, Iq)
denotes the latent factor corresponding to the i-th function realization. Then, we obtain the MLE of
the parameter θ in the mean and factor loading functions as well as σ2

f . We abuse the notation to
write θ = (θ, σ2

f) unless there is any confusion.

The complete log-likelihood is given as

ℓcom(θ|f1:n, z1:n) =−
nm

2
log(2πσ2

f)−
nq

2
log(2π)−

∑n
i=1 z

⊤
i zi

2

−
∑n

i=1(f i − µθ −Φθzi)
⊤(f i − µθ −Φθzi)

2σ2
f

,

where f1:n = {f1, . . . ,fn}, z1:n = {z1, . . . ,zn},µθ = (µθ(x
(d)
1), . . . , µθ(x

(d)
m))⊤ and Φθ =

(Φθ(x
(d)
1), . . . ,Φθ(x

(d)
m))⊤ is an m× q matrix.

Thus, for a given parameter θ(t−1) at time t− 1, the E-step is to calculate the conditional expectation
of the complete log-likelihood which is given as

Q(θ|θ(t−1)) =Ez1:n|f1:n,θ
(t−1) [ℓcom(θ|f1:n, z1:n)]

=− nm

2
log(2πσ2

f)−
nq

2
log(2π)−

∑n
i=1 trE[ziz

⊤
i |θ(t−1),f1:n]

2

− 1

2σ2
f

n∑
i=1

{
(f i − µθ)

⊤(f i − µθ)

+ 2(f i − µθ)
⊤ΦθE[zi|θ(t−1),f1:n] + tr

(
Φ⊤

θ ΦθE[ziz
⊤
i |θ(t−1),f1:n]

)}
,

where

E[zi|θ(t−1),f1:n] = V[z|θ(t−1)]Φ⊤
θ(t−1)(f i − µθ(t−1))/σ2

f
(t−1)

E[ziz
⊤
i |θ(t−1),f1:n] = V[z|θ(t−1)] + E[zi|θ(t−1),f1:n]E[zi|θ(t−1),f1:n]

⊤

with V[z|θ(t−1)] =
(
Iq +Φθ(t−1)

⊤Φθ(t−1)/σ2
f
(t−1)

)−1

.

In the M-step, we usually update θ(t) by maximizingQ(θ|θ(t−1)). Instead of maximizingQ(θ|θ(t−1)),
we update θ by using a stochastic gradient descent algorithm (i.e., a gradient descent algorithm on a
given mini-batches). The EM algorithm is summarized in Algorithm 1.

23

Algorithm 1: EM algorithm for the univariate DLF model

Input: Design points Ddesign = {x(d)
1 , . . . ,x

(d)
m },

Teacher ensemble members f1(·), . . . , fn(·), learning rate η > 0
Output: Estimated parameter θ
Initialize parameter: θ(0)
for t = 1, 2 . . . T do

Shuffle the dataset Ddesign and divide into mini-batches {B1, . . . ,BM}
for l = 1, 2, . . . ,M do

Calculate prediction values of teacher model f1:n,Bl
, where

f1:n,Bl
= (f1:n(x

design
j),xdesign

j ∈ Bl).
Calculate E[z|θ(t−1)] and E[zz⊤|θ(t−1)] using f1:n,Bl

Q(θ|θ(t−1)) := Ez1:n|f1:n,Bl
,θ(t−1) [ℓcom(θ;f1:n,Bl

, z1:n)]

Calculate gradient g(t) := ∇θ

(
−Q(θ|θ(t−1))

)
Update θ(t) ← θ(t−1) − η · g(t)

end
end

B.2 Multivariate DLF model

In this section, we provide details of the multivariate DLF model introduced in Section 3.1. With given
the design points {x(d)

1 , . . . ,x
(d)
m }, let f =

(
f(x

(d)
j), j = 1, . . . ,m

)⊤
and µθ =

(
µθ(x

(d)
j), j =

1, . . . ,m
)⊤

be m× c matrices, and let Φθ =
(
Φθ(x

(d)
j), j = 1, . . . ,m

)⊤
be an m× q matrix. Then,

we assume that f follows the matrix-variate Gaussian distribution

f ∼MNm,c(µθ,ΦθΦ
⊤
θ , LL

⊤).

Using the properties of the matrix-variate Gaussian distribution, we can vectorize f , thereby allowing
the multivariate DLF model to be handled the same as the univariate case.

B.2.1 Vectorization

According to Definition 4 in [31], the vectorization of f can be expressed as follows:

vec(f) ∼ Nmc(vec(µθ), LL
⊤ ⊗ΦθΦ

⊤
θ)

where⊗ denotes the Kronecker product. This association arises from a factorization of the covariance
matrix of the multivariate Gaussian distribution into the Kronecker product of matrices Φ⊤

θ Φθ and
LL⊤.

B.2.2 EM algorithm for the multivariate DLF model

We explain the EM algorithm for training the multivariate DLF model in the same way as in Appendix
B.1. In the multivariate case, matrix vectorization and its associated properties serve as the central
tools, as detailed in Section 10.2.2 of [52].

Suppose that n teacher ensemble members f1(·), . . . ,fn(·) are given, where each f i(·) : X → Rc

is a multivariate function. As in the univariate case, KD via the multivariate DLF involves three steps.
First, we choose m design points Ddesign = {x(d)

1 , . . . ,x
(d)
m }. The second step is to calculate the

prediction values of n many ensemble members at the design points to have f i = (f i(x
(d)
j), j =

1, . . . ,m)⊤ for i = 1, . . . , n. Here, unlike in the univariate case, each f i should be regarded as an
m× c matrix. Similarly to the univariate case, the final step employs the EM algorithm to obtain the
MLE.

Similarly to the univariate case, we assume that f i = f̃ i+vi, where vi ∼MNm,c(0, σ
2
f Im, Ic) and

f̃ i = (f̃ i(x1), . . . , f̃ i(xm))⊤ with f̃ i(·)s following the multivariate DLF model. From the property
of the matrix-variate Gaussian distribution, we can rewrite the following vec(f i) = vec(f̃ i) +

24

vec(vi), where vec(vi) ∼ Nmc(0, σ
2
f Imc). And in the case of multivariate case, we abuse the

notation to write θ(t) := (θ(t), L(t), σf
(t)) like the univariate case.

From this, the complete log-likelihood is given as

ℓcom(θ|f1:n, z1:n) =−
cnm

2
log(2πσ2

f)−
cnq

2
log(2π)−

∑n
i=1 vec(zi)

⊤ vec(zi)

2

−
∑n

i=1(vec(f i)− vec(f̃ i))
⊤(vec(f i)− vec(f̃ i))

2σ2
f

=− cnm

2
log(2πσ2

f)−
cnq

2
log(2π)−

∑n
i=1 vec(zi)

⊤ vec(zi)

2

−
∑n

i=1 B
⊤
i Bi

2σ2
f

,

where Bi = vec(f i) − vec(µθ) − (Φθ ⊗ L) vec(zi), f1:n = {f1, . . . ,fn}, z1:n =

{z1, . . . ,zn},µθ = (µθ(x
(d)
1), . . . , µθ(x

(d)
m))⊤ is an m × c matrix and Φθ =

(Φθ(x
(d)
1), . . . ,Φθ(x

(d)
m))⊤ is an m × q matrix. Thus, for given parameter θ(t−1) at time t − 1,

the E-step is to calculate the conditional expectation of the complete log-likelihood which is given as

Q(θ|θ(t−1)) =Ez1:n|f1:n,θ
(t−1) [ℓcom(θ|f1:n, z1:n)]

=− cnm

2
log(2πσ2

f)−
cnq

2
log(2π)−

∑n
i=1 trE[vec(zi) vec(zi)

⊤|θ(t−1),f1:n]

2

− 1

2σ2
f

n∑
i=1

{
(vec(f i)− vec(µθ))

⊤(vec(f i)− vec(µθ))

+ 2(vec(f i)− vec(µθ))
⊤(Φθ ⊗ L)E[vec(zi)|θ(t−1),f1:n]

+ tr
(
(L⊤ ⊗Φ⊤

θ)(Φθ ⊗ L)E[vec(zi) vec(zi)
⊤|θ(t−1),f1:n]

)}
,

where

E
[
vec(zi)|θ(t−1),f1:n

]
=
V
[
vec(z)|θ(t−1),f1:n

] (
L(t−1)⊤ ⊗Φ⊤

θ(t−1)

)
(f i − µθ(t−1))

σ2
f
(t−1)

E
[
vec(zi) vec(zi)

⊤|θ(t−1),f1:n

]
=V

[
vec(z)|θ(t−1),f1:n

]
+ E

[
vec(z)|θ(t−1),f1:n

]
E
[
vec(z)|θ(t−1),f1:n

]⊤
where V

[
vec(z)|θ(t)

]
=
(
Iqk +

(
L(t)⊤ ⊗Φ⊤

θ(t)

) (
L(t) ⊗Φθ(t)

)
/σ2

f
(t)
)−1

.

