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Abstract001

Contrastive audio-language models are learned002
by semantically aligning different modalities in003
a shared embedding space. Existing research004
shows that zero-shot classification performance005
is sensitive to language nuances and prompt for-006
mulation. In addition, learned artifacts and spu-007
rious correlations from noisy pretraining often008
lead to semantic ambiguity in label interpreta-009
tion. While recent work has explored few-shot010
prefix tuning methods, adapters, and prompt011
engineering strategies to mitigate these issues,012
the use of structured prior knowledge remains013
largely unexplored. In this work, we enhance014
CLAP predictions using structured reasoning015
over a knowledge graph (KG). We construct a016
large, audio-centric KG that encodes ontologi-017
cal relations comprising semantical, causal, and018
taxonomic connections reflective of everyday019
sound scenes and events. A systematic analysis020
of retrieval performance across major publicly021
available audio collections demonstrates that022
symbolic knowledge enables robust semantic023
grounding for contrastive audio-language mod-024
els. This improvement is further supported by025
embedding visualizations of CLAP before and026
after incorporating the KG.027

1 Introduction028

In recent years, self-supervised and multimodal029

models such as contrastive language-audio pretrain-030

ing (CLAP) (Elizalde et al., 2023) have shown031

impressive performance in audio understanding032

tasks by leveraging large-scale contrastive learning033

between audio and natural language descriptions.034

While excelling at capturing general semantic cor-035

respondences, these models often lack a deeper036

understanding of the relational and contextual struc-037

ture of real-world sound events. Common deficien-038

cies include disambiguating acoustically similar039

sounds, modeling co-occurrence patterns or hier-040

archical relationships, and a lack of commonsense041

grounding necessary for reasoning about sounds in042
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Figure 1: Audio understanding requires contextual and
background knowledge, which can be represented by
audio knowledge graphs (AKG).

novel contexts. Additionally, the performance of 043

these models relies heavily on prompt engineering. 044

Indeed, previous work has shown that changes in 045

prompt wording and formatting can substantially 046

affect performance in zero-shot audio classification 047

tasks (Olvera et al., 2024). 048

Understanding real-world sounds often requires 049

contextual and background knowledge. For exam- 050

ple, in the scenario illustrated in Figure 1, recogniz- 051

ing that the sound of sirens may indicate emergency 052

vehicles, which are often associated with accidents, 053

fires, or emergencies, and that sirens frequently co- 054

occur with engine noise, people shouting, or brak- 055

ing sounds. Such relationships go beyond mere 056

labels; they reflect structured, situational knowl- 057

edge that is paramount for accurate interpretation. 058

While datasets exist for sound events, they lack a 059

structured semantic representation of such inter- 060

connections. We address this gap by construct- 061

ing a general-purpose Audio Knowledge Graph 062

(AKG) that captures rich, multi-relational infor- 063
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mation about sound-producing entities, their cate-064

