
Under review as a conference paper at ICLR 2024

FLAT-CHAT: A WORD RECOVERY ATTACK ON
FEDERATED LANGUAGE MODEL TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Gradient exchange is widely applied in collaborative training of machine learning
models, including Federated Learning. Curious-but-honest participants could
potentially infer the output labels in recently used training data by analyzing the
latest gradient updates. Previous works mostly demonstrate the attack performance
under constraint training settings, such as dozens of short sentences in a batch and
a small output space for labels. In this work, we propose a novel gradient flattening
attack on the last linear layer of a language model, which significantly improves
the attacker’s efficiency in inferring the words used in training. We validate the
capability of the attack on two language generation tasks: machine translation and
language modeling. The attack environment is scaled up to industrial settings of a
large output vocabulary and realistic training batch sizes. To mitigate the negative
impact of the new attack, we explore two defense methods and demonstrate that
adding differential privacy with small noise could effectively defend against our
new attack without degrading model utility.

1 INTRODUCTION

Distributed collaborative learning has become a prevalent paradigm in training large-scale machine
learning models, allowing participants to retain their private datasets in their own silos. Federated
Learning (FL), as demonstrated in Figure 1, a server coordinates the training process by collecting
the gradient updates from local clients and then synchronizing the global model’s parameters to
local clients. While the private data of the participants do not require direct sharing with others, the
exchanged parameters or gradients of the model remain susceptible to tracking, monitoring, and
potential misuse by honest-by-curious participants or malicious attackers, e.g., by reconstructing a
batch of data recently used for training (Dang et al., 2021; Zanella-Béguelin et al., 2020).

This work focuses on the data reconstruction threat on federated Large-scale Language Model (LLM)
training using exchanged model gradients. Inspired by the sparsity property of gradients from the last
linear layer, we apply a matrix flattening operation on the gradient matrix. Then, we derive a simple
but effective word reconstruction attack on the flattened gradient vector based on i) a theory that its
element values follow a two-cluster Gaussian Mixture Model and ii) three remarks on the statistical
properties of the distribution. Inspired by the theoretical analysis, we design a fast and effective
gradient flattening attack FLATCHAT. Our empirical study shows that the new attack provides
real-time inference results on large-scale training settings such as a training batch using totally more
than 100 thousand token instances (involving over three thousand unique word types) and language
models with more than 50 thousand candidate words in their output vocabulary. Compared with the
existing attack on the last layer (Dang et al., 2021), our attack is far more effective as the inference
time is reduced to a linear order of the matrix size by the last linear layer (several seconds on a single
CPU server) versus their complaint of high order time complexity on the matrix size.

Our attack exposes the risk of privacy leakage in collaboratively training language models under
a setting that intuitively can be seen as one that improves privacy: large training batch and large
vocabulary size. To mitigate the risk of attack, we evaluate two defense methods, freezing the
gradients (used by Gupta et al. (2022)) and Differentially Private Stochastic Gradient Descent (Abadi
et al., 2016), against our attack. The former method is a strong defense method but it sacrifices the
models’ performance. The latter manages to mitigate our attacks while obtaining improved model
performance.

1

Under review as a conference paper at ICLR 2024

Figure 1: The workflow of Federated Learning (FL) on Language Model, where i) the clients upload
gradients �W to server (green) and ii) server synchronizes the latest model parameters W to clients
(blue). The gradient attack (red) accesses �W by (a) a curious-but-honest server, or (b) hackers who
monitor the communication channel between them. Then, the attackers infer the private data such as
used tokens by a client, given the model gradients �W . The figure is best viewed in color.

