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Abstract

In-context learning (ICL) with few-shot exam-001
ples has emerged as a key strength of large lan-002
guage models (LLMs), allowing them to adapt003
to new tasks with just a few examples. Re-004
cent research suggests that ICL closely resem-005
bles implicit fine-tuning. Building on this, we006
hypothesize that demonstrations where LLMs007
make mistakes could offer stronger learning008
signals for ICL, potentially leading to en-009
hanced performance compared to instances010
where LLMs predict correctly. To explore this,011
we created an ‘Error Book’ comprising such012
demonstrations, and used a retriever to select013
relevant instances from this collection instead014
of the entire training dataset. Our experiments015
across two different tasks show that this Er-016
ror Book based Retrieval In-Context Learning017
(ER-ICL) not only boosts performance but also018
improves retrieval efficiency by reducing the019
search scope. Our results indicate that leverag-020
ing error-driven demonstrations could be a valu-021
able strategy for enhancing in-context learning.022

1 Introduction023

In-context learning uses some examples to prompt024

the model while these examples are generally from025

training data or data from other similar tasks. This026

allows LLMs to be generalised to unfamiliar tasks027

without fine-tuning (Brown et al., 2020). There028

are lots of research try to understand why ICL029

work (Dong et al., 2022). A compelling theory030

suggests that ICL closely resembles implicit fine-031

tuning (Dai et al., 2022). The authors demonstrated,032

through theoretical and empirical analysis, that the033

Transformer attention mechanism (Vaswani et al.,034

2017) is akin to a form of gradient descent, which035

parallels the performance of ICL with explicit fine-036

tuning. In this work, we build upon this insight,037

seeking to enhance ICL performance.038

To clarify, let’s delve into the underlying con-039

cept. For fine-tuning to be effective, training data040

must provide loss values. This allows the model to041

adjust its incorrect predictions through back propa- 042

gation. If ICL is approximated to fine-tuning, the 043

in-context demonstrations should ideally be those 044

where the model initially makes mistakes. With- 045

out such cases, there is no opportunity for gradient 046

descent during ICL. Our hypothesis suggests that 047

selecting demonstrations where the model is likely 048

to make incorrect predictions will offer stronger 049

learning signals during ICL, leading to potential im- 050

proved performance compared to demonstrations 051

where the model already predicts correctly. 052

To test this hypothesis, we construct a demon- 053

stration corpus, titled the ‘Error Book’, comprising 054

only demonstrations where the model’s predictions 055

are inaccurate. This approach aims to leverage 056

these mis-predictions as a potent tool for enhanc- 057

ing learning within the ICL framework. To ob- 058

tain the ‘Error Book’, given a training dataset, we 059

use zero-shot chain-of-thought prompting (Brown 060

et al., 2020) and get the model’s prediction of each 061

data point. If the model predicts wrongly, we add it 062

to the ‘Error Book’. Our empirical results indicate 063

that using randomly selected demonstrations from 064

the ’Error Book’ leads to improved performance 065

compared to using a broader range of demonstra- 066

tions from the entire training dataset. 067

Furthermore, recent advancements in Retrieval- 068

based ICL have showcased that choosing demon- 069

strations similar to the input query leads to superior 070

performance, compared to random or manually cu- 071

rated selections. Building on this, we introduce a 072

two-stage pipeline (illustrated in Figure 1) to fur- 073

ther improve the ICL performance of LLMs. The 074

initial stage involves constructing the ‘Error Book’ 075

as previously described. In the subsequent stage, 076

we employ a retrieval system to select k demonstra- 077

tions for use in ICL. 078

By conducting experiments on two tasks with 079

a range of in-context demonstrations and two re- 080

trieval techniques (BM25 (Robertson et al., 2009) 081

and Top-K semantic selections (Arora et al., 2017)), 082
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Figure 1: Overview of our proposed method for selecting ICL demonstrations: 1) Using LLMs to identify samples
with model prediction errors (Error Book). 2) Retrieving k samples as demonstrations and selecting prompt and
predicting results.