In the M-step, instead of maximizingQ(θ|θ(t−1)), we update θ by use of a stochastic gradient descent
algorithm.

C Experimental details

In this section, we describe the overall setup of our experiments in detail, focusing on the datasets,
model architectures, training procedures, and evaluation metrics used in regression and classification
problems. Four baselines are considered: (i) a small ensemble of lightweight networks (“small-Ens”),
(ii) Hydra, and (iii) BE for regression and LBE for classification.

C.1 Regression case

We consider the standard regression problem

y = f∗(x) + ϵ, ϵ ∼ N
(
0, σ2

ϵ

)
.

25

Suppose that there are n many teacher models f (t)i (·) and σ(t)
ϵ,i . Then, the predictive distribution of y

given x is constructed as p(t)(y|x) = 1
n

∑n
i=1N (y|f (t)i (x), σ

(t)
ϵ,i

2
), whereN (y|µ, σ2) is the density

of the Gaussian distribution with mean µ and variance σ2 The predictive distribution p(s)(y|x) based
on student ensemble members is defined similarly.

We obtain 50 teacher models of DNNs with two hidden layers and 100 nodes at each layer which are
learned by minimizing the sum of squared residuals of the training data with 50 randomly selected
initial solutions. For the design points used in the distillation, we use the training data themselves.
The architecture of student models comprises of an one-hidden-layer MLP with 50 units. The number
of parameters in the student ensemble of each method is summarized in Table 4. Note that the number
of parameters of DLF is smaller than those of the other baselines because the dimension of the latent
factor is 10 instead of 50.

Table 4: The number of parameters in the student ensemble.

Method Datasets
Boston housing Concrete Energy Wine Power Kin8nm

of parameters

Teachers 90,000 65,000 65,000 80,000 45,000 65,000
small-Ens 45,000 32,500 32,500 40,000 22,500 32,500
Hydra 6,650 6,150 6,150 6,450 5,750 6,150
BE 7,351 6,601 6,601 7,051 6,001 6,001
DLF(factor dim = 10) 1,862 1,612 1,612 1,762 1,412 1,612

The Adam [53] is used for the optimization.

C.1.1 Dataset

We consider the following 6 UCI datasets (Boston housing, Concrete, Energy, Wine, Power Plant,
Kin8nm) [46]. We divide each dataset into a 9:1 ratio randomly for the training and test data. The
experiment is repeated with 10 random split to have 10 evaluation metrics.

Table 5: Description of UCI benchmark datasets used in the experiment

Dataset size # of features

Boston housing 506 13

Concrete 1030 8

Energy 1030 8

Wine 9568 11

Power 768 4

Kin8nm 8192 8

C.1.2 Evaluation metric

Let {(x1, y1), · · · , (xmtest
, ymtest

)} be given test data.

Root Mean Square Error Root Mean Square Error (RMSE) is defined as

RMSE =

√√√√ 1

mtest

mtest∑
j

(yj − Ê(y|xj))2

where Ê(y|x) =
∫
yp̂(y|x)dy and p̂(y|x) is an estimated predictive distribution.

Negative Log Likelihood Negative Log Likelihood (NLL) is defined as

NLL = −
mtest∑
j=1

log p̂(yj | xj).

26

Continuous Ranked Probability Score Continuous Ranked Probability Score (CRPS) is defined
as

CRPS =
1

mtest

mtest∑
j=1

∫
R

[
F̂j(v)− 1(v ≥ yj))

]2
dv

where F̂j(v) =
∫ v

−∞ p̂(y | xj)dy.

C.2 Classification case

We consider a c-class classification problem where

p(y|x,f) = exp (fy(x))∑c
l=1 exp (fl(x))

, y ∈ {1, . . . , c}

for a given (vector-valued) function f(·) = (f1(·), . . . , fc(·)). For a given teacher ensemble f (t)
i , i =

1, . . . , n, the teacher predictive distribution is estimated by p(t)(y|x) =
∑n

i=1 p(y|x,f
(t)
i)/n. The

student predictive distribution for a given student ensemble is defined similarly.

C.2.1 Dataset

In classification settings, we analyze two CIFAR datasets [54]. Each dataset contains 50,000 training
and 10,000 test images of natural scenes, sized 32× 32 pixels.

Table 6: Description of CIFAR-10 and CIFAR-100

Dataset Train size Test size # of labels

CIFAR-10 50000 10000 10

CIFAR-100 50000 10000 100

We follow the set-up of experiments in [14]. As a teacher, we use an ensemble of four neural networks,
where each model is a Wide-ResNet (WRN) [55]. Specifically, WRN-28-1 is used for CIFAR-10
and WRN-28-4 is used for CIFAR-100. And, the student model uses the WRN-16-1 network for
CIFAR-10 and the WRN-28-1 network for CIFAR-100.

Training lasts 200 epochs on a single GPU using SGD with Nesterov momentum of 0.9, weight decay
of 5× 10−4, and batch size of 128. A one-cycle cosine annealing schedule with a five-epoch linear
warm-up (from 0.001 to 0.1) is employed. The number of parameters in each ensemble is summarized
in Table 7.

Table 7: Number of model parameters in each ensemble.

Method Datasets
CIFAR-10 CIFAR-100

of parameters

Teachers 1.48M 23.488M
small-Ens 0.70M 1.50M
Hydra 0.18M 0.39M
LBE 0.18M 0.38M
DLF(factor dim = 8) 0.18M 0.38M

C.2.2 Evaluation metric

Accuracy Accuracy (ACC) is defined as

ACC =
1

mtest

mtest∑
j=1

1(yj = ŷj),

where ŷj = argmaxy p̂(y|xj).

27

Negative Log-Likelihood Negative log-likelihood (NLL) is defined as

NLL = − 1

mtest

mtest∑
j=1

c∑
k=1

1(yj = k) log p̂(y = k | xj).

Expected Calibration Error Expected Calibration Error (ECE) [56] is defined as

ECE =

M∑
l=1

|Bl|
mtest

∣∣∣∣∣∣ 1

|Bl|
∑

(xj ,yj)∈Bl

1(yj = ŷj)−
1

|Bl|
∑

(xj ,yj)∈Bl

p(yj | xj)

∣∣∣∣∣∣ ,
where {B1, . . . , BM} is a partition of the test data Dtest such that Bl =

{
(x, y) ∈ Dtest | p(ŷ |

x) ∈
(
(l − 1)/M, l/M

]}
. In this work, M is set to be 15.

C.3 Fine-tuning of language models

The experiments are conducted on three datasets from the GLUE [50] and SuperGLUE [51] bench-
mark : RTE, MRPC, and WiC. Table 8 summarizes the details of each dataset.

Table 8: Description of GLUE and SuperGLUE benchmark datasets used in the experiments

Dataset Task Type Description

RTE Recognizing Textual
Entailment

Determines whether a given hypothesis can be inferred
from a given premise sentence.