gories, and co-occurrence patterns. This structured065

knowledge is vital for enabling downstream models066

to reason about ambiguous or acoustically similar067

sounds, particularly in low-resource or zero-shot068

settings where such priors are otherwise absent.069

While a knowledge graph is a powerful source070

of relational knowledge, querying it directly us-071

ing symbolic methods (e.g., rule-based lookup or072

SPARQL-style queries) is limited to exact matches073

and fails to generalize or infer new knowledge be-074

yond what’s explicitly encoded. Knowledge em-075

bedding models (KEMs) address this limitation by076

mapping entities and relations into continuous vec-077

tor spaces, allowing for: generalization to unseen078

or sparse triples through latent similarity, robust079

reasoning under uncertainty or label noise, efficient080

link prediction (e.g., inferring yelping as a plausible081

child category of dog even if not explicitly stated).082

To leverage the capability of CLAP while ad-083

dressing its limitations, we propose to refine CLAP084

predictions with the KEMs obtained from the AKG.085

Importantly, for the text input, we encode only the086

class labels, instead of extended prompts, such as087

“This is a sound of {}" or “A recording of {}". This088

minimizes the efforts on prompt engineering and089

allows us to focus on improving CLAP predictions090

with factual knowledge about sounds.091

In summary, we present the following contribu-092

tions: (1) AKG: A comprehensive audio knowl-093

edge graph that encodes rich relational semantics094

among everyday sounds. (2) CLAP-KG: A novel095

pipeline for refining CLAP predictions using a096

knowledge embedding model trained on AKG. (3)097

Systematic zero-shot evaluation on six benchmark098

datasets, showing consistent improvements over099

baseline CLAP.100

2 Related Work101

Multimodal and Domain-Specific Knowledge102

Graphs Conventional knowledge graphs are typ-103

ically limited to the textual space, restricting their104

efficacy on other modalities (Hogan et al., 2021).105

Recent research has aimed to overcome this limita-106

tion by integrating cross-modal knowledge. Wang107

et al. (Wang et al., 2023) first constructed a multi-108

modal KGs incorporating text, image, video, and109

audio modalities, supported by extensively anno-110

tated datasets. A unified pipeline was proposed111

in (Gong et al., 2024) to help construct multi-112

modal KGs. Wei et al. built domain-specific KGs113

by connecting medical images and their related 114

biomedical concepts (Wei et al., 2024). To the best 115

of our knowledge, there are currently no knowl- 116

edge graphs representing rich relational semantics 117

among everyday sounds. 118

Vision-Language Models with KGs Due to 119

the inherent hallucination artifacts of large lan- 120

guage models (LLMs), there is a trend to use fac- 121

tual knowledge to enhance reasoning with vision- 122

language models. Liu et al. (Liu et al., 2025) pro- 123

posed a method that enhances LLMs’ multimodal 124

reasoning abilities through an integrated KG con- 125

structed via vision-language alignment with cross- 126

modal similarity recalibration. Similarly, Li et al. 127

(Li et al., 2023) proposed GraphAdapter, a fine- 128

tuning framework leveraging dual KGs to improve 129

vision-language understanding. A cross-modal 130

alignment module was introduced in (Lee et al., 131

2024) to align knowledge from images and text in 132

vision-language fine-tuning. Gao et al. (Gao et al., 133

2025) introduced a retrieve-and-rerank framework 134

for KG-augmented contrastive Language-Image 135

Pre-Training (CLIP). 136

Leveraging KGs for Audio Despite the ad- 137

vances in vision-language KGs, the audio modality 138

remains relatively under-explored. Penamakuri et 139

al. (Penamakuri et al., 2025) introduced Audiope- 140

dia, a framework for audio-based question answer- 141

ing augmented with external knowledge. How- 142

ever, the authors’ approach continues to rely on 143

text-based KGs, either by enhancing prompts or 144

through intermediate automatic speech recognition, 145

rather than constructing an audio-specific KG. The 146

approach proposed in this paper is closely related 147

to (Gao et al., 2025). Due to the paradigm of CLIP, 148

the full pipeline in that work still depends heavily 149

on prompt engineering. Unlike prior methods, our 150

approach merely relies on the class labels as the 151

text prompt, allowing us to focus on the seman- 152

tic connection between modalities and use the the 153

AKG to enhance reasoning. 154

3 Audio-language Models with KG 155

Reasoning 156

In this section, we detail the construction of our 157

audio-centric knowledge graph, the training of 158

knowledge graph embedding models, and their inte- 159

gration into a reasoning pipeline designed to refine 160

the zero-shot predictions of the CLAP model. Our 161

methodology, as shown in Figure 2, is adaptable to 162
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Figure 2: Our pipeline enhances zero-shot audio classification via KG reasoning. (a) CLAP initially misranks the
correct label (e.g., baby) due to acoustic ambiguity with other labels. (b) We query an audio-centric KG using
top-k predictions to retrieve related concepts via relevant relations (e.g., has parent). (c) Enriched prompts are
compared with the audio embedding, and similarity scores are aggregated to re-rank predictions, this time correctly
identifying baby as the top label. This refinement demonstrates the utility of structured symbolic knowledge for
disambiguating acoustic scenes and improving interpretability.

any audio-language model featuring aligned audio163

and text encoders.164

3.1 Knowledge Embedding Model165

To enable structured reasoning over audio-centric166

relationships, we employ knowledge graph embed-167

ding models that learn vector representations for en-168

tities and relations. These embeddings support link169

prediction, allowing the model to infer plausible170

but unobserved relations between audio concepts.171

We represent the knowledge graph as G =172

(E ,R), where E denotes the set of entities (e.g.,173

siren, barking) andR the set of relation types (e.g.,174

belongs to class, co-occurs with). Each fac-175

tual statement is encoded as a triple (h, r, t) ∈176

E × R× E , where h is the head entity, r the rela-177

tion, and t the tail entity. For example, the triple178

(dish clinking, occurs in, kitchen) captures a spa-179

tial context in which the sound typically appears.180

We define a scoring function ϕKG : E × R ×181

E → R, which assigns a plausibility score to a182

given triple (h, r, t). In our zero-shot classifica-183

tion pipeline, this function is primarily used for184

link prediction, specifically tail prediction, where,185

given a head entity h and relation r, we rank can-186

didate tail entities t ∈ E based on their plausibility.187

Higher scores indicate greater semantic compatibil-188

ity, enabling the discovery of relevant or missing189

connections between audio concepts.190

To model these interactions, we experiment with191

several knowledge embedding approaches imple-192

mented via the PyKEEN library. These include:193

(1) TransE (Bordes et al., 2013), which models194

relations as translations in the embedding space.195

(2) TransH (Wang et al., 2014) and TransR (Lin196

et al., 2017), which extend TransE by introduc- 197

ing relation-specific projection spaces ; (3) Com- 198

plEx (Trouillon et al., 2016), which leverages 199

complex-valued embeddings to model asymmet- 200

ric relations; (4) RotatE (Sun et al., 2019), which 201

represents each relation as a rotation in the com- 202

plex vector space Cd; and (5) GCN -based (graph 203

convolutional network) models (Schlichtkrull et al., 204

2017), which propagate information through the 205

graph structure via message passing. 206

In this work, we adopt the RotatE model due 207

to its strong empirical performance on the AKG 208

dataset (see Section 5.5). RotatE embeds entities 209

and relations in a complex vector space Cd, and 210

each relation is modeled as a rotation in that space. 211

The score of a triple (h, r, t) is given by: 212

ϕKG(h, r, t) = −∥h ◦ r− t∥2 , (1) 213

where h, r, t ∈ Cd are the embeddings of the head, 214

relation, and tail, respectively, and ◦ denotes the 215

element-wise (Hadamard) product. A higher score 216

indicates a more plausible triple. 217

This scoring mechanism enables structured rea- 218

soning over multi-relational knowledge, which we 219

exploit to retrieve semantically related entities and 220

refine CLAP’s initial predictions via link predic- 221

tion. 222

3.2 Zero-Shot Classification with CLAP 223

We leverage CLAP (Elizalde et al., 2023), a pre- 224

trained model that embeds audio and text into a 225

shared representation space. This enables zero- 226

shot audio classification by computing similarity 227

scores between audio inputs and candidate label 228

embeddings. 229
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LetA denote the space of input audio signals and230

