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Abstract

Contrastive audio-language models are learned
by semantically aligning different modalities in
a shared embedding space. Existing research
shows that zero-shot classification performance
is sensitive to language nuances and prompt for-
mulation. In addition, learned artifacts and spu-
rious correlations from noisy pretraining often
lead to semantic ambiguity in label interpreta-
tion. While recent work has explored few-shot
prefix tuning methods, adapters, and prompt
engineering strategies to mitigate these issues,
the use of structured prior knowledge remains
largely unexplored. In this work, we enhance
CLAP predictions using structured reasoning
over a knowledge graph (KG). We construct a
large, audio-centric KG that encodes ontologi-
cal relations comprising semantical, causal, and
taxonomic connections reflective of everyday
sound scenes and events. A systematic analysis
of retrieval performance across major publicly
available audio collections demonstrates that
symbolic knowledge enables robust semantic
grounding for contrastive audio-language mod-
els. This improvement is further supported by
embedding visualizations of CLAP before and
after incorporating the KG.

1 Introduction

In recent years, self-supervised and multimodal
models such as contrastive language-audio pretrain-
ing (CLAP) (Elizalde et al., 2023) have shown
impressive performance in audio understanding
tasks by leveraging large-scale contrastive learning
between audio and natural language descriptions.
While excelling at capturing general semantic cor-
respondences, these models often lack a deeper
understanding of the relational and contextual struc-
ture of real-world sound events. Common deficien-
cies include disambiguating acoustically similar
sounds, modeling co-occurrence patterns or hier-
archical relationships, and a lack of commonsense
grounding necessary for reasoning about sounds in
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Figure 1: Audio understanding requires contextual and
background knowledge, which can be represented by
audio knowledge graphs (AKG).

novel contexts. Additionally, the performance of
these models relies heavily on prompt engineering.
Indeed, previous work has shown that changes in
prompt wording and formatting can substantially
affect performance in zero-shot audio classification
tasks (Olvera et al., 2024).

Understanding real-world sounds often requires
contextual and background knowledge. For exam-
ple, in the scenario illustrated in Figure 1, recogniz-
ing that the sound of sirens may indicate emergency
vehicles, which are often associated with accidents,
fires, or emergencies, and that sirens frequently co-
occur with engine noise, people shouting, or brak-
ing sounds. Such relationships go beyond mere
labels; they reflect structured, situational knowl-
edge that is paramount for accurate interpretation.
While datasets exist for sound events, they lack a
structured semantic representation of such inter-
connections. We address this gap by construct-
ing a general-purpose Audio Knowledge Graph
(AKG) that captures rich, multi-relational infor-



mation about sound-producing entities, their cate-
gories, and co-occurrence patterns. This structured
knowledge is vital for enabling downstream models
to reason about ambiguous or acoustically similar
sounds, particularly in low-resource or zero-shot
settings where such priors are otherwise absent.

While a knowledge graph is a powerful source
of relational knowledge, querying it directly us-
ing symbolic methods (e.g., rule-based lookup or
SPARQL-style queries) is limited to exact matches
and fails to generalize or infer new knowledge be-
yond what’s explicitly encoded. Knowledge em-
bedding models (KEMs) address this limitation by
mapping entities and relations into continuous vec-
tor spaces, allowing for: generalization to unseen
or sparse triples through latent similarity, robust
reasoning under uncertainty or label noise, efficient
link prediction (e.g., inferring yelping as a plausible
child category of dog even if not explicitly stated).

To leverage the capability of CLAP while ad-
dressing its limitations, we propose to refine CLAP
predictions with the KEMs obtained from the AKG.
Importantly, for the text input, we encode only the
class labels, instead of extended prompts, such as
“This is a sound of {}" or “A recording of {}". This
minimizes the efforts on prompt engineering and
allows us to focus on improving CLAP predictions
with factual knowledge about sounds.

In summary, we present the following contribu-
tions: (1) AKG: A comprehensive audio knowl-
edge graph that encodes rich relational semantics
among everyday sounds. (2) CLAP-KG: A novel
pipeline for refining CLAP predictions using a
knowledge embedding model trained on AKG. (3)
Systematic zero-shot evaluation on six benchmark
datasets, showing consistent improvements over
baseline CLAP.

2 Related Work

Multimodal and Domain-Specific Knowledge
Graphs Conventional knowledge graphs are typ-
ically limited to the textual space, restricting their
efficacy on other modalities (Hogan et al., 2021).
Recent research has aimed to overcome this limita-
tion by integrating cross-modal knowledge. Wang
et al. (Wang et al., 2023) first constructed a multi-
modal KGs incorporating text, image, video, and
audio modalities, supported by extensively anno-
tated datasets. A unified pipeline was proposed
in (Gong et al., 2024) to help construct multi-
modal KGs. Wei et al. built domain-specific KGs

by connecting medical images and their related
biomedical concepts (Wei et al., 2024). To the best
of our knowledge, there are currently no knowl-
edge graphs representing rich relational semantics
among everyday sounds.

Vision-Language Models with KGs Due to
the inherent hallucination artifacts of large lan-
guage models (LLMs), there is a trend to use fac-
tual knowledge to enhance reasoning with vision-
language models. Liu et al. (Liu et al., 2025) pro-
posed a method that enhances LL.Ms’ multimodal
reasoning abilities through an integrated KG con-
structed via vision-language alignment with cross-
modal similarity recalibration. Similarly, Li et al.
(Li et al., 2023) proposed GraphAdapter, a fine-
tuning framework leveraging dual KGs to improve
vision-language understanding. A cross-modal
alignment module was introduced in (Lee et al.,
2024) to align knowledge from images and text in
vision-language fine-tuning. Gao et al. (Gao et al.,
2025) introduced a retrieve-and-rerank framework
for KG-augmented contrastive Language-Image
Pre-Training (CLIP).

