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ABSTRACT

Unknown unknowns (U2s) are deployment-time scenarios absent from devel-
opment/testing. Unlike conventional anomalies, U2s are not out-of-distribution
(OOD); they stem from changes in underlying system dynamics without a distri-
bution shift from normal data. Thus, existing multi-variate time series anomaly
detection (MTAD) methods—which rely on distribution-shift cues—are ill-suited
for U2 detection. Specifically: (i) we show most anomaly datasets exhibit distri-
bution shift between normal and anomalous data and therefore are not represen-
tative of U2s; (ii) we introduce eight U2 benchmarks where training data contain
OOD anomalies but no U2s, while test sets contain both OOD anomalies and U2s;
(iii) we demonstrate that state-of-the-art (SOTA) MTAD results often depend on
impractical enhancements: point adjustment (PA) (uses ground truth to flip false
negatives to true positives, inflating precision) and threshold learning with data
leakage (TL) (tuning thresholds on test data and labels); (iv) with PA+TL, even
untrained deterministic methods can match or surpass MTAD baselines; (v) with-
out PA/TL, existing MTAD methods degrade sharply on U2 benchmarks. Finally,
we present sparse model identification–enhanced anomaly detection (SPIE-AD),
a model-recovery-and-conformance, zero-shot MTAD approach that outperforms
baselines on all eight U2 benchmarks and on six additional real-world MTAD
datasets—without PA or TL.

1 INTRODUCTION

Autonomous systems such as unmanned aerial vehicles (UAV), autonomous cars (AC), and au-
tonomous drug delivery (ADD) systems utilize complex amalgamation of interacting perception,
decision making and actuation.
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Figure 1: F8 elevator stuck U2 example.
USAD Audibert et al. (2020b) anomaly score
threshold from training data does not detect U2.
Threshold update using data leakage introduces
significant false positives. Underlying model
shows non-stationary change affected by U2.

Such complexity makes it practically infeasi-
ble to test for “all possible” operational scenar-
ios. Test cases ignored during pre-deployment
evaluation but that occur rarely during de-
ployment, called ”unknown unknowns” (U2),
are a major cause of accidents Maity et al.
(2023). U2 detection is a significant prob-
lem with very few application specific solu-
tions Liu et al. (2020); Lakkaraju et al. (2017)
in the image domain. In this paper, we
present SPIE-AD, SParse model Identification
Enhanced Anomaly Detection which detects
U2 by continually mining the underlying dy-
namical model of variate inter-relationships and
checking its conformance with the most likely
model of normal operation.

The occurrence of U2 induces an effective vi-
olation of stationary property, as the underly-
ing generating process experiences unmodeled
changes that alter variate dependency structure
over time (Figure 1). U2s can potentially oc-
cur due to: a) hardware failures, which may
not be monitored, e.g. mechanical failure in an
aircraft resulting in an elevator getting stuck
(F8Stuck) or moving slow (F8Slow), b) un-
wanted software executions: which may not immediately affect the input/output behaviour in
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anomalous ways, e.g. a change in the gravity parameter of a quadcoptor’s altitude control soft-
ware (UAVSimG), and c) untested usage scenarios manifested as external inputs to the system,
which may not have a deviant measurement distribution parameter, e.g. an electromagnetic attack
on a sensor decreasing its fidelity (UAVEMA) or a phantom meal, where an user of a insulin delivery
ADD announces a meal without ingesting any to trick it for a high insulin dose.

A natural question is that aren’t U2s same as anomalies and can existing anomaly detection tech-
niques be repurposed to detect U2s?

The distinction between U2s and anomalies is subtle but critical. While anomalies result in marginal
distribution shift (Fig. 2 Panel A), U2s cause non-stationary changes in the dependency structure
among variables, often without altering marginal distributions (Fig. 1 and 2 Panel B). Hence to
detect U2, we need recovery and monitoring of underlying process model.
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Figure 2: Panel A: Normal versus anomalous
data distribution difference in benchmark datasets,
(more evidence in supplement Table S3) Panel B:
U2 datasets have negligible distribution difference
with normal. Panel C: significant distribution dif-
ference in parameters of U2 versus normal data in
the underlying sparse model space.

State-of-the-art (SOTA) Multi-variate time se-
ries anomaly detection (MTAD) operate un-
der the assumption of marginal distribution
shift in other words out of distribution (OOD),
and may use statistical regression methods
e.g ARIMA Schmidt et al. (2018), Kalman
filter Huang et al. (2023), principal compo-
nent analysis based techniques Shyu et al.
(2003), autoencoders Borghesi et al. (2019),
long short term memory (LSTM) based deep
learning (DL) techniques, transformers Tuli
et al. (2022) and most recently foundational
models Alnegheimish et al. (2024); Zhou et al.
(2023). However, as conceded by recent re-
search Alnegheimish et al. (2024), existing
MTAD techniques may fail to detect non-
stationary changes in the underlying process.
As such, it remains to be seen whether existing
MTAD pipelines can be used for U2 detection
or not. We evaluate this question in this paper.

The SOTA anomaly detection pipeline (Figure
7 Panel A in Appendix) has three steps: a)
training: that creates a high dimensional latent
space representation of the normal operation
using data that may or may not have anoma-
lies but do not have anomaly labels, b) valida-
tion, that uses data with anomalies but without
anomaly labels to learn a anomaly score thresh-
old such that two fairly separated clusters are
found in the validation set using the peaks over
threshold method guided by the extreme value
theory Siffer et al. (2017), and c) evaluation,
where anomaly score of successive windows of
test data are computed and compared with the
threshold to determine anomalous data. There
are three major problems with SOTA MTAD
approaches that results in unrealistic perfor-
mance on benchmark datasets and makes them unsuitable for U2 detection:

a) U2 detection problem does not conform to existing MTAD problem definitions - SOTA
MTAD problem can be of three types: i) supervised MTAD, where OOD anomaly data and la-
bels available during training are used to develop models and classify the same anomalies seen
during testing, ii) unsupervised MTAD, where training data with normal and OOD anomalous data
without labels is used to learn the most likely model of normal operation and classify same types
of anomalies in the testing phase, and iii) semi-supervised MTAD, where anomaly free training
data is used to develop a model of normal operation and OOD anomalies are deviations from the
normal. U2 detection problem assumes that training data with normal and OOD anomalous data
without labels is available to learn the model of normal operation but test data consists of normal,
OOD anomalous data and novel U2 scenario data with non-stationary dependency structures.

Can we use existing few/zero-shot anomaly detection? Recent LLM-guided few-shot anomaly de-
tection techniques Gao et al. (2024) are fundamentally unsuitable for U2 detection, as they require
at least one prior U2 example. Existing zero-shot methods based on LLMs are limited to univariate
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time series Alnegheimish et al. (2024) and thus do not extend to U2 settings. Zero-shot MTAD ap-
proaches convert time series into images and leverage vision–language models (VLMs) He et al.
(2025); Namura & Ichikawa (2024). While promising, they assume the availability of signal-
to-image pipelines and large-scale compute resources, which are often unavailable in resource-
constrained autonomous and defense deployments. We therefore focus exclusively on U2 detection
methods that operate directly on time-series signals without requiring image transformation.

b) A1: Sensor data distribution shift due to anomaly: For U2 scenario data there may not be a
difference in the distribution parameters of the sensor outputs. Consider the example U2 scenario
of wrongful Maneuvering characteristics augmentation system (MCAS) trigger in the fateful flight
of Lion Air Curran et al. (2024). MCAS was designed to mask the flight characteristics changes
that would have occurred on newer Boeing Max 8 aircrafts Herkert et al. (2020). This implies that
if MCAS is wrongfully triggered then by design it attempts to make the distribution parameters
of the flight characteristics similar to a normal flight. Figure 2 shows the data distribution of all
sensors for anomalies and normal data in benchmark MTAD datasets in Panel A and for U2 and
normal scenarios in Panel B. The Kolmogorov-Smirnov (KS) hypothesis test KS (2008) is used to
compute the normalized maximum difference in cumulative distribution function (CDF) between
normal and anomalous/U2 data (H = 1 implies the two distributions are statistically different with
(1 − P ) probability. Higher value of the CDF difference implies more deviant distribution). While
benchmark datasets exhibit distribution shift between anomalous and normal data, in U2 datasets,
there is no statistically significant distribution shift between U2 and normal data.

Technical difficulty in U2 detection violating A1: A1’s violation implies the raw sensor data
may not have latent information to discriminate between normal and U2 classes. So, any data-
driven feature based method e.g. existing MTAD methods may not be useful. While the sensor
data distributions may not be discriminative, there maybe a change in functional relationship among
the sensors. Panel C shows the underlying nonlinear dynamical model mined from U2 and normal
data using SINDY-MPC Kaiser et al. (2018) has significantly different distribution parameters. U2
detection could utilize modeling and monitoring of variations in such inter-relationships. Thus,
deviation from a normal inter-relationship model can be the categorical attribute of U2.

c) A2: Use of data leakage to learn anomaly score threshold - In SOTA MTAD techniques the
validation set is often same as the test data. For evidence please refer to Appendix Section B. This
leads to potential data leakage and overfitting of the model. It is standard machine learning practice
to keep validation set separate from test data. By definition, no validation dataset with anomalies are
available for U2 detection.