L the space of textual labels. Given a set of target231

class labels C = {c1, . . . , cN} ⊂ L and an input232

audio sample a ∈ A, CLAP maps both modalities233

into a joint embedding space via an audio encoder234

ϕA : A → Rd, and a text encoder ϕT : L → Rd.235

CLAP formulates classification as a nearest-236

neighbor retrieval task (Figure 2 (a)), where the237

predicted label ĉ ∈ C is obtained by maximizing238

cosine similarity:239

ĉ = argmax
c∈C

sim (ϕA(a), ϕT(c)) , (2)240

where sim(·, ·) denotes cosine similarity. We de-241

note the top-k retrieved labels as:242

Ck = {c(1), . . . , c(k)}, ranked by similarity.243

3.3 Enhancing CLAP Inference with AKG244

To enhance interpretability and robustness, we re-245

fine the predictions Ck via symbolic reasoning over246

G. This produces enriched, context-aware prompts247

that reflect the semantic neighborhood of each class.248

This process is depicted in Figure 2 (b).249

Link Prediction To enrich top-k CLAP predic-250

tions with structured knowledge, we perform link251

prediction using the trained knowledge embedding252

model ϕKG. Given a predicted class label c ∈ Ck,253

we use ϕKG to infer the most semantically plausi-254

ble tail entities t ∈ E connected to c via a curated255

subset of informative relations Rq ⊂ R. These256

predicted tails serve as contextual signals to refine257

and expand the textual prompts used for similarity258

computation within the CLAP model.259

Contextual Prompt Expansion For each top pre-260

diction c ∈ Ck, we query the knowledge graph to261

retrieve candidate tail entities connected via infor-262

mative relations:263

Tc = {(c, r, t) ∈ T | r ∈ Rq},264

where Rq ⊂ R is a curated set of relations used265

for semantic enrichment (e.g., produces).266

Using the knowledge embedding model ϕKG, we267

rank tail candidates t ∈ E for each relation r ∈ Rq268

based on their plausibility in completing the triple269

(c, r, t). We select the top-m most plausible tails:270

T top
c = {t∗1, . . . , t∗m},271

where t∗i ∈ argmaxt∈E score(c, r, t;ϕKG), and272

score(·) denotes the plausibility score assigned by273

ϕKG.274

To generate enriched prompts, we concatenate 275

each class label c with its associated tail entities t∗i . 276

For example, prompts can take the form: 277

pc,t∗i = concat(c, t∗i ). 278

Let Pc = {pc,t∗1 , . . . , pc,t∗m} be the set of 279

knowledge-enriched prompts associated with class 280

c. 281

Scoring with Enriched Prompts Each enriched 282

prompt p ∈ Pc is encoded using the CLAP text 283

encoder ϕT, and scored against the input audio 284

a ∈ A via cosine similarity: 285

s(p) = sim (ϕA(a), ϕT(p)) . (3) 286

This yields a refined similarity score for 287

each knowledge-augmented prompt, enabling re- 288

ranking of the initial predictions Ck based on se- 289

mantically enriched textual context. 290

Aggregation and Re-ranking To consolidate 291

evidence from both the original label and its 292

knowledge-augmented prompts, we aggregate their 293

similarity scores into a single score per class (Fig- 294

ure 2 (c)). 295

For each class c ∈ Ck, let s(c) = 296

sim(ϕA(a), ϕT(c)) denote the original CLAP score, 297

and {s(p) | p ∈ Pc} the scores of its enriched 298

prompts. We define the aggregated score s̃(c) us- 299

ing a log-sum-exp fusion: 300

s̃(c) = log

exp(s(c)) +
∑
p∈Pc

exp(s(p))

 . (4) 301

This operation softly pools evidence across the 302

original and contextualized prompts. The final 303

class prediction is given by: 304

c̃ = argmax
c∈Ck

s̃(c). (5) 305

A detailed description of the algorithm is provided 306

in Appendix 1. 307

4 Knowledge Graph Construction 308

Sound events are ubiquitous and seldom occur in 309

isolation. They are situated within broader con- 310

texts that encompass temporal dynamics, causal 311

relations, environmental cues, perceptual attributes, 312

and even human intent. Capturing such relation- 313

ships is essential for integrating commonsense 314
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knowledge, easing robust inference and better gen-315

eralization in audio tasks. To move beyond con-316

ventional classification paradigms, we construct a317

domain-specific Audio-centric Knowledge Graph318

that encodes these relational semantics among ev-319

eryday sounds.320

Unlike general-purpose KGs such as DBpedia,321

ConceptNet, and Wikidata, which offer limited cov-322

erage of everyday sounds and lack fine-grained au-323

dio semantics and perceptual grounding, our AKG324

is tailored for auditory scenes, enabling symbolic325

reasoning aligned with audio-language models.326

We construct an Audio knowledge graph (AKG)327

to encode structured knowledge about sound events328

and their semantic and contextual properties. We329

derive this graph from standardized sound event330

labels aggregated across over 27 publicly avail-331

able datasets, as cataloged in the SALT taxonomy332

(Stamatiadis et al., 2024). Our AKG includes en-333

tities such as sound-producing sources (e.g., dog,334

engine), sound events (e.g., barking, idling), and335

higher-level categorical labels (e.g., domestic ani-336

mal, vehicle).337

The schema comprises 8 high-level relation cat-338

egories, each reflecting distinct aspects of auditory339

context. These categories guide the generation of340

plausible triples (head, relation, tail), where the341

head is a standardized sound event label and the342

relation contextualizes its link to the tail concept.343

We create a triple dataset with relations like has344

parent and occurs in for training knowledge345

graph embeddings (see Section 3.1). The full rela-346

tion schema is detailed in Appendix A.1.347

We construct the knowledge graph by generat-348

ing triples from two sources: (1) the hierarchical349

structure of the SALT taxonomy, and (2) large lan-350

guage model (LLM)-generated triples based on351

SALT labels. Using Mistral-7B-Instruct, we pro-352

duce an initial set of 51,254 triples, which undergo353

a two-stage filtering process—LLM-based plausi-354

bility checks followed by manual refinement. This355

yields a curated set of 20,387 unique, high-quality356

triples. Prompt templates used for triple genera-357

tion are detailed in Appendix A.5, while summary358

statistics are provided in Appendix A.2.359

5 Evaluation360

5.1 Datasets361

We evaluate our approach on six benchmark362

datasets designed for single-class or multi-label363

environmental sound classification:364
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Figure 3: Generation of knowledge triples from LLMs.

ESC50 (Piczak): A dataset of 2,000 labeled 365

5-second audio clips spanning 50 environmental 366

sound classes. UrbanSound8K (Salamon et al., 367

2014): Comprises 8,732 labeled audio excerpts, 368

each with a duration of up to 4 seconds, across 10 369

urban sound categories. TUT2017 (Mesaros et al., 370

2016): Contains 6,300 10-second recordings rep- 371

resenting 15 distinct acoustic scenes. FSD50K 372

(Fonseca et al., 2022): A collection of 51,197 373

variable-length audio clips (0.3–30 seconds) from 374

Freesound, annotated across 200 classes. AudioSet 375

(Gemmeke et al., 2017): A large-scale dataset with 376

over 2 million 10-second YouTube clips, cover- 377

ing 527 diverse sound categories. DCASE17-T4 378

(Mesaros et al., 2017): A curated subset of Au- 379

dioSet focusing on 17 warning and vehicle sound 380

classes, consisting of 52,763 10-second clips. We 381

utilize all cross-validation folds for ESC50, US8K, 382

and TUT2017, and test sets for AudioSet (20,371), 383

FSD50K (20,462), and DCASE17 (488). 384

5.2 Prompt Format 385

We use only the raw class labels from SALT, for- 386

matted in lowercase with underscores replaced by 387

spaces (e.g., dog_barking → dog barking). This 388

deliberate choice avoids the variability and re- 389

quired dataset-specific tuning typically introduced 390

by prompt engineering. This setup allows to isolate 391

the contribution of structured knowledge in refining 392

CLAP’s predictions, withut confounding effects 393

from prompt engineering. Although not optimized 394

for best-case accuracy, it offers a clean and consis- 395

tent basis for evaluating the impact of knowledge- 396

based reasoning for zero-shot audio classification. 397
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5.3 Metrics398