2 RELATED WORK

Private data used in training are shown to be leaked by analyzing the gradients shared in distributed
machine learning (Melis et al., 2019; Boenisch et al., 2021), federated learning (FL) as a prevalent
sample (Yang et al., 2019; Kairouz et al., 2021). Prior work demonstrated the possibility of recon-
structing training images from gradients by optimizing the similarity between the retrieved gradients
and the gradients calculated by some heuristic data (Zhu et al., 2019; Zhao et al., 2020). Then, the
data reconstruction attack is extended to a more challenging scenario of inferring training sentences,
namely sequences of tokens (Zhu et al., 2019; Deng et al., 2021; Gupta et al., 2022; Balunovic
et al., 2022). Such attacks are required to provide precise information on token usage and their
order, however, they usually work on medium to small batches as summarized in Table 1.a. Label
inference attack mainly focuses on inferring output labels of a training sample (Ma et al., 2023; Dang
et al., 2021), which are the token instances used in next word prediction when training language
models (Radford et al., 2019; Kenton and Toutanova, 2019). The previous work largely relies on
matrix factorization and linear programming on the gradient matrix of the last linear layer, which
could be extremely slow for LLM as the vocabulary size can easily grow beyond 50 thousand such
as GPT-2 (Radford et al., 2019) and even worse for multilingual translation such as NLLB (NLLB
et al., 2022) uses a vocabulary of 256,000 tokens. FLATCHAT is a fast and precise label inference
attack as it analyzes more concise flattened gradient vectors. Only the attacks on embedding layers
achieved similar success on inferring input tokens used in large training batches (Gupta et al., 2022),
although attacking embedding has its limitations, e.g., i) it can be easily defended by freezing the
gradients from the embedding layer; and ii) embedding layer corresponds more to the inputs, which
can contain different information than outputs.1 A comprehensive comparison between our work and
other label inference attacks with settings and performance is demonstrated in Table 1.b.

3 GRADIENT FLATTENING ATTACK FOR INFERRING TRAINING TOKENS

Our attack identifies the tokens used in training via predicting output labels Y 2 Y in a batch of
training data B, given the access to the corresponding gradients �W by the last linear layer of a
language model.

1The input and output of a generative model can be different in many tasks, such as machine translation and
image captioning. Protecting privacy in both spaces is equally important.

2

Under review as a conference paper at ICLR 2024

Table 1: An overview of the different attacks on FL of a language model. �W indicates the gradient
of the parameters. b and l are the number of sentences and max length of these sentences in a batch.
|T | = |{B}| is the number of word types, the set of words, in B. D is the dimensional size of the
hidden representations by the attacked language model. V is the output vocabulary. |X | indicates the
size of X , e.g., {B}, V , and �W .

Attack Method �W W Batch Size Speed Task
DLG

(Zhu et al., 2019) All layers All layers b = 1
Medium

(⇠ 30 iterations on LLM)
Inferring input X

and output Y
LAMP

(Balunovic et al., 2022) All layers All layers b 4
l 27

Medium
(⇠ 30 iteration on LLM)

Inferring input
sequence X

FILM
(Gupta et al., 2022) Embedding All layers b 128

Medium (Beam search
on LM and post-filtering)

Inferring output
sequence Y

(a) Recovering full sentences in a batch.

FILM (BoW extraction)
(Gupta et al., 2022) Embedding N/A Very Large Extremely Fast

(seconds)
Inferring work types

in input X
RLG

(Dang et al., 2021) last linear N/A Medium
(|T | D)

Extremely Slow
(hours when |V| � 20K)

Inferring work types
in output Y

FLATChat(Ours) last linear N/A Very Large
(|B| � 100K)

Extremely Fast
(O(|�W |), seconds)

Inferring work types
in output Y

(b) Recovering word types in a batch.

3.1 PRELIMINARIES: ATTACKING GRADIENTS OF THE LAST LINEAR LAYER

Here, we sketch the structure of a Large Language Model (LLM) as multiple transformer layers
stacked on top of an embedding module and the loss calculation follows:

I. A backbone model transforms the input X to a high-dimensional representation, h = f(X);
II. A linear layer transforms h into a logit vector with the same size as the vocabulary, z = Wh+b,

where the bias b optional and often omitted in many LLMs;

III. Softmax gives the probability of all words: p = softmax(z), where pi =
exp(zi)P
j exp(zj)

;

IV. Cross Entropy Loss (CE) for training is defined as L(p,y) = �
P

i yi log(pi), where yi is the
output labels indicating the tokens used in a training sample (X,Y), where Y is a sequence of
tokens hy1, · · · , yi, · · · , y|Y |i and yi is a token identity in a vocabulary V .