Technical difficulty in U2 detection violating A2: Violation of A2 entails zero shot U2 detec-
tion. To the best of our knowledge, there is only one solution for zero-shot MTAD Audibert et al.
(2020a). However, as identified by Kim et al. (2022), it has poor realistic performance. Solutions for
univariate zero-shot anomaly detection including techniques with LLMs Alnegheimish et al. (2024)
are available, which, as admitted by the authors, are very difficult to adapt to MTAD. The technical
challenge is to detect anomalies with no knowledge about anomalous data distribution, which pre-
empts any data driven discriminative feature learning. Note that a line of work, TimeseriesBench Si
et al. (2024), claims zero shot as the case where train and test data are disjoint. The traditional def-
inition of zero shot Jayaraman & Grauman (2014), also used in this paper, is different and requires
identification of U2 from a description of its attributes without using any training data.

d) A3: Unrealistic evaluation method- According to Kim et al. (2022); Wu & Keogh (2023),
the reported results in nearly all SOTA MTAD techniques have point adjustment (PA) Su et al.
(2019). This technique assumes anomalies to be contiguous segments, and it is sufficient for MTAD
method to detect only one point in this segment as anomaly. The PA method inflates the precision
by a significant amount Wu & Keogh (2023) in nearly all MTAD methods as seen in Figure 8 in
Appendix), which shows the implementation of two most recent MTAD technique on benchmark
datasets (SMAP, SMD, MSL discussed in more detail in Evaluation section) with code available
from Liu et al. (2024). These results are also supported by Kim et al. (2022), which proposed an
alternate evaluation criteria PA%K, where PA is employed if the MTAD technique identifies K%
of anomalous time points in a segment. K = 0 indicates application of PA in its original form, while
K = 100 indicates no PA.

Technical difficulty in U2 detection violating A3: As highlighted in Kim et al. (2022), in many
real-world datasets, anomalous or U2 events are often not abrupt and may result in an initial and
final phase that have similar data distribution to normal data. So, if a MTAD method focuses only
on purely data driven techniques for learning discriminative latent features, they may label the initial
and final phases as normal. Without PA the performance may be unfairly under-reported.

Main Technical Contribution: We present SPIE-AD, that detects U2 by solving the general prob-
lem of zero-shot MTAD while violating the SOTA assumptions A1, A2 and A3. The backbone of
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SPIE-AD are the two fundamental theoretical contributions of this paper: a) robust sparse non-
linear dynamical model recovery (MR) from real-world multi-variate data using neural architec-
tures with automated differentiation (AD) and b) statistical conformance based model robustness
interval extraction (CRIE) method that can identify statistically relevant difference in recovered
models. Utilizing these, SPIE-AD implements the following U2 detection pipeline (Pane B in Fig. 7
in Appendix): a) training phase: where SPIE-AD mines several models from training data snippets
and defines a model robustness metric to quantify difference between models, b) validation phase:
it uses part of the training data in the CRIE algorithm to determine a robustness metric interval for
the most likely model of normal operation, and c) evaluation phase: it continually mines models
from test data, computes robustness and compares with robustness interval to determine anomalies.

Benchmark Contribution: We introduce six synthetic benchmarks derived from U2 scenarios oc-
curring in three different real-world systems including quadcoptor, F8 cruiser, and automated insulin
delivery (AID) and two novel real-world benchmarks from clinical study data. The hallmark of these
benchmarks is that there is statistically insignificant distribution shift between the anomalous and
normal data in each time series.

Evaluation Contribution: We first show that if we use PA (K = 0) and allow for data leakage in
TL, then it is possible to develop an untrained simpleton machine (AnomalySimpleton in Figure 8)
that can beat SOTA MTAD techniques. While this was also argued in Kim et al. (2022), we propose
a deterministic algorithm that gives consistent performance across benchmark datasets. We evaluate
recently proposed MTAD techniques along with SPIE-AD under realistic scenarios where the pre-
cision is not augmented with PA (i.e. K = 100) and anomaly signatures in the form of validation set
is not available for TL. All code and datasets available in supplement.

2 METHODOLOGY AND THEORETICAL FOUNDATIONS

We consider n sensors each with time series Xi for sensor i forming a vector X(t) over time where
t ∈ 0 . . . N/µ, where µ is the sampling frequency. The input / output time-series data from au-
tonomous systems satisfies physical/chemical/mechanical/physiological properties of the real world
system. Such properties are typically expressed using sparse non-linear dynamical systems:

Ẋ(t) = f(X(t), ω, t), (1)

where ω is the set of p model coefficients that defines the sparse model. An n-dimensional model
with M th order non-linearity can utilize (M+n

n

) non-linear terms. A sparse model only includes a
few non-linear terms p << (M+n

n

).
U2 Definition: Let X(t) have a global marginal distribution P (x). A window W is a U2 event
if: a) Marginal distributions remain unchanged: Pt(x) ≈ P (x),∀t ∈ W ; but b) Process becomes
non-stationary: ω(t) ̸= ω(t + τ), for some τ . Thus, a U2 event preserves marginal statistics but
reflects a structural change in the system’s underlying dynamics.

Anomaly Definition: A window W is an anomaly if: a) Window marginal drift occurs: Pt(x) ̸≈
P (x), for some t ∈ W , as determined by a statistical test (Figure 2); but b) Underlying process
remains stationary: ω(t) = ω(t + τ),∀t, τ . Thus, an anomaly induces local marginal deviation
without altering the long-term distribution.

2.1 ROBUST SPARSE DYNAMICAL MODEL RECOVERY

Given N time sequenced measurement of X(t), sparse model recovery (SMR) aims to recover the
coefficient ω such that the reconstructed measurements Y (t) by solving the ordinary differential
equation (ODE) in Eqn. 1 satisfies an error threshold ϵ, i.e.,

N∑
t=1

||Y (t) − X(t)||2 < ϵ.
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Figure 3: Robust MR technique that uses LTC-NN
nodes to refine the model coefficients provided by
SINDY-MPC to recover accurate underlying mod-
els under high noise and low sampling rate.

SMR is a well-researched problem with solu-
tions ranging from L2 minimization techniques
with sparse regression (SINDY-MPC) Kaiser
et al. (2018) to physics informed neural net-
works (PINN) Chen et al. (2021). It is gener-
ally acknowledged that SOTA MR techniques
suffer significant performance degradation on
data from real world systems O’Brien et al.
(2023). This implies that with low sampling
frequency and high noise, the model coeffi-
cients ωi and ωj derived from two consecutive
segments [i, i + W ], and [j, j + W ] of X(t),
with window size W has significant variance.
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This is problematic for SPIE-AD since it will be difficult to distinguish between noise and real U2
scenarios and will hamper the false positives. SPIE-AD needs MR that is robust to measurement
noise under low sampling rates.

To address robustness, SPIE-AD uses a novel neural network architecture with continuous time
latent variable nodes, specifically liquid time constant neural networks (LTC-NN) as shown in Figure
3. Given a segment with W samples, the SINDY-MPC technique is used to first recover a sparse
model coefficient estimate ω(0). The data segment is passed through a fully connected network
of V LTC-NN cells in batches of SB . The output of the LTC-NN nodes are fed to a dense linear
layer with (M+n

n

) nodes with RELU activation function. The sparsity of ω(0), i.e. which elements
of (M+n

n

) are ”0” is used to dropout nodes of the dense layer. The output of the ith dense layer
node are constrained within a range [(1 − ψ)ωi, (1 + ψ)ωi], ψ is a hyper-parameter. The weighted
dense layer output is the refined estimate ωest of the model coefficients and is fed to an ODE45
solver Shampine et al. (2003) that reconstructs the signal Y . The loss is the mean square error
between X and Y summed over dimensions and time steps. We show the effect of using this robust
MR method on U2 detection. In Appendix Table S1, we show an ablation study with LTC-NN
refinement removed on standard SMR benchmarks Kaiser et al. (2018).

2.2 CONFORMAL INFERENCE FOR MODEL DEVIATION

Conformal inference Tibshirani et al. (2019) is a distribution free method to identify whether a
model, ωv , learned from validation data [i, i + W ] is in the distribution of the set of models Ω
learned from training data. To compute model difference we use a robustness metric ρ in Eqn. 2.

ρ(ω
v
,Ω) = (

|Ω|∑
i=1

Ω
T
i ω

v
)/|Ω|, (2)

where |Ω| is the number of elements in the set Ω and ΩT
i denotes transpose of an element in Ω.

Let us consider that the training data has k windows of size W each,
X1(1 . . .W ), X2(1 . . .W ), . . . Xk(1 . . .W ) where data is i.i.d in Rn × RW drawn from a
distribution DX . The SMR mechanism L is used to derive coefficients ωi ∈ Rp from each Xi
such that reconstruction error is less than ϵ. L(., .) is used to derive ωv

m+1 for Xm+1, Ym+1

in validation data with no assumption on the DXY , hence no anomaly is required in vali-
dation set. Given the robustness function ρ(., .) in Eqn. 2, conformal inference creates a
prediction band C ⊂ R2 based on (X1, Y1), (X2, Y2), . . . (Xm, Ym) for a given miscover-
age level α ∈ {0, 1}, so that P (ρ(ωv

m+1) ∈ C) ≥ 1 − α. The prediction process can
be encoded in Algorithm 1 CRIE, which takes the i.i.d training data (X1, Y1) . . . (Xm, Ym),
miscoverage level α and the SMR method L to provide the prediction interval.