we showcase that the proposed method outperforms083

the baseline of retrieving from the entire training084

set. We observed an average improvement of 2.77%085

on the RTE (Wang et al., 2019) and 0.85% on the086

Winograd (ai2, 2019) dataset. Moreover, this ap-087

proach not only enhances performance but also088

reduces inference time, owing to a smaller retrieval089

space. These findings support previous hypothesis090

about the approximation of In-Context Learning091

(ICL) to fine-tuning and our work introduce a new,092

more efficient ICL framework.093

2 Related work094

How to select the retrieval corpus Due to the095

fact that the demonstrations of in-context learning096

are all obtained from the retrieval corpus, the com-097

position of the retrieval corpus greatly affects the098

performance of in-context learning. Z-ILC (Lyu099

et al., 2022) produces pseudo samples and their cor-100

responding pseudo labels via LLM to as retrieval101

corpus, subsequently diminishing the overhead as-102

sociated with manual sample and label generation.103

Gao et al. (2023) use an off-the-shelf retriever to104

retrieve samples of LLM prediction errors that fall105

within an ambiguous label set as demonstrations.106

UDR (Li et al., 2023) serves as a universal retriever107

across diverse tasks. By add different prompts108

into the existing retrieval corpus, creating a new109

retrieval corpus for different tasks. Our work is110

based on a comprehension of why ICL functions111

effectively. This understanding has guided us to de-112

velop a corpus consisting of demonstrations where113

LLMs tend to make mistakes.114

Retrieval augmented In-context learning for115

LLM Retrieval Augmented LLMs combine LLM116

generative abilities with retrieval techniques. Voke-117

k (Su et al., 2022) and CEIL (Ye et al., 2023) en- 118

hance in-context learning by selecting contextu- 119

ally relevant exemplars and modeling interrelation- 120

ships among them. Other approaches, like (Dalvi 121

et al., 2022), incorporate supplementary expla- 122

nations during retrieval. DSP (Khattab et al., 123

2022) and MOT (Li and Qiu, 2023) present frame- 124

works for iterative retrieval and categorization of 125

demonstrations. LLM-R (Rubin et al., 2021), UP- 126

RISE (Cheng et al., 2023), and Dr.ICL (Luo et al., 127

2023) focus on demonstration categorization for 128

retriever retraining. Lastly, RetICL (Scarlatos and 129

Lan, 2023) and (Lu et al., 2022) apply reinforce- 130

ment learning in in-context learning for LLM re- 131

trieval model training. In our study, we showcase 132

that the effectiveness of retrieval-augmented ICL 133

can be further improved by taking selective demon- 134

strations for retrieval. 135

3 Methodology 136

Ours methodology unfolds in two main phases: 137

Step 1: Construct Error Book Specifically, Let 138

Dtrain = {(x0, y0), (x1, y1), ..., (xn, yn)} denotes 139

our training data. We first employ template to 140

convert xi into a question-answering format us- 141

ing a template (see Table 6). Then, we execute 142

CoT zero-shot prompting to derive the answer 143

to the question. An LLM predicts the outcome 144

Ŷ = {ŷ(x0), ŷ(x1), ..., ŷ(xn)}. Subsequently, we 145

select the incorrectly predicted instances D̂train 146

from the training samples to form the ‘Error Book‘ 147

as the retrieval corpus, 148

D̂train = {xi ∈ D|I(ŷ(xi) ̸= yi) = 1} . 149

where I denote identification function. Selection of 150

instances exhibiting model prediction errors within 151
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the training data.152