Leveraging KGs for Audio Despite the ad-
vances in vision-language KGs, the audio modality
remains relatively under-explored. Penamakuri et
al. (Penamakuri et al., 2025) introduced Audiope-
dia, a framework for audio-based question answer-
ing augmented with external knowledge. How-
ever, the authors’ approach continues to rely on
text-based KGs, either by enhancing prompts or
through intermediate automatic speech recognition,
rather than constructing an audio-specific KG. The
approach proposed in this paper is closely related
to (Gao et al., 2025). Due to the paradigm of CLIP,
the full pipeline in that work still depends heavily
on prompt engineering. Unlike prior methods, our
approach merely relies on the class labels as the
text prompt, allowing us to focus on the seman-
tic connection between modalities and use the the
AKG to enhance reasoning.

3 Audio-language Models with KG
Reasoning

In this section, we detail the construction of our
audio-centric knowledge graph, the training of
knowledge graph embedding models, and their inte-
gration into a reasoning pipeline designed to refine
the zero-shot predictions of the CLAP model. Our
methodology, as shown in Figure 2, is adaptable to
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Figure 2: Our pipeline enhances zero-shot audio classification via KG reasoning. (a) CLAP initially misranks the
correct label (e.g., baby) due to acoustic ambiguity with other labels. (b) We query an audio-centric KG using
top-k predictions to retrieve related concepts via relevant relations (e.g., has parent). (c) Enriched prompts are
compared with the audio embedding, and similarity scores are aggregated to re-rank predictions, this time correctly
identifying baby as the top label. This refinement demonstrates the utility of structured symbolic knowledge for
disambiguating acoustic scenes and improving interpretability.

any audio-language model featuring aligned audio
and text encoders.

3.1 Knowledge Embedding Model

To enable structured reasoning over audio-centric
relationships, we employ knowledge graph embed-
ding models that learn vector representations for en-
tities and relations. These embeddings support link
prediction, allowing the model to infer plausible
but unobserved relations between audio concepts.

We represent the knowledge graph as G =
(€,R), where £ denotes the set of entities (e.g.,
siren, barking) and ‘R the set of relation types (e.g.,
belongs to class, co-occurs with). Each fac-
tual statement is encoded as a triple (h,r,t) €
& x R x &, where h is the head entity, r the rela-
tion, and ¢ the tail entity. For example, the triple
(dish clinking, occurs in, kitchen) captures a spa-
tial context in which the sound typically appears.

We define a scoring function ¢gg : £ X R X
£ — R, which assigns a plausibility score to a
given triple (h,r,t). In our zero-shot classifica-
tion pipeline, this function is primarily used for
link prediction, specifically tail prediction, where,
given a head entity h and relation 7, we rank can-
didate tail entities ¢t € £ based on their plausibility.
Higher scores indicate greater semantic compatibil-
ity, enabling the discovery of relevant or missing
connections between audio concepts.

To model these interactions, we experiment with
several knowledge embedding approaches imple-
mented via the PyKEEN library. These include:
(1) TransE (Bordes et al., 2013), which models
relations as translations in the embedding space.
(2) TransH (Wang et al., 2014) and TransR (Lin

et al., 2017), which extend TransE by introduc-
ing relation-specific projection spaces ; (3) Com-
plEx (Trouillon et al.,, 2016), which leverages
complex-valued embeddings to model asymmet-
ric relations; (4) RotatE (Sun et al., 2019), which
represents each relation as a rotation in the com-
plex vector space C%; and (5) GCN -based (graph
convolutional network) models (Schlichtkrull et al.,
2017), which propagate information through the
graph structure via message passing.

In this work, we adopt the RotatE model due
to its strong empirical performance on the AKG
dataset (see Section 5.5). RotatE embeds entities
and relations in a complex vector space C¢, and
each relation is modeled as a rotation in that space.
The score of a triple (h, r,t) is given by:

¢kg(h,r,t) = —|lhor —t|,, €))
where h,r,t € C? are the embeddings of the head,
relation, and tail, respectively, and o denotes the
element-wise (Hadamard) product. A higher score
indicates a more plausible triple.

This scoring mechanism enables structured rea-
soning over multi-relational knowledge, which we
exploit to retrieve semantically related entities and
refine CLAP’s initial predictions via link predic-
tion.

3.2 Zero-Shot Classification with CLAP

We leverage CLAP (Elizalde et al., 2023), a pre-
trained model that embeds audio and text into a
shared representation space. This enables zero-
shot audio classification by computing similarity
scores between audio inputs and candidate label
embeddings.



Let A denote the space of input audio signals and
L the space of textual labels. Given a set of target
class labels C' = {ci,...,cn} C £ and an input
audio sample a € A, CLAP maps both modalities
into a joint embedding space via an audio encoder
éa : A — RY and a text encoder ¢ : £ — RY.

CLAP formulates classification as a nearest-
neighbor retrieval task (Figure 2 (a)), where the
predicted label ¢ € C' is obtained by maximizing
cosine similarity:

¢ = argmaxsim (0a(a), 01() . @)

where sim(-, -) denotes cosine similarity. We de-
note the top-k retrieved labels as:

Cy = {c(l), o ,c(k)}, ranked by similarity.

3.3 Enhancing CLAP Inference with AKG

To enhance interpretability and robustness, we re-
fine the predictions C}, via symbolic reasoning over
G. This produces enriched, context-aware prompts
that reflect the semantic neighborhood of each class.
This process is depicted in Figure 2 (b).

Link Prediction To enrich top-k CLAP predic-
tions with structured knowledge, we perform link
prediction using the trained knowledge embedding
model ¢kg. Given a predicted class label ¢ € CY,
we use ¢k to infer the most semantically plausi-
ble tail entities ¢ € £ connected to c¢ via a curated
subset of informative relations R, C R. These
predicted tails serve as contextual signals to refine
and expand the textual prompts used for similarity
computation within the CLAP model.