Threat Model. In FL, the attackers manage to access the gradients of a language model �W

generated by a participant, e.g., an honest-but-curious server receives gradient updates from some
clients every epoch. The gradients are in accordance with a batch of data used in recent training,

�W ,
X

(Xi,Yi)2B

@L(Xi,Yi)

@W
, which is abbreviated as

X

i

@Li

@W
. (1)

Our attack algorithm A works on inferring the set of unique words (word types) T , {B} in a
training batch B.2

3.2 FLATTENING ATTACK ON LAST LAYER GRADIENTS

FLattening ATtack on Changed gradienT (FLATCHAT) is a simple but efficient transformation
on gradients matrix �W 2 R|V|⇥D by aggregating its columns to a vector of vocabulary size,
s , �W ·1 2 R|V|. We observe that the values in s follow the mixture of two Gaussian distributions
comprising word types used or not used in the training batch, which we discuss below. Then,
we highlight three remarks, which assist on i) deciding which cluster corresponds to the gradient
contributions from ‘positive’ tokens utilized in a batch (Rmk. 1); ii) estimating the number of unique

2Assuming for causal language models, the input X and output Y are approximately the same, i.e., X =
S+ [EOS] and X = [BOS]+S where S is an original sentence in the corpora. In encoder-decoder architectures,
input and output may differ.

3

Under review as a conference paper at ICLR 2024

Algorithm 1 Gradient Flattening Attack (FLATCHAT).
Input: �W derived from a batch of training samples B.
Output: A set of unique token types T used in B.

1: s �W · 1 . Gradient flattening (Eqn. 5).
2: s Norm(s) . Vector normalization by s/ksk.
3: µ,�,� GaussianMixture(s, 2) . Gaussian Mixture Model with 2 clusters.
4: µp,�p,�p PositiveCluster(µ,�,�) . Find the positive cluster (Rmk. 1).
5: K PredictCount(�p) . Predict the total number of unique token types (Rmk. 2).
6: T SelectTopK(s,K,µ,�) . Generate a set of K tokens with highest scores (Rmk. 3).
7: return T

word types used in the training batch (Rmk. 2); iii) ranking the likelihood of tokens being used by
contrasting the probability of the token in positive cluster vs. negative cluster (Rmk. 3). Combining
our theoretical analysis on the aggregated gradients of the last linear layer, our attack algorithm
(FLATCHAT) is demonstrated in Algorithm 1.

Lemma 1 (Single-Sample Gradient Flattening) We start our discussion with a simple case involv-

ing only one training sample, i.e., one token instance in a batch when training a language model.

The row-sum of weight matrix gradients �W derived from a single sample is proportional to the

gradients regarding the linear layer’s output logits, g , @L/@z,

s , �W · 1 = ↵ · g, (2)

where scalar ↵ is defined as the sum of hidden states ↵ , PD
d=1 hd = h

T
·1 and D is the dimensional

size of h, i.e., h 2 RD
.

Proof Lemma 1 can be proved based on the decomposition of the weight gradients for linear

transformation (Geiping et al., 2020) accompanying the definitions of s and g.

s = �W · 1 =
@L

@W
· 1 =

⇣@L
@z

· h
T
⌘
· 1 =

@L

@z
·
�
h
T
· 1

�
=

@L

@z
· ↵ = ↵ · g. (3)

Lemma 2 (Multi-sample Gradient Flattening) We extend our discussion to a batch with multiple

samples, i.e., |B| token instances in a batch B. �W the gradient on B, which is written in the product

of two extended matrices, gradient matrix G and hidden representation matrix H ,

�W ,
|B|X

i=1

@Li

@W
= G ·H

T ,where H = [�hi�] 2 RD⇥|B|
and G = [�gi�] 2 R|V|⇥|B|. (4)

The row-sum of the gradient weight matrix is a linear combination of gi,

s , �W · 1 =

|B|X

i=1

↵i · gi (5)

where ↵i is the sum of the i-th column hi in H , i.e., ↵i =
PD

d=1 hd,i.

Note that our following discussion focuses on s derived from B with many training samples.

Proof We note the extension involving multiple word instances by stacking g to G and h to H .

s = �W · 1 =
⇣X

i

@Li

@W

⌘
· 1 = (G ·H

T) · 1 = G · (HT
· 1) = G ·↵ =

X

i

↵i · gi. (6)

4

Under review as a conference paper at ICLR 2024

Figure 2: Histogram over values s in the flattened
vector s by GPT-2 trained on a b = 8⇥ l = 100
batch, and the distributions of values positive and
negative clusters in two different colors respec-
tively. The number of word types is 299 and the
number of token instances is 659 in this batch.