Algorithm 1 CRIE({Xi}Ni=1,α,ρ(., .),L)
1: input Data {Xi}N

i=1, miscoverage level α, robustness function ρ,
SMR L

2: output Confidence range d
3: Split {1, . . . , N} into two equal sized subsets IT and IV .
4: ωi = L((Xi) : i ∈ IT )

5: ωv
j = L((Xj) : j ∈ IV )

6: Average robustness σ = avg(ρ(ωi,Ω/ωi
))

7: For each ωv
j compute residual Rj = ρ(ωv

j ,Ω) − σ

8: return d = the kth smallest value in {Rj : j ∈ IV }, where
k = ⌈(|IV |/2 + 1)(1 − α)⌉

The basic method is to divide the training set
into two mutually exclusive subsets IT and IV .
The SMR method L is used to derive ωi for the
segments (Xi, Yi) ∈ IT and form the set Ω. For
each ωi ∈ Ω, ρ(ωi,Ω/ωi

) is computed, where
Ω/ωi

denotes the set Ω with ωi removed. Let
σ = avgi(ρ(ωi,Ω/ωi

)) be the mean value of
the robustness metric in the training set. From
the validation set, ωv

j is derived for (Xj , Yj) ∈
IV . The residual ρ(ωv

j ,Ω) − σ is derived for
every element in IV , the residual is arranged in
ascending order. The algorithm then finds the
residual at the position ⌈(|IV |/2 + 1)(1 − α)⌉. This residual is used as the prediction range d.
Theorem 2.1 in Lei et al. (2018) proves that the prediction interval at a new point (Xm+1, Ym+1) is
given by L and satisfies Theorem 1.

Theorem 1. If Ω is such that ||L(Xi, ωi)−Xi||2 ≤ ϵ,∀ωi ∈ Ω, for error margin ϵ, then for a new
ωv
m+1, (Xm+1, Ym+1) Algorithm 1 ensures, P (ρ(ωv

m+1,Ω) ∈ [σ − d, σ + d]) ≥ 1− α.

2.3 U2 DETECTION ALGORITHM

Utilizing Theorem 1 and the CRIE algorithm, we derived a robustness range that encodes the normal
behavior without using the knowledge of U2. Our U2 detection mechanism in Algorithm 2 takes
windows of test data, uses the SMR technique to learn the model coefficients ωi, computes the
robustness using Eqn. 2, and compares with the range obtained from CRIE.
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2.4 SPIE-AD AND AUTOENCODER COMPARISON

How SPIE-AD addresses A2? The robust MR mechanism captures sensor inter-relationships un-
like autoencoders that derive latent featurs of individual sensors. The CRIE algorithm learns a
tight robustness range characterizing most likely normal operation in a distribution agnostic manner
unlike autoencoders that need point estimation based EVT that assumes underlying distribution.

How SPIE-AD addresses A3? Unlike SOTA MTAD, SPIE-AD extracts low dimensional represen-
tation of the data which reduces entropy, making it easier to model normal scenarios. U2 scenario
lead to exaggerated model deviation since the inter-relationship between variables become inconsis-
tent. Hence, as seen in Table 3 & 4, SPIE-AD can achieve better overall precision without PA.

Algorithm 2 U2Detect({Xi}Wi=1,ρ(., .),L,σ,d,Ω)
1: input Test data {Xi}W

i=1 with U2, robustness function ρ, SMR
function L, mean robustness σ, interval d from CRIE algorithm,
and Ω set of all coefficients recoverd from training set.

2: output U2 label
3: ωi = L((Xi) : i ∈ 1 . . .W )

4: Compute residual Ri = ρ(ωi,Ω) − σ

5: if Ri ∈ [σ − d, σ + d] then
6: mark all samples in the window Xi as 0 (not U2)
7: else
8: mark all samples in the window Xi as 1 (U2)
9: end if
10: return U2 labels

How SPIE-AD addresses A1? By learning an
underlying model, SPIE-AD can exploit signif-
icant distribution differences in model space of
U2 scenarios (Figure 2).

Computational complexity: Comprehensive
analysis is provided in Section G in appendix.

3 RELATED WORK

Anomaly detection (AD) (Table 1) has a rich
history starting from univariate AD with ini-
tial works employing Kalman Filter Huang
et al. (2023) and principle component analysis
(PCA) Shyu et al. (2003). PCA has been used for MTAD but not zero shot. The next generation
MTAD techniques used statistical learning methods such as K nearest neighbors Wang et al. (2020)
or Isolation Forest (iForest) Liu et al. (2008) mechanisms or light weight online anomaly detector
(LODA) Pevný (2016). Such techniques are not tested for zero shot MTAD and also had poorer
overall performance on real world data Liu et al. (2024). Time series analysis methods have also
been used for MTAD such as time frequency domain approaches Zhang et al. (2022) or frequency
interpolation methods Xu et al. (2024). The current generation of MTAD techniques uses DL such as
LSTM Hundman et al. (2018), variational autoencoders (OmniAnomaly) Su et al. (2019), anomaly
transformers (AT) Xu et al. (2022), graph augmented normalized flows (GNAF) Zhao et al. (2022),
and Graph Attention Networks (GAT) Zhou et al. (2020) or even foundational models such as one
size fits all (OFA) approach Zhou et al. (2023). These MTAD techniques however use the work-
flow described in Figure 7 and do not achieve zero shot MTAD. While U2 has been explored in the
image domain using large vision models such as CLIP Pratt et al. (2023) such methods are not di-
rectly applicable to MTAD. We are aware of two works, i) unsupervised anomaly detection (USAD)
that performs zero shot MTAD Audibert et al. (2020a) using autoencoders, and ii) and use of large
language models (LLMs) to perform U2 in univariate timeseries Alnegheimish et al. (2024). The
USAD technique still reports anomaly detection accuracy with PA (A3) and TL (A2), and relies on
difference in distribution shift between normal and anomalous class (A1).

4 EVALUATION

We perform three types of evaluation: A) effects of using test set as validation set (A2) and PA
(A3) on MTAD performance. We show that an untrained statistical method can beat SOTA learning
based systems with A2 and A3. B) performance comparison of SPIE-AD and SOTA baselines
under violation of A2 and A3 on U2 benchmarks that have no distribution shift between anomaly
and normal data (violates A1). C) performance comparison of SPIE-AD and SOTA baselines on
real world univariate and multivariate datasets. Using the large univariate UCR dataset we perform
statistically robust evaluation of sensitivity of SPIE-AD on window size W in appendix Section F.

AnomalySimpleton: We propose an untrained deterministic thresholding algorithm that exploits
PA and test data distribution i.e. data leakage to provide anomaly detection performance on par with
state-of-the-art learning techniques. In this method, a specific windowW of data is selected from the
train data. Statistical properties of the train data windowW such as mean ψtrain, standard deviation
σtrain, and skewness κtrain is computed. For each test data window of lengthW , the same statistics
are computed. If the deviation of the test statistics is more than P% of the train statistics, then the
test data window is classified as anomalous else it is not anomalous. The window W and the test
statistics P is used to obtain two maximally separated clusters in the test data. This is done through
brute force search over several W and P options. For each benchmark real world data this window
and threshold seach is performed from scratch.
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Benchmarks: We used 14 datasets (Table 2) to evaluate SPIE-AD, out of which 6 are synthetic
and 2 real world U2 datasets, while 3 are real world MTAD datasets and another 3 are popular large
scale univariate real world datasets taken from TimeSeriesBench Si et al. (2024).

Table 1: Related works. Bold text − baselines. ¬ − assumption violation.
Works MTAD Zero shot ¬ A2 ¬ A3 ¬ A1

Pure statistical approaches
Extended Kalman Filter Huang et al. (2023) No Yes Yes Yes No
Principle Component Analysis Shyu et al. (2003) Yes No No No No

Time series analysis methods
Time frequency anomaly detection Zhang et al. (2022) Yes No No No No
Frequency Interpolation Time Series Xu et al. (2024) Yes No No No No

Statistical Machine Learning approaches
K nearest neighbor Wang et al. (2020) Yes No No No No
Isolation Forest Liu et al. (2008) Yes No No No No
Light weight online anomaly detection Pevný (2016) Yes No No No No

Deep learning models
OmniANomaly Su et al. (2019) Yes No No No No
Anomaly transformers Xu et al. (2022) Yes No No No No
Graph attention networks Zhou et al. (2020) Yes No No No No
LSTM Hundman et al. (2018) Yes No No No No
Graph augmented normalized flows Zhao et al. (2022) Yes No No No No
One size fits all Zhou et al. (2023) Yes No No No No

Zero shot MTAD approaches
Usupervised anomaly detection Audibert et al. (2020a) Yes Yes Yes No No
CLIP zero shot image recognition Pratt et al. (2023) No Yes Yes Yes No
LLM Anomaly detection Alnegheimish et al. (2024) No Yes Yes Yes No
SPIE-AD Yes Yes Yes Yes Yes

We utilize both syn-
thetic and real world
U2 datasets. Detailed
description of syn-
thetic U2 datasets
are provided in the
appendix while real
world data is de-
scribed below. While
the synthetics datasets
highlights the efficacy
of SPIE-AD in U2
detection while vio-
lating A2, A3, and
A1, the real world
anomaly datasets
show the generality of
SPIE-AD.