MRPC Paraphrase Detection Identifies whether two sentences are semantically
equivalent. The dataset consists of sentence pairs from
news sources.

WiC Word Sense Disam-
biguation

Determines whether a specific word used in two differ-
ent contexts has the same meaning. Contextual under-
standing of word senses is essential.

Model Construction For teacher models, RoBERTa [49] is fine-tuned with the Low-Rank Adapta-
tion (LoRA) method [48] on each task. For each dataset, four fine-tuned models are trained using
different random initializations to construct teacher ensemble.

Student models are based on DistilRoBERTa [1], which is also fine-tuned with LoRA. Features are
extracted through the shared backbone, and task-specific prediction heads are constructed depending
on the design of each distillation method.

Training and Evaluation Settings The experimental settings, including learning rate, batch size,
number of epochs, and the rank of LoRA, follow the configuration used in [57]. Model performances
are evaluated using the three metrics described in Appendix C.2: Acc, NLL and ECE.

C.4 Application to distribution shift

To apply the framework introduced in Section 5.3 to classification tasks, we consider the following
model:

y | x,W ∼ Multinomial
(
softmax

(
f(x;W)

))
,

f(x;W) = µθ(x) + LWΦθ(x),
where W is the weight matrix. For new data Dnew, we estimate W by minimizing the cross-entropy
on new data while θ and L are fixed at θ̂ and L̂ estimated on training data.

For numerical study, we consider a distribution shift scenario where the conditional distribution
P (X | Y) changes [58]. To generate synthetic data, we use CIFAR-10 and flip the labels by y 7→ 9−y
to construct CIFAR 10-Flip dataset [44]. We first learn the body by a DNN, Hydra, and DLF on
the training data of 50,000 CIFAR-10 images under the WRN-16-1 architecture for the teacher and
student ensembles. Then, we train the weights of the linear head on new data while the body is fixed.

28

C.5 Hardwares

All our experiments are done through Python 3.9.16 with Intel(R) Xeon(R) Silver 4310 CPU @
2.10GHz, NVIDIA TITAN Xp GPU and 128GB RAM.

D Ablation Study

We do the following ablation studies on Boston housing data.

• We investigate how the choice of design points affects distillation performance.
• The effect of the choice of latent factor dimension affects distillation performance.
• The effect of the MMD-based initialization is investigated to assess its role in stabilizing the

EM algorithm during training.
• The capacity of the student models is varied by adjusting the network width, and the effect

of this change is analyzed for each baseline.
• We investigate the effect of ensemble size by varying the number of ensemble members

used in the teacher and student ensembles.

Quantitative results are presented using RMSE, NLL, and CRPS, aggregated over ten independent
runs.

D.1 Choice of design points

D.1.1 Comparison of different design points selection methods

We investigate how different strategies of selection design points influence the performance of the
Gaussian distillation. The entire dataset is partitioned into three disjoint subsets: D = Dtrain

teacher ⊕
Dtrain

new ⊕Dtest, with a fixed ratio of 4.5 : 4.5 : 1. The teacher ensemble is trained on Dtrain
teacher, and

the student model is distilled using various forms of design points Ddesign. To analyze the impact of
the choice of design points, the four distinct strategies for selecting Ddesign are considered:

• Design 1: Directly using the teacher training data, Ddesign = Dtrain
teacher.

• Design 2: Using mixup samples from Dtrain
teacher. Ddesign ⊂ mixup{Dtrain

teacher}.
• Design 3: Using a training data not used in training teacher ensemble, Ddesign = Dtrain

new .

• Design 4: Using mixup samples from Dtrain
new . Ddesign ⊂ mixup{Dtrain

new }

Here, mixup{Dtrain
teacher} denotes the set of samples generated by linearly combining two randomly

selected samples from Dtrain
teacher. For each index j, we randomly draw two data pairs (xj , yj) and

(xc
j , y

c
j) from Dtrain

teacher and form the mixed sample

(xm
j , y

m
j) := λj(xj , yj) + (1− λj)(xc

j , y
c
j), λj ∈ [0, 1].

The set mixup{Dtrain
teacher} consists of all mixed pairs (xm

j , y
m
j), with the number of generated design

points in Designs 2 and 4 matched to the size of Dtrain
teacher. These strategies are designed to cover

both scenarios where design points are reused from the teacher training data and where additional or
perturbed data are incorporated. All methods are evaluated on the reserved test data Dtest.

Table 9: Performances of Gaussian distillation for different strategies of the design point selection

Design Strategy RMSE NLL CRPS

Design 1 3.2316 (0.0587) 2.6317 (0.0267) 1.7896 (0.0271)
Design 2 3.5856 (0.1263) 2.8003 (0.0638) 1.9648 (0.0681)
Design 3 2.8786 (0.0322) 2.4816 (0.0129) 1.6427 (0.0165)
Design 4 3.1787 (0.2498) 2.6122 (0.1144) 1.792 (0.1310)

The results summarized in Table 9 and visualized in Figure 3 illustrate the effect of different choices
of design points on the performance of the Gaussian distillation.. Among the four strategies, the use

29

Figure 3: Box plot of evaluation metrics (RMSE, NLL, CRPS) for different strategies of the design
point selection

of new training data (Design 3) for design points consistently yields the best performance across all
metrics. In contrast, strategies involving mixup consistently yield inferior performances regardless of
whether teacher training data (Design 2) or new data (Design 4) are used.

To sum up, the results suggest that using new training data is the best for Gaussian distillation.
However, the size of the teacher training data becomes smaller, which might lead to performance
degradation. In practice, we could find the optimal partition of teacher training data and new training
data based on additional validation data.

D.1.2 Comparison for different selection of the number of design points

We also investigate the effect of the number of design points on the student model. As in the previous
experimental setup, the teacher ensemble is trained on Dtrain

teacher, and the student model is distilled
using various sizes of design sets Ddesign. We only consider the design type Dtrain

teacher (Design 1) and
Dtrain

new (Design 3). The number of design points is controlled by the design ratio
r ∈ {0.2, 0.4, 0.6, 0.8, 1.0}

meaning that Gaussian distillation uses r × |Ddesign| samples for distillation.

Table 10: Performance for Gaussian distillation for the number of design points

Design Type Design 1 Design 3

design_ratio RMSE NLL CRPS RMSE NLL CRPS

0.2 3.9829 (0.4823) 3.0244 (0.2738) 2.1773 (0.1704) 3.8643 (0.3277) 2.951 (0.1728) 2.145 (0.1349)
0.4 3.576 (0.3231) 2.8017 (0.1612) 1.9818 (0.1349) 3.0703 (0.0735) 2.5612 (0.0316) 1.7464 (0.0396)
0.6 3.3996 (0.1750) 2.711 (0.0834) 1.9122 (0.0573) 3.0055 (0.0634) 2.5337 (0.0267) 1.7161 (0.0243)
0.8 3.2548 (0.1407) 2.6433 (0.0642) 1.8444 (0.0663) 3.0229 (0.0945) 2.5413 (0.0395) 1.7197 (0.0444)
1 3.2316 (0.0587) 2.6317 (0.0267) 1.7896 (0.0271) 2.8786 (0.0322) 2.4816 (0.0129) 1.6427 (0.0165)

The results summarized in Table 10 and Figure 5 show that increasing the design ratio consistently
improves the performance of the Gaussian distillation. That is, the larger the number of design points,
the better the performance of Gaussian distillation is.

D.2 Dimension of the latent factor

We investigate the influence of the dimension of the latent factor on the performance of Gaussian
distillation. The result visualized in Figure 5 indicates that the performance of Gaussian distillation is
not sensitive to the dimension of the latent factor unless the dimension is too small.

30

Figure 4: Evaluation metrics (RMSE, NLL, CRPS) versus the design ratio.

