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Abstract

Partial observability in environments poses significant challenges that impede the
formation of effective policies in reinforcement learning. Prior research has shown
that borrowing the complete state information can enhance sample efficiency. This
strategy, however, frequently encounters unstable learning with high variance in
practical applications due to the over-reliance on complete information. This paper
introduces DCRL, a Dual Critic Reinforcement Learning framework designed
to adaptively harness full-state information during training to reduce variance
for optimized online performance. In particular, DCRL incorporates two distinct
critics: an oracle critic with access to complete state information and a standard
critic functioning within the partially observable context. It innovates a synergistic
strategy to meld the strengths of the oracle critic for efficiency improvement
and the standard critic for variance reduction, featuring a novel mechanism for
seamless transition and weighting between them. We theoretically prove that
DCRL mitigates the learning variance while maintaining unbiasedness. Extensive
experimental analyses across the Box2D and Box3D environments have verified
DCRL’s superior performance.

1 Introduction

State Observation

Figure 1: The WallGap environment, a
procedurally generated navigation task
in MiniWorld. The agent’s goal (red tri-
angle) is to reach the target (red box)
within as few steps as possible under par-
tial observability.

Real-world issues commonly involve a degree of partial
observability, where agents lack access to the full sys-
tem state and must base decisions on partial observations.
These problems are typically defined as partially observ-
able Markov decision processes (POMDPs) [1]. Despite
the progress in reinforcement learning (RL) for address-
ing complex tasks [2–6], learning effective strategies in
scenarios with partial observations remains challenging.
Traditional RL methods in POMDP contexts often en-
counter impractical computations in processing the com-
plete history, leading to suboptimal performance. Luckily,
full states are accessible during training in many training
scenarios. For example, in applications like autonomous
driving[7] or robot control tasks [8], where computational
and time limitations exist, only low-cost RGB images are
available for deployment. At the same time, high-precision sensors can record more accurate and

*Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



detailed data during training. Similarly, in card games [9], the private hands of other players are
typically hidden during deployment but revealed during training. This distinction of separating
available information during training and deployment stages has driven the adoption of an offline
learning and online execution paradigm in POMDP settings [10–13].

This study focuses on the asymmetric actor-critic framework [8, 14, 15], where the actor and critic
rely on different inputs. The critic, serving as an auxiliary tool for training, can be transformed into
an oracle critic to align with the offline learning and online execution paradigm. Specifically, the
oracle critic is empowered to access the complete states while the actor remains constrained to partial
observations. Using an oracle critic conditioned on the state and observation history promises to
enhance performance and theoretically achieve unbiasedness [10]. However, the practical perfor-
mance of such approaches raises doubts, particularly in domains characterized by high uncertainty
and extensive state spaces. For instance, in the illustrated first-person 3D navigation task depicted
in Figure 1, the agent is tasked with reaching a dynamic target that varies across episodes within
as few steps as possible. This task involves a first-person view observation and an aerial view state.
Introducing an oracle critic incorporating state information in this complex environment may increase
variance, potentially undermining learning efficiency and overall performance.

To tackle the challenges mentioned above, we argue that the indiscriminate utilization of state
information is inadvisable. We introduce a Dual Critic Reinforcement Learning framework (DCRL).
DCRL consists of two critics: the oracle critic conditioned on the <history, state> tuple, and the
standard critic conditioned solely on history. It introduces a synergistic strategy to meld the strengths
of the oracle critic for efficiency improvement and the standard critic for variance reduction. In
summary, the main contributions of this work are as follows:

• We propose a DCRL framework to address partially observable tasks. This framework features
a novel mechanism for seamless transition and weighting between the dual critics.

• We theoretically prove that DCRL mitigates learning variance while maintaining unbiasedness.

• The DCRL framework is simple to implement. While our emphasis lies on the Advantage
Actor-Critic (A2C) [16], DCRL can also be integrated into other actor-critic architectures,
such as Proximal Policy Optimization (PPO) [17].

