ER-ICL: Error Book Maybe More Valuable for In-context Learning

Anonymous ACL submission

Abstract

In-context learning (ICL) with few-shot exam-
ples has emerged as a key strength of large lan-
guage models (LLMs), allowing them to adapt
to new tasks with just a few examples. Re-
cent research suggests that ICL closely resem-
bles implicit fine-tuning. Building on this, we
hypothesize that demonstrations where LLMs
make mistakes could offer stronger learning
signals for ICL, potentially leading to en-
hanced performance compared to instances
where LLMs predict correctly. To explore this,
we created an ‘Error Book’ comprising such
demonstrations, and used a retriever to select
relevant instances from this collection instead
of the entire training dataset. Our experiments
across two different tasks show that this Er-
ror Book based Retrieval In-Context Learning
(ER-ICL) not only boosts performance but also
improves retrieval efficiency by reducing the
search scope. Our results indicate that leverag-
ing error-driven demonstrations could be a valu-
able strategy for enhancing in-context learning.

1 Introduction

In-context learning uses some examples to prompt
the model while these examples are generally from
training data or data from other similar tasks. This
allows LLMs to be generalised to unfamiliar tasks
without fine-tuning (Brown et al., 2020). There
are lots of research try to understand why ICL
work (Dong et al., 2022). A compelling theory
suggests that ICL closely resembles implicit fine-
tuning (Dai et al., 2022). The authors demonstrated,
through theoretical and empirical analysis, that the
Transformer attention mechanism (Vaswani et al.,
2017) is akin to a form of gradient descent, which
parallels the performance of ICL with explicit fine-
tuning. In this work, we build upon this insight,
seeking to enhance ICL performance.

To clarify, let’s delve into the underlying con-
cept. For fine-tuning to be effective, training data
must provide loss values. This allows the model to

adjust its incorrect predictions through back propa-
gation. If ICL is approximated to fine-tuning, the
in-context demonstrations should ideally be those
where the model initially makes mistakes. With-
out such cases, there is no opportunity for gradient
descent during ICL. Our hypothesis suggests that
selecting demonstrations where the model is likely
to make incorrect predictions will offer stronger
learning signals during ICL, leading to potential im-
proved performance compared to demonstrations
where the model already predicts correctly.

To test this hypothesis, we construct a demon-
stration corpus, titled the ‘Error Book’, comprising
only demonstrations where the model’s predictions
are inaccurate. This approach aims to leverage
these mis-predictions as a potent tool for enhanc-
ing learning within the ICL framework. To ob-
tain the ‘Error Book’, given a training dataset, we
use zero-shot chain-of-thought prompting (Brown
et al., 2020) and get the model’s prediction of each
data point. If the model predicts wrongly, we add it
to the ‘Error Book’. Our empirical results indicate
that using randomly selected demonstrations from
the "Error Book’ leads to improved performance
compared to using a broader range of demonstra-
tions from the entire training dataset.

Furthermore, recent advancements in Retrieval-
based ICL have showcased that choosing demon-
strations similar to the input query leads to superior
performance, compared to random or manually cu-
rated selections. Building on this, we introduce a
two-stage pipeline (illustrated in Figure 1) to fur-
ther improve the ICL performance of LLMs. The
initial stage involves constructing the ‘Error Book’
as previously described. In the subsequent stage,
we employ a retrieval system to select kK demonstra-
tions for use in ICL.

By conducting experiments on two tasks with
a range of in-context demonstrations and two re-
trieval techniques (BM25 (Robertson et al., 2009)
and Top-K semantic selections (Arora et al., 2017)),
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Figure 1: Overview of our proposed method for selecting ICL demonstrations: 1) Using LLMs to identify samples
with model prediction errors (Error Book). 2) Retrieving k samples as demonstrations and selecting prompt and

predicting results.

we showcase that the proposed method outperforms
the baseline of retrieving from the entire training
set. We observed an average improvement of 2.77%
on the RTE (Wang et al., 2019) and 0.85% on the
Winograd (ai2, 2019) dataset. Moreover, this ap-
proach not only enhances performance but also
reduces inference time, owing to a smaller retrieval
space. These findings support previous hypothesis
about the approximation of In-Context Learning
(ICL) to fine-tuning and our work introduce a new,
more efficient ICL framework.