Figure 5: Evaluation metrics (RMSE, NLL, CRPS) versus latent factor dimension.

D.3 MMD vs random initial

We compare the proposed MMD initialization in Section 3.2 with the random initialization. As
shown in Figure 6, the MMD initialization strategy outperforms the random initialization unless the
dimension of the latent factor is too small. In addition, the variations of the evaluation metrics for
the MMD initialization are much smaller than those of the random initialization. That is, the MMD
initialization is indispensable for the superior performance of Gaussian distillation.

D.4 Capacity of student models

The effect of the capacity of student models is examined by varying the number of nodes in the
one-layer DNN architecture. We increase the number of nodes gradually from 50 to 60, 70, 80, 90,
and 100, and obtain the evaluation metrics of the distillation methods. The results in Figure 7 show
that the performances of DLF and small-Ens keep improving as the number of nodes increases, while

31

Figure 6: Evaluation metrics (RMSE, NLL, CRPS) versus latent factor size with or without the MMD
initialization

the performances of Hydra and BE are saturated. Apparently, DLF behaves similarly to small-Ens,
which is interesting since small-Ens demands heavier computation and much more storage.

Figure 7: Evaluation metrics (RMSE, NLL, CRPS) versus the number of hidden nodes.

D.5 Number of ensemble members

To evaluate the effect of ensemble size, we evaluate the performance of the KD methods by varying
the number of ensemble members from 10 to 50. As we can see from Figure 8, for all methods, the
performances keep improving as the ensemble size increases. Note that the number of weights in the
DLF model is not proportional to the ensemble sizes (instead, it is proportional to the dimension of
the latent factor), while it is proportional for the other baselines. This is an additional advantage of
Gaussian distillation.

32

Figure 8: Evaluation metrics (RMSE, NLL, CRPS) versus the number of ensemble members.

D.6 Application to large dataset

To further examine the scalability and robustness of our proposed model, we conducted an additional
experiment on a larger and more complex dataset, Tiny ImageNet [59]. This dataset extends the
original ImageNet hierarchy but contains a reduced subset of classes and image resolutions, making
it a challenging yet computationally manageable benchmark for evaluating model generalization on
large-scale visual domains.

Tiny ImageNet consists of 200 classes with 100,000 training images and 10,000 test images, where
each image is resized to 64×64 pixels. To ensure fair evaluation and avoid overfitting, we randomly
split the training set into 80% for training and 20% for validation.

We compared our method against Small Ensemble, Hydra, LBE, and Proxy-EnD2. The teacher
network was implemented using WRN-28-4, while the student network employed WRN-16-4. Both
teacher and student models were trained under an ensemble size of four, following the same distillation
pipeline described in Appendix C.2.

Table 11: Results on Tiny ImageNet.

dataset method Acc(%) ↑ NLL ↓ ECE(%) ↓

Tiny ImageNet

Teacher 68.74 1.2806 3.22
Small-Ens 57.11 (0.0027) 1.854 (0.0032) 13.51 (0.0032)
Hydra 56.80 (0.0037) 1.7503 (0.0092) 2.75 (0.092)
LBE 46.08 (0.0119) 2.24 (0.0407) 2.22 (0.0053)
Proxy-EnD2 51.64 (0.0022) 2.0195 (0.0069) 2.77 (0.0038)
DLF 58.34 (0.2121) 1.6737 (0.0043) 1.92 (0.1098)

Table 11 shows that our approach outperforms all other methods across all measures, even when
the number of classes and samples is large, suggesting that the proposed framework generalizes
well beyond small-scale datasets. In contrast, both LBE and Proxy-EnD2 exhibit a significant drop
in performance when applied to complex data, confirming that our latent factor modeling remains
effective even in such challenging settings.

E Uncertainty quantification

We conduct experiments to evaluate whether each model appropriately quantifies uncertainty by
detecting out-of-distribution (OOD) data in a classification problem. We adopt predictive mutual

33

information, which estimates epistemic uncertainty [6], as the OOD detection score :

Î
[
y, θ | x

]
:= −

c∑
y=1

(
1

n

n∑
i=1

p(y | x, θ̂i)

)
log

(
1

n

c∑
i=1

p(y | x, θ̂i)

)

+
1

n

c∑
y=1

n∑
i=1

p(y | x, θ̂i) log p(y | x, θ̂i).

Specifically, we denote the in-distribution (ID) dataset by {xin
1 , ...,x

in
m1
}, the OOD dataset by

{xout
1 , ...,xout

m2
} and y is the output of the model with corresponding predictive mutual informa-

tion Î
[
y, θ | xin

i

]
for i = 1, ...,m1 and Î

[
y, θ | xout

i

]
for i = 1, ...,m2.

For evaluation, we assign label 0 to ID data and label 1 to OOD data, meaning that lower predictive
mutual information indicates ID whereas higher values indicate OOD. We then compute the AUROC
between these labels and the predictive mutual information scores.
We use CIFAR-10 as the ID and SVHN, CIFAR-100, and Tiny ImageNet as OOD. All models are
trained on the CIFAR-10 training set with 50,000 images, and OOD detection is evaluated on the
CIFAR-10 test set with 10,000 images versus the test sets of the OOD datasets, where SVHN has
26,032 images, CIFAR-100 has 10,000 images, and Tiny ImageNet has 10,000 images. We repeat
the entire procedure five times with different random seeds and report the mean of AUROC and its
standard error. Table 12 show that DLF performs best on SVHN and remains competitive across
CIFAR-100 and Tiny ImageNet.

Table 12: AUROC Results on in-distribution and out-of-distribution detection.

Method Out-Of-Distribution Datasets
SVHN CIFAR-100 Tiny ImageNet

Teachers 0.9403 0.8604 0.9400
small-Ens 0.9093 (0.0037) 0.8000 (0.0036) 0.7956 (0.0023)
Hydra 0.7178 (0.0107) 0.6644 (0.0083) 0.6709 (0.0059)
LBE 0.8329 (0.0249) 0.8107 (0.0130) 0.8152 (0.0141)
Proxy-EnD2 0.8427 (0.0344) 0.8427 (0.0183) 0.8456 (0.0175)
DLF 0.9359 (0.0212) 0.8357 (0.0062) 0.8291 (0.0067)

F Computational Cost

In this section, we report a comparison of the computational costs between our proposed method and
baseline method during training.

F.1 Training time

First, we evaluate the training time on the CIFAR-10 and CIFAR-100 datasets. For a fair comparison,
all experiments are conducted under the same hardware environment. We follow the experimental
setup described in Appendix C.2. Each experiment is repeated four times, and the average training
times are reported in hours.

Table 13: Comparison of training time on CIFAR-10 and CIFAR-100 datasets.

Method CIFAR-10 CIFAR-100
Training Time Training Time

Teachers 10.2 17.4
small-Ens 4.6 12.5
Hydra 3.1 10.28
LBE 6.5 21.5
Proxy-EnD2 4.6 9.2
DLF (Ours) 4.2 11.28

As shown in Table 13, our proposed DLF model also exhibits a relatively short training time compared
to small ensemble, Hydra, and Proxy-EnD2. In the DLF model, µθ and Φθ are local networks whose

34

output sizes depend only on the target and latent dimensions; hence, they do not scale with the student
model size. Moreover, a key advantage of DLF is that it can be effectively trained using EM algorithm.
As detailed in Appendix B, the E-step has a closed-form solution, making the overall training process
computationally efficient. In contrast, LBE requires more computational resources and longer training
time as the model becomes larger, which will be discussed further in the following subsection.

F.2 Floating-point operations

For a further analyze computational complexity, we compute Floating-point operations (FLOPs)
per training for Hydra, Batch Ensemble and DLF. FLOPs provide a hardware-independent measure
of computational cost. For example, ResNet [60] and EfficientNet [61] use FLOPs to evaluate and
compare model efficiency across architectures.