Real world datasets:
A) Benchmark MTAD datasets available in Su et al. (2019), and large univariate datasets UCR,
Yahoo and NAB database available in Wu & Keogh (2022); Si et al. (2024).

B) Real world U2 data, for cartridge occlusion in Medtronic 670 G obtained from JAEB center JAEB
center (2023) and clinical electroencephalography (EEG) data capturing sudden onset of epileptic
seizure Ghorbanian et al. (2015). Table 2: Datasets. Train, T, Test, Te, Real world, R, Synthetic, S

Dataset Dim Samples (T/Te) Anomaly / U2 % Type
Electromagnetic attack (UAVEMA) 3 240K/242K 29.75% S
Simulated g change (UAVSimG) 3 240K/274K 11.7% S
F8 cruiser stuck elevator (F8Stuck) 4 877K/237K 9.2% S
F8 cruiser slow elevator (F8Slow) 4 877K/843 K 1.4% S
AID phantom meal (AIDPhantom) 4 260K/240K 12% S
AID cartridge error (AIDCartridge) 4 260K/302K 11.5% S
Medtronic Cartridge error 3 256K/518 K 3% R
EEG Seizure data 15 512K/675 K 7% R
Server Machine Dataset (SMD) 38 708K/708K 4.16% R
Soil Moisture (SMAP) 25 135K/427K 13.13% R
Mars Science Lab Rover (MSL) 55 58K/73K 10.7% R
250 UCR anomaly dataset 1 5M/13M 0.4% R
Yahoo dataset 1 400K/780K 12% R
NAB dataset 1 54K/104K 6% R

Baseline Techniques: We com-
pare SPIE-AD with a combina-
tion of time series, deep learn-
ing, autoencoder, and founda-
tional model based techniques
highlighted in italics in Table
1. In addition, we also compare
with some table topper univari-
ate AD methods reported in Wu
& Keogh (2023); Lee et al.
(2024b); Si et al. (2024) (Table
5 and 7 in Appendix).

SPIE-AD implementation: We implemented two variations of SPIE-AD: a) SPIE-ADS, where
the model recovery part is solely SINDY-MPC, and b) SPIE-ADL, where the model recovery part
is SINDY-MPC augmented with the LTC-NN neural architecture with AD. For the SINDY-MPC
implementation we used the code from Kaiser et al. (2018). For the LTC-NN neural architecture,
we updated the base code available in Hasani (2024). The CRIE and U2 detection algorithms were
implemented using Matlab 2022b.

Hyper-parameter optimization: As highlighted in Figure 7, there is a hyper-parameter optimization
step in SPIE-AD during the training process. The hyper-parameters include: a) miscoverage level
α that determines the robustness interval width d, b) the polynomial order of SMR technique, c)
the sparsity level of the model, and the window size k. These parameters were determined only
using the training data with the objective to include atleast r > 80% points of the training dataset
within the robustness interval while minimizing d. The hyper-parameter optimization approach was
brute-force and performed for each application (Section B.4).

Baseline Implementation: We used the MTAD tools and pipeline established in Liu et al. (2024)
for baseline implementations. In all baseline implementations except USAD, we observed that re-
moving labels from validation set reduced the precision and recall to near zero. Indicating that a
pure zero-shot MTAD implementation with baselines is not possible without significantly altering
the methods. Hence, in our comparison all baselines were non zero-shot MTAD except for USAD
and SPIE-AD. For all implemented techniques we show two cases with and without PA.

Evaluation metrics: We use standard metrics: Precision (Pr), Recall (Re), and F1 score Liu et al.
(2024). For the univariate real-world UCR database, the event-based AD accuracy is used as in
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Table 3: Comparison of SPIE-AD against baselines for synthetic U2 benchmarks (S = synthetic).
SPIE-ADS uses SINDY-MPC, SPIE-ADL uses LTC-NN. + denotes with point adjustment (PA).

Approach F8Stuck S F8Slow S UAVSimG S UAVEMA S AIDPhantom S AIDCartridge S
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Omni+ 91.2 72.7 80.9 88.4 71.1 78.8 92 77.1 83.9 90 67.3 77.0 94 76.1 84.1 97 59.7 74
Omni 41 26.8 32.4 65 28.1 39.2 32 19.7 24.4 29 16.8 21.3 19.1 16.5 17.7 65 31.9 43
AT+ 100 78.6 88 100 58.7 74.1 100 59.2 74.2 90 56.1 69.1 91 56.3 69.7 100 59.2 74
AT 85.5 75.8 80.3 34.2 32.8 33.5 35 33.5 34.2 33.9 32.4 33 34 32 33 34.3 33.8 34
iForest+ 100 78.6 88 100 47.5 64.4 100 50.8 67.6 88.5 46.2 60.7 98.6 45.9 62.6 91.2 42.1 57.6
iForest 14 33 19.6 9.8 8.2 8.9 10.6 8.5 9.4 8.6 7.6 8.1 9.5 8.1 8.7 9.5 7.9 8.6
LODA+ 100 72.6 84 100 20.7 34.3 96.9 18.5 31 88.5 14.9 25.5 95.8 16.8 28.6 99.2 17.2 29.4
LODA 88 70 78 60.7 13.7 22.4 50.7 11 18 35 8.6 13.8 35.8 9.4 14.9 36.4 9.7 15.3
LSTM+ 100 88 93 100 47.8 64.7 91.8 20.2 33.2 100 21.2 35 99.9 20.3 33.8 96 18.6 31
LSTM 77 85 80 61 35.8 45.2 59.4 13.2 21.6 60.8 14.2 23 58.6 12.6 20.7 54.7 12.1 19.9
USAD+ 100 72.1 83.8 100 23 37.4 92.6 21.8 35.3 90.3 21.6 34.9 94.6 25.2 39.8 97.1 28.6 44
USAD 81 67.7 74 55.3 14.2 22.6 51.2 12.3 19.8 49.2 12.1 19.4 52.6 12.1 19.7 58 8.8 15.2
GANF+ 100 86 92.5 100 58 73 100 92.2 96 100 97 98.5 96.7 61.5 75 92.8 56.1 70
GANF 61 79 68.8 3.2 4.3 3.7 51.4 85 64.3 0.9 24.7 1.8 3.2 4.5 3.8 2.1 2.7 2.4
GAT+ 100 85.2 92 100 47.2 64.1 99.2 48.3 65 86.4 44.6 58.8 92.8 48.1 63.4 99 49 65.6
GAT 71.4 80.5 75.7 58.9 34.5 43.5 59.2 32.3 41.8 50.4 28 36 54.5 28.9 37.8 57.2 30.3 39.7
OFA+ 82.1 87.5 84.7 65.9 43.2 52.2 66.2 72.3 69.1 70.4 68 69.2 74.5 77.1 75.8 81.3 87.4 84.2
OFA 21.4 4.5 7.4 21.9 9.7 13.4 37.5 22.1 27.2 20.3 8.5 12 31.3 18.3 23.1 21.7 10.1 13.8
FITS+ 91.4 70.5 79.6 81.3 74.2 77.6 81.9 82.3 82.1 80.1 76 78 74.3 88.1 80.6 97.2 70.1 81.5
FITS 21.4 8.6 12.3 48.1 14.3 22.05 17.3 21.9 19.3 80.4 2.4 4.7 24.5 18.4 21.0 14.7 40.1 21.5
TFAD+ 82.1 77.4 79.7 78.2 84.3 81.1 91.9 82.3 86.8 80.4 88 84.0 71.5 78.9 75.0 87.2 80.3 83.6
TFAD 11.2 30.4 16.4 9.8 21.7 13.5 29.5 12.4 17.5 21.9 8.7 12.4 14.7 31.8 19.9 17.7 21.4 19.4
SPIE-ADS+ 87.3 100 93.2 54.8 100 71 82 100 90.1 91.1 100 95.4 94 98.1 96 95.3 93 94.1
SPIE-ADS 86.7 94.5 90.4 51 85 66 82 99.9 90.1 91.1 100 95.4 91 96 93.4 92 85 88.4
SPIE-ADL+ 88.9 100 94 55.1 100 73 91 100 95.3 93.2 100 96.5 94.1 99 96 95 94 94.1
SPIE-ADL 88.7 95.1 92 58 93 70 89 99.9 94.2 93.2 100 96.5 92.1 99 95.4 91 92 91.5

Timeseriesbench Si et al. (2024). If the detected anomaly sample is in ± 100 samples of the anomaly
start point, accuracy is 1, else 0. Plus we show execution times of all methods for real world datasets.
For MTAD methods that depend on TL, a threshold independent metric, volume under the surface
(VUS) of the area under the precision recall curve (AUC-PR) is reported Paparrizos et al. (2022).
SPIE-AD is not dependent on an anomaly threshold. One way to incorporate this is to compute VUS
by changing the coverage level α. We report VUS and AUC-PR in appendix Table S4.