2 Related work

How to select the retrieval corpus Due to the
fact that the demonstrations of in-context learning
are all obtained from the retrieval corpus, the com-
position of the retrieval corpus greatly affects the
performance of in-context learning. Z-ILC (Lyu
et al., 2022) produces pseudo samples and their cor-
responding pseudo labels via LLM to as retrieval
corpus, subsequently diminishing the overhead as-
sociated with manual sample and label generation.
Gao et al. (2023) use an off-the-shelf retriever to
retrieve samples of LLM prediction errors that fall
within an ambiguous label set as demonstrations.
UDR (Li et al., 2023) serves as a universal retriever
across diverse tasks. By add different prompts
into the existing retrieval corpus, creating a new
retrieval corpus for different tasks. Our work is
based on a comprehension of why ICL functions
effectively. This understanding has guided us to de-
velop a corpus consisting of demonstrations where
LLMs tend to make mistakes.

Retrieval augmented In-context learning for
LLM Retrieval Augmented LLMs combine LLM
generative abilities with retrieval techniques. Voke-

k (Su et al., 2022) and CEIL (Ye et al., 2023) en-
hance in-context learning by selecting contextu-
ally relevant exemplars and modeling interrelation-
ships among them. Other approaches, like (Dalvi
et al., 2022), incorporate supplementary expla-
nations during retrieval. DSP (Khattab et al.,
2022) and MOT (Li and Qiu, 2023) present frame-
works for iterative retrieval and categorization of
demonstrations. LLM-R (Rubin et al., 2021), UP-
RISE (Cheng et al., 2023), and Dr.ICL (Luo et al.,
2023) focus on demonstration categorization for
retriever retraining. Lastly, RetICL (Scarlatos and
Lan, 2023) and (Lu et al., 2022) apply reinforce-
ment learning in in-context learning for LLM re-
trieval model training. In our study, we showcase
that the effectiveness of retrieval-augmented ICL
can be further improved by taking selective demon-
strations for retrieval.

3 Methodology
Ours methodology unfolds in two main phases:

Step 1: Construct Error Book Specifically, Let
Dyrain = {(z0,%0), (1,Y1), -, (Tn, yn) } denotes
our training data. We first employ template to
convert x; into a question-answering format us-
ing a template (see Table 6). Then, we execute
CoT zero-shot prompting to derive the answer
to the question. An LLM predicts the outcome
Y = {§(x0), §(x1), ..., (xn)}. Subsequently, we
select the incorrectly predicted instances Dtrain
from the training samples to form the ‘Error Book*
as the retrieval corpus,

Dtrain = {wz € D|I(g(xz) 7é yl) = 1} :

where I denote identification function. Selection of
instances exhibiting model prediction errors within



the training data.

Step2: Retrieval of Similar Demonstrations
We employed two popular retrieval methods,
BM25 (Robertson et al., 2009) and Top-k (Liu
et al., 2021). BM25 emphasizes term matching
while Top-k focuses on semantic matching. Top-k
first uses a certain sentence encoder to sentences
{z1,21,...,2} in both the training set and test
set to vector representations {vy, va, ..., vg }. This
method retrieve the k nearest neighbors to each
test sample from the training set as demonstrations,
utilizing the vector encoded by the sentence en-
coder. These methods, representing distinct re-
trieval mechanisms, complement each other and
showcase our method’s effectiveness across differ-
ent retrieval styles.

4 [Experiments

Large Language Model We experiment with the
large language model LLaMA-2 (7B) (Touvron
et al., 2023) based on pre-training and fine-tuning.
Our framework is not limited to LLaMA but work
for other models, and we leave the exploration as a
future work.

Tasks We conducted experiments using two dis-
tinct datasets. Recognizing Textual Entailment
(RTE) datasets corresponds to one of the NLI tasks
featured in SuperGLUE (Wang et al., 2019) with
labels: neutral, entailment and contradiction. The
other one is Winograd (ai2, 2019) which is a com-
monsense reasoning task that involves selecting
the correct option for a given sentence, with the
options represented by specific, concrete words.

Baseline and Experiment Setting The baseline
approach we employ involves retrieving from the
entire training data (termed as entire book). To
eliminate errors in the results arising from varia-
tions in the number of demonstrations, each retrieve
selects demonstration samples in quantities of 1, 5,
10, and 15 for experimental.