Contextual Prompt Expansion For each top pre-
diction ¢ € Cy, we query the knowledge graph to
retrieve candidate tail entities connected via infor-
mative relations:

To={(e,rt) €T |r e Ry},

where R, C R is a curated set of relations used
for semantic enrichment (e.g., produces).

Using the knowledge embedding model ¢k, we
rank tail candidates ¢ € & for each relation r € R,
based on their plausibility in completing the triple
(c,r,t). We select the top-m most plausible tails:

7-ct0p = {t; R 7ﬁn}>

where tf € argmaxcg score(c,r,t; ¢rg), and
score(-) denotes the plausibility score assigned by
PKG-

To generate enriched prompts, we concatenate
each class label ¢ with its associated tail entities ¢
For example, prompts can take the form:

Petr = concat(c, t]).

Let P = {petrs- - Dets, ) be the set of
knowledge-enriched prompts associated with class
C.

Scoring with Enriched Prompts Each enriched
prompt p € P, is encoded using the CLAP text
encoder ¢r, and scored against the input audio
a € A via cosine similarity:

s(p) = sim (¢a(a), d1(p)) - 3)

This yields a refined similarity score for
each knowledge-augmented prompt, enabling re-
ranking of the initial predictions C} based on se-
mantically enriched textual context.

Aggregation and Re-ranking To consolidate
evidence from both the original label and its
knowledge-augmented prompts, we aggregate their
similarity scores into a single score per class (Fig-
ure 2 (¢)).

For each class ¢ € Cf, let s(c) =
sim(¢a(a), ¢r(c)) denote the original CLAP score,
and {s(p) | p € P.} the scores of its enriched
prompts. We define the aggregated score 5(c) us-
ing a log-sum-exp fusion:

5(c) = log | exp(s(c)) + Z exp(s(p)) | . 4)

pEP:

This operation softly pools evidence across the
original and contextualized prompts. The final
class prediction is given by:

c = 5(c). 5

¢ = argmax 5(c) )
A detailed description of the algorithm is provided
in Appendix 1.

4 Knowledge Graph Construction

Sound events are ubiquitous and seldom occur in
isolation. They are situated within broader con-
texts that encompass temporal dynamics, causal
relations, environmental cues, perceptual attributes,
and even human intent. Capturing such relation-
ships is essential for integrating commonsense



knowledge, easing robust inference and better gen-
eralization in audio tasks. To move beyond con-
ventional classification paradigms, we construct a
domain-specific Audio-centric Knowledge Graph
that encodes these relational semantics among ev-
eryday sounds.

Unlike general-purpose KGs such as DBpedia,
ConceptNet, and Wikidata, which offer limited cov-
erage of everyday sounds and lack fine-grained au-
dio semantics and perceptual grounding, our AKG
is tailored for auditory scenes, enabling symbolic
reasoning aligned with audio-language models.

We construct an Audio knowledge graph (AKG)
to encode structured knowledge about sound events
and their semantic and contextual properties. We
derive this graph from standardized sound event
labels aggregated across over 27 publicly avail-
able datasets, as cataloged in the SALT taxonomy
(Stamatiadis et al., 2024). Our AKG includes en-
tities such as sound-producing sources (e.g., dog,
engine), sound events (e.g., barking, idling), and
higher-level categorical labels (e.g., domestic ani-
mal, vehicle).

The schema comprises 8 high-level relation cat-
egories, each reflecting distinct aspects of auditory
context. These categories guide the generation of
plausible triples (head, relation, tail), where the
head is a standardized sound event label and the
relation contextualizes its link to the tail concept.
We create a triple dataset with relations like has
parent and occurs in for training knowledge
graph embeddings (see Section 3.1). The full rela-
tion schema is detailed in Appendix A.1.

We construct the knowledge graph by generat-
ing triples from two sources: (1) the hierarchical
structure of the SALT taxonomy, and (2) large lan-
guage model (LLM)-generated triples based on
SALT labels. Using Mistral-7B-Instruct, we pro-
duce an initial set of 51,254 triples, which undergo
a two-stage filtering process—ILILM-based plausi-
bility checks followed by manual refinement. This
yields a curated set of 20,387 unique, high-quality
triples. Prompt templates used for triple genera-
tion are detailed in Appendix A.5, while summary
statistics are provided in Appendix A.2.

5 Evaluation

5.1 Datasets

We evaluate our approach on six benchmark
datasets designed for single-class or multi-label
environmental sound classification:

Figure 3: Generation of knowledge triples from LLM:s.

ESC50 (Piczak): A dataset of 2,000 labeled
5-second audio clips spanning 50 environmental
sound classes. UrbanSound8K (Salamon et al.,
2014): Comprises 8,732 labeled audio excerpts,
each with a duration of up to 4 seconds, across 10
urban sound categories. TUT2017 (Mesaros et al.,
2016): Contains 6,300 10-second recordings rep-
resenting 15 distinct acoustic scenes. FSDS0K
(Fonseca et al., 2022): A collection of 51,197
variable-length audio clips (0.3-30 seconds) from
Freesound, annotated across 200 classes. AudioSet
(Gemmeke et al., 2017): A large-scale dataset with
over 2 million 10-second YouTube clips, cover-
ing 527 diverse sound categories. DCASE17-T4
(Mesaros et al., 2017): A curated subset of Au-
dioSet focusing on 17 warning and vehicle sound
classes, consisting of 52,763 10-second clips. We
utilize all cross-validation folds for ESC50, US8K,
and TUT2017, and test sets for AudioSet (20,371),
FSD50K (20,462), and DCASE17 (488).