5 RESULTS
Table 4: Comparison of SPIE-AD
against baselines for real-world U2
benchmarks (R = real world).
Approach Medtronic R Epilepsy R

Pr Re F1 Pr Re F1
Omni+ 41.1 62.3 49.5 25 17 20.2
Omni 2.1 5.2 3 5.1 14.2 7.5
AT+ 51.3 72 59.9 43.4 61 50.7
AT 30 20 24 40 50 44.4
iForest+ 61.3 54 57.4 66.4 71.2 68.7
iForest 23.1 31.2 26.5 33.1 33.1 33.1
LODA+ 45.1 65.3 53.3 53 55 54
LODA 3.4 91 6.6 4.1 15.4 6.5
LSTM+ 69 60 64.2 15.1 18 16.4
LSTM 2.7 10.5 4.3 4.4 21 7.3
USAD+ 67 71 68.9 25 74 37.4
USAD 31 43 36 12 65 20.2
GANF+ 43 84 56.9 63 75 68.5
GANF 4.1 91 7.8 33 35 34
GAT+ 64 60 61.9 34 34 34
GAT 13.2 29.1 18.2 12 65 20.2
OFA+ 69 71 70 43 57 49
OFA 60 56 57.9 39 55 45.6
FITS+ 65 40 49.5 24 35 28.5
FITS 55 37.5 44.6 10.1 17.5 12.8
TFAD+ 65.2 60 62.5 43 30 35.3
TFAD 21.5 15 17.7 17.5 19 18.2
SPIE-ADS+ 69 71 70 64 79 70.7
SPIE-ADS 67 70 68.5 60 77 67.4
SPIE-ADL+ 69 72 70.5 65 79 71.3
SPIE-ADL 69 71 70 64 75 69

We first show the inefficacy of the evaluation strategy used
in state of the art MTAD techniques. We then evaluate the
performance of SPIE-AD and compare with baseline on U2
benchmarks. We then compare SPIE-AD performance on real
datasets. Here we also perform two ablation studies: a) re-
moving point adjustment, and b) removing acess to validation
datasets with anomalies. Our lessons learned from Anoma-
lySimpleton experiment is available in Section D in Appendix.

5.1 U2 DETECTION PERFORMANCE EVALUATION

Table 3 and 4 show that SPIE-ADS outperforms SOTA on
the F1 score for the case without PA - implying it has bet-
ter precision and recall and does not need PA. Methods such
as anomaly transformers (AT) do outperform SPIE-AD in F1
metric with PA - implying SPIE-AD does miss some legiti-
mate events as evidenced by the slightly higher recall.

Interestingly, among the DL methods, AT has the highest dif-
ference between F1 scores with and without PA. However, AT
has the highest F1 score for F8Slow. This entails that while
anomaly trasnformer is good at detecting U2, albeit very late.
Further, SPIE-AD also outperforms the only other zero-shot
MTAD methods USAD. USAD also has a significant differ-
ence in metrics with/without PA (A3). SPIE-AD requires no such assumptions.

Another inference is that for nearly all cases SPIE-ADL consistently outperforms SPIE-ADS,
showing the robustness improvement property of the LTC-NN approach in Figure 3. However, the
difference is much lower and given that LTC-NN architecture is much more complex than SINDY-
MPC, one may wonder why it’s necessary. A point is that all these benchmarks are synthetic; hence
are much less noisy reducing its need. The need for LTC-NN is illustrated in real data.
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5.2 REAL WORLD ANOMALY DETECTION PERFORMANCE

Multi-variate: Table 5 shows the performance of SPIE-AD on real datasets and compares it to
recent DL based MTADs and unsupervised methods. In real data, SPIE-AD outperforms SOTA on
F1 score without PA. As expected on real data, we see the largest benefit of using the LTC-NN.

Table 5: Comparison of MTAD methods on real-world datasets (F1;
Time in minutes). Left block: SMD, middle: SMAP, right: MSL.
MTAD Method SMD SMAP MSL

A3 ¬A3 ¬A2 Time A3 ¬A3 ¬A2 Time A3 ¬A3 ¬A2 Time
AT 90.7 38.8 0 372 91.2 22.3 0 183 88.6 13.1 0 175
GANF 78.6 41.2 3.4 361 71.9 32.8 1.1 179 73 24 0 165
USAD 43.1 21.2 21.2 218 62 26 26 121 41 18 18 103
OFA 72.9 2.5 1.9 318 86.9 9.4 5.1 171 82.7 22.3 4.4 159
FITS 99.9 32.7 11.2 281 70.74 13.4 2.2 164 78.12 15.3 4.3 141
TFAD 89.3 21.7 4.1 211 96.3 35.4 7.7 135 96.4 40.1 8.8 122
AnomalySimpleton 96.2 2.0 0 21 90.5 4 0 7 89.5 4.8 0 6
SPIE-ADS 74 73 73 172 68 65 65 153 83 83 83 132
SPIE-ADL 86 86 86 323 79 73 73 208 83 83 83 178

Univariate: Maximum
event-wise AD accuracy of
SPIE-ADS was 75.6% on
UCR database. Compared to
the leaderboard in Lee et al.
(2024a), SPIE-ADS beats the
SOTA by 4.8%.

Ablation Studies: For each
real dataset we created three
configurations: with point
adjustment and validation set
(PA + V), without PA (¬ PA), and without validation set i.e. zero shot (¬ V). It is observed that as
expected the F1 score of SOTA DL techniques reduce drastically without PA. The USAD has lesser
effect, while the SPIE-AD methods have the least effect of PA. Moreover, removal of validation
set reduces the F1 score to near zero for anomaly transformer and GNAF approaches showing that
cannot be trivially extended for zero-shot MTAD. Both USAD and SPIE-AD have higher F1 score
for zero-shot MTAD, with SPIE-AD outperforming USAD.

5.3 SPIE-AD ANALYSIS

Figure 4: Performance with respect to sampling frequency, and library
size (higher polynomial order results in combinatorially larger library)
Low noise case. High noise case in Appendix Figure 10.

In this section, we perform
the following analysis:

a) Evaluate the sensitiv-
ity of SPIE-AD U2 de-
tection performance to li-
brary size, sampling rate,
and noise: For this exper-
iment, we consider all the
U2 benchmarks synthetic
and real world combined
and report averaged results.
We resampled all the mutli-
variate data to 100 Hz and
then varied the sampling
rate from 20 Hz to 120 Hz
in steps of 20 Hz. For each
frequency level, we varied
the maximum polynomial
order from 2 to 4 in steps of
1. We perform this experi-
ment under two noise con-
ditions: i) 20 dB signal to
noise ratio (SNR), achieved by adding Gaussian noise to each dimension of the signals, this rep-
resents low noise scenario, and ii) high noise scenario with 5dB SNR. In Figures 4 and 10 (in
Appendix) we report additional performance metrics: 1) false acceptance rate (FAR), 2) event cov-
erage, 3) time delay in terms of samples to detect U2, 4) accuracy, 5) precision, and 6) F1 scores.
The figures show that as sampling frequency reduces all performance metrics become poorer, with
polynomial order 3 providing the best overall results for SPIE-ADL. Moreover as noise increases
accuracy, precision, FAR, F1 reduce but time delay has more variance and sometimes is better for
higher noise scenario. This may be the case when noise variations immediately precedes U2 occur-
rence and SPIE-AD mistakenly classifies noise as U2, but the time delay in the classification results
in false U2 detection right after actual U2 occurrence.

b) Evaluate the effect of different SINDY backbones on SPIE-AD, U2 detection performance: There
are several SINDY variants as summarized in Table 11 in Appendix. In Figure 11 in Appendix we
compare the effect of using W-SINDY specifically designed for high noise scenarios, and SINDY
without control on SPIE-AD. It shows that SINDY-MPC is the best SINDY variant in terms of all
performance metrics. W-SINDY and SINDY without control suffers because they do not handle
exogenous inputs. We also observed the effect of adding a non-polynomial (sine) term in the library,
which resulted in significant drop in performance metrics. This heavily depends on the stability of
the STRIDGE algorithm in evaluating regression on non-polynomial functions.
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c) Evaluate the effect of different continuous depth neural networks on execution speed and U2
detection performance: SINDY variants are the fastest as shown in columns 4, 5, and 6 on real world
data in Table 5. We further valuated the use of continuous time recurrent neural networks (CT-RNN)
and NODE replacements of LTC-NN. These variants improved execution time (1.2 × for NODE,
and 1.7 × for CT-RNN) but resulted in performance degradation (Figure 12 in Appendix).

Figure 5: Effect of changing coverage level 1 − α and sparstiy of
SINDY-MPC on SPIE-AD performance.

d) Evaluate the effect of
miscoverage level, and
sparsity settings on U2 de-
tection performance: We
varied the coverage level
1−α (or miscoverage level
α) from 0.95 to 0.2 for
SPIE-ADL and performed
experiments for the F8
example (most complex
model). In SINDY-MPC
the sparsity threshold
controls sparsity such that
if values are less than the threshold they are ignored and the representation becomes sparser. We
introduce a sparsity level from 0.001 to 5.0, which is a multiplicative factor to this threshold. As
sparsity level increases the underlying model becomes sparser. Figure 5 shows that SPIE-AD is
sensitive to both miscoverage level and sparsity. As miscoverage level increases all performance
metrics monotonically become worse. However, sparsity dependency is more interesting. From
Figure 5, we see that there is an optimal sparsity level for which the model performs best. Additional
experiments show that this optimal sparsity level varies for different underlying systems.