We use two metrics to measure the performance399

across datasets.400

Hit@K: For a given query, hit@k computes the401

ratio of ground truth that has been retrieved among402

the top K candidates.403

Mean reciprocal rank (MRR): The average of404

the reciprocal ranks of ground truth across multiple405

queries. For each query, the reciprocal rank is the406

inverse of the position at which the ground truth407

appears in the ranked list.408

AKG Model Training To learn structured repre-409

sentations over our audio-centric knowledge graph,410

we trained a suite of knowledge embedding models411

using the PyKEEN library (Ali et al., 2021). We eval-412

uated six established models: TransE (Bordes et al.,413

2013), TransH (Wang et al., 2014), TransR (Lin414

et al., 2017), ComplEx (Trouillon et al., 2016), R-415

GCN (Schlichtkrull et al., 2017), and RotatE (Sun416

et al., 2019). For each model, we conducted a grid417

search over the following hyperparameters: batch418

size (values in {28, 29, 210, 211, 212}), learning rate419

(in {10−1, 10−2, 10−3, 10−4}), and embedding di-420

mensionality ({64, 128, 256}). Training was per-421

formed on two variants of the knowledge graph:422

(i) a noisy version composed of raw triples ex-423

tracted from sound event labels without further424

refinement, and (ii) a clean version derived through425

LLM-based plausibility verification and manual426

post-processing to remove duplicates, spurious en-427

tries and inconsistencies in label granularity.428

5.4 Results429

We start by comparing the different embedding430

models, then look at the zero-shot audio classifica-431

tion results.432

5.4.1 Embedding Models433

Table 1 presents a comparison of models envisaged434

for our AKG embedding. We evaluated each model435

on link prediction tasks, comparing performance436

under both the initial noisy and cleaned versions.437

Noisy vs Clean Settings Transitioning from the438

noisy to the clean graph yields substantial perfor-439

mance gains for all models, underscoring the impor-440

tance of post-processing triples. Notable improve-441

ments include TransH’s MRR rising from 11.8 to442

26.1 and R-GCN’s from 30.0 to 41.7. This supports443

the notion that spurious triples and inconsistencies444

in entity labeling can obscure latent relational pat-445

terns crucial for learning effective embeddings.446

Model Hits@1 Hits@3 Hits@5 Hits@10 MRR
Noisy graph

TransE 1.0 36.0 47.4 59.8 22.2
TransH 6.0 12.1 16.7 22.5 11.8
TransR 3.4 7.1 9.6 13.3 7.1
ComplEx 19.6 34.3 40.9 50.5 30.1
R-GCN 17.4 33.8 43.9 56.7 30.0
RotatE 37.0 56.9 64.8 73.2 49.5

Clean graph
TransE 1.6 40.8 50.9 60.6 24.3
TransH 17.3 28.9 35.5 43.5 26.1
TransR 7.3 15.0 18.8 25.1 13.6
ComplEx 22.7 35.1 40.1 48.2 31.3
R-GCN 28.6 47.7 57.4 68.8 41.7
RotatE 46.4 61.9 67.7 74.0 56.1

Table 1: Comparison of models on clean and noisy con-
ditions. Retrieval results (%) in terms of hit@1, hit@3,
hit@5, and MRR on the six benchmark model. Best per-
formances are in bold and second-best are underlined.

Model-based Performance RotatE outperforms 447

all models in both clean and noisy settings, achiev- 448

ing the highest MRR (56.1) and leading in all 449

Hits@K metrics. Its performance effectively cap- 450

tures asymmetric and compositional relations such 451

as produces, or causes, outperforming simpler 452

translational models like TransE and TransH. R- 453

GCN performs well on the clean graph due to its 454

use of structural information but is highly sensitive 455

to noise, where simpler models like TransE and 456

ComplEx perform better. Despite its strengths, R- 457

GCN slightly underperforms RotatE, possibly due 458

to weaker handling of relation directionality or sub- 459

optimal tuning. ComplEx, effective for asymmetric 460

relations, shows no notable gains in the clean set- 461

ting, performing similarly across both conditions. 462

AKG Model Selection Based on this compar- 463

ative analysis, we select RotatE as the backbone 464

model for downstream knowledge reasoning/query- 465

ing. Its superior link prediction capabilities en- 466

sure that the semantic augmentations introduced 467

to CLAP are grounded in plausible, relationally 468

informed expansions of the label space. The robust- 469

ness of RotatE across both clean and noisy settings 470

further supports its integration into our inference- 471

time zero-shot audio classification pipeline. 472

5.4.2 Zero-Shot Audio Classification 473

Table 2 lists the best retrieval performance of CLAP 474

and CLAP-KG on the six benchmark datasets. We 475

observe that performance improves for all metrics 476

over all datasets except for the hit@5 metric. This 477

may be attributed to the semantic closeness of top- 478

K candidates to the ground truth. Considering 479
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Dataset ESC50 US8K TUT2017 FSD50K AudioSet DCASE17-T4

Hit@1 93.2 | 95.4 82.5 | 85.9 37.8 | 47.9 61.1 | 64.0 18.4 | 19.9 37.7 | 45.9
Hit@3 98.8 | 99.2 96.6 | 96.9 74.9 | 83.3 82.8 | 84.2 33.1 | 34.4 77.3 | 78.5
Hit@5 99.5 | 99.5 98.8 | 98.8 91.3 | 91.3 88.9 | 88.9 41.1 | 41.1 91.2 | 91.2
MRR 95.9 | 97.2 89.6 | 91.5 57.7 | 65.4 72.2 | 74.3 26.5 | 27.7 57.3 | 63.1