5 Experiment Results

5.1 Random Selection Pipeline

First of all, we demonstrate the effectiveness of
‘Error Book’ even not in the retrieval setting. Here,
after the ‘Error Book’ is constructed, we randomly
select the demonstrations from it and compare with
the baseline that randomly selected from the entire
dataset. The results are presented in Table 1. In

the RET dataset, utilizing the Error Book as the
retrieval corpus led to an average improvement of
3.5% compared to entire book. In the Winograd
dataset, results from employing the Error Book
surpassed those of the entire book in two of the
four settings, but were relatively inferior in the
other two. We hypothesize that this variation is
due to the heavy reliance of Winograd performance
on commonsense knowledge. If the underlying
knowledge in the Error Book differs from that in
the input query, the demonstrations are less likely
to be significantly helpful.

Datastes  Type 1 5 10 15

1 563 700 707 714
RTE 2 566 747 754 758
Winoarad 285 525 528 54.1
MOLHAC  H» 370 521 529 536

Table 1: Comparison of using ‘Entire Book’ (Typel)
and ‘Error Book’ (Type2) for randomly selecting demon-
strations.

5.2 Retrieval Pipeline

RTE In Figure 2 (the top two subfigures), we
show that utilizing both BM25 and Top-k, retriev-
ing from ‘Error Book’ consistently surpassed the
baseline. The performance improvements were
quantified as an average increase of 1.2% for
BM25, and 3.4% for Top-k retrievers. We also ob-
served that with the gradual increase in the number
of demonstrations, the performance enhancement
of our method compared to the baseline becomes
progressively more significant.

Winograd Our analysis reveals divergent out-
comes when employing Top-k and BM25 methods.
The ‘Error Book’ demonstrates a more pronounced
improvement with the Top-k retriever, enhancing
the baseline by an average of 1.5%. Conversely, the
BM25 retriever’s performance aligns more closely
with random selection, with the ‘Error Book’ not
offering significant benefits, and even underper-
forming in some cases. We suggest that semantic-
based retrievers like Top-K are more effective than
BM25 or random selection, especially for com-
monsense reasoning tasks. Therefore, combining
a robust retriever such as Top-K with the ‘Error
Book’ emerges as the most effective approach for
enhancing commonsense reasoning.
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Figure 2: Comparison of our method and baseline under different number of demonstration scenarios using different
retrievers on different datasets. A): using BM25 on the RET dataset; B): Using Top-k on the RET dataset; C): Using
BM?25 on the Winograd dataset; D): Using Top-k on the Winograd dataset.

dataset ‘Error Book’ percentage
RTE 48
Winograd 58

Table 2: Percentage of the Error Book in different
datasets

Setting Random BM25 Top-k

1 75.4 73.2 74.0
2 70.7 70.3 68.5
3 66.7 66.0 66.0

Table 3: Setting 1: retrieve from ‘Error Book’; Setting 2:
retrieve from ‘Error Book’ and ‘Correct Book’; Setting
3: retrieve from ‘Correct Book’.

To summarize, our method has yielded improve-
ment compared to the baseline over different num-
ber of shots as in-context learning demonstrations.
The experiment also revealed that since the size
corpus of the Error Book is only half that of the
entire book (see Table 2), the retrieval time when
using the Error Book is consequently reduced to
half of that required for using the entire book.

5.3 Ablation Study

To test our hypothesis that better results correlate
with more learning signals in demonstrations, we
created a ‘Correct Book’ corpus which is the ex-
clusive set to the ‘Error Book” and designed three
experimental settings with varying learning sig-
nals. The first setting exclusively used ‘Error Book’
demonstrations for maximum learning signal. The

second mixed ‘Correct Book’ and ‘Error Book’
demonstrations for a moderate signal. The third
used only ‘Correct Book’ demonstrations, offering
the least signal. Each experiment used 10 demon-
strations. The results, detailed in Table 3, show a
consistent decline across settings, supporting our
hypothesis that stronger learning signals in demon-
strations lead to better results.