Figure 6: Precision / Recall v.s. detection delay
for fixed FAR budgets (trend lines only).

e) Evaluating the trade-off between Precision,
Recall and U2 detection latency under fixed
false acceptance rate budget: In this experi-
ment, across all the U2 synthetic and real world
datasets, we fixed the average FAR to 0.01,
0.025, 0.05, and 0.1 and plotted the precision /
recall against detection delay. Figure 6 shows
that if for a fixed FAR budget, when the de-
lay in detection increases both precision and re-
call increase. This means that larger number of
samples result in better U2 detection accuracy.
However, this is not true if we allow for higher
FAR. At FAR budget of 10%, the precision de-
creases with increased delay. SPIE-AD perfor-
mance is poorer with smaller U2 events. If U2
length is small then the delay increases and SPIE-AD identifies data points after the U2 event as U2
and hence results in higher false positives reducing precision.

6 CONCLUSIONS

In this paper, we introduced SPIE-AD a methodology for identifying ’unknown-unknown’ (U2) er-
rors in AI-enabled autonomous systems. U2 can arise due to unpredictable human interactions and
complex real-world usage scenarios, potentially leading to critical safety incidents through unsafe
shifts in the distribution of the inter-relationships among the variables in operational data. SPIE-AD
performs zero shot anomaly detection and hence does not require signature of the U2 scenario or
detection. Validation across diverse contexts such as zero-day vulnerabilities in unmanned aerial
vehicles, hardware failures in autonomous insulin delivery systems, and design deficiencies in air-
craft pitch control systems such as Maneuvering Characteristics Augmentation Systems (MCAS),
demonstrates our framework’s efficacy in preempting unsafe data distribution shifts due to unknown-
unknowns. This methodology not only advances unknown-unknown error detection in AAS but also
sets a new benchmark for integrating physics-guided models and machine learning to ensure sys-
tem safety. Mining the underlying model of a dynamical system has several applications including
detection of stealth cheating scenarios in AI systems much like the Volkswagon emission cheating
case, or also biometric liveness detection. We have not only shown efficacy of SPIE-AD on U2
datasets but also demonstrated its generality in detecting any anomalous scenarios through the us-
age of standard real world datasets. Limitations: SPIE-AD faces challenges in determining point
anomalies that last very few samples. In the SMD SMAP and MSL datasets, anomalies that last < 5
samples are missed consistently. Moreover, as seen in Figure 9 SPIE-ADS performance is sensitive
to the window size chosen for the CRIE algorithm. Hence, an important future work is to formally
evaluate the sensitivity of SPIE-AD to window length.
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7 REPRODUCIBILITY

We will make our dataset public through the MTAD tools and techniques github page Liu et al.
(2024) for the general research community to develop novel U2 detection schemes. We have also
shared our code in an anonymous link in Section H.1 in appendix.

8 ETHICAL CONSIDERATIONS

One of the components of SPIE-AD is recovering underlying model. One of the applications of
SPIE-AD is digital twins. An unethical usage is impersonation. Thus, careful ethical evaluation
is required when integrating such systems in medical practice. Another issue is that SPIE-AD is
only a U2 detection mechanism. In its current form it cannot be used to explain the reasons behind
the U2 occurrence. Such black box models can become problematic if false positives lead to usage
of critical intervention. Hence proper safeguards should be placed to vet the U2 decisions from
SPIE-AD.
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A APPENDIX

B EVIDENCE OF DATA LEAKAGE

(refer to line 196 to 200 in the data loader.py code in https://github.com/thuml/
Anomaly-Transformer). Also it is evident from the code available in the github link for TSB-
AD Liu & Paparrizos (2024). The fit function in line 97 in TSB-AD/TSB AD/models/USAD.py
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Figure 7: Panel A: SOTA MTAD pipeline with the identified issues highlighted by dashed arrows
and boxes. Panel B: SPIE-AD’s approach for solving zero-shot MTAD problem.

SPIE-AD evaluation 
on benchmarks 
SMD, SMAP,  MSL 
[Xu et al.  ICLR’ 22]

Average F1 scores (F1) and precision (P) across three benchmark datasets 
for MTAD (Exhaustive metrics in Results Section)
Validation with data leak Validation without data leak
With point 
adjustment

Without point 
adjustment

With point 
adjustment

Without point 
adjustment

AT [ICLR’22] F1:90 ±2,P:98 ±3 F1:25 ±13,P:9±6 F1:0±0,P:0±0 F1:0 ±0,P:0±0
GNAF [ICLR’22] F1:74±4,P:75 ± 8 F1:33 ±9,P:38±8 F1:1.5 ± 2, P: 3 ± 2 F1:0.1±0,P:0.1±0
AnomalySimpleton F1:92±𝟒, P:91±6 F1:4±1,P:23±10 F1:0±0, P:0±0 F1:0±0,P: 0±0
SPIE-AD + SINDY* Not applicable Not applicable F1: 78±𝟏𝟐, P: 83±𝟕 F1:77±𝟗,𝐏:81±𝟔
SPIE-AD + LTCNN* Not applicable Not applicable F1:84±𝟏𝟏,P:85±𝟗 F1: 82±4,P: 85±𝟗

Snippet of Results (AT – Anomaly Transformer, GNAF – Graph Augmented Normalizing Flows)

Figure 8: Snippet of SPIE-AD performance for zero-shot MTAD against recent MTAD works on
benchmark datasets.

extracts train and validation data and and function decision function (line 180) extracts test data
using dataloader. TSB-AD/TSB AD/main.py line 39 that loads the data. For supervised methods in
main.py line 39 instantiates data and line 44 extracts data train from which train and validation
data are extracted. However, at line 50 data train is passed as train data but the whole data is passed
as test data.

C PERFORMANCE INFLATION

Point adjustment strategy inflates performance.

D LESSONS LEARNT WITH ANOMALYSIMPLETON

Table 5 and 7 (in Appendix) shows AnomalySimpleton could utilize PA and data leakage to beat
GANF Zhao et al. (2022) and USAD Audibert et al. (2020a) baselines on all real benchmark datasets

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

and was on par with Anomaly Transformers Xu et al. (2022). However, when PA was eliminated,
its F1 score drastically dropped. Moreover, if data leakage was disabled, then its F1 score became
0. This shows a worse case machine with very poor realistic performance can result in a very good
anomaly detection method through the usage of point adjustment and threshold learning using test
data. Through this misadventure, we have learned the following lessons:

Lesson 1: anomaly detection works should show results for both with / without PA or use metrics
such as PA%K as proposed in Kim et al. (2022).

Lesson 2: anomaly detection works should explicitly address data leakage issue by either obtaining
validation data from train set or ensuring that validation set and test set are mutually exclusive.

E U2 SYNTHETIC DATASETS

F8 Cruiser: This is an aircraft pitch control system using a model predictive control for trajec-
tory tracking. The U2 scenario is a hardware failure in Introduction section where the elevator
gets jammed and maintains a constant position overriding the controller (F8Stuck). Another U2
scenario is the elevator responds slower than normal (F8Slow).

UAV Altitude control: This is a quadcoptor, whose altitude is controlled by four proportional inte-
grative and derivative (PID) controllers. These controllers provide balanced thrusts in each propeller
so that the UAV maintains a given height. The first U2 is a software failure that changes the gravity
parameter g in the controller software (UAV SimG). The second U2 scenario is an electromagnetic
attack on the UAV gyroscope sensor (UAV EMA).

Automated insulin delivery system: This is an hybrid close loop autonomous system that au-
tonomously decides on insulin delivery for the most part, but requires human intervention with
extra insulin delivery to manage meal intake. The human may trick the system to deliver a high
dosage of insulin by announcing to the system that a large meal has been ingested without actually
consuming the meal. This U2 scenario is called phantom meal (AIDPhantom). In the second
scenario, the human participant poorly installs the insulin cartridge resulting in insulin occlusion
or blockage. The block causes insulin build up and finally it gives way and injects an overdose of
insulin AIDCartridge.

In all the U2 examples, U2 scenarios are generated at random times with random duration of U2
activation sampled from a distribution.

E.1 WHY THESE DATASET ARE U2 AND NOT ANOMALIES?

F8 Cruiser (hardware-induced U2): We simulate the F8 aircraft using the MATLAB SINDY-MPC
model from:

https://github.com/eurika-kaiser/SINDY-MPC/tree/master/EX FLIGHT CONTROL F8

F8Stuck The SINDY-MPC F8 cruiser uses a pseudo-random bit stream (PRBS) elevator input for
pitch control. After 4000 samples of nominal behavior, we jam the actual elevator actuation within
the dynamical solver at its last valid value, while still logging the original PRBS stream. Thus,
the recorded actuator signal looks normal, but the true actuator entering the dynamics is incor-
rect—an unmeasured hardware failure. F8Slow Similarly, after 4000 samples, the actuator entering
the dynamics is reduced to 75% of the nominal PRBS value, but the logged PRBS input remains
unchanged.

Why these are U2: In both cases the marginal distribution of recorded data is unchanged (Figure 2B),
but the underlying actuation delivered to the system is different, altering the governing dynamics and
producing a non-stationary process. This satisfies the definition of U2: same marginals, different
underlying process.