Table 2: Retrieval results (%) in terms of hit@1, hit@3, hit@5, and MRR on the six benchmark datasets: CLAP |
CLAP-KG. Performance improvement larger 1% is in bold and that less than 1% is underlined.
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Figure 4: Performance change (%) of CLAP-KG as compared to CLAP in terms of Hit@1, Hit@3, and MRR.
Only the top 10 relationships are displayed. associated w. env. = associated with environment; emo.
associated w. env. = emotionally associated with.

more candidates increases the likelihood of hav-480

ing the ground truth, applicable for both CLAP and481

CLAP-KG. The most impressive improvement is482

the hit@1 on the TUT2017 by 11.1%, highly due to483

the context and background knowledge required to484

understand an acoustic scene. Relations like scene485

contains or described as disentangle the audi-486

tory scene into its sound event components.487

Impact of Relations Datasets often vary in terms488

of context and structure, reflecting different rela-489

tions among classes. To shed light on this perspec-490

tive, we plot the zero-shot classification (ZSAC)491

performance with different relations, as shown in492

Figure 4. Clearly, many relations boost the perfor-493

mance across all datasets. has parent is a shared494

relation that works for all datasets. This is expected495

due to the inherent taxonomical categorization of496

sound events reflected in many datasets, where497

labels are systematically grouped into categories.498

The most impactful relations vary by dataset and499

are typically content-related. For TUT2017, the500

top relations is a variant of, has parent and501

scene occurs pertain to acoustic scenes, includ-502

ing sound event variations, label hierarchy, and503

scene location.504

Embedding Visualisations Appendix A.6 shows505

that the ZSAC performance varies across classes.506

To deeply understand why CLAP-KG improves507

ZSAC performance for certain classes while de-508

grading it for others, we visualize the Uniform 509

Manifold Approximation and Projection (UMAP) 510

(McInnes et al., 2018) projections of the embed- 511

dings, as shown in Figure 5. Although UMAP 512

does not preserve exact distances, the resulting em- 513

bedding clusters can still offer valuable insights 514

into the relative data distribution. The top row of 515

Figure 5 shows the mean audio embeddings (cir- 516

cle), the embedding of the top-1 CLAP predictions 517

(star), and the top-1 CLAP-KG (triangles). Colors 518

indicate different classes, with each subfigure using 519

a distinct color scheme because of the different set 520

of predictions. For each subfigure, we see multiple 521

triangles as the CLAP predictions can be enriched 522

by the KG in various ways depending on the tails. 523

CLAP-KG enriches predictions when the ground- 524

truth is helicopter, bird chirping, crow, crackle, and 525

cow. These classes to which CLAP-KG brings the 526

most improvement. Indeed, for all these classes, 527

the CLAP-KG prediction clusters overlap with the 528

audio embeddings, whereas the CLAP predictions 529

remain disjoint. 530

To support a more balanced view, we also plot 531

the 5 classes for which CLAP-KG degrades the 532

performance, i.e. cricket, rain, laughing, mouse 533

click, and engine, as shown by Figure 5 bottom. 534

The audio and the correct CLAP predictions (the 535

circle and star with the same color) indeed overlap, 536

while sometimes CLAP-KG does not. 537
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Figure 5: UMAP projection of the embeddings of CLAP audio (circle •), top-1 CLAP prediction (star ⋆), and
top-1 CLAP-KG predictions (triangle ▲). Colors indicate different classes, with each subfigure using a distinct
color scheme. Top: the 5 classes rightmost in Figure 9 that CLAP-KG improves the performance. Bottom: the 5
classes leftmost in Figure 9 that CLAP-KG degrades the performance.

5.5 Discussion538

Based on the observations and analysis above, we539

sum-up the following main findings:540

A posthoc prediction recalibration with our AKG541

can boost ZSAC without further training or tuning.542

Note that in the proposed pipeline, the KG directly543

operates on CLAP predictions without further train-544

ing.545

Meaningful relations are key to integrating a546

KG due to the specificity of different datasets. As547

evidenced by Figure 4, relations that enhance the548

understanding of context and background knowl-549

edge of acoustic scenes augment the performance550

on TUT2017 by a large margin. This also points551

out that a powerful and generalizable KG must552

encompass a variety of relations.553

Our AKG frees the efforts on prompt engineering554

and provides trackable reasoning. With the AKG,555

we can query audio-language models with only556

semantic cores, e.g. the class labels, eliminating557

the need for extensive prompt design. Furthermore,558

the KG predictions provide transparency into the559

classification process (through reasoning or factual 560

knowledge retrieval), revealing both the predicted 561

labels and their interrelations. 562

6 Conclusion 563

In this paper, we present iKnow-audio, a frame- 564

work to enhance audio-language model predictions 565

with knowledge graphs. We create the first audio 566

knowledge graph (AKG) that encompasses rich re- 567

lational semantics among everyday sounds. This 568

structured knowledge is then encoded into a knowl- 569

edge graph model to enhance predictions of an 570

instantiated CLAP model. Our main finding is that 571

instead of isolated semantic cores, AKG provides 572

the necessary context and background knowledge 573

for understanding sound events. The proposed 574

method is post-hoc and lightweight, akin to Re- 575

trieval Augmented Generation (RAG), requiring 576

neither fine-tuning nor prompt engineering when 577

using audio-language models. It also holds po- 578

tential for generalization to other tasks, such as 579

question answering. 580
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Limitations and Future Work581

Despite the potential of the proposed method, we582

are aware of the following limitations of the current583

work and suggest the corresponding future direc-584

tions: (1) Shallow and Heuristic Reasoning: Our585

approach currently performs only single-hop rea-586

soning (tail prediction) over the knowledge graph587

(KG) and enriches prompts using simple string con-588

catenation. This limits the depth and expressive-589

ness of semantic inference. Future work could590

explore multi-hop reasoning as relations in the KG591

space can be chained. (2) Noise and Incomplete-592

ness in the KG: The KG was automatically con-593

structed and cleaned, yet it may still contain noisy,594

generic, or missing triples. Additionally, link pre-595

diction from the knowledge embedding model can596

be unreliable for rare or ambiguous events, poten-597

tially introducing irrelevant or spurious concepts598

into the reasoning process. (3) Limited Evalua-599

tion Scope: We have not evaluated the method on600

music datasets, although the KG encodes music-601

related knowledge (through music-related labels602

from SALT). Extending evaluation to musical au-603

dio and broader domains would help assess the604

generality of the approach. (4) Design and Effi-605

ciency Constraints: The use of top-K selection for606

both CLAP and KG predictions may not capture607

the most informative evidence and could be bi-608

ased toward frequent entities. Moreover, inference-609

time reasoning introduces additional computational610

overhead (through beam search). Future work may611

explore alternative sampling strategies and effi-612

ciency optimizations.613
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A Appendix 744