5.2 Prompt Format

We use only the raw class labels from SALT, for-
matted in lowercase with underscores replaced by
spaces (e.g., dog_barking — dog barking). This
deliberate choice avoids the variability and re-
quired dataset-specific tuning typically introduced
by prompt engineering. This setup allows to isolate
the contribution of structured knowledge in refining
CLAP’s predictions, withut confounding effects
from prompt engineering. Although not optimized
for best-case accuracy, it offers a clean and consis-
tent basis for evaluating the impact of knowledge-
based reasoning for zero-shot audio classification.



5.3 Metrics

We use two metrics to measure the performance
across datasets.

Hit@K: For a given query, hit@k computes the
ratio of ground truth that has been retrieved among
the top K candidates.

Mean reciprocal rank (MRR): The average of
the reciprocal ranks of ground truth across multiple
queries. For each query, the reciprocal rank is the
inverse of the position at which the ground truth
appears in the ranked list.

AKG Model Training To learn structured repre-
sentations over our audio-centric knowledge graph,
we trained a suite of knowledge embedding models
using the PyKEEN library (Ali et al., 2021). We eval-
uated six established models: TransE (Bordes et al.,
2013), TransH (Wang et al., 2014), TransR (Lin
et al., 2017), ComplEx (Trouillon et al., 2016), R-
GCN (Schlichtkrull et al., 2017), and RotatE (Sun
et al., 2019). For each model, we conducted a grid
search over the following hyperparameters: batch
size (values in {28,29 210 211 2121 jearning rate
(in {1071,1072,1073,10~%}), and embedding di-
mensionality ({64, 128,256}). Training was per-
formed on two variants of the knowledge graph:
(1) a noisy version composed of raw triples ex-
tracted from sound event labels without further
refinement, and (ii) a clean version derived through
LLM-based plausibility verification and manual
post-processing to remove duplicates, spurious en-
tries and inconsistencies in label granularity.

5.4 Results

We start by comparing the different embedding
models, then look at the zero-shot audio classifica-
tion results.

5.4.1 Embedding Models

Table 1 presents a comparison of models envisaged
for our AKG embedding. We evaluated each model
on link prediction tasks, comparing performance
under both the initial noisy and cleaned versions.

Noisy vs Clean Settings Transitioning from the
noisy to the clean graph yields substantial perfor-
mance gains for all models, underscoring the impor-
tance of post-processing triples. Notable improve-
ments include TransH’s MRR rising from 11.8 to
26.1 and R-GCN’s from 30.0 to 41.7. This supports
the notion that spurious triples and inconsistencies
in entity labeling can obscure latent relational pat-
terns crucial for learning effective embeddings.

Model Hits@1 Hits@3 Hits@5 Hits@l10 MRR
Noisy graph

TransE 1.0 36.0 47.4 59.8 222

TransH 6.0 12.1 16.7 22.5 11.8

TransR 34 7.1 9.6 13.3 7.1

ComplEx  19.6 343 40.9 50.5 30.1
R-GCN 17.4 33.8 43.9 56.7 30.0
RotatE 37.0 56.9 64.8 73.2 49.5

Clean graph
TransE 1.6 40.8 50.9 60.6 24.3
TransH 17.3 28.9 355 435 26.1
TransR 7.3 15.0 18.8 25.1 13.6
ComplEx  22.7 35.1 40.1 48.2 31.3

R-GCN 28.6 417 57.4 68.8  4L7
RotatE 46.4 61.9 67.7 74.0 56.1

Table 1: Comparison of models on clean and noisy con-
ditions. Retrieval results (%) in terms of hit@1, hit@3,
hit@5, and MRR on the six benchmark model. Best per-
formances are in bold and second-best are underlined.

Model-based Performance RotatE outperforms
all models in both clean and noisy settings, achiev-
ing the highest MRR (56.1) and leading in all
Hits @K metrics. Its performance effectively cap-
tures asymmetric and compositional relations such
as produces, or causes, outperforming simpler
translational models like TransE and TransH. R-
GCN performs well on the clean graph due to its
use of structural information but is highly sensitive
to noise, where simpler models like TransE and
ComplEx perform better. Despite its strengths, R-
GCN slightly underperforms RotatE, possibly due
to weaker handling of relation directionality or sub-
optimal tuning. ComplEx, effective for asymmetric
relations, shows no notable gains in the clean set-
ting, performing similarly across both conditions.

AKG Model Selection Based on this compar-
ative analysis, we select RotatE as the backbone
model for downstream knowledge reasoning/query-
ing. Its superior link prediction capabilities en-
sure that the semantic augmentations introduced
to CLAP are grounded in plausible, relationally
informed expansions of the label space. The robust-
ness of RotatE across both clean and noisy settings
further supports its integration into our inference-
time zero-shot audio classification pipeline.

5.4.2 Zero-Shot Audio Classification

Table 2 lists the best retrieval performance of CLAP
and CLAP-KG on the six benchmark datasets. We
observe that performance improves for all metrics
over all datasets except for the hit@5 metric. This
may be attributed to the semantic closeness of top-
K candidates to the ground truth. Considering



Dataset ESC50 US8K TUT2017 FSD50K AudioSet DCASE17-T4
Hit@1 9321954 82.5185.9 37.8147.9 61.1164.0 18.4119.9 37.7145.9
Hit@3 98.8199.2 96.6196.9 74.9183.3 82.8184.2 33.1134.4 77.3178.5
Hit@5 99.5199.5 98.8198.8 91.3191.3 88.9188.9 41.1141.1 91.2191.2
MRR 95.9197.2 89.6191.5 57.7165.4 72.2174.3 26.5127.7 57.3163.1

Table 2: Retrieval results (%) in terms of hit@1, hit@3, hit@5, and MRR on the six benchmark datasets: CLAP |
CLAP-KG. Performance improvement larger 1% is in bold and that less than 1% is underlined.
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Figure 4: Performance change (%) of CLAP-KG as compared to CLAP in terms of Hit@1, Hit@3, and MRR.