6 Conclusion

In our study, we introduce an innovative method
that leverages ‘Error Books’ for in-context learning
demonstration retrieval. This idea is predicated on
the concept that in-context learning is similar to the
gradient descent process seen in fine-tuning. We
argue that demonstrations where the model initially
predicts incorrectly offer more learning potential
and are therefore more effective than those where
the model predicts correctly. To validate this ar-
gument, we conducted experiments across two dif-
ferent tasks and three varied settings for obtaining
demonstrations (retrieval-based and non-retrieval
based). The results clearly show that our method
surpasses the baseline in performance, underscor-
ing its effectiveness. These results also lead us to an
intriguing new line of inquiry: exploring how "Er-
ror Books’ used as a retrieval corpus can improve
a model’s contextual learning and adaptation. This
exploration not only fuels our curiosity but could
also shed light on the intricacies of error correction
and learning in Large Language Models.



Limitation

In our research, we successfully showcase the ef-
ficacy of our methods on two tasks and with one
Large Language Model (LLM). While incorporat-
ing additional datasets and models could strengthen
our evidence, this initial exploration into the er-
ror correction capabilities of LLMs has revealed
promising results and interesting trends, setting a
solid foundation for further study in this area.
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B Quantitative analysis

We present some examples in Table 4, where re-
trieving from the ‘Error Book’ is better than re-
trieving from the entire training data. Despite the
apparent semantic correlation of the demonstration
selected using the ‘Entire Book’ being higher with
the given example, it was observed that the predic-
tion accuracy was actually superior in the case of
the example selected using the ‘Error Book’. This
outcome suggests a nuanced interaction between
semantic relevance and prediction accuracy in our
model.

C Our method and baseline comparison

The comparison of accuracy between our model
and baseline on different datasets and retrievers is
shown in Table 7



dataset entire book

In 2005, Leland Yee, a ...
Can we infer California
Assembly Bills 1792
& 1793 are laws
RTE against ultraviolent

video games.?
True or False?

Let’s think step by step.

True

against psychiatry.?

Let’s think step by step.

Error Book input query and truth answer
. . A U.S. Court
In an interview
. . of Appeals on ...
on a television... .
Can we infer Can we infer
California Assembly

Scientology is Bills 1792 & 1793 are laws against

ultraviolent video games.?
True or False?
Let’s think step by step.
True

True or False?

True

Sentence: The household

Sentence: The
business had to...
drawers or desks?

Let’s think step by step.
drawers

to send the children to ...
pencils or pens?
Let’s think step by step.

Winograd

Sentence: The students
were at...
desks or pencils?
Let’s think step by step.
pens desks

was preparing

Table 4: Demonstration retrieved on entire book and Error Book using the BM25 retriever. You can select just the

top-1 example.

dataset entire book Error Book input query
. : I tri
Sentence: The girl put Ser;te:c(:)i brtlr:l:l,)to
bread or waffle?... PP o
brush
Sentence: James needed...
egaplant or pot? Sentence: It took...
g8p ) pumpkin or eggplant?...
eggplant coonlant
Sentence: She used... .ggp
asta or eggplant? Sentence: Mary put the... Sentence: Terry tried
Winograd P ) pan or oven?... '

pasta
Sentence: She used...
pasta or eggplant?
eggplant
Sentence: I used...
toaster or oven?
toaster

9
pan eggplant or toaster?...

Sentence: The girl...
bread or waffle?...
waffle
Sentence: She used
pasta or eggplant?...

eggplant

Table 5: the demonstration of using BM25 in entire book and Error Book.



dataset template

</text]>
Can we infer </text2>? True or False?
Let’s think step by step.
Answer:

RTE

</sentence>
Replace the _ in the above sentence with the correct option:
- </option1>
- </option2>
Let’s think step by step.
Answer:

Winograd

Table 6: The templates for each dataset.

Dataset Method Retrival 1 5 10 15

Random 56.3 700 70.7 714
BM25 577 70.7 714 69.6

RTE Baselines v 552 642 703 703
Random 56.6 747 754 75.8
ours BM25 563 714 732 736
Topk 577 67.1 740 74.7
Random 285 525 52.8 54.1
Basclines  BM25 318 533 535 542
Winograd Topk 310 519 53.1 523
Random 31.0 52.1 529 53.6
BM25 328 528 540 538

ours

Top-k  31.0 55.1 547 53.6

Table 7: The comparison of accuracy between our model
and baseline.