A.1 Knowledge Graph Relation Schema 745

We define a schema comprising eight high-level 746

relation categories, each reflecting a distinct aspect 747

of auditory context. Each category includes a set 748

of relations that guide the generation of plausible 749

triples (head, relation, tail), where the head is a 750

standardized sound event label (from SALT (Sta- 751

matiadis et al., 2024)) and the relation contextual- 752

izes its link to the tail concept. These categories are 753

summarized in Table 3 and described as follows: 754

Co-occurrence and Temporal relations capture 755

how sound events unfold over time or co-occur 756

within sound scenes. Relations such as co-occurs 757

with, precedes, follows, and overlaps with 758

help model sequencing of events (e.g., "thunder 759

precedes lightning"). 760

Causal and Functional relations express under- 761

lying causes or functions of sound events, includ- 762

ing produces, caused by, triggers, indicates, 763

responds to, and affects. These relations allow 764

the KG to represent inferential chains (e.g., "siren 765

triggers emergency response") and explain sound 766

occurrences based on physical or intentional causal- 767

ity. 768

Taxonomic and Hierarchical relations organize 769

sounds into ontological structures using is a type 770

of, has subtype, is instance of, belongs to 771

class, and is variant of. These relations sup- 772

port reasoning about sound categories and enable 773
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class-based generalizations (e.g., "laughter is a774

type of human sound").775

Spatio-Environmental Relations situate sound776

events within physical and environmental contexts777

through relations such as occurs in, can be778

heard in, localized in, originates from, and779

associated with environment. These are par-780

ticularly valuable for acoustic scene classification781

and localization tasks.782

Source and Agent Relations focus on the783

source of origin of a sound event. Relations like784

emitted by, performed by, generated by, is785

sound of, and produced during encode associ-786

ations between sounds and their animate or inani-787

mate sources (e.g., "chirping performed by bird").788

Perceptual and Qualitative relations model789

human-centric interpretations of sound, using de-790

scriptors such as has loudness, has pitch,791

has duration, has timbre, perceived as, and792

emotionally associated with. These attributes793

provide complementary information that supports794

affective computing and perceptual modeling.795

Modality-Crossing relations link auditory sig-796

nals to language and vision, including described797

by, associated with event, linked to visual,798

and transcribed as. Such relations enable mul-799

timodal grounding and textual or visual alignment800

for sound events.801

Intentionality relations express functional802

and normative expectations related to sound,803

via invites action, used for, requires804

attention, and warns about. These are par-805

ticularly relevant for modeling listener responses806

and action-affording cues (e.g., "doorbell invites807

action open door").808

Scene Composition and Event Structure cap-809

tures how individual sound events compose or im-810

ply broader scenes or activities, through part of811

scene, scene contains, event composed of,812

temporal component of, and entails event.813

These relations provide a high-level abstraction of814

the acoustic scene and a structural prior for scene815

recognition.816

A.2 Audio Knowledge Graph Statistics817

In Figure 6 we present key statistics that provide a818

detailed characterization of the relational structure819

of the proposed knowledge graph. This includes820

measures of reflexivity, transitivity, and relation821

frequency distributions.822

Total Relations, Heads and Tails summarize823

the volume and diversity of relational instances.824

The total relations count all occurrences, while 825

unique heads and tails reflect the number of dis- 826

tinct entities appearing as the first (head) or second 827

argument (tail) in each relation. 828

Reflexivity is evaluated by counting instances 829

where the head and tail entities are identical. 830

This highlights self-referential relations within the 831

graph. 832

Transitivity is assessed by identifying triples 833

where the relation can be inferred transitively (if 834

(a, r, b) and (b, r, c) exist, then (a, r, c) is expected). 835

The proportion of such inferred triples provides 836

information on potential hierarchical or chain-like 837

relational structures. 838

An overview of the global entity and relation 839

counts, along with the 20 most frequent relations 840

is summarized in Table 4. 841

A.3 Exemplary triples from the AKG 842

Table 5 presents a set of exemplary triples from 843

the constructed knowledge graph. The first part of 844

the table includes examples generated using a large 845

language model (LLM), selected to depict a wide 846

range of semantic relations such as causality, emo- 847

tional association, perceptual attributes, and func- 848

tional use. The second part provides examples de- 849

rived from SALT, reflecting structured annotations 850

grounded in taxonomies for everyday sound cate- 851

gorization. This combined presentation illustrates 852

both the generative breadth of LLMs in synthetic 853

data creation and the specificity of human-curated 854

data, providing qualitative insight into the diverse 855

relational structure captured in the graph. 856

A.4 CLAP-AKG Algorithm Description 857

Algorithm 1 details the full inference pipeline for 858

knowledge-guided zero-shot audio classification 859

using CLAP and a knowledge embedding model. 860

Given an input audio sample and a set of candidate 861

class labels, the algorithm first performs standard 862

CLAP-based retrieval to identify the top-k most 863

similar labels based on cosine similarity in the joint 864

embedding space. For each top-ranked label, it 865

queries a curated set of semantic relationsRq using 866

the knowledge embedding model ϕKG to predict 867

the most plausible tail entities. These tail entities 868

are concatenated with the original label to form en- 869

riched, context-aware textual prompts. The CLAP 870

text encoder then scores these prompts against the 871

input audio. The final prediction is made by aggre- 872

gating evidence from both the original and enriched 873

prompts using a log-sum-exp fusion strategy, en- 874
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Category Example Relations Purpose

Co-occurrence & Temporal co-occurs with, precedes,
follows, overlaps with

Capture temporal ordering and co-
occurrence of sound events.

Causal & Functional produces, caused by,
triggers, indicates,
responds to, affects

Encode causality, function, and event-
response dynamics.