Let c denote the number of classes, B the batch size, and n the number of ensemble members. The
latent dimension in DLF is denoted by q. Fbody and Fhead represent the FLOPs for one forward pass
through the share body (e.g., Wide-ResNet [55]) and one Hydra head, respectively. In the DLF model,
Fµ,Φ corresponds to the FLOPs for the small fully connected layers that produce µθ and Φθ. Finally,
α indicates the multiplier accounting for both forward and backward passes. Then, the FLOPs per
training step for Hydra, Batch Ensemble, and DLF are formulated as follows:

• Hydra:
FLOPsHydra = αB(Fbody + nFhead)

• Batch Ensemble :
FLOPsBE ≈ αB(1 + ϵ)Fbody

where ϵ (extra cost from rank-1 matrix) is usually ≤ 0.05.

• DLF:
FLOPsDLF = αB(Fbody + Fµ,Φ) +Bq2 + q3 + n(Bcq + q2)

Note that when the shared backbone is a Wide-ResNet, the corresponding Fbody is typically on the
order of 109 FLOPs. In Batch Ensemble, the additional cost comes from the overhead factor (1 + ϵ)
applied to the full backbone. Although ϵ is usually small (typically less than 0.05), its effect is not
negligible due to the large scale of Fbody.

In contrast, Hydra shares the backbone and only adds a small cost from the lightweight head modules.
Since Fhead ≪ Fbody, the total complexity remains dominated by the shared body, even with large
ensemble sizes n.

Similarly, although DLF requires additional computations such as Fµ,Φ, and matrix operations such
as Bq2, q3, and n(Bcq + q2), their contributions are negligible since q is typically small (often less
than 20 in practice) and Fµ,Φ, Bq

2, q3, n(Bcq + q2)≪ Fbody. Consequently, the dominant cost in
DLF also comes from the shared backbone.

G Theoretical results

We intend to similarly investigate the convergence of the sieve maximum likelihood estimation
(MLE), as discussed by [62], using the results of estimating smooth functions within the sparse deep
neural network (DNN) function class proposed by [63] and sieve MLE’s convergence rates by [64].
We will investigate the convergence rate in terms of decaying rates of the eigenvalues.

Notation For a natural number m, we define [m] = {1, 2, . . . ,m}. For a m × q-dimensional
matrix A, we denote the spectral norm of the matrix A by ∥A∥2 and the Frobenius norm by ∥A∥F ,

that is, ∥A∥2 = supz∈Rq :∥z∥2=1 ∥Az∥2 and ∥A∥F =
√

Tr(A⊤A). For a square matrix A, let
λmin(A) denote the smallest eigenvalue of A. For two positive sequences (an)n∈N and (bn)n∈N,
we write an ≲ bn or bn ≳ an, if there exists a positive constant C > 0 such that an ≤ Cbn for
any n ∈ N. We write an ≍ bn if both an ≳ bn and an ≲ bn hold. For a vector-valued function
f = (f1, . . . , fm)⊤ defined on a domainX , we denote the “elementwise-maximum” supremum norm
by ∥f∥∞ = max1≤j≤m ∥fj∥∞ = max1≤j≤m supx∈X |fj(x)|. The Hölder space of smoothness

35

β > 0 with domain [0, 1]d and radius K > 0 is defined as, letting s be the smallest integer larger than
or equal to β − 1,

Hβ
d (K) :=

{
f ∈ Csd : ∥f∥Hβ

d
≤ K

}
,

where Csd denotes the set of s-times differentiable functions on [0, 1]d and ∥ · ∥Hβ
d

denotes the Hölder
norm defined by

∥f∥Hβ(X) = max
(α1,...,αd)∈Nd

0 :
∑d

j=1 αj<β
∥∂α1 · · · ∂αdf∥∞

+ max
(α1,...,αd)∈Nd

0 :
∑d

j=1 αj=s
sup

x1,x2∈[0,1]d,x1 ̸=x2

|∂α1 · · · ∂αdf(x1)− ∂α1 · · · ∂αdf(x2)|
∥x1 − x2∥β−s

∞
,

where N0 = {0, 1, 2, . . . }. Let F be a given class of functions defined on X . A collection {fi : i ∈
[N]} is called a δ-covering set of F with respect to a certain norm ∥ · ∥ defined on X , if, for all
f ∈ F , there exists fi in the collection such that ∥f − fi∥ ≤ δ. The cardinality of the minimal
δ-covering set is called the δ-covering number of F with respect to the norm ∥ · ∥ , and is denoted
by N (δ,F , ∥ · ∥). A collection {(li, ui) : i ∈ [N]} of pairs of functions with li ≤ ui is called a
δ-bracketing set of F with respect to a norm ∥·∥ if, for all f ∈ F , there exists (li, ui) in the collection
such that li ≤ f ≤ ui and ∥li − ui∥ < δ. The cardinality of the minimal δ-bracketing set is called
the δ-bracketing number of F with respect to the norm ∥ · ∥, and is denoted by N[](δ,F , ∥ · ∥). For
two probability density functions p1 and p2, let us denote the Hellinger distance between them by
h(p1, p2) = [

∫
(p

1/2
1 (x)− p1/22 (x))2dx]1/2.

G.1 Problem formulation

Let f̃1, . . . , f̃n be n independent realizations of the Gaussian process with mean function µ∗(·)
and covariance kernel Σ∗(·, ·). Suppose that we have m many d-dimensional design points D =

{x(d)
1 , . . . ,x

(d)
m } (where we omit the superscript “design” unlike the main body of the manuscript for

simplicity). We assume that without loss of generality, x(d)
i ∈ [0, 1]d for every j ∈ [m] by appropriate

normalization. Then we observe f i|D = (f̃i(x
(d)
1) + vi1, . . . , f̃i(x

(d)
m) + vim)⊤, where vims are

independent Gaussian random variables with mean 0 and variance σ2
∗. Note that f i|D follows the

multivariate normal distribution p∗ := N (µ∗|D,Σ∗|D), where

µ∗|D = (µ∗(x
(d)
u))u∈[m] ∈ Rm

Σ∗|D = (Σ∗(x
(d)
u ,x(d)

v))u∈[m],v∈[m] + σ2
∗Im ∈ Rm×m.

Let λ∗,j and ψ∗,j(·) be the j-th eigenvalues and eigenfunctions of the kernel Σ∗, ordered by their
magnitude and ϕ∗,j(·) =

√
λjψ∗,j(·) be the scaled eigenfunctions. Then, the covariance matrix can

be decomposed into the q-leading part and the low-rank part

Σ∗|D =Φ∗|DΦ
⊤
∗|D +Σ∗>q|D + σ2

∗Im

where Φ∗|D = (ϕ∗(x
(d)
1), . . . ,ϕ∗(x

(d)
m))⊤ ∈ Rm×q with ϕ∗(x) = (ϕ∗j(x))j∈[q] and Σ∗>q|D =(∑

j>q ϕ∗j(x
(d)
u)ϕ∗j(x

(d)
v)
)
u∈[m],v∈[m]

. For the sake of notational simplicity, we consider the case

where σ2
∗ is known. The proof can be extended easily for the case of unknown σ2

∗.

Our aim is to estimate p∗ based on observations f1|m, . . . ,fn|m by modeling µ∗ and ϕ∗ by a
specially design DNN. For given µ ∈ Rm and Σ ∈ Rm×m, let pµ,Σ be the density of the Gaussian
distribution with mean µ and covariance matrix Σ. For give mean function µθ(·) and a vector of q
many scaled eigenfunctions ϕθ(·) parameterized by θ, we consider pµθ|D,Σθ|D , where

µθ|D = (µθ(x
(d)
u))u∈[m] ∈ Rm

Σθ|D = Φθ|DΦ
⊤
θ|D + σ2

∗Im ∈ Rm×m

with Φθ|D = (ϕθ(x
(d)
1), . . . ,ϕθ(x

(d)
m))⊤. We model (µθ(·),ϕθ(·)) by a DNN with q + 1 many

outputs and estimate θ by a (sieve) maximum likelihood estimator (MLE) that is defined as θ̂ =

36

argmaxθ∈Θn
ℓn (θ) , where

ℓn (θ) = −
n

2
log |Σθ|D| −

1

2

n∑
i=1

(f i|D − µθ|D)
⊤Σ−1

θ|D(f i|D − µθ|D).