Figure 3: The scatter plot of weights of the posi-
tive clusters �p and the numbers of token types
|T | in the same batches, when training GPT-2 on
WIKITEXT. We consider various batch shapes
(b⇥ l) and 10 samples for each setting. A linear
regression model is plotted with std errors.

Theorem 3 (Mixture Distribution of Values in s) The distribution of the values s in s 2 R|V|
is

approximated to the mixture of two Gaussian distributions N ,

s ⇠ �p · N (µp,�p) + �n · N (µn,�n), where �p + �n = 1. (7)

The positive (p) cluster and negative (n) cluster correspond to those word types that have been seen

or not have been seen in B, i.e., tp 2 T and tn 2 V/T where T = {B}.

We illustrate an example histogram on the element values s in the flattened vector s in Figure 2. The
values from both positive and negative clusters clearly follow their own distributions with a shape
similar to normal distributions and the positive one is much flatter than the negative one. Please find
more examples with various batch shapes in Appendix A. The reason for the mixture of Gaussian
distribution is discussed as follows.
Proof The value in s with regard to the t-th token in dictionary V could be written as

st =
X

i

↵i · gt,i =
X

i s.t. yi=t

↵i · gt,i +
X

i s.t. yi 6=t

↵i · gt,i (8)

=
X

i s.t. yi=t

↵i · (pt,i � 1)

| {z }
Positive token types.

+
X

i s.t. yi 6=t

↵i · pt,i

| {z }
Negative token types.

(9)

gt,i is the t-th row and i-th column of gradient matrix G, where t indicates the index of a token in the

vocabulary and i means the index of (token-level) training sample in a batch. Similar index notations

are used on pt,i with regard to word probability matrix P . The gradient in Eqn. 9 is specific to

cross-entropy loss on softmax. The two components could be approximated by two weighted Gaussian

Distributions, i.e., �p · N (µp,�p) and �n · N (µn,�n) for each sum in Eqn. 8, where � indicates

the weights for the clusters. We apply Central Limited Theorem 4 by taking Ai = ↵i and Xi = gt,i,
and considering the numbers of elements in both positive and negative clusters are large, |B| and

(|V|� 1) · |B| respectively, given a large training batch with several hundred tokens or more.

Theorem 4 (Central Limited Theorem (CLT) on Two Sequences of Variables) Say {Ai} is a se-

quence of independent, identically distributed (i.i.d.) random variables which are independent from

another sequence of variables, {Xi}, we define

Sn , A1 ·X1 + · · ·+An ·Xn

n
.

When n approaches infinity, there exist µ⇤ and �⇤, which assure the random variables
p
n(Sn � µ⇤)

almost surely converges to a normal distribution N (0,�2
⇤):

p
n(Sn � µ⇤)

a.s.
��! N (0,�2

⇤) (10)

5

Under review as a conference paper at ICLR 2024

Proof We construct an i.i.d random variables sequence {Yi}, where Yi = Ai · Xi. Then, we

have the mean µ⇤ and variance �⇤ of Y . Theorem 4 can be derived by applying Lindeberg–Lévy

CLT (Billingsley, 1961) on the sequence of constructed variables {Yi}.

Given our analysis on the distribution of values in s, we propose to use a two-cluster Gaussian
Mixture Model (GMM) (McLachlan and Basford, 1989) to fit the distribution of s. Then, we highlight
three important properties of the mixture distribution, which are utilized in designing FLATCHAT.

Remark 1 (Positive vs Negative Cluster) Given a large vocabulary V in LLM and a training batch

B, there are far fewer positive observations, np = |B|, than negative observations, nn = (|V|�1)·|B|.

Then, the positive and negative clusters could be identified by �p � �n, as the denominators in

Eqn. 10 follow
p
np ⌧

p
nn.

A series of histogram plots of st derived from training GPT-2 on batches with various shapes are
illustrated in Appendix A.

Remark 2 (Correlation between �p and |T |) The weight of the distribution regarding the positive

cluster �p should be positively correlated to the number of unique words (types) |T | in a training

batch B.

Intuitively, a larger batch means more positive word types in vocabulary would have been involved
in training, meaning a higher weight to the positive cluster. In Figure 3, we observe a clear positive
correlation between those two variables. Polynomial regression models with various degrees are
trained to estimate |T |. The experiments for comparing those estimators are discussed in Appendix B.