Taxonomic & Hierarchical is a type of, has subtype,
is instance of, belongs to
class, is variant of

Structure sound events via type, class,
and instance hierarchies.

Environmental occurs in, can be heard in,
localized in, originates
from, associated with
environment

Anchor sound events in physical, spatial,
and environmental contexts.

Source & Agent emitted by, performed by,
generated by, is sound of,
produced during

Link sounds to their generating sources.

Perceptual & Qualitative has loudness, has pitch,
has duration, has timbre,
perceived as, emotionally
associated with

Model perceptual properties and subjec-
tive qualities of sound.

Cross-modality described by, associated
with event, linked to
visual, transcribed as

Establishes connections to textual or vi-
sual modalities.

Intentionality invites action, used for,
requires attention, warns
about

Represent expectations, actions, or alerts
invoked by sound.

Compositionality part of scene,
scene contains,
event_composed_of,
temporal component of,
entails event

Capture hierarchical and compositional
structure of scene and events.

Table 3: Relation schema for knowledge graph construction. Each category defines semantic relations that support
rich contextualization of audio events.

abling semantic re-ranking of the top-k candidates.875

This procedure enhances both the interpretability876

and robustness of zero-shot classification by lever-877

aging structured knowledge.878

A.5 Prompt Templates for Triple Generation879

To extract relational knowledge from large lan-880

guage models, we design a prompt template that881

guides the generation of plausible (head, relation,882

tail) triples grounded in sound event semantics. The883

prompt is tailored to elicit contextually relevant re-884

lations for each unique sound label in the SALT885

taxonomy. We apply it at scale to generate an initial886

pool of candidate triples, which are subsequently887

refined through a two-stage filtering process in-888

volving automated plausibility checks and manual889

curation. Figure 7 illustrates the prompt used for890

triple generation, while Figure 8 shows the prompt891

used to verify their semantic plausibility.892

A.6 Additional Results 893

Per-class zero-shot audio classification perfor- 894

mance In addition to the overall performance 895

analysis in Section 5.4.2, we also investigate how 896

CLAP-KG benefits individual classes. We consider 897

ESC50 as an example and plot the class-wise clas- 898

sification performance of CLAP and CLAP-KG in. 899

We notice that although the overall accuracy is in- 900

creased by 2.2% as shown in Table 2, the class-wise 901

performance varies. Large performance increase 902

happens for crow, crackle, and cow, while CLAP- 903

KG degrades performance for cricket, rain, and 904

laughing. 905

A.7 Dataset Licenses 906

For transparency, we provide a comprehensive sum- 907

mary of the licensing terms associated with each 908

dataset used in our experiments in Table 6. All 909

datasets are publicly available and widely used in 910
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Knowledge Graph Summary

Overall Stats

Subset Triples Relations Heads Tails

Clean 18,348 47 857 4,282
Noisy 49,215 47 860 11,063
Test 2,039 46 673 1,068

Top 20 Most Frequent Relations (Split by Clean and Noisy Sets)

# Relation Triples Heads Tails

Clean Noisy Clean Noisy Clean Noisy

1 has subtype 2552 3773 331 528 1020 1731
2 belongs to class 2242 2739 828 835 252 471
3 occurs in 2052 2982 550 622 347 640
4 has children 907 907 211 211 773 773
5 has sibling 890 890 760 760 207 207
6 has parent 886 886 764 764 206 206
7 can be heard in 631 1212 289 366 249 378
8 localized in 623 893 226 241 268 355
9 part of scene 564 1531 164 253 337 752
10 is a type of 529 929 233 304 251 460
11 generated by 501 936 255 327 277 450
12 described by 393 661 242 295 368 627
13 event composed of 390 1368 236 441 284 877
14 produced during 363 712 161 219 241 395
15 overlaps with 348 2009 185 434 237 844
16 associated with environment 330 593 128 180 210 323
17 precedes 308 1010 122 227 220 643
18 originates from 304 579 138 172 207 377
19 warns about 272 1854 97 353 187 854
20 emitted by 254 319 135 149 149 183

Table 4: Summary statistics for the knowledge graph. The upper section presents overall statistics including the
number of triples, relations, head and tail entities. The lower section lists the 20 most frequent relations, split by
clean and noisy subsets, with counts of associated triples, heads, and tails.

academic research on environmental sound classifi-911

cation.912

13



has su
btype

belongs to
 cla

ss
occu

rs in

has ch
ildren

has sib
ling

has parent

can be heard in

localize
d in

part o
f sc

ene

is a
 type of

Relation

0

500

1000

1500

2000

2500

Co
un

t

Top 10 Relations: Count Stats
Statistic

Total Relation Counts
Unique Heads
Unique Tails

scene contains

event co
mposed of

has su
btype

is in
stance of

originates fro
m
produces

temporal co
mponent of

Relation

0

2

4

6

Re
fle

xi
ve

 C
ou

nt

Reflexive Relations (head == tail)

belongs to
 cla

ss

perceived as

has su
btype

Relation

0

20

40

60

80

Tr
an

sit
iv

ity
 M

at
ch

 (%
)

Transitive Relations

0 500 1000 1500 2000 2500
Number of Occurrences

0

5

10

15

Nu
m

be
r o

f R
el

at
io

ns

Distribution of Relation Frequencies

Knowledge Graph Relation Statistics

Figure 6: Overview of key statistics for relations of the clean set in the knowledge graph. (a): Distribution of
counts, unique heads, and unique tails for the top 10 most frequent relations. (b): Counts of reflexive relations
where the head equals the tail. (c): Proportion of transitive triples identified among the total triples per relation. (d):
Distribution of relation frequencies.

"You are an expert in sound event classification and knowledge graph generation. Given a sound
event label, your task is to reason about and, if appropriate, generate knowledge graph triples
that describe real-world, common-sense relationships between the sound event and other entities or
events. The relation type is: {relation_type}. The relation details are: {relation_details}. Here
is an example for guidance: {examples}.

Step 1: Reason about the plausibility of generating real-world, common-sense triples for
the sound event label: {label_name}, using the relation type:{relation_type}. Determine if this
type of relation is meaningfully applicable to the event in a way that reflects actual, observable
relationships in the world.
If the relation type is not applicable or would lead to speculative, forced, or non-sensical
triples, conclude that no valid triples can be generated.