Here, the sieve Θn depends on the architecture of DNNs. We will prove that the estimated Gaussian
distribution converges to the true Gaussian distribution p∗ in probability as n→∞ under regularity
conditions while D is fixed, provided that the sieve Θn is selected appropriately.

G.2 Results

For the sieve Θn, we consider a set of parameters, whose elements are in [−1, 1] (following [63]),
of sparse DNNs with Ln many layers, rn many nodes at each hidden layers, Sn many nonzero
elements and qn + 1 output nodes. When we would like to clarify such architectural choices, we
will sometimes use the notation Θn = Θ(Ln, rn, Sn, qn). For a DNN parameter θ ∈ Θn, we let
gθ be the corresponding realized DNN function, but for a technical reason, the outputs of this
function are truncated at [−B,B], so that gθ is a function from Rd to [−B,B]q+1. We denote by
G(Θn) = {gθ : θ ∈ Θn}. Such sparse DNNs have been considered in many previous studies [e.g.,
62, 63, 65] to investigate the asymptotic properties of DNNs.

Given the design points D = {x(d)
1 , . . . ,x

(d)
m }, for each DNN parameter θ ∈ Θn with the realized

DNN gθ = (gθ,1, . . . , gθ,qn+1)
⊤, we define them-dimensional vector µθ|D = (gθ,1(x

(d)
u))u∈[m] and

m ×m symmetric matrix Σθ|D = Φθ|DΦ
⊤
θ|D + σ2

∗Im, where Φθ|D = (gθ,j+1(x
(d)
u))u∈[m],j∈[qn].

For notational simplicity, we write pθ|D = pµθ|D,Σθ|D , the density of the Gaussian distribution with
mean µθ|D and covariance matrix Σθ|D. We let the class of such Gaussian distributions P(Θn;D) =
{pθ|D : θ ∈ Θn}.
Lemma G.1. Let D be an arbitrary set of m design points. There exists an absolute constant C1 > 0
such that for any δ ∈ (0, C1/qn), the following holds

logN[] (δ,P(Θn;D), h) ≤ logN
(

σ2
∗δ

26max{2mqnB,
√
mσ∗}

,G(Θn), ∥ · ∥∞
)
.

Theorem G.2. Suppose that µ∗ and ϕ∗,j , j = 1, . . . belong to Hβ
d (K). Consider the sieve MLE

p̂ = pθ̂ over Θn = Θ(Ln, rn, Sn, qn) with Ln ≍ log n and rn, Sn, qn ≲ n. Define

(ϵ∗n)
2 = qn

(
Sn

log n

)−2β/d

+
∑
j>qn

λ2j + Sn
(log n)2

n
.

Assume that qn →∞, ϵ∗nqn → 0 and n(ϵ∗n)
2 →∞ as n→∞. Then, we have

P∗ (h (p̂, p∗) > C2ϵ
∗
n)→ 0

as n→∞ for some absolute constant C2 > 0.

We can make ϵ∗n converge to 0 by letting qn and Sn diverge with a appropriate speed provided the
eigenvalues λj , j ≥ qn converge to 0 sufficiently fast (e.g. λj ≍ exp(−j)).
The upper bound of Theorem G.2 is about the estimated Gaussian distribution at the design points
Ddesign. For prediction, we need an upper bound of the estimated Gaussian distribution at a new
point x. The following theorem, whose proof is given in Appendix G.4, provides an upper bound.

Theorem G.3 (Upper bound at a new input). If µ̂ and Φ̂j , j = 1, . . . , qn are Lipschitz, the probability
of

d1(p̂x, p∗,x) ≤ d1(p̂x(1)
, p∗,x(1)

) + C3∥x− x(1)∥
for a certain positive constant C3 and

sup
x∈Ddesign

d1(p̂x, p∗,x) ≤ C2ϵ
∗
n

converges to 1 as n→∞, where d1(g, h) =
∫
z
|g(z)− h(z)|dz for given two probability densities

on R.

37

G.3 Auxiliary Lemmas

Before proving Lemma G.1, we introduce the following two lemmas.
Lemma G.4. If Σ2 −Σ1 is positive definite, then

pµ1,Σ1
(x)

pµ2,Σ2(x)
≤

√
|Σ2|
|Σ1|

exp

(
1

2
(µ2 − µ1)

⊤(Σ2 −Σ1)
−1(µ2 − µ1)

)

Proof. Define µ∗ = (Σ−1
1 − Σ−1

2)−1(Σ−1
1 µ1 − Σ−1

2 µ2). Note that by assumption Σ2 − Σ1 is
invertible, and thus we have

(x− µ1)
⊤Σ−1

1 (x− µ1)− (x− µ2)
⊤Σ−1

2 (x− µ2)

= (x− µ∗)
⊤(Σ−1

1 −Σ−1
2)(x− µ∗)− µ⊤

∗ (Σ
−1
1 −Σ−1

2)µ∗ + µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2.

The sum of the second and third terms is further simplified as
−µ⊤

∗ (Σ
−1
1 −Σ−1

2)µ∗ + µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2

−µ⊤
∗
(
Σ−1

1 −Σ−1
2

)
µ∗ + µ⊤

1 Σ
−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2

=−
(
Σ−1

1 µ1 −Σ−1
2 µ2

)⊤ (
Σ−1

1 −Σ−1
2

)−1 (
Σ−1

1 µ1 −Σ−1
2 µ2

)
+ µ⊤

1 Σ
−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2

=− µ⊤
1 Σ

−1
1

(
I−Σ1Σ

−1
2

)−1
µ1 − µ⊤

2 Σ
−1
2

(
Σ2Σ

−1
1 − I

)−1
µ2

+ 2µ⊤
2 Σ

−1
2

(
Σ−1

1 −Σ−1
2

)
Σ−1

1 µ1 + µ⊤
1 Σ

−1
1 µ1 − µ⊤

2 Σ
−1
2 µ2

=− µ⊤
1 Σ

−1
1 Σ1Σ

−1
2

(
I−Σ1Σ

−1
2

)−1
µ1 − µ⊤

2 Σ
−1
2 Σ2Σ

−1
1

(
Σ2Σ

−1
1 − I

)−1
µ2

+ 2µ⊤
2 Σ

−1
2

(
Σ−1

1 −Σ−1
2

)−1
Σ−1

1 µ1

=− µ⊤
1 (Σ2 −Σ1)

−1
µ1 − µ⊤

2 (Σ2 −Σ1)
−1

µ2 + 2µ⊤
2

(
Σ−1

2 −Σ−1
1

)−1
µ1

=− (µ1 − µ2)
⊤
(Σ2 −Σ1)

−1
(µ1 − µ2) .

Therefore, we have

pµ1,Σ1
(x)

pµ2,Σ2
(x)

=

√
|Σ2|
|Σ1|

exp

(
−1

2
{(x− µ1)

⊤Σ−1
1 (x− µ1)− (x− µ2)

⊤Σ−1
2 (x− µ2)}

)

=

√
|Σ2|
|Σ1|

exp

(
−1

2
(x− µ∗)

⊤(Σ−1
1 −Σ−1

2)(x− µ∗)

+
1

2
(µ1 − µ2)

⊤(Σ2 −Σ1)
−1(µ1 − µ2)

)
≤

√
|Σ2|
|Σ1|

exp

(
1

2
(µ1 − µ2)

⊤(Σ2 −Σ1)
−1(µ1 − µ2)

)
,

which completes the proof.