Remark 3 (Ranking) The word types in the positive cluster can be discriminated by the ranking

score:

rt =
⇣st � µn

�n

⌘2
�

⇣st � µp

�p

⌘2
(11)

The discriminative score for deciding the usage of a token is

P(t 2 B|st)

P(t /2 B|st)
=
P(st, t 2 B)

P(st, t /2 B)
=

P(st|t 2 B)

P(st|t /2 B)
·
P(t 2 B)

P(t /2 B)
/

P(st|t 2 B)

P(st|t /2 B)
(12)

=
�n · e

1
2 (

st�µn
�n

)2

�p · e
1
2 (

st�µp
�p

)2
/

e
1
2 (

st�µn
�n

)2

e
1
2 (

st�µp
�p

)2
/

1

2

⇣�st � µn

�n

�2
�

�st � µp

�p

�2⌘
. (13)

Note that CB,P , P(t 2 B)/P(t /2 B) is a positive constant value given B in each flattening attack,
therefore CB,P has no effect on the ranking. Similarly, CB,� , �n/�p is also a positive constant
value, which does not influence the ranking given the training batch.

4 EXPERIMENTS

Previously, we introduced an attack based on flattened gradients by the last linear layer. In this
section, we first compare our approach with a previous attack for label inference Dang et al. (2021)
in machine translation (MT) experiments. Then, we demonstrate the efficacy of our FLATCHAT
in language modeling using increasingly large training batches. An ablation study is provided to
compare our scoring metric with a naive word ranking method. Additionally, we discuss the influence
of defense methods, such as parameter freezing and differential privacy on parameter gradients.

4.1 EXPERIMENTAL SETUP

Our experiments will cover large-scale language models of two applications: i) Machine Translation
(MT) experiments for comparing our approach against a baseline method RLG, and ii) Large
Language Modeling (LLM) for validating the performance of FLATCHAT on models with large
vocabulary sizes.

6

Under review as a conference paper at ICLR 2024

Large Language Modeling. We initialize our model using a pre-trained GPT-2 language model
with a vocabulary size of 50,257 (Radford et al., 2019).3 We simulate the attack by computing
gradients for the model over random batches of text drawn from a holdout dataset WIKITEXT
(Merity et al., 2017), of varying sizes and shapes. We consider all combinations of batch sizes of
b 2 {1, 2, 4, 8, 16, 32} sentences and maximum sentence length l 2 {25, 50, 100}, reporting the sizes
as b⇥ l. For each setting, we collect 20 gradients using the pre-trained model weights, and train a
linear regressor to predict the number of word types4 in the batch. We report the performance of
our attack by training clients on their own for several SGD steps5 on datasets from different unseen

domains, i.e., IMDB (Maas et al., 2011) and AGNEWS (Zhang et al., 2015), and with a range of
batch sizes including settings unseen in regression training. We report the averaged precision, recall
and F-1 score of word type prediction over 10 test batches.

Machine Translation. We conduct attack experiments on the IWSLT 2017 de-en corpus (IWSLT).
We consider two experimental settings for MT: attacking models trained from scratch (Scratch) or
with fine-tuning (FineTune). The latter model was pre-trained on a holdout dataset, NEWSCOMMEN-
TARY v15 de-en for 5 epochs, followed by fine-tuning on IWSLT. We implement our experiments
using FAIRSEQ (Ott et al., 2019), employing a Transformer (Vaswani et al., 2017) and a byte pair en-
coding (Sennrich et al., 2016) tokenizer with a vocabulary size of 16,594. We chose a moderate vocab-
ulary size to ensure a fair comparison with the baseline method. Similar to LLM setting, we use 20 ran-
domly selected batches with maximum batch size in {25, 50, 100, 250, 500, 1000, 1250, 1500, 2000}
from NEWSCOMMENTARY for word type regression. We also report the averaged precision, recall
and F-1 score over 10 test batches on IWSLT.