Step 2: If the relation is applicable and meaningful, generate a list of plausible, real-world
triples grounded in common sense. Ensure that each triple reflects knowledge that a reasonable
person would accept as true in everyday understanding.
There is no fixed number of triples required, but include only those that are relevant, accurate,
and justifiable by common sense.
Respond with only the final list of triples in the exact format: [[head1, relation, tail1], [head2,
relation, tail2], ...].
If in Step 1 you determine that no meaningful triples can be generated, respond with an empty list:
[].
Do not include any reasoning or explanation in the final output. The head should strictly be the
label name: {label_name}."

Figure 7: Prompt template to generate synthetic triples via LLM.

"You are an expert in knowledge graphs for audio understanding. Given a triple in the format
[head, relation, tail], assess whether it is pertinent for inclusion in a knowledge graph for
audio understanding. The head represents a sound event label, i.e., a sound or an abstraction
of the sound emitted, implied, or perceptually associated with an entity. A triple is pertinent
if it is non-speculative, grounded in common-sense and real-world experience, and contributes to
a taxonomical, hierarchical, temporal, causal, perceptual, compositional, or phisical contextual
understanding of sound events. Reject triples which are vague, speculative, or not useful for
structuring knowledge about sound. Is the triple {kg_triple} pertinent to structure knowledge about
sound? Answer strictly “Yes” or “No” without any reasoning or explanation in the final output."

Figure 8: Prompt template to verify synthetic triples via LLM.
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SALT Label Head Relation Tail

Triple examples (generated by LLM)

1 vehicle engine vehicle engine caused by combustion
2 chicken crowing chicken crowing caused by rooster
3 smoke alarm smoke alarm caused by smoke
4 crying crying emotionally associated with sadness
5 cello cello emotionally associated with melancholy
6 lullaby lullaby emotionally associated with calmness
7 coffee machine coffee machine has duration medium
8 timpani timpani has duration long
9 cap gun cap gun has duration short
10 bird bird has pitch high
11 humming humming has pitch low
12 flute flute has pitch high
13 thunderstorm thunderstorm indicates thunder
14 marching marching indicates parade
15 firecracker firecracker indicates celebration
16 maraca maraca is instance of percussion instrument
17 giggling giggling is instance of laughter
18 microphone microphone is instance of audio recording device
19 fireworks fireworks perceived as celebratory
20 castanets castanets perceived as rhythmic instrument
21 pulse pulse perceived as heartbeat rate
22 flute flute performed by orchestra
23 kwaito music kwaito music performed by musicians
24 playing guitar playing guitar performed by guitarist
25 clock tick clock tick precedes door opening
26 electric guitar electric guitar precedes composing music
27 dog dog precedes yelping
28 mantra mantra used for self-improvement
29 whistle whistle used for alerting
30 knife knife used for self-defense

Triple examples (derived by SALT)

31 pigeon dove pigeon dove belongs to class bird
32 large rotating saw large rotating saw belongs to class sawing
33 vehicle compressor vehicle compressor belongs to class large vehicle
34 speech speech has children chatter
35 wild animal wild animal has children roar
36 bowed string instrument bowed string instrument has children cello
37 whoosh swoosh swish whoosh swoosh swish has parent wind
38 bouncing on trampoline bouncing on trampoline has parent jumping
39 swimming swimming has parent water activity
40 swimming swimming has sibling diving
41 whoosh swoosh swish whoosh swoosh swish has sibling rustling
42 bouncing on trampoline bouncing on trampoline has sibling bouncing ball
43 piano piano has subtype grand piano
44 music genre music genre has subtype jazz
45 vehicle vehicle has subtype bicycle
46 smash or crash smash or crash occurs in kitchen
47 drum kit drum kit occurs in train station
48 clatter clatter occurs in gym

Table 5: Representative examples of knowledge graph triples. The first section includes examples generated using a
large language model (LLM), grouped by semantic relation types such as causality, perception, and functionality.
The second section includes examples extracted from the SALT. Both sets illustrate complementary richness and
diversity of relation types from automated and curated construction approaches.
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Algorithm 1 Knowledge-Guided CLAP Inference

Require: Input audio a ∈ A, label set C =
{c1, . . . , cN} ⊂ L, CLAP encoders ϕA, ϕT,
knowledge embedding model ϕKG, relation set
Rq ⊂ R, top-k parameters k,m

Ensure: Predicted label c̃ ∈ C
1: Encode audio: a← ϕA(a)
2: Encode labels: ci ← ϕT(ci) for all ci ∈ C
3: Compute similarities: s(ci)← sim(a, ci)
4: Retrieve top-k labels: Ck =
{c(1), . . . , c(k)} ← TopK({s(ci)}, k)

5: Initialize enriched prompt set: P ← ∅
6: for all c ∈ Ck do
7: for all r ∈ Rq do
8: Predict top-m tails: T r

c ←
TopM(ϕKG(c, r, ·),m)

9: for all t ∈ T r
c do

10: Form enriched prompt: pc,t ←
concat(c, t)

11: Add pc,t to P
12: end for
13: end for
14: end for
15: Encode enriched prompts: pj ← ϕT(pj) for

all pj ∈ P
16: Compute prompt similarities: s(pj) ←

sim(a,pj)
17: for all c ∈ Ck do
18: Retrieve prompt scores: {s(pj) | pj ∈ Pc}
19: Aggregate score: s̃(c) ←

log
(
exp(s(c)) +

∑
pj∈Pc

exp(s(pj))
)

20: end for
21: Predict final label: c̃← argmaxc∈Ck

s̃(c)
22: return c̃

Dataset License
ESC50 (Piczak) CC BY-NC 3.0 (Attribution-NonCommercial)
UrbanSound8K (Salamon et al., 2014) CC BY-NC 3.0 (Attribution-NonCommercial)
TUT2017 (Mesaros et al., 2016) Custom EULA: Non-commercial scientific use only
FSD50K (Fonseca et al., 2022) CC BY 4.0 (Attribution)
AudioSet (dataset) (Gemmeke et al., 2017) CC BY 4.0 (Attribution)
AudioSet (ontology) (Gemmeke et al., 2017) CC BY-SA 4.0 (Attribution-ShareAlike)
DCASE17-T4 (Mesaros et al., 2017) Follows AudioSet licensing

Table 6: Summary of dataset licenses used in this study.
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