Only the top 10 relationships are displayed. associated w.

env. = associated with environment; emo.

associated w. env. =emotionally associated with.

more candidates increases the likelihood of hav-
ing the ground truth, applicable for both CLAP and
CLAP-KG. The most impressive improvement is
the hit@1 on the TUT2017 by 11.1%, highly due to
the context and background knowledge required to
understand an acoustic scene. Relations like scene
contains or described as disentangle the audi-
tory scene into its sound event components.

Impact of Relations Datasets often vary in terms
of context and structure, reflecting different rela-
tions among classes. To shed light on this perspec-
tive, we plot the zero-shot classification (ZSAC)
performance with different relations, as shown in
Figure 4. Clearly, many relations boost the perfor-
mance across all datasets. has parent is a shared
relation that works for all datasets. This is expected
due to the inherent taxonomical categorization of
sound events reflected in many datasets, where
labels are systematically grouped into categories.
The most impactful relations vary by dataset and
are typically content-related. For TUT2017, the
top relations is a variant of, has parent and
scene occurs pertain to acoustic scenes, includ-
ing sound event variations, label hierarchy, and
scene location.

Embedding Visualisations Appendix A.6 shows
that the ZSAC performance varies across classes.
To deeply understand why CLAP-KG improves
ZSAC performance for certain classes while de-

grading it for others, we visualize the Uniform
Manifold Approximation and Projection (UMAP)
(Mclnnes et al., 2018) projections of the embed-
dings, as shown in Figure 5. Although UMAP
does not preserve exact distances, the resulting em-
bedding clusters can still offer valuable insights
into the relative data distribution. The top row of
Figure 5 shows the mean audio embeddings (cir-
cle), the embedding of the top-1 CLAP predictions
(star), and the top-1 CLAP-KG (triangles). Colors
indicate different classes, with each subfigure using
a distinct color scheme because of the different set
of predictions. For each subfigure, we see multiple
triangles as the CLAP predictions can be enriched
by the KG in various ways depending on the tails.
CLAP-KG enriches predictions when the ground-
truth is helicopter, bird chirping, crow, crackle, and
cow. These classes to which CLAP-KG brings the
most improvement. Indeed, for all these classes,
the CLAP-KG prediction clusters overlap with the
audio embeddings, whereas the CLAP predictions
remain disjoint.

To support a more balanced view, we also plot
the 5 classes for which CLAP-KG degrades the
performance, i.e. cricket, rain, laughing, mouse
click, and engine, as shown by Figure 5 bottom.
The audio and the correct CLAP predictions (the
circle and star with the same color) indeed overlap,
while sometimes CLAP-KG does not.
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Figure 5: UMAP projection of the embeddings of CLAP audio (circle ®), top-1 CLAP prediction (star %), and
top-1 CLAP-KG predictions (triangle A). Colors indicate different classes, with each subfigure using a distinct
color scheme. Top: the 5 classes rightmost in Figure 9 that CLAP-KG improves the performance. Bottom: the 5
classes leftmost in Figure 9 that CLAP-KG degrades the performance.

5.5 Discussion

Based on the observations and analysis above, we
sum-up the following main findings:

A posthoc prediction recalibration with our AKG
can boost ZSAC without further training or tuning.
Note that in the proposed pipeline, the KG directly
operates on CLAP predictions without further train-
ing.

Meaningful relations are key to integrating a
KG due to the specificity of different datasets. As
evidenced by Figure 4, relations that enhance the
understanding of context and background knowl-
edge of acoustic scenes augment the performance
on TUT2017 by a large margin. This also points
out that a powerful and generalizable KG must
encompass a variety of relations.

Our AKG frees the efforts on prompt engineering
and provides trackable reasoning. With the AKG,
we can query audio-language models with only
semantic cores, e.g. the class labels, eliminating
the need for extensive prompt design. Furthermore,
the KG predictions provide transparency into the

classification process (through reasoning or factual
knowledge retrieval), revealing both the predicted
labels and their interrelations.

6 Conclusion

In this paper, we present iKnow-audio, a frame-
work to enhance audio-language model predictions
with knowledge graphs. We create the first audio
knowledge graph (AKG) that encompasses rich re-
lational semantics among everyday sounds. This
structured knowledge is then encoded into a knowl-
edge graph model to enhance predictions of an
instantiated CLAP model. Our main finding is that
instead of isolated semantic cores, AKG provides
the necessary context and background knowledge
for understanding sound events. The proposed
method is post-hoc and lightweight, akin to Re-
trieval Augmented Generation (RAG), requiring
neither fine-tuning nor prompt engineering when
using audio-language models. It also holds po-
tential for generalization to other tasks, such as
question answering.