Step2: Retrieval of Similar Demonstrations153

We employed two popular retrieval methods,154

BM25 (Robertson et al., 2009) and Top-k (Liu155

et al., 2021). BM25 emphasizes term matching156

while Top-k focuses on semantic matching. Top-k157

first uses a certain sentence encoder to sentences158

{x1, x1, ..., xk} in both the training set and test159

set to vector representations {v1, v2, ..., vk}. This160

method retrieve the k nearest neighbors to each161

test sample from the training set as demonstrations,162

utilizing the vector encoded by the sentence en-163

coder. These methods, representing distinct re-164

trieval mechanisms, complement each other and165

showcase our method’s effectiveness across differ-166

ent retrieval styles.167

4 Experiments168

Large Language Model We experiment with the169

large language model LLaMA-2 (7B) (Touvron170

et al., 2023) based on pre-training and fine-tuning.171

Our framework is not limited to LLaMA but work172

for other models, and we leave the exploration as a173

future work.174

Tasks We conducted experiments using two dis-175

tinct datasets. Recognizing Textual Entailment176

(RTE) datasets corresponds to one of the NLI tasks177

featured in SuperGLUE (Wang et al., 2019) with178

labels: neutral, entailment and contradiction. The179

other one is Winograd (ai2, 2019) which is a com-180

monsense reasoning task that involves selecting181

the correct option for a given sentence, with the182

options represented by specific, concrete words.183

Baseline and Experiment Setting The baseline184

approach we employ involves retrieving from the185

entire training data (termed as entire book). To186

eliminate errors in the results arising from varia-187

tions in the number of demonstrations, each retrieve188

selects demonstration samples in quantities of 1, 5,189

10, and 15 for experimental.190

5 Experiment Results191

5.1 Random Selection Pipeline192

First of all, we demonstrate the effectiveness of193

‘Error Book’ even not in the retrieval setting. Here,194

after the ‘Error Book’ is constructed, we randomly195

select the demonstrations from it and compare with196

the baseline that randomly selected from the entire197

dataset. The results are presented in Table 1. In198

the RET dataset, utilizing the Error Book as the 199

retrieval corpus led to an average improvement of 200

3.5% compared to entire book. In the Winograd 201

dataset, results from employing the Error Book 202

surpassed those of the entire book in two of the 203

four settings, but were relatively inferior in the 204

other two. We hypothesize that this variation is 205

due to the heavy reliance of Winograd performance 206

on commonsense knowledge. If the underlying 207

knowledge in the Error Book differs from that in 208

the input query, the demonstrations are less likely 209

to be significantly helpful. 210

Datastes Type 1 5 10 15

RTE
1 56.3 70.0 70.7 71.4
2 56.6 74.7 75.4 75.8

Winograd
1 28.5 52.5 52.8 54.1
2 31.0 52.1 52.9 53.6

Table 1: Comparison of using ‘Entire Book’ (Type1)
and ‘Error Book’ (Type2) for randomly selecting demon-
strations.

5.2 Retrieval Pipeline 211

RTE In Figure 2 (the top two subfigures), we 212

show that utilizing both BM25 and Top-k, retriev- 213

ing from ‘Error Book’ consistently surpassed the 214

baseline. The performance improvements were 215

quantified as an average increase of 1.2% for 216

BM25, and 3.4% for Top-k retrievers. We also ob- 217

served that with the gradual increase in the number 218

of demonstrations, the performance enhancement 219

of our method compared to the baseline becomes 220

progressively more significant. 221

Winograd Our analysis reveals divergent out- 222

comes when employing Top-k and BM25 methods. 223

The ‘Error Book’ demonstrates a more pronounced 224

improvement with the Top-k retriever, enhancing 225

the baseline by an average of 1.5%. Conversely, the 226

BM25 retriever’s performance aligns more closely 227

with random selection, with the ‘Error Book’ not 228

offering significant benefits, and even underper- 229

forming in some cases. We suggest that semantic- 230

based retrievers like Top-K are more effective than 231

BM25 or random selection, especially for com- 232

monsense reasoning tasks. Therefore, combining 233

a robust retriever such as Top-K with the ‘Error 234

Book’ emerges as the most effective approach for 235

enhancing commonsense reasoning. 236
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Figure 2: Comparison of our method and baseline under different number of demonstration scenarios using different
retrievers on different datasets. A): using BM25 on the RET dataset; B): Using Top-k on the RET dataset; C): Using
BM25 on the Winograd dataset; D): Using Top-k on the Winograd dataset.

dataset ‘Error Book’ percentage
RTE 48
Winograd 58

Table 2: Percentage of the Error Book in different
datasets

Setting Random BM25 Top-k
1 75.4 73.2 74.0
2 70.7 70.3 68.5
3 66.7 66.0 66.0

Table 3: Setting 1: retrieve from ‘Error Book’; Setting 2:
retrieve from ‘Error Book’ and ‘Correct Book’; Setting
3: retrieve from ‘Correct Book’.