Lemma G.5. Let σ2 be the lower bound of the minimum eigenvalues of Σ1 and Σ2. If ∥Σ2−Σ1∥2 ≤
cσ2 for a given c > 0, the following inequalities hold:

x⊤((1 + ζ)Σ2 −Σ1)x ≥ σ2(ζ − (1 + ζ)c)∥x∥2

and

x⊤(Σ1 − (1 + ζ)−1Σ2)x ≥
(ζ − c)σ2

1 + ζ
∥x∥2,

where ζ = 3σ2c.

Proof. The first inequality holds because
x⊤((1 + ζ)Σ2 −Σ1)x ≥ (1 + ζ)x⊤(Σ2 −Σ1)x+ ζx⊤Σ1x

≥ −(1 + ζ)∥Σ2 −Σ1∥2∥x∥22 + ζσ2∥x∥2

≥ (ζσ2 − (1 + ζ)cσ2)∥x∥2.
The second inequality follows similarly.

38

G.4 Proofs

Proof of Lemma G.1

Proof. Fix ϵ > 0. Let {g1, . . . , gN} with N = N (ϵ,G(Θn), ∥ · ∥∞) be a ϵ-covering of G(Θn). For
each i ∈ [N], let θi be the parameter of gi and let µi = µθi|D and Σi = Σθi|D. Then for any
θ ∈ Θn, letting µ = µθ|D and Σ = Σθ|D for simplicity, we have

∥µ− µi∥2 ≤
√
mϵ,

and

∥Σ−Σi∥2 ≤ ∥(ΦΦ⊤ −ΦiΦ
⊤
i)∥2

≤ (∥Φ∥2 + ∥Φi∥2)∥Φ−Φi∥F
≤ 2mqnBϵ,

where the third line follows from that ∥Φ∥2, ∥Φi∥2 ≤ √
mqnB. Now, let δ =

ϵmax{2mqnB,
√
mσ∗}/σ2

∗ so that ∥µ−µi∥2 ≤ σ∗δ and ∥Σ−Σi∥2 ≤ σ2
∗δ. Let ζ = 3δ. Then we

will show that [li, ui] is a Hellinger bracket of the density pµ,Σ(x) when we define

ui = (1 + 2ζ)mpµi,(1+ζ)Σi

li = (1 + 2ζ)−mpµi,(1+ζ)−1Σi
,

Then by Lemma G.5, (1 + ζ)Σi −Σ and Σ− (1 + ζ)−1Σi are both positive definite. So by Lemma
G.4, we have for any x ∈ Rm

pµ,Σ(x)

ui(x)
≤ (1 + 2ζ)−m

√
|(1 + ζ)Σi|
|Σ|

exp

(
1

2
(µ− µi)

⊤((1 + ζ)Σi −Σ)−1(µi − µ)

)
.

By Lemma G.5 again, we have ∥((1+ζ)Σi−Σ)−1∥2 ≤ (σ2
∗(ζ− (1+ζ)δ))−1 = (σ2

∗(2−ζ)δ)−1 ≤
(σ2

∗δ)
−1 for any sufficiently small ϵ. Moreover, by Weyl’s inequality,

|(1 + ζ)Σi|
|Σ|

≤ (1 + ζ)m
(
1 +

σ2
∗δ

σ2
∗

)m

≤ (1 + 2ζ)m.

Thus we have

pµ,Σ(x)

ui(x)
= (1 + 2ζ)−m/2 exp

(
∥µ− µi∥22

2σ2
∗δ

)
.

Using the inequality log(1 + z) ≥ z/2 for z ∈ [0, 2], we have

log
pµ,Σ(x)

ui(x)
= −m

2
log(1 + 2ζ) +

1

2σ2
∗δ
∥µ− µi∥22

≤ −m
2
ζ +

m

2σ2
∗δ

(σ∗δ)
2

≤
(
−3m

2
+
m

2

)
δ ≤ 0,

which implies pµ,Σ(x) ≤ ui(x). Similarly, we also have

li(x)

pµ,Σ(x)
= (1 + 2ζ)−m/2 exp

(
∥µ− µi∥22

2σ2
∗δ

)
.

and so li(x) ≤ pµ,Σ(x) for any x ∈ Rm.

We now bound the size of the bracket. Note that

h2(li, ui) = (1 + 2ζ)m + (1 + 2ζ)−m − (2− h2(pµi,(1+ζ)Σi
, pµi,(1+ζ)−1Σi

)).

39

Due to the inequality z2/2 ≥ z − log(1 + z) for any z ≥ 0,

h2(pµi,(1+ζ)Σi
, pµi,(1+ζ)−1Σi

) ≤ KL(pµi,(1+ζ)Σi
, pµi,(1+ζ)−1Σi

)

=
1

4
m(− log(1 + ζ)2 + (1 + ζ)2 − 1)

≤ m

8
((1 + ζ)2 − 1)2

=
m

4
(ζ + ζ2/2)2

≤ 9

4
mζ2

Moreover, by taking ϵ sufficiently small so that ζ < 3/m, we have

(1 + 2ζ)m + (1 + 2ζ)−m − 2 ≤ 2(1 + 2ζ)m − 2

≤ 4mζ(1 + 2ζ)m−1

≤ 4mζ(1 + 2/(3m))m−1 ≤ 4e2/3ζ

Thus, we have h2(li, ui) ≤ (9/4mζ +4e2/3)ζ ≤ (3/4+ 4e2/3)ζ ≤ 26δ. Hence, redefining constant
as 26δ → δ, we complete the proof.

Proof of Theorem G.2

Proof. The proof follows a similar reasoning in the proof of Theorem 3 in [62], which is based on
Theorem 4 in [64] with α = 0+. We divide the proof into the following four steps.

Bounding the estimation error: Check Eq. (3.1) of [64] For the class of DNN parameters Θn =
Θ(Ln, rn, Sn, qn), by Lemma 5 in [63], we can get the following covering number bound

logN (δ,G(Θn), ∥·∥∞) ≤ (Sn + 1) log
(
2δ−1(Ln + 1)d2(qn + 1)2r2Ln

n

)
≲ LnSn log(nδ

−1)

for any δ > 0. Applying Lemma G.1, for 0 < δ < C1/qn, we have

logN[](δ,P(Θn;D), h) ≤ logN
(

σ2
∗δ

26max{2mqnB,
√
mσ∗}

,G(Θn), ∥ · ∥∞
)

≲ SnLn log(nδ
−1)

Moreover, for a positive constant ϵ such that
√
2ϵ ≤ C1/qn, we have∫ √

2ϵ

ϵ2/28

√
logN[](δ,P(Θn;D), h)dδ ≲ ϵ

√
SnLn log(nϵ−1).

Then the above display is bounded by n1/2ϵ2 up to an absolute constant when we take ϵ = ϵn =√
Sn(log n)2/n as Ln ≍ log n. Thus, Eq. (3.1) of [64] is satisfied.