We extensively validate the DCRL framework based on A2C and PPO. Experimental results conducted
on both Box2D and Box3D environments confirm its effectiveness. The source code is available in
the supplementary material.

2 Related Work

Most methods can be adapted for partial observability by training memory-based policies to condition
past observations. Recurrent Neural Networks (RNNs) [18] are commonly used for their simplicity
and strong performance. Deep Recurrent Q-Networks (DRQN) [19] integrates Long Short-Term
Memory (LSTM) [20] cells into the Deep Q-Network (DQN) [2] architecture, which demonstrated
promising results. In addition to LSTM, other memory mechanisms such as Gated Recurrent Units
(GRUs) [21, 22], Transformers [23, 24], and Language Models [25, 26] have been adopted in RL
algorithms for memory learning. However, POMDPs are hard to solve when relying solely on
memory-based policies because the size of the history grows linearly with the horizon length.

It is crucial that in many environments, complete states are observable during the training phase.
Utilizing full observable states during training has emerged as a popular paradigm in RL. We discuss
prior works on the utilization of full observability in RL algorithms. Additionally, we provide further
discussion about training the world model, applications in multi-agent reinforcement learning, and
other double structures in Appendix B.

Using complete states to train the critic. This topic is closely related to our paper and has been
applied in many large-scale scenarios, such as DouDizhu [9] and Mahjong [27]. The critic in the
actor-critic framework is a training tool not required during deployment, making its structure naturally
suitable to exploit the state. This is achieved by critic asymmetry, where the actor and critic receive
history and state, respectively. Asymmetric Actor-Critic [8] uses the critic conditioned on ground-
truth states to address image-based robot control tasks. AACC [15] employs the critic conditioned on
both states and observations to solve contextual Markov decision processes. Theoretically, using the
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state as the critic input is biased, whereas using the <history, state> tuple is unbiased in expectation
[10]. However, it introduces high variance in practice.

Using complete states to train the policy. These methods typically involve training a teacher policy
using complete state information and then utilizing this policy to guide the learning of a student policy
under partial observability. The forms of guidance vary, such as maintaining consistency of the Q-
function [28], the encoder [11], action-distributions [29], and others. In addition to introducing extra
loss terms to enforce consistency between the student policy and the teacher policy, the transition from
the teacher policy to the student policy can also be facilitated through dropout of state information
from the input [30–32]. Common issues include the imitation gap and suboptimal teacher, which can
limit the potential capabilities of the student policy.

Using complete states to learn the belief representation. Belief state methods [1, 33] are classical
in POMDPs. These methods often necessitate knowledge of the dynamics and reward functions,
thus rendering them more applicable to scenarios with well-defined system dynamics. Consequently,
they are typically constrained to simpler settings characterized by small state spaces, where the
complexities of the environment are more tractable. Several recent studies [34–36] focus on learning
belief representations by predicting future observations and rewards. VRM [34] utilizes a latent
stochastic variable to model sequential observations. However, learning latent states that can capture
long-term dependencies is challenging. Incorporating the complete states can help alleviate this issue.
DouZero+ [37] introduces auxiliary tasks for predicting states while concurrently training policies
conditioned on observations and the predicted states. Believer [13] decouples belief state modeling
from policy optimization. They first capture state features through representation learning and then
train the policy conditioned on observations and the predicted states.

3 Preliminaries

This section introduces the background topics required to understand our work: partially observable
Markov decision processes, the recurrent Advantage Actor-Critic algorithm, and the Unbiased
Asymmetric Actor-Critic algorithm.