Limitations and Future Work

Despite the potential of the proposed method, we
are aware of the following limitations of the current
work and suggest the corresponding future direc-
tions: (1) Shallow and Heuristic Reasoning: Our
approach currently performs only single-hop rea-
soning (tail prediction) over the knowledge graph
(KG) and enriches prompts using simple string con-
catenation. This limits the depth and expressive-
ness of semantic inference. Future work could
explore multi-hop reasoning as relations in the KG
space can be chained. (2) Noise and Incomplete-
ness in the KG: The KG was automatically con-
structed and cleaned, yet it may still contain noisy,
generic, or missing triples. Additionally, link pre-
diction from the knowledge embedding model can
be unreliable for rare or ambiguous events, poten-
tially introducing irrelevant or spurious concepts
into the reasoning process. (3) Limited Evalua-
tion Scope: We have not evaluated the method on
music datasets, although the KG encodes music-
related knowledge (through music-related labels
from SALT). Extending evaluation to musical au-
dio and broader domains would help assess the
generality of the approach. (4) Design and Effi-
ciency Constraints: The use of top-K selection for
both CLAP and KG predictions may not capture
the most informative evidence and could be bi-
ased toward frequent entities. Moreover, inference-
time reasoning introduces additional computational
overhead (through beam search). Future work may
explore alternative sampling strategies and effi-
ciency optimizations.
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A Appendix
A.1 Knowledge Graph Relation Schema

We define a schema comprising eight high-level
relation categories, each reflecting a distinct aspect
of auditory context. Each category includes a set
of relations that guide the generation of plausible
triples (head, relation, tail), where the head is a
standardized sound event label (from SALT (Sta-
matiadis et al., 2024)) and the relation contextual-
izes its link to the tail concept. These categories are
summarized in Table 3 and described as follows:

Co-occurrence and Temporal relations capture
how sound events unfold over time or co-occur
within sound scenes. Relations such as co-occurs
with, precedes, follows, and overlaps with
help model sequencing of events (e.g., "thunder
precedes lightning").

Causal and Functional relations express under-
lying causes or functions of sound events, includ-
ing produces, caused by, triggers, indicates,
responds to, and affects. These relations allow
the KG to represent inferential chains (e.g., "siren
triggers emergency response") and explain sound
occurrences based on physical or intentional causal-
ity.

Taxonomic and Hierarchical relations organize
sounds into ontological structures using is a type
of, has subtype, is instance of, belongs to
class, and is variant of. These relations sup-
port reasoning about sound categories and enable


https://doi.org/10.1016/j.procs.2017.05.045
https://doi.org/10.1016/j.procs.2017.05.045
https://doi.org/10.1016/j.procs.2017.05.045

class-based generalizations (e.g., "laughter is a
type of human sound").

Spatio-Environmental Relations situate sound
events within physical and environmental contexts
through relations such as occurs 1in, can be
heard in, localized in,originates from, and
associated with environment. These are par-
ticularly valuable for acoustic scene classification
and localization tasks.

Source and Agent Relations focus on the
source of origin of a sound event. Relations like
emitted by, performed by, generated by, is
sound of, and produced during encode associ-
ations between sounds and their animate or inani-
mate sources (e.g., "chirping performed by bird").

Perceptual and Qualitative relations model
human-centric interpretations of sound, using de-
scriptors such as has loudness, has pitch,
has duration, has timbre, perceived as, and
emotionally associated with. These attributes
provide complementary information that supports
affective computing and perceptual modeling.

Modality-Crossing relations link auditory sig-
nals to language and vision, including described
by, associated with event, linked to visual,
and transcribed as. Such relations enable mul-
timodal grounding and textual or visual alignment
for sound events.

Intentionality relations express functional
and normative expectations related to sound,
via invites action, used for, requires
attention, and warns about. These are par-
ticularly relevant for modeling listener responses
and action-affording cues (e.g., "doorbell invites
action open door").

Scene Composition and Event Structure cap-
tures how individual sound events compose or im-
ply broader scenes or activities, through part of
scene, scene contains, event composed of,
temporal component of, and entails event.
These relations provide a high-level abstraction of
the acoustic scene and a structural prior for scene
recognition.

A.2 Audio Knowledge Graph Statistics

In Figure 6 we present key statistics that provide a
detailed characterization of the relational structure
of the proposed knowledge graph. This includes
measures of reflexivity, transitivity, and relation
frequency distributions.

Total Relations, Heads and Tails summarize
the volume and diversity of relational instances.
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The total relations count all occurrences, while
unique heads and tails reflect the number of dis-
tinct entities appearing as the first (head) or second
argument (tail) in each relation.

Reflexivity is evaluated by counting instances
where the head and tail entities are identical.
This highlights self-referential relations within the
graph.

Transitivity is assessed by identifying triples
where the relation can be inferred transitively (if
(a,r,b)and (b, r, c) exist, then (a, r, ¢) is expected).
The proportion of such inferred triples provides
information on potential hierarchical or chain-like
relational structures.

An overview of the global entity and relation
counts, along with the 20 most frequent relations
is summarized in Table 4.

A.3 Exemplary triples from the AKG

Table 5 presents a set of exemplary triples from
the constructed knowledge graph. The first part of
the table includes examples generated using a large
language model (LLM), selected to depict a wide
range of semantic relations such as causality, emo-
tional association, perceptual attributes, and func-
tional use. The second part provides examples de-
rived from SALT, reflecting structured annotations
grounded in taxonomies for everyday sound cate-
gorization. This combined presentation illustrates
both the generative breadth of LLMs in synthetic
data creation and the specificity of human-curated
data, providing qualitative insight into the diverse
relational structure captured in the graph.

A4 CLAP-AKG Algorithm Description

Algorithm 1 details the full inference pipeline for
knowledge-guided zero-shot audio classification
using CLAP and a knowledge embedding model.
Given an input audio sample and a set of candidate
class labels, the algorithm first performs standard
CLAP-based retrieval to identify the top-k most
similar labels based on cosine similarity in the joint
embedding space. For each top-ranked label, it
queries a curated set of semantic relations R, using
the knowledge embedding model ¢kg to predict
the most plausible tail entities. These tail entities
are concatenated with the original label to form en-
riched, context-aware textual prompts. The CLAP
text encoder then scores these prompts against the
input audio. The final prediction is made by aggre-
gating evidence from both the original and enriched
prompts using a log-sum-exp fusion strategy, en-



Category

Example Relations

Purpose

Co-occurrence & Temporal

co-occurs with, precedes,
follows, overlaps with

Capture temporal ordering and co-
occurrence of sound events.