To summarize, our method has yielded improve-237

ment compared to the baseline over different num-238

ber of shots as in-context learning demonstrations.239

The experiment also revealed that since the size240

corpus of the Error Book is only half that of the241

entire book (see Table 2), the retrieval time when242

using the Error Book is consequently reduced to243

half of that required for using the entire book.244

5.3 Ablation Study245

To test our hypothesis that better results correlate246

with more learning signals in demonstrations, we247

created a ‘Correct Book’ corpus which is the ex-248

clusive set to the ‘Error Book’ and designed three249

experimental settings with varying learning sig-250

nals. The first setting exclusively used ‘Error Book’251

demonstrations for maximum learning signal. The252

second mixed ‘Correct Book’ and ‘Error Book’ 253

demonstrations for a moderate signal. The third 254

used only ‘Correct Book’ demonstrations, offering 255

the least signal. Each experiment used 10 demon- 256

strations. The results, detailed in Table 3, show a 257

consistent decline across settings, supporting our 258

hypothesis that stronger learning signals in demon- 259

strations lead to better results. 260

6 Conclusion 261

In our study, we introduce an innovative method 262

that leverages ‘Error Books’ for in-context learning 263

demonstration retrieval. This idea is predicated on 264

the concept that in-context learning is similar to the 265

gradient descent process seen in fine-tuning. We 266

argue that demonstrations where the model initially 267

predicts incorrectly offer more learning potential 268

and are therefore more effective than those where 269

the model predicts correctly. To validate this ar- 270

gument, we conducted experiments across two dif- 271

ferent tasks and three varied settings for obtaining 272

demonstrations (retrieval-based and non-retrieval 273

based). The results clearly show that our method 274

surpasses the baseline in performance, underscor- 275

ing its effectiveness. These results also lead us to an 276

intriguing new line of inquiry: exploring how ’Er- 277

ror Books’ used as a retrieval corpus can improve 278

a model’s contextual learning and adaptation. This 279

exploration not only fuels our curiosity but could 280

also shed light on the intricacies of error correction 281

and learning in Large Language Models. 282
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Limitation283

In our research, we successfully showcase the ef-284

ficacy of our methods on two tasks and with one285

Large Language Model (LLM). While incorporat-286

ing additional datasets and models could strengthen287

our evidence, this initial exploration into the er-288

ror correction capabilities of LLMs has revealed289

promising results and interesting trends, setting a290

solid foundation for further study in this area.291
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and baseline on different datasets and retrievers is414
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dataset entire book Error Book input query and truth answer

RTE

In 2005, Leland Yee, a ...
Can we infer California

Assembly Bills 1792
& 1793 are laws

against ultraviolent
video games.?
True or False?

Let’s think step by step.
True

In an interview
on a television...

Can we infer
Scientology is

against psychiatry.?
True or False?

Let’s think step by step.
True

A U.S. Court
of Appeals on ...

Can we infer
California Assembly

Bills 1792 & 1793 are laws against
ultraviolent video games.?

True or False?
Let’s think step by step.

True

Winograd

Sentence: The
business had to...
drawers or desks?

Let’s think step by step.
drawers

Sentence: The household
was preparing

to send the children to ...
pencils or pens?

Let’s think step by step.
pens

Sentence: The students
were at...

desks or pencils?
Let’s think step by step.

desks

Table 4: Demonstration retrieved on entire book and Error Book using the BM25 retriever. You can select just the
top-1 example.

dataset entire book Error Book input query

Winograd

Sentence: The girl put
bread or waffle?...

Sentence: James needed...
eggplant or pot?

eggplant
Sentence: She used...
pasta or eggplant?

pasta
Sentence: She used...
pasta or eggplant?

eggplant
Sentence: I used...
toaster or oven?

toaster

Sentence: I tried to...
pipe or brush?...

brush
Sentence: It took...

pumpkin or eggplant?...
eggplant

Sentence: Mary put the...
pan or oven?...

pan
Sentence: The girl...
bread or waffle?...

waffle
Sentence: She used

pasta or eggplant?...
eggplant

Sentence: Terry tried...
eggplant or toaster?...

Table 5: the demonstration of using BM25 in entire book and Error Book.
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dataset template

RTE

</text1>
Can we infer </text2>? True or False?

Let’s think step by step.
Answer:

Winograd

</sentence>
Replace the _ in the above sentence with the correct option:

- </option1>
- </option2>

Let’s think step by step.
Answer:

Table 6: The templates for each dataset.

Dataset Method Retrival 1 5 10 15

RTE
Baselines

Random 56.3 70.0 70.7 71.4
BM25 57.7 70.7 71.4 69.6
Top-k 55.2 64.2 70.3 70.3

ours

Random 56.6 74.7 75.4 75.8
BM25 56.3 71.4 73.2 73.6
Top-k 57.7 67.1 74.0 74.7

Winograd
Baselines

Random 28.5 52.5 52.8 54.1
BM25 31.8 53.3 53.5 54.2
Top-k 31.0 51.9 53.1 52.3

ours

Random 31.0 52.1 52.9 53.6
BM25 32.8 52.8 54.0 53.8
Top-k 31.0 55.1 54.7 53.6

Table 7: The comparison of accuracy between our model
and baseline.
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