3.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [1] is formally identified as a 7-tuple,
namely P = 〈S,A, T,Ω, R,O, γ〉, where S, A, and Ω represent the state space, action space, and
observation space, respectively. The transition function T : S ×A → ∆S is denoted as T (s, a, s′) =
p(s′|s, a), describing the probability of transitioning from state s to state s′ after taking action a. The
agent receives observations rather than states, and the observation function O : S × A → ∆Ω is
defined as O(s, a, o) representing the probability of observing o conditioned on state s and action a.
The reward function R : S × A → R is expressed as R(s, a), representing the reward received by
acting a in state s, and γ ∈ [0, 1] is the discount factor. In POMDPs, the optimal policy may depend on
the entire history of observations and actions, denoted as H = {ht|ht = (o0, a0, ...ot−1, at−1, ot)}.
The belief-state b : H → ∆S is the probability distribution over states s given history h. The history
reward function is defined as R(h, a) = Es|h[R(s, a)]. The agent aims to maximize the expected
cumulative discounted rewards E[

∑∞
t=0 γ

tR(st, at)] through interactions with the environment.

This paper assumes that both states st and observations ot are accessible during training, while only
the observations ot are accessible during deployment.

3.2 Recurrent Advantage Actor-Critic

Advantage Actor-Critic (A2C) [16] is primarily designed for fully observable control problems. It
can be easily adapted to handle partially observable control problems by replacing all occurrences of
the state s with the respective history h. To clearly distinguish between different methods, we denote
this method as AC. It trains an actor model π : H → ∆A parameterized by θ, and a critic model
V : H → R parameterized by φ. The policy loss is defined as:

LAC
policy(θ) = −E

[ ∞∑
t=0

Qπ(ht, at) log πθ(at|ht)
]
, (1)
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where Qπ(ht, at) denotes the history-action value of the policy π. In practice, Qπ(ht, at) is replaced
by the n-step bootstrapped advantage to reduce variance:

δφ(ht, at) =

n−1∑
d=0

γdR(ht+d, at+d) + γnVφ(ht+n)− Vφ(ht). (2)

Correspondingly, the policy loss is LAC
policy(θ) = −E

[∑∞
t=0 δφ(ht, at) log πθ(at|ht)

]
. In this work,

the value loss is defined as LAC
value(θ) = E

[∑∞
t=0 δφ(ht, at)

2
]
. The entropy loss is Lentropy(θ) =

−E
[∑∞

t=0

∑
a∈A πθ(at|ht) log πθ(at|ht)

]
. The total loss is LAC

value(φ)+LAC
policy(θ)+ηLentropy(θ),

where η is a weight for entropy regularization.

3.3 Unbiased Asymmetric Actor-Critic

Unbiased Asymmetric Actor-Critic [10] is a variant of recurrent A2C that can exploit state information
during training. It considers an oracle critic model V : H× S → R parameterized by ψ instead of
the standard critic model. To clearly distinguish between different methods, we denote this method as
UAAC. The n-step bootstrapped advantage for UAAC is defined as:

δψ(ht, st, at) =

n−1∑
d=0

γdR(st+d, at+d) + γnVψ(ht+n, st+n)− Vψ(ht, st). (3)

Correspondingly, the policy model is trained to minimize the following objective function:

LUAAC
policy (θ) = −E

[ ∞∑
t=0

δψ(ht, st, at) log πθ(at|ht)
]
. (4)

The value loss is defined as LUAAC
value (ψ) = E

[∑∞
t=0 δψ(ht, st, at)

2
]
. Compared with the standard

actor-critic method, the state s provides additional context to determine the agent’s true underlying
situation, which may facilitate the learning of the oracle critic. Importantly, it has been proven that
V π(h, s) provides Monte Carlo estimates of the respective V π(h) for arbitrary policies, which is
theoretically unbiased, i.e.,

V π(h) = Es|h[V π(h, s)], (5)

Qπ(h, a) = Es|h[Qπ(h, s, a)]. (6)

Therefore, the equality ∇θLAC
policy(θ) = ∇θLUAAC

policy (θ) holds, indicating that the policy gradient
remains unchanged in expectation.