Attack Methods. As a baseline, we use Revealing Labels from Gradients (RLG) (Dang et al.,
2021) method, which predicts the number of word types based on the matrix rank of �W and
predicts those types by identifying separable vectors corresponding to used word types using linear
programming (Vaidya, 1989). Note that such an estimation strategy for word type number cannot
handle |T | > D because rank(�W) min{D, |V|} is practically upper-bounded by D. Regarding
the efficiency of the attack, RLG requires solving a linear programming problem with a D ⇥ |V|

parameter matrix |V| times as the worst case, while FLATCHAT achieves the same order of computing
time as the matrix size O(|�W |) = O(|V| · D) and the calculation can be further optimized by
using a GPU.6 For our method, we employ a simple linear regression estimator R for the number
of word types,7 and compare this against a sky-line ground-truth (ORAC.), which uses the ground
truth number of word types. We also report an ablation where we compare the proposed Gaussian
Mixture confidence method (GMM) for identifying word types against a simpler technique, Abs.,
which selects types based on the absolute value of their flattened gradient, |st|. Abs. is motivated by
the sparsity of s, as elaborated in the proof in Appendix C. More details about the attack environment
are provided in Appendix D.

4.2 RESULTS AND DISCUSSION

4.2.1 COMPARISON WITH BASELINE LABEL RECOVERING ATTACK

We compare FLATCHAT with RLG on machine translation experiments in Table 2. Given a medium
size batch, say 100 or 500 token instances, FLATCHAT achieves very high inference accuracy
on Scratch models and acquires decent attack results on FineTune models. Compared to RLG,
FLATCHAT trades off a small portion of performance for significantly improved efficiency, with two
orders of magnitude, seconds vs. hours. When batch size is increased to more the 1,500 tokens,
RLG desperately fails as the number of word types grows to more than 512, which is the rank of the
gradient matrix for MT models (see also in Appendix D). The inference time on a single large batch
is also exacerbated to more than a day, which hinders rational attackers from considering RLG. In
contrast, FLATCHAT only has a small performance drop on very large batches, and all corresponding

3Hugging Face GPT-2: https://huggingface.co/gpt2.
4Following standard nomenclature, types denotes the unique words, while tokens denote word instances.
5Using a learning rate 5⇥ 10�4 and momentum 0.9.
6For a fair comparison, both attacks are tested on CPU servers with the same hardware environment.
7We also consider polynomial regression with a higher degree, please see Appendix B.

7

https://huggingface.co/gpt2

Under review as a conference paper at ICLR 2024

Table 2: The attack performance of FLATCHAT and RLG on IWSLT training batches with their
overall token sizes in {100, 500, 1000, 1500, 2000}. A linear regression model is used to predict the
number of word types in B.

Scratch FineTune

Method #Token #Type F-1
(ORAC.) Prec. Recall F-1 Time #Type F-1

(ORAC.) Prec. Recall F-1 Time

FLATCHAT 100 52.3 0.9556 0.9364 0.9576 0.9469 0.7s 58.5 0.8233 0.7936 0.8108 0.8021 0.8s
RLG 0.9729 1.0000 0.9729 0.9863 1.0h 0.9980 0.9981 1.0000 0.9990 1.9h

FLATCHAT 500 214.2 0.9190 0.8826 0.9188 0.9003 1.1s 204.6 0.8006 0.7851 0.7896 0.7874 1.1s
RLG 0.9421 1.0000 0.9421 0.9702 19.3h 0.9733 0.9742 1.0000 0.9869 23.6h

FLATCHAT 1000 379.2 0.8514 0.8525 0.8523 0.8524 3.5s 419.6 0.7751 0.8616 0.6041 0.7102 1.7s
RLG 0.9956 1.0000 0.9956 0.9978 36.1h 0.8060 0.9933 0.8060 0.8899 33.6h

FLATCHAT 1500 603.3 0.8253 0.882 0.7812 0.828 3.1s 577.1 0.7683 0.8484 0.5535 0.6699 1.3s
RLG 0.0160 1.0000 0.0160 0.0315 33.1h 0.0112 0.8750 0.0112 0.0222 33.6h

FLATCHAT 2000 762.8 0.781 0.9231 0.671 0.7771 1.5s 723.9 0.7505 0.8483 0.5331 0.6548 1.5s
RLG 0.0051 1.0000 0.0051 0.0101 34.3h 0.0064 1.0000 0.0064 0.0128 37.6h

Table 3: The attack performance on batches with the shape seen (8 x 25, 16 x 50 and 32 x 100) or
unseen (64 x 50 and 128 x 100) in training. A linear regression model is used to predict the number
of unique word types in batches.

Test IMDB AGNEWS

Shape of B #Type MAER Prec. Recall F-1 F-1
(ORAC.) #Type MAER Prec. Recall F-1 F-1

(ORAC.)