Bounding the Kullback-Liebler approximation error We first note that for any θ ∈ Θn, we have

KL
(
p∗||pµθ|D,Σθ|D

)
=

1

2

(
− log

∣∣∣Σθ|DΣ
−1
∗|D

∣∣∣+Tr
(
Σθ|DΣ

−1
∗|D − Im

))
+

1

2

(
µθ|D − µ∗|D

)⊤
Σ−1

∗|D

(
µθ|D − µ∗|D

)
= −1

2
log
∣∣∣Im +Σ

−1/2
∗|D (Σθ|D −Σ∗|D)Σ

−1/2
∗|D

∣∣∣
+

1

2
Tr
(
Σ

−1/2
∗|D (Σθ|D −Σ∗|D)Σ

−1/2
∗|D

)
+

1

2σ2
∗
∥µθ|D − µ∗|D∥2

≤ 1

4
∥Im −Σθ|DΣ

−1
∗|D∥

2
F +

1

2σ2
∗
∥µθ|D − µ∗|D∥2,

≤ 1

4σ2
∗
∥Σθ|D −Σ∗|D∥2F +

1

2σ2
∗
∥µθ|D − µ∗|D∥2, (6)

40

To bound the two terms in Eq. (6), we use the well-known results about the approximation ability of
sparse DNNs to Hölder smooth functions [e.g., Theorem 5 of 63]. Namely, there exists θ† ∈ Θn such
that

max

{
∥gθ†,1 − µ∗∥, max

j∈[qn]
∥gθ†,j+1 − ϕ∗,j∥∞

}
≲ (Sn/Ln)

−β/d. (7)

For the first term in Eq. (6), we define

κn = ∥Σ∗>qn|D∥F =

∑
j>qn

λ2j

1/2

and establish the upper bound

∥Σθ†|D −Σ∗|D∥F ≤ ∥Φθ†|DΦ
⊤
θ†|D −Φ∗|DΦ

⊤
∗|D∥F + κn

≤ ∥(Φθ†|D −Φ∗|D)(Φθ†|D −Φ∗|D)
⊤ + 2Φ∗|D(Φθ†|D −Φ∗|D)

⊤∥F + κn

≤ ∥Φθ†|D −Φ∗|D∥2F + 2∥Φ∗|D∥2∥Φθ†|D −Φ∗|D∥F + κn.

But by Eq. (7), ∥Φθ†|D − Φ∗|D∥F ≲
√
qn(Sn/Ln)

−β/d which converges to 0 as n → ∞. This
implies that, as ∥Φ∗|D∥2 is bounded, ∥Φθ†|D−Φ∗|D∥2F is smaller than 2∥Φ∗|D∥2∥Φθ†|D−Φ∗|D∥F
eventually. Therefore, we have

∥Σθ†|D −Σ∗|D∥2F ≲ qn(Sn/Ln)
−2β/d + κn

Moreover, by Eq. (7), it is immediate that ∥µθ†|D−µ∗|D∥2 ≲ (Sn/Ln)
−2β/d. Adopting the notation

of [64], we have δn = qn(Sn/Ln)
−2β/d + κn ≍ qn(Sn/ log n)

−2β/d + κn.

Bounding the Kullback-Liebler variation The last ingredient of the proof is to bound the so-called
Kullback-Liebler variation defined as

KLV
(
p∗||pµθ|D,Σθ|D

)
=

∫ {
log

p∗(x)

pµθ|D,Σθ|D (x)

}2

p∗(x)dx.

We will find a suitable network parameter to get a manageable upper bound of the above, which is
denoted by τn in [64]. We use Lemma G.5 for this purpose. As in the argument used in the previous
step, we can find a network parameter θ† such that ∥Σθ†|D −Σ∗|D∥2F ≤ C ′δn for some absolute
constant C ′ > 0. As qn →∞, we have ξ = λmin(Φθ†|DΦ

⊤
θ†|D) > 0. We then construct the network

θ‡ satisfying µθ‡|D = µθ†|D and Φθ‡|D = (1+(1+C ′)δn/ξ)
1/2Φθ†|D. Then, by Weyl’s inequality,

λmin(Σθ‡|D −Σ∗|D) = λmin(Σθ†|D −Σ∗|D + (1 + C ′)δn/ξΦθ†|DΦ
⊤
θ†|D)

≥ λmin((1 + C ′)δn/ξΦθ†|DΦ
⊤
θ†|D)− ∥Σθ†|D −Σ∗|D∥2

≥ (1 + C ′)δn − ∥Σθ†|D −Σ∗|D∥F ≥ δn,
which implies that Σθ‡|D −Σ∗|D is positive definite. Using Lemma G.5, we have

p∗(x)

pµ
θ‡|D,Σ

θ‡|D
(x)
≤

√
|Σθ‡|D|
|Σ∗|D|

exp

(
1

2
(µθ‡|D − µ∗|D)

⊤(Σθ‡|D −Σ∗|D)
−1(µθ‡|D − µ∗|D)

)

≤

√
|Σθ‡|D|
|Σ∗|D|

exp

(
1

2δn
∥µθ‡|D − µ∗|D∥2

)
≤ (1 + ∥Σθ‡|D −Σ∗|D∥2/σ2

∗)
m/2

≤ (1 + ∥(1 + C ′)δn/(ξσ
2
∗)Φθ†|DΦ

⊤
θ†|D∥F + ∥Σθ†|D −Σ∗|D∥2/σ2

∗)
m/2

≤ (1 + (1 + C ′)(Bmqn)
1/2δn/(ξσ

2
∗) + (C ′)1/2δn/σ

2
∗)

m/2

where we use Weyl’s inequality for the third inequality. Therefore, we have

KLV
(
p∗||pµ

θ‡|D,Σ
θ‡|D

)
≲ log(1 + (qn)

1/2δn).

41

Adopting the notation of [64], we set τn = log(1 + (qn)
1/2δn).

Combining the pieces together Let ϵ∗n = ϵn ∨
√
δn. Then by Theorem 4 of [64], there exists an

absolute constant C ′′ > 0 such that

P∗ (h (p̂, p∗) > C2ϵ
∗
n) ≲ e−C′′n(ϵ∗n)

2

+
τn

n(ϵ∗n)
2
,

which tends to zero as n→∞ by the assumptions ϵ∗nqn → 0 and n(ϵ∗n)
2 →∞.

Proof of Theorem G.3

Proof. Since the total variation norm is upper bounded by the Hellinger distance, the total variation
norm between p̂ and p∗ is also upper bounded by C2ϵ∗ with probability converging to 1. In turn, by
the definition of the total variation norm, supx∈Ddesign d1(p̂x, p∗,x) is upper bounded by C2ϵ∗ with
probability converging to 1. Due to the Lipschitz condition of µ̂, Σ̂ as well as µ∗,Σ∗, there exists a
constant L > 0 such that d1(p̂x, p̂x′) ≤ L∥x− x′∥ and d1(p∗,x, p∗,x′) ≤ L∥x− x′∥ for any x and
x′ in Rd. Finally, we have

d1(p̂x, p∗,x) ≤ d1(p̂x, p̂x(1)
) + d1(p̂x(1)

, p∗,x(1)
) + d1(p∗,x(1)

, p∗,x)

≤ d1(p̂x(1)
, p∗,x(1)

) + 2L|x− x(1)∥
≤ C2ϵ

∗
n + 2L|x− x(1)∥

with probability converging to 1. The proof is complete by letting C3 = C2 and C4 = 2L.

42

	Introduction
	Preliminaries
	Prediction uncertainty
	Review of ensemble distillation
	One-to-one distillation
	Distribution distillation

	The Proposed Method
	Deep Latent Factor model
	Estimation of the mean and factor loading
	Comparison with other baselines
	Choice of design points

	Application to distribution shift problems
	Experiments
	Uncertainty quantification for regression and classification problems
	Regression case
	Classification case

	Application to fine-tuning of language models
	Application to distribution shift problems
	Ablation studies

	Conclusion
	Review of Ensemble Distillation
	One-to-one Distillation
	Hydra
	Batch Ensemble and Latent Batch Ensemble

	Distribution Distillation
	Proxy-Dirichlet Distillation
	Ensemble Distribution Distillation via Flow Matching

	Details of Gaussian distillation
	EM algorithm for the univariate DLF model
	Multivariate DLF model
	Vectorization
	EM algorithm for the multivariate DLF model

	Experimental details
	Regression case
	Dataset
	Evaluation metric

	Classification case
	Dataset
	Evaluation metric

	Fine-tuning of language models
	Application to distribution shift
	Hardwares

	Ablation Study
	Choice of design points
	Comparison of different design points selection methods
	Comparison for different selection of the number of design points

	Dimension of the latent factor
	MMD vs random initial
	Capacity of student models
	Number of ensemble members
	Application to large dataset

	Uncertainty quantification
	Computational Cost
	Training time
	Floating-point operations

	Theoretical results
	Problem formulation
	Results
	Auxiliary Lemmas
	Proofs