4 Dual Critic Reinforcement Learning

Critic models that learn accurate values slowly often become a bottleneck for policy performance in
many scenarios. When state information is incorporated, it may be easier to learn V π(h, s) with a
neural network compared with learning V π(h), leading to faster policy learning. However, V π(h, s)
has nonzero variance. Taking into account the variance arising from V π(h, s): Vars|h[V π(h, s)] =
Es|h

[
‖V π(h, s)− V π(h)‖2

]
, with a practical batch size that is not too large, the variance tends to

be high, especially in high-uncertainty belief states and large state spaces. In games like DouDizhu,
when the initial information collection does not accurately infer the opponents’ hands, training
with V π(h, s) incorporating complete state information increases variance, thus limiting model
generalization. Conversely, using V π(h), which relies solely on observations, enhances robustness
in such cases. This concept is akin to replacing the reward-to-go term with the Q-value to reduce
variance in the vanilla policy gradient method, as discussed in [38, 39].

4.1 Theories of the Dual Critic

Definition 1. Define the dual value function as V πdual(h, s) = (1−β)V π(h, s)+βV π(h), where β is
a weight that balances the contributions of the V π(h, s) and V π(h), and β ∈ [0, 1]. Correspondingly,
the dual Q function is defined as Qπdual(h, s, a) = (1− β)Qπ(h, s, a) + βQπ(h, a).
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Theorem 1. For arbitrary control problems and policies, V πdual(h, s) is an unbiased estimate of
V π(h) and Qπdual(h, s, a) is an unbiased estimate of Qπ(h, a).

Proof. Following from Equation (5), we have:

Es|h[V πdual(h, s)] = Es|h
[
(1− β)V π(h, s) + βV π(h)

]
= (1− β)Es|h[V π(h, s)] + βV π(h)

= V π(h).

(7)

Similarly, as inferred from Equation (6), Es|h[Qπdual(h, s, a)] = Qπ(h, a) by replacing the V with Q
using the same approach outlined above.

Therefore, the variance of the dual value is defined as Vars|h[V
π
dual(h, s)] = Es|h

[
‖V πdual(h, s) −

V π(h)‖2
]
, and that of Unbiased Asymmetric Actor-Critic is defined as Vars|h[V

π(h, s)] =

Es|h
[
‖V π(h, s)− V π(h)‖2

]
.

Theorem 2. The variance of the dual value is smaller than that of the Unbiased Asymmetric
Actor-Critic, i.e., Vars|h[V πdual(h, s)] ≤ Vars|h[V

π(h, s)].

Proof. According to the definitions and β ∈ [0, 1], it holds that

Vars|h[V
π
dual(h, s)] = Vars|h

[
(1− β)V π(h, s) + βV π(h))

]
= (1− β)2Vars|h[V

π(h, s)]

≤ Vars|h[V
π(h, s)].

(8)

Similarly, Vars|h[Qπdual(h, s, a)] ≤ Vars|h[Q
π(h, s, a)] by replacing the V with Q using the same

approach outlined above.

Considering the unbiasedness demonstrated above, we contemplate employing the dual Q function
for policy updates. The policy gradient based on the dual Q function can be formulated as:

∇θLdual
policy(θ) = −E

[∑
t

Qπdual(ht, st, at)∇θ log πθ(at|ht)
]
. (9)

This formulation maintains the policy gradient unchanged in expectation.

Theorem 3. The dual Q function maintains the policy gradient unchanged in expectation.

Proof. Following Theorem 1, therefore,

∇θLACpolicy(θ) = −E
[∑

t

Qπ(ht, at)∇θ log πθ(at|ht)
]

= −
∑
t

Eht,at

[
Qπ(ht, at)∇θ log πθ(at|ht)

]
= −

∑
t

Eht,at

[
Est|ht

[Qπdual(ht, st, at)]∇θ log πθ(at|ht)
]

= −
∑
t

Eht,st,at

[
Qπdual(ht, st, at)∇θ log πθ(at|ht)

]
= −E

[∑
t

Qπdual(ht, st, at)∇θ log πθ(at|ht)
]

= ∇θLdual
policy(θ).