Causal & Functional

produces, caused by,
triggers, indicates,
responds to, affects

Encode causality, function, and event-
response dynamics.

Taxonomic & Hierarchical

is a type of, has subtype,
is instance of, belongs to
class, is variant of

Structure sound events via type, class,
and instance hierarchies.

Environmental

occurs in, can be heard in,

localized 1in, originates
from, associated with
environment

Anchor sound events in physical, spatial,
and environmental contexts.

Source & Agent

emitted by, performed by,
generated by, is sound of,
produced during

Link sounds to their generating sources.

Perceptual & Qualitative

has loudness, has pitch,
has duration, has timbre,
perceived as, emotionally
associated with

Model perceptual properties and subjec-
tive qualities of sound.

Cross-modality

described by, associated
with event, linked to
visual, transcribed as

Establishes connections to textual or vi-
sual modalities.

Intentionality invites action, used for, Representexpectations, actions, or alerts
requires attention, warns invoked by sound.
about

Compositionality part of scene, Capture hierarchical and compositional
scene contains, structure of scene and events.
event_composed_of,
temporal  component  of,

entails event

Table 3: Relation schema for knowledge graph construction. Each category defines semantic relations that support

rich contextualization of audio events.

abling semantic re-ranking of the top-k candidates.
This procedure enhances both the interpretability
and robustness of zero-shot classification by lever-
aging structured knowledge.

A.5 Prompt Templates for Triple Generation

To extract relational knowledge from large lan-
guage models, we design a prompt template that
guides the generation of plausible (head, relation,
tail) triples grounded in sound event semantics. The
prompt is tailored to elicit contextually relevant re-
lations for each unique sound label in the SALT
taxonomy. We apply it at scale to generate an initial
pool of candidate triples, which are subsequently
refined through a two-stage filtering process in-
volving automated plausibility checks and manual
curation. Figure 7 illustrates the prompt used for
triple generation, while Figure 8 shows the prompt
used to verify their semantic plausibility.
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A.6 Additional Results

Per-class zero-shot audio classification perfor-
mance In addition to the overall performance
analysis in Section 5.4.2, we also investigate how
CLAP-KG benefits individual classes. We consider
ESC50 as an example and plot the class-wise clas-
sification performance of CLAP and CLAP-KG in.
We notice that although the overall accuracy is in-
creased by 2.2% as shown in Table 2, the class-wise
performance varies. Large performance increase
happens for crow, crackle, and cow, while CLAP-
KG degrades performance for cricket, rain, and
laughing.

A.7 Dataset Licenses

For transparency, we provide a comprehensive sum-
mary of the licensing terms associated with each
dataset used in our experiments in Table 6. All
datasets are publicly available and widely used in



Knowledge Graph Summary

Subset Triples  Relations  Heads Tails
Overall Stats  Clean 18,348 47 857 4,282
Noisy 49,215 47 860 11,063
Test 2,039 46 673 1,068

Top 20 Most Frequent Relations (Split by Clean and Noisy Sets)

# Relation Triples Heads Tails
Clean Noisy Clean Noisy Clean Noisy
1 has subtype 2552 3773 331 528 1020 1731
2 belongs to class 2242 2739 828 835 252 471
3 occurs in 2052 2982 550 622 347 640
4 has children 907 907 211 211 773 773
5 has sibling 890 890 760 760 207 207
6 has parent 886 886 764 764 206 206
7 can be heard in 631 1212 289 366 249 378
8 localized in 623 893 226 241 268 355
9 part of scene 564 1531 164 253 337 752
10 is a type of 529 929 233 304 251 460
11 generated by 501 936 255 327 277 450
12 described by 393 661 242 295 368 627
13 event composed of 390 1368 236 441 284 877
14 produced during 363 712 161 219 241 395
15 overlaps with 348 2009 185 434 237 844
16 associated with environment 330 593 128 180 210 323
17 precedes 308 1010 122 227 220 643
18 originates from 304 579 138 172 207 377
19 warns about 272 1854 97 353 187 854
20 emitted by 254 319 135 149 149 183

Table 4: Summary statistics for the knowledge graph. The upper section presents overall statistics including the
number of triples, relations, head and tail entities. The lower section lists the 20 most frequent relations, split by
clean and noisy subsets, with counts of associated triples, heads, and tails.

academic research on environmental sound classifi-
cation.
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Figure 6: Overview of key statistics for relations of the clean set in the knowledge graph. (a): Distribution of
counts, unique heads, and unique tails for the top 10 most frequent relations. (b): Counts of reflexive relations
where the head equals the tail. (¢): Proportion of transitive triples identified among the total triples per relation. (d):
Distribution of relation frequencies.

"You are an expert in sound event classification and knowledge graph generation. Given a sound
event label, your task is to reason about and, if appropriate, generate knowledge graph triples
that describe real-world, common-sense relationships between the sound event and other entities or
events. The relation type is: {relation_type}. The relation details are: {relation_details}. Here
is an example for guidance: {examples}.

Step 1: Reason about the plausibility of generating real-world, common-sense triples for
the sound event label: {label_name}, using the relation type:{relation_type}. Determine if this
type of relation is meaningfully applicable to the event in a way that reflects actual, observable
relationships in the world.

If the relation type is not applicable or would lead to speculative, forced, or non-sensical
triples, conclude that no valid triples can be generated.

Step 2: If the relation is applicable and meaningful, generate a list of plausible, real-world
triples grounded in common sense. Ensure that each triple reflects knowledge that a reasonable
person would accept as true in everyday understanding.

There is no fixed number of triples required, but include only those that are relevant, accurate,
and justifiable by common sense.

Respond with only the final list of triples in the exact format: [[headl, relation, taill], [head2,
relation, tail2], ...].

If in Step 1 you determine that no meaningful triples can be generated, respond with an empty list:
[1.