Quadcopter UAV (software and sensor-induced U2) We use the quadcopter simulator from:

https://github.com/bobzwik/Quadcopter SimCon

UAVSimG — stealthy software attack At 5 s we increase gravitational acceleration gfor 5 s. The
controller, unaware of this manipulation, compensates with slightly larger rotor speeds (still within
normal rotor limits), so the recorded sensor traces retain their usual marginal distribution. However,
the physical model evolves under a different gravity constant.

UAVEMA — barometer interference: We simulate the presence of a strong magnet near the UAV.
This subtly corrupts barometer calibration and yields small but persistent elevation errors. Such
calibration faults mirror real helicopter crashes where barometer drift caused catastrophic outcomes.
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Why these are U2: The recorded data remains marginally indistinguishable from normal (Figure
2B), but the system evolves under incorrect physics (wrong g) or incorrect altitude sensing, produc-
ing a non-stationary process with unchanged marginals.

Automated Insulin Delivery (AID) System — human error + hardware fault U2: We use the
FDA-accepted Type 1 Diabetes simulator for glucose–insulin dynamics:

https://pmc.ncbi.nlm.nih.gov/articles/PMC4454102/

AIDPhantom — phantom meal declaration: A meal of 15 g carbohydrate is reported to the con-
troller but not actually ingested. The sensed glucose values remain high but stable (as is typical
when patients announce meals at high glucose values), so the marginal glucose distribution does not
shift. However, the controller interprets the phantom meal as a rising-glucose scenario and becomes
unnecessarily aggressive in insulin delivery despite the absence of any physiological post-meal rise.
This creates a mismatch: the recorded data looks normal, but the controller’s behavior—and there-
fore the closed-loop glucose–insulin dynamics—no longer matches the intended governing model.

AIDCartridgeS — insulin pooling and burst delivery: Here the recorded insulin-delivery request is
correct (e.g., B units over t minutes), but the cartridge mechanically fails to deliver at the correct
rate. Instead it delivers only 0.1B initially, pools insulin internally, and then releases the remaining
0.8Bt in a single burst once a threshold is reached. The logged insulin traces still appear normal
because they reflect commanded delivery, not the actuator fault, so there is no marginal distribution
drift. But the true physiological dynamics experienced by the patient model change dramatically
because insulin is delivered in a physiologically incorrect pattern. This behavior is consistent with
real-world failures reported in Medtronic case studies.

Why these are U2 (and not anomaly): In both AIDPhantom and AIDCartridgeS, the recorded data
shows no distributional shift—glucose values remain within expected ranges and logged insulin
traces look nominal. However, the underlying closed-loop governing equation changes:

1) In AIDPhantom, the controller becomes aggressive out of context, producing a different in-
sulin–glucose dynamic model even though the sensed glucose shows no rising-meal pattern.

2) In AIDCartridgeS, the true insulin delivery pattern diverges substantially from the logged (nomi-
nal) delivery, changing the underlying physiological dynamics while the recorded marginals remain
stable.

Thus both scenarios satisfy the definition of U2: no marginal distribution shift but a structural change
in the underlying process, induced by human error (phantom meal) or actuator failure (insulin pool-
ing).

E.2 WHY REAL WORLD DATA ARE U2?

(a) Real-world U2 datasets: Medtronic R and Epilepsy R

These datasets represent true U2 events, i.e., situations where the underlying governing process
changes but the marginal distribution of the sensed data does not.

Medtronic R (AIDCartridge U2): This dataset contains insulin-cartridge delivery failures where
the observed (logged) insulin traces remain marginally normal, but the true physiological insulin
delivery pattern changes dramatically due to pooling and burst-release. This alters the closed-loop
insulin–glucose dynamics (non-stationary underlying process) without producing marginal distribu-
tion drift. This is exactly a U2 event.

Epilepsy R: Sudden seizure onset produces an acute transition in brain neuroplasticity and changes
the intrinsic neural dynamics. This is a structural shift in the governing equation of the EEG process,
i.e., a non-stationary change in the underlying generative model. However, seizure onset happens
rapidly and may not manifest as a marginal distribution shift within a short detection window. This
again matches the definition of U2: process-level change, no marginal drift. Thus, both Medtronic
R and Epilepsy R are genuine U2 datasets, not anomalies.

(b) Real-world anomaly datasets

Because U2 events are rare, high-stakes, and often proprietary, large open datasets exhibiting true U2
behavior are extremely scarce. Therefore, we also evaluate on standard anomaly-detection datasets,
which do exhibit marginal distribution shifts. Our method remains applicable here for the following
reason:

i) In anomaly scenarios, marginal drift causes the estimated governing equation to differ from the
normal model.
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ii) Since our framework evaluates deviations in the recovered underlying model, it naturally detects
anomalies as well—although this is not the primary focus of the paper.

This provides a broader empirical validation and enables comparison against widely used anomaly-
detection baselines.

E.3 LTC-NN MODEL RECOVERY ROBUSTNESS RESULTS

Table S1 6 shows the performance of LTC-NN architecture described in Figure 3 of the main paper
on model recovery for different benchmark examples available in Kaiser et al. (2018).

For each evaluation experiment, we use two metrics:

Root mean square error in model coefficients (RMSEΘ) and Root mean square error in sig-
nal (RMSEY ). Given the estimated model coefficients Θest and measured variables Yest for any
technique we computed them as:

RMSEΘ =
√

1
p

∑
j=1...p (Θj

est − Θj)2, (3)

RMSEY = 1
n

∑
l=1...n

√
1
k ×

∑
j=1...k (Y l

est(j) − Y l(j))2. (4)

Table 6: S1: Comparison of LTC-NN architecture with baseline SINDY-MPC only and other RNN
architectures on standard benchmarks. LTC-NN-MR represents model recovery with LTC-NN ar-
chitecture shown in Figure 3. The LTC-NN can be replaced by CT-RNN or NODE. Value in () is
standard deviation

Example RMSE SINDY-MPC LTC-NN-MR CT-RNN-MR NODE-MR
Lotka RMSEΘ 0.059 (0.02) 0.048 (0.015) 0.054 (0.03) 0.064 (0.02)
Volterra RMSEY 0.03 (0.02) 0.03 (0.018) 0.05 (0.02) 0.088 (0.03)
Chaotic RMSEΘ 0.014 (0.008) 0.015 (0.006) 0.022 (0.009) 0.044 (0.012)
Lorenz RMSEY 1.7 (0.6) 1.68 (0.4) 3.66 (1.1) 8.1 (3.6)
F8 RMSEΘ 7.9 (3.2) 6.8 (2.9) 10.5 (4.8) 19.9 (7.4)
Crusader RMSEY 3.2 (2.1) 1.57 (1.4) 3.46 (2.6) 7.22 (5.7)
Pathogenics RMSEΘ 0.5 (0.2) 0.39 (0.23) 0.43 (0.3) 0.42 (0.3)
attack RMSEY 27.8 (9.1) 28.3 (6.2) 28.8 (7.7) 29.5 (9.6)

E.4 DESCRIPTION OF REAL WORLD DATASETS

We used three real datasets:

Server Machine Database: The Server Machine Dataset (SMD) is a newly curated dataset that
spans a period of five weeks, collected from a major Internet company known for its extensive
server infrastructure Su et al. (2019). This dataset, which includes detailed logs and metrics related
to server machine performance, has been made publicly available on GitHub to support research in
anomaly detection and related fields.

The SMD dataset comprises a wide range of features, including CPU utilization, memory usage,
disk I/O, and network traffic, collected at regular intervals. For practical analysis, we have divided
the dataset into two equal-sized subsets: the first subset, which covers the initial period of the data
collection, is used as the training set. The second subset, covering the remaining period, is desig-
nated as the testing set.

In the testing subset, domain experts have meticulously identified and labeled anomalies, along with
their specific dimensions, based on a thorough examination of incident reports and historical data.
These labels provide valuable insights for evaluating anomaly detection algorithms and enhancing
their accuracy.

Soil Moisture Active Passive Satellite: The Soil Moisture Active Passive (SMAP) satellite Liu et al.
(2024) is a NASA mission designed to measure and monitor soil moisture levels across the globe.
SMAP employs a combination of active radar and passive radiometer technologies to provide high-
resolution measurements of soil moisture, which are crucial for understanding water cycles, weather
patterns, and climate change. The satellite records key performance indicators (KPIs) related to its
operational status and performance metrics, including data on the satellite’s health, instrument func-
tionality, and environmental conditions. These KPIs are essential for ensuring the proper functioning
of the spacecraft and for diagnosing and addressing any issues that may arise during its mission.

Mars Science Laboratory Rover (MSL): The Mars Science Laboratory (MSL) rover Liu et al.
(2024), commonly known as Curiosity, is a NASA rover mission designed to explore the surface of
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Table 8: S2: Comparison of SPIE-AD with latest baseline techniques on real world datasets and
ablation studies. The datasets all satisfy A1.