(10)

Similarly, the dual Q function decreases the variance of the policy gradient according to Theorem 2.
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Figure 2: Implementation of DCRL framework. DCRL innovates a synergistic strategy to meld the
strengths of the oracle critic for efficiency improvement and the standard critic for variance reduction.

4.2 Learning with Dual Critics

Building upon the abovementioned theory, we incorporate the dual Q function to balance variance and
efficiency. This integration introduces the Dual Critic Reinforcement Learning framework (DCRL).
As shown in Figure 2, the DCRL consists of three main components: 1) a standard critic network
V (h) parameterized by φ, 2) an oracle critic network V (h, s) parameterized by ψ, and 3) an actor
model π(a|h) parameterized by θ. Inspired by the Equation (9) and Theorem 3, we propose the
policy and value losses of DCRL as the following objective functions:

LDCRL
policy (θ) = −E

[ ∞∑
t=0

[
(1− β)δψ(ht, st, at)logπθ(at|ht) + βδφ(ht, at)logπθ(at|ht)

]]
, (11)

LDCRL
value (φ, ψ) = E

[ ∞∑
t=0

δφ(ht, at)
2
]
+ E

[ ∞∑
t=0

δψ(ht, st, at)
2
]
, (12)

where δφ(ht, at) and δψ(ht, st, at) follow the definitions from Equation (2) and Equation (3). The
dual advantage is formulated as δdual(ht, st, at) = (1− β)δψ(ht, st, at) + βδφ(ht, at).

We propose a novel weighting mechanism to synergistically meld the two critics and thoroughly
exploit the complete state information. When the received return does not exceed the agent’s
value estimate, the advantage is non-positive (δφ(ht, at) ≤ 0), β is clipped to 0. In cases with
δφ(ht, at) > 0, β takes effect. β is a parameter associated with h but not with s. Hence, this
mechanism maintains the theory mentioned above. This mechanism helps stabilize training and
prevent large updates in cases where the advantage is non-positive. Similar to Self-Imitation Learning
[40], this clipping mechanism can be viewed as a form of lower-bound-soft-Q-learning, where only
samples with a positive advantage provide valuable insights into the optimal soft Q-value. From
an empirical perspective, this approach embodies the notion that if there is still room for policy
enhancement after being updated by the oracle critic V (h, s), the standard critic V (h) should be
engaged. With full-state information from the oracle critic, DCRL avoids falling into a vicious cycle
of poor policy and bad value estimates. The standard critic in DCRL can effectively mitigate variance,
whereas recurrent Actor-Critic methods preclude such opportunities due to entanglement in a vicious
cycle. These two critics establish a mutually supportive relationship, facilitating variance reduction
while effectively using full-state information. The proof regarding lower-bound-soft-Q-learning is
provided in Appendix C.

In addition to the mechanism mentioned above, there is another natural way to leverage the dual-critic
framework by interchanging the roles of the oracle and standard critics. Specifically, we shift the
weighting factor to the forefront of the δψ(ht, st, at) term which denote as β′, and the inside term
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Figure 3: Learning curves on MiniGrid. The x-axis and y-axis represent the training frames and
average returns, respectively. Shaded bars illustrate the standard error. All curves are trained based
on A2C over 5 random seeds.

of the policy loss is defined as (1 − β′)δφ(ht, at)logπθ(at|ht) + β′δψ(ht, st, at)logπθ(at|ht). β′

is clipped to 0 when δψ(ht, st, at) ≤ 0 and otherwise takes a positive value. β′ is a parameter
associated with both h and s. Unlike DCRL, this alternative technique lacks the characteristic of
unbiasedness and fails to thoroughly exploit state information while deviating from the lower-bound-
soft-Q-learning framework. As a result, its performance exhibits instability compared with DCRL.
The experimental section provides a detailed discussion of this technique’s performance.