Do not include any reasoning or explanation in the final output. The head should strictly be the
label name: {label_name}."”

Figure 7: Prompt template to generate synthetic triples via LLM.

"You are an expert in knowledge graphs for audio understanding. Given a triple in the format
[head, relation, tail], assess whether it is pertinent for inclusion in a knowledge graph for
audio understanding. The head represents a sound event label, i.e., a sound or an abstraction
of the sound emitted, implied, or perceptually associated with an entity. A triple is pertinent
if it is non-speculative, grounded in common-sense and real-world experience, and contributes to
a taxonomical, hierarchical, temporal, causal, perceptual, compositional, or phisical contextual
understanding of sound events. Reject triples which are vague, speculative, or not useful for
structuring knowledge about sound. Is the triple {kg_triple} pertinent to structure knowledge about
sound? Answer strictly “Yes” or “No” without any reasoning or explanation in the final output.”

Figure 8: Prompt template to verify synthetic triples via LLM.
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SALT Label Head Relation Tail
Triple examples (generated by LLM)

1 vehicle engine vehicle engine caused by combustion

2 chicken crowing chicken crowing caused by rooster

3 smoke alarm smoke alarm caused by smoke

4 crying crying emotionally associated with  sadness

5 cello cello emotionally associated with melancholy

6 lullaby lullaby emotionally associated with calmness

7 coffee machine coffee machine has duration medium

8 timpani timpani has duration long

9 cap gun cap gun has duration short

10 bird bird has pitch high

11 humming humming has pitch low

12 flute flute has pitch high

13 thunderstorm thunderstorm indicates thunder

14 marching marching indicates parade

15 firecracker firecracker indicates celebration

16 maraca maraca is instance of percussion instrument
17 giggling giggling is instance of laughter

18 microphone microphone is instance of audio recording device
19 fireworks fireworks perceived as celebratory
20 castanets castanets perceived as rhythmic instrument
21 pulse pulse perceived as heartbeat rate
22 flute Sflute performed by orchestra
23 kwaito music kwaito music performed by musicians
24 playing guitar playing guitar performed by guitarist
25 clock tick clock tick precedes door opening
26 electric guitar electric guitar precedes composing music
27 dog dog precedes yelping
28  mantra mantra used for self-improvement
29 whistle whistle used for alerting
30  knife knife used for self-defense

Triple examples (derived by SALT)

31 pigeon dove pigeon dove belongs to class bird
32 large rotating saw large rotating saw belongs to class sawing
33 vehicle compressor vehicle compressor belongs to class large vehicle
34 speech speech has children chatter
35 wild animal wild animal has children roar
36 bowed string instrument bowed string instrument has children cello
37 whoosh swoosh swish whoosh swoosh swish has parent wind
38  bouncing on trampoline bouncing on trampoline has parent Jjumping
39 swimming swimming has parent water activity
40  swimming swimming has sibling diving
41 whoosh swoosh swish whoosh swoosh swish has sibling rustling
42 bouncing on trampoline bouncing on trampoline has sibling bouncing ball
43 piano piano has subtype grand piano
44 music genre music genre has subtype jazz
45 vehicle vehicle has subtype bicycle
46 smash or crash smash or crash occurs in kitchen
47 drum kit drum kit occurs in train station
48  clatter clatter occurs in gym

Table 5: Representative examples of knowledge graph triples. The first section includes examples generated using a
large language model (LLM), grouped by semantic relation types such as causality, perception, and functionality.
The second section includes examples extracted from the SALT. Both sets illustrate complementary richness and
diversity of relation types from automated and curated construction approaches.
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Algorithm 1 Knowledge-Guided CLAP Inference

Require: Input audio a € A, label set C

{c1,...,en} C L, CLAP encoders ¢, ¢r,
knowledge embedding model ¢k, relation set

R4 C R, top-k parameters k, m
Ensure: Predicted label ¢ € C'
1: Encode audio: a < ¢a(a)
Encode labels: ¢; <+ ¢r(c¢;) forall ¢; € C
Compute similarities: s(c;) < sim(a, ¢;)
Retrieve  top-k  labels: Cy
{cD . e®}  TopK({s(cy)}, k)
Initialize enriched prompt set: P < ()
for all c € C}, do
forallr € R, do
Predict top-m tails: T,
TopM(¢ka(c, T, ), m)
9: forallt € 7 do
10: Form enriched prompt: p.¢
concat(e, t)
11: Add p.; to P
12: end for
13:  end for
14: end for

Rl N

S A

<

15: Encode enriched prompts: p; < ¢1(p;) for

allp; € P

16: Compute prompt similarities: s(p;)
Sim(a> pj)

17: for all c € C}, do

<_

18:  Retrieve prompt scores: {s(p;) | p; € Pe}

19:  Aggregate  score: 5(c)
log (exp(s(€)) + X2, cp, exp(s(py))
20: end for

21: Predict final label: ¢ <— arg max.cc, 5(c)
22: return ¢

<_

Dataset

License

ESC50 (Piczak)

UrbanSound8K (Salamon et al., 2014)
TUT2017 (Mesaros et al., 2016)

FSD50K (Fonseca et al., 2022)

AudioSet (dataset) (Gemmeke et al., 2017)
AudioSet (ontology) (Gemmeke et al., 2017)
DCASE17-T4 (Mesaros et al., 2017)

CC BY-NC 3.0 (Attribution-NonCommercial)

CC BY-NC 3.0 (Attribution-NonCommercial)
Custom EULA: Non-commercial scientific use only
CC BY 4.0 (Attribution)

CC BY 4.0 (Attribution)

CC BY-SA 4.0 (Attribution-ShareAlike)

Follows AudioSet licensing

Table 6: Summary of dataset licenses used in this study.
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