8 x 25 140.8 0.3026 0.7098 0.8655 0.7800 0.8257 149.4 0.3605 0.6731 0.8938 0.7679 0.8536
16 x 50 426.3 0.3281 0.6756 0.8926 0.7691 0.8263 447.3 0.3468 0.6689 0.8825 0.7610 0.8254

32 x 100 1169.0 0.1102 0.7625 0.8454 0.8018 0.8086 936.0 0.1811 0.7420 0.8370 0.7867 0.8086

64 x 50 1211.5 0.0635 0.7805 0.8270 0.8031 0.8064 1439.5 0.0786 0.7856 0.7979 0.7917 0.7968
128 x 100 3152.4 0.3267 0.8607 0.5790 0.6923 0.7875 2684.8 0.2282 0.8356 0.6410 0.7254 0.7788

attacks on average are finished within several seconds.8 The attack performance on FineTune is less
significant than those on Scratch. We attribute this to the smaller expected absolute values of the
gradients given better model predictions.

4.2.2 EXPERIMENTS ON LARGE-SCALE LANGUAGE MODELS.

LLM experiments focus on testing the ability of FLATCHAT on a large-scale setting. Note that |V| in
GPT-2 is larger than 50 thousand, where a single RLG attack is estimated to cost a couple of days.
We compare FLATCHAT on a test set with batch shapes seen in training, i.e., 8⇥ 25, 16⇥ 50 and
32⇥ 100. The overall attack performance is considered quite positive given its ability to detect less
than 1/50 word types in a large vocabulary and achieve over 75% F-1 scores. Furthermore, after
increasing the batch size to 128 ⇥ 100, which is about four times the scale of the largest batches
considered in training the type number estimator, the attack performance is still promising, resulting
in around 70% F-1. The mean absolute error ratio (MAER) to the oracle type size shows the estimated
type number is rational even on batches with unseen shapes. To sum up, LLM experiments show that
our attack is robust in multiple scenarios, including i) large vocabulary; ii) batches with large sizes
unseen in training; and iii) transferred domains that differ from the attacker’s training dataset.

4.2.3 ANALYTICAL STUDY

Comparison of ranking scorers. We compare FLATCHAT based on two scorers Abs. and GMM in
Table 4. GMM consistently provides better ranking scores on the used word types than Abs. as GMM

uses the estimated distributions of both positive and negative clusters effectively. The attacks using a
linear estimator to predict word type numbers also achieve comparable performance to those using
oracle size numbers on both Abs. and GMM scorers.

8The running time varies as sometimes the Gaussian Mixture Model is sensitive to initialization and we
re-run GMM until the positive cluster has a significantly larger variance than the negative one.

8

Under review as a conference paper at ICLR 2024

Table 4: The comparison of FLATCHAT using Abs. and GMM as ranking scores given ground truth
(ORACLE) or predicted (PREDICT) |T |. The batch shape is set to 32⇥ 100.

IMDB AGNEWS
Method Prec. Recall F-1 Prec. Recall F-1

FLATCHAT (Abs., ORACLE) 0.8029 0.8029 0.8029 0.8039 0.8039 0.8039
FLATCHAT (GMM, ORACLE) 0.8086 0.8086 0.8086 0.8086 0.8086 0.8086

FLATCHAT (Abs., PREDICT) 0.7573 0.8396 0.7963 0.7371 0.8315 0.7815
FLATCHAT (GMM, PREDICT) 0.7625 0.8454 0.8018 0.7420 0.8370 0.7867

4.2.4 ANALYSIS ON DEFENSE METHODS

Here, we investigate two defense mechanisms on FLATCHAT: i) freezing the last layer by ceasing
its gradient calculation (Freeze) (Gupta et al., 2022) and ii) using Differentially Private Stochastic
Gradient Decent (DP-SGD) (Abadi et al., 2016). Freeze is a strong defense method as all the
corresponding gradients are no longer available for any attacks, however, we observe that freezing
the last layer consistently introduces a cost to model performance, by comparing Last vs. Vanilla
and Last vs. Last+Emb in Figure 4. DP-SGD clips the gradient vectors to a bound C and adds
Gaussian noise with multiplier �. Adam (Kingma and Ba, 2014) is applied in MT experiments for
fast convergence. We observe that a weak DP (with small noise � = 10�3 and C = 1.0) can protect
the gradients from our attack in Table 5 and at the same time improve the robustness of training as
illustrated in Figure 4.