Method SMD
A3 ¬ A3 ¬ A2

Pr Re F1 Pr Re F1 Pr Re F1
AT 83 100 90.7 29 58.6 38.8 0 0 0
GANF 39.5 93 78.6 28 78 41.2 30.6 1.8 3.4
USAD 28 94 43.1 12.2 80 21.2 12.2 80 21.2
AnomalySimpleton 98.2 94.4 96.2 35.1 1.0 2.0 0 0 0
SPIE-ADS 64 87.7 74 63 86.7 73 63 86.7 73
SPIE-ADL 84 88 86 83 89 86 83 89 86
Method SMAP

A3 ¬ A3 ¬ A2
AT 83.8 100 91.2 12.7 90 22.3 0 0 0
GANF 57.5 96 71.9 19.9 93 32.8 0.6 7 1.1
USAD 45 100 62 15.1 94 26 15.1 94 26
AnomalySimpleton 86.4 95.1 90.5 13.6 2.4 4 0 0 0
SPIE-ADS 55 89 68 52 87 65 52 87 65
SPIE-ADL 69.8 91 79 65.7 82.1 73 65.7 82.1 73
Method MSL

A3 ¬ A3 ¬ A2
AT 79.5 100 88.6 8.7 27 13.1 0 0 0
GANF 64 85 73 16 48 24 0 0 0
USAD 44.5 38 41 14.5 23.8 18 14.5 23.8 18
AnomalySimpleton 89.6 89.4 89.5 20.9 2.7 4.8 0 0 0
SPIE-ADS 80.2 86 83 80.2 86 83 80.2 86 83
SPIE-ADL 80.3 85.8 83 80.3 85.8 83 80.3 85.8 83

Mars. Equipped with a suite of scientific instruments, the MSL rover conducts a variety of experi-
ments to study Mars’ geology, climate, and potential for past habitability. The rover records KPIs
related to its operational performance, such as power consumption, temperature readings, and com-
munication status. These performance metrics are critical for monitoring the health and functionality
of the rover, managing its systems, and troubleshooting any technical challenges that arise during
its exploration of the Martian surface. The data collected helps scientists and engineers ensure the
rover’s effective operation and mission success.

E.5 EXTENDED TABLE FOR REAL WORLD DATASET

Table S2 8 shows the extended results for Table 5 and 7 in the main paper with precision and recall
values.

E.6 SPIE-AD HYPER-PARAMETER OPTIMIZATION

Table 7: Comparison of AD
methods on univariate datasets
(event-wise accuracy).
AD Method UCR Yahoo NAB
MatrixProfile 0.512 0.23 0.2
AT 0.4 0.2 0.78
TimeVQVAE 0.708 0.4 0.6
TranAD 0.19 0.6 0.92
OFA 0.5 0.8 0.92
FITS 0.47 0.8 0.9
TFAD 0.37 0.8 0.6
AnomalySimpleton 0.13 0.2 0.2
SPIE-ADS 0.756 0.8 0.92
SPIE-ADL 0.756 0.8 0.94

Given a threshold of r%, the hyper parameters of the SPIE-AD
method extracts the hyper-paramters of the SPIE-AD method so
that atleast r% data from the training set falls within the ro-
bustness interval [ρ1, ρ2], while minimizing (ρ2 − ρ1). The al-
gorithm currently is a brute force search through all possible
hyper-parameter combination to find the best hyper-paramters
that matched the above-mentioned conditions.

E.7 MORE INFORMATION ON DISTRIBUTION SHIFT

Although the definition of anomaly does not directly imply a
distribution shift between anomalous and normal data, analysis
of existing anomaly benchmark datasets reveal otherwise (Table
9). We use the Kolmogorov-Smirnov (KS) hypothesis test (KS,
2008) to evaluate difference in distribution parameters between normal and anomalous data. It is
observed that in almost all real world benchmark datasets > 90% of test cases have data distribution
shift. In Table 9 we report percentage of distribution shift (PDS) the percentage of anomalous data
which has a different distribution than normal data as given by the KS test.

E.8 THRESHOLD INDEPENDENT METRICS

SPIE-AD is not a anomaly thresholding model. The only control knob we have is the converage level
α in Algorithm CRIE. In all our experiments it is set to 0.05 which is standard in most statistical
methods. As such α is not a threshold but it has a role in determining the robustness range. To
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Dataset No. of time
series

PDS

Server Machine Dataset Su et al.
(2019)

38 91%

Soil Moisture Active Passive Su
et al. (2019)

25 92%

Mars Science Lab Rover Su et al.
(2019)

55 93%

SWaT dataset Goh et al. (2017) 51 92%
WADI dataset Ahmed et al. (2017) 123 95%
Pooled Server Metric Abdulaal &
Lancewicki (2021)

25 100%

UCR anomaly detection Wu &
Keogh (2023)

250 94%

Yahoo anomaly detection Yoshihara
& Takahashi (2022)

100 91%

NAB dataset Ahmad et al. (2017) 58 94%

Table 9: S3: Percentage of distribution shift (PDS) in anomaly detection benchmark datasets

Table 10: S4: Threshold independent metrics
Method SMD

AUC
ROC

SMD
AUC
PR

SMD
VUS
ROC

SMD
VUS
PR

SMAP
AUC
ROC

SMAP
AUC
PR

SMAP
VUS
ROC

SMAP
VUS
PR

MSL
AUC
ROC

MSL
AUC
PR

MSL
VUS
ROC

MSL
VUS
PR

AT 0.48 0.46 0.59 0.56 0.37 0.35 0.44 0.41 0.29 0.25 0.33 0.29
FITS 0.57 0.55 0.62 0.59 0.41 0.37 0.47 0.43 0.42 0.38 0.47 0.44
TFAD 0.60 0.55 0.64 0.58 0.43 0.41 0.47 0.44 0.46 0.44 0.53 0.50
SPIE-
ADS

0.61 0.58 0.65 0.61 0.52 0.51 0.57 0.54 0.62 0.58 0.64 0.59

obtain AUC ROC and AUC PR, VUS ROC and VUS PR, we varied this α from 0.05 to 0.2 in
steps of 0.025. In this regard I used the code available in https://github.com/TheDatumOrg/VUS to
compute all the abovementioned metrics of some of the baselines in Table 3 and 4. In particular we
took the top 3 baselines and SPIE-ADS from Table 3 to get the Table 10.

F WINDOW SIZE SENSITIVITY

Window sizes averaged 
over 250 datasets

Figure 9: Event wise anomaly detec-
tion accuracy of SPIE-ADS with vary-
ing window size. Results averaged over
250 UCR datasets.

We use the UCR database to evaluate sensitivity to win-
dow size for our approach as it has the largest number of
real world datasets (n = 250) to ensure statistically stable
results. The window size is varied as a percentage of the
total dataset size for each database. Figure 9 shows that
large window sizes reduces the accuracy of detecting an
anomalous event since the event size maybe a small frac-
tion of the window size. When the window size is too
small, SINDY-MPC core fails to extract accurate models
of the underlying governing dynamics - decreasing its ac-
curacy. Hence, there is a optimal window size for each
dataset.

G COMPUTATIONAL COMPLEXITY

There are two MR cores of SPIE-AD: SINDY-MPC
and LTC-NN. SINDY-MPC uses the sequential thresh-
old ridge regression (STRidge) Kaiser et al. (2018) strat-
egy. The computational complexity of Ridge regression
in the worst case is O(Nn2), forN samples and n dimen-
sions, since for MTAD number of regularization parame-
ters is less thanN Wang & Pilanci (2023). The sequential
threshold runs Ridge regression multiple times until a de-
sired reconstruction accuracy is obtained. If we fix a maximum Q number of iterations then the
overall computational complexity of SINDY-MPC is O(QNn2). For the LTC-NN architecture, the
computation complexity of forward pass is O(V + V (|Θ| + q)) + O(|X|N), where, V , q, Θ, X
are as in Figure 3. Complexity of backward pass is O(V PLTCN + V (|Θ| + q)PdenseN), where
PLTC is the number of parameters in the LTC cell, and Pdense is the number of parameters in each
neuron of the dense layer. SINDY-MPC on a single CPU thread was 11.3 (± 2.1) times faster than
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Table 11: Related works. Sampling High is>Nyquist rate, Low is = Nyquist rate. Bold = baselines.
Approach Sampling Inputs Rationale for baseline
SINDy Quade et al. (2018) High No Cannot handle inputs
SINDy-MPC Kaiser et al. (2018) High Yes Widely used
E-SINDy Fasel et al. (2022) Low No SINDy-MPC is E-SINDy + inputs
W-SINDy Messenger & Bortz (2021) High No Focuses on noise reduction
LTC-NN (This Work) Low Yes Proposed in this paper

Figure 10: Performance variance with respect to sampling frequency, and library size (higher poly-
nomial order results in combinatorially larger library). High Noise case. Low noise case in main
paper Figure 4.

LTC-NN on GPU. The overall computational complexity is O((N/W )QNn2) for SPIE-ADS and
O((N/W )V PLTCN + V (|Θ|+ q)PdenseN).

H ADDITIONAL EXPERIMENTS

Table 11 shows different SINDY variants.

H.1 DATA AND CODE AVAILABILITY

The data and code for model recovery using SINDY-MPC are available in https://
anonymous.4open.science/r/U2Recognition-A0FB/

To use LTC-NN a manual transfer of model coefficient is required and the pipeline is not en-
tirely automated. Hence, the models available in https://anonymous.4open.science/
r/LTC-NN-MR-E24C/ has to be run first and the saved model coefficients needs to be transferred
to the U2Recognition github and then run the files described in the U2Recognition github.

The AnomalySimpleton also known as SMDTrash is available in https://anonymous.
4open.science/r/AnomalyAbsurd-E63D/
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Figure 11: Effect of different SINDY variants on SPIE-AD.

Figure 12: Effect of different continuous time backbones on SPIE-AD.
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