Table 5: The comparison of DP-SGD with various
noise multipliers � on training language model. We
test on the batches of b = 32 ⇥ l = 100 for IMDB
and AGNEWS, and b = 32 for IWSLT. The clipping
bound C is set to 1.0 for all DP experiments.

Dataset DP-SGD (�)

LLM 0.0 10�4 10�3 10�2

IMDB 0.7964 0.7969 0.6869 0.0537
AGNEWS 0.7315 0.7752 0.6935 0.0035

MT 0.0 10�9 10�8 10�7

Scratch 0.9260 0.7912 0.5304 0.0439

MT 0.0 10�5 10�4 10�3

FineTune 0.7127 0.6965 0.2947 0.0482

Figure 4: Comparison of validation loss
of MT models with different defenses us-
ing FineTune. We plot DP-SGD with var-
ious noise multipliers � and Freeze the
last and embedding layers, Last, Emb and
Last+Emb.

5 CONCLUSION

We develop a novel gradient flattening method for label inference attacks, which is both effective
and efficient in attacking federated large language model training. Our research demonstrates the
feasibility of successfully recovering word types in challenging settings, i.e., large batch size, large
vocabulary and transferred domain during attacks. We further investigate defense methods against
our attack and find that adding small noise in DP-SGD can effectively mitigate the impact of this
new attack. These findings motivate the future implementation of FL using DP for defense even
though the models are trained in large-scale industrial settings.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC

conference on computer and communications security, pages 308–318.

9

Under review as a conference paper at ICLR 2024

Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev. 2022. Lamp: Extracting
text from gradients with language model priors. Advances in Neural Information Processing

Systems, 35:7641–7654.

Patrick Billingsley. 1961. The lindeberg-levy theorem for martingales. Proceedings of the American

Mathematical Society, 12(5):788–792.

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and
Nicolas Papernot. 2021. When the curious abandon honesty: Federated learning is not private.
arXiv preprint arXiv:2112.02918.

Trung Dang, Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, Peter Chin, and Françoise Beaufays.
2021. Revealing and protecting labels in distributed training. Advances in Neural Information

Processing Systems, 34:1727–1738.

Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran,
and Caiwen Ding. 2021. Tag: Gradient attack on transformer-based language models. In Findings

of the Association for Computational Linguistics: EMNLP 2021, pages 3600–3610.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in Neural Information Processing

Systems, 33:16937–16947.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. 2022. Recov-
ering private text in federated learning of language models. In Advances in Neural Information

Processing Systems.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. 2021.
Advances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pages
4171–4186.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu. 2023. Instance-wise batch
label restoration via gradients in federated learning. In International Conference on Learning

Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Geoffrey J. McLachlan and Kaye E. Basford. 1989. Mixture models : inference and applications to
clustering.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. 2019. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE symposium on security and

privacy (SP), pages 691–706. IEEE.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017. Pointer sentinel mixture
models. In International Conference on Learning Representations.

Team NLLB, Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. 2022. No language
left behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672.

10

Under review as a conference paper at ICLR 2024

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Demonstrations, pages 48–53.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, ACL 2016.

Pravin M Vaidya. 1989. Speeding-up linear programming using fast matrix multiplication. In 30th

annual symposium on foundations of computer science, pages 332–337. IEEE Computer Society.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pages
5998–6008.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga
Ohrimenko, Boris Köpf, and Marc Brockschmidt. 2020. Analyzing information leakage of updates
to natural language models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security, pages 363–375.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text
classification. Advances in Neural Information Processing Systems, 28.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610.

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. Advances in neural

information processing systems, 32.

11

	Introduction
	Related Work
	Gradient Flattening Attack for Inferring Training Tokens
	Preliminaries: Attacking Gradients of the Last Linear Layer
	Flattening Attack on Last Layer Gradients

	Experiments
	Experimental Setup
	Results and Discussion
	Comparison with Baseline Label Recovering Attack
	Experiments on Large-scale Language Models.
	Analytical Study
	Analysis on Defense Methods

	Conclusion
	Distribution of Values st in Flattened Gradient Vector s
	Polynomial Regression Models for Predicting Type Number
	Proof of Sparse Values in Flattened Gradient Vector s
	Training Language Models
	Performance of Machine Translation Models with Defense