5 Experiments

We conduct a series of experiments to evaluate the effectiveness of DCRL in partially observable
domains. Our research focuses on the model-free setting where complete states are available during
training. We compare our DCRL approach with several baselines.

Baselines. Recurrent Actor-Critic is a recurrent version of the standard actor-critic algorithm, namely
A2C [16] or PPO [17]. This baseline represents methods that do not utilize state information.
Asymmetric Actor-Critic [8] is a representation method based on critic asymmetry. The critic uses the
state as input, independent of the history. Oracle Guiding [30] is a representation method based on
teacher policy. This approach gradually removes state information from the policy input, transitioning
the teacher policy to a student policy under partial observability. The dropout probability linearly
increases with training iterations until only observation remains. We adopt a 50% cutoff for all tasks.
Unbiased Asymmetric Actor-Critic [10] is a state-of-the-art method for POMDPs. The critic uses
the <history, state> tuple as input to exploit state information while introducing no bias into the
training process, thus achieving superior performance. To ensure a fair comparison, we keep the main
network architectures similar across all methods. We present the mean and standard deviation of
results obtained from five different seeds for each environment. For a comprehensive overview of
other implementation details and hyperparameters, please refer to Appendix E.

5.1 MiniGrid

To see how useful DCRL is across various POMDP tasks, we compare various methods in Box2D
environments. MiniGrid [41] is a procedurally generated environment with goal-oriented tasks. As
shown in Figure 4, the triangular agent with a discrete action space aims to reach the goal. These tasks
involve interacting with different objects and solving diverse maze maps that vary in each episode.
The observation comprises a first-person view representing a 7× 7× 3 image. At the same time, the
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state offers a fully observable perspective, with the image size varying according to the tasks. The
image is compact and efficient encoding, rather than raw pixels.

State Observation

Figure 4: The LavaCrossingS9N2 envi-
ronment in MiniGrid. The agent’s goal
(red triangle) is to reach the target (green
box) within as few steps as possible un-
der partial observability.

All experiments are conducted based on A2C, and the
results are plotted in Figure 3. Recurrent Actor-Critic
struggles to learn a robust policy across most environ-
ments, primarily due to the agent’s need for extensive
exploration without state information. Despite leverag-
ing states, Oracle Guiding and Asymmetric Actor-Critic
performance exhibits instability, attributed to their heuris-
tic nature and lack of theoretical guarantees. In contrast,
the Unbiased Asymmetric Actor-Critic maintains stability
and outperforms the mentioned methods. Nonetheless, it
faces challenges in scenarios such as LavaCrossingS9N2
and RedBlueDoors-8x8. Our DCRL framework surpasses
all other methods in eight environments, particularly ex-
celling in challenging tasks. Taking LavaCrossingS9N2
and Empty-16x16 as examples, the map size of the former
is smaller, but the layout is more complex. In the case of
Empty-16x16, the states remain simple and relatively constant, making it easy to infer key information
from history. Conversely, in LavaCrossingS9N2, objects change between episodes, leading to high
uncertainty in the belief state. While leveraging states aids in precise value function learning, the
variance poses challenges in policy optimization. DCRL effectively overcomes these limitations and
emerges as a formidable competitor against other baseline methods.

Table 1: Performance of agents on MiniGrid after 1e5 frames (27 games) and 1e6 frames (13 games)
of training. We report the mean and standard error of the performance.

Methods A2C PPO

1e5 frames 1e6 frames 1e5 frames 1e6 frames

Recurrent Actor-Critic 0.32±0.13 0.28±0.09 0.26±0.07 0.52±0.03
Asymmetric Actor-Critic 0.26±0.10 0.32±0.14 0.27±0.08 0.60±0.06

Oracle Guiding 0.18±0.13 0.27±0.06 0.25±0.10 0.48±0.05
Unbiased Asymmetric Actor-Critic 0.31±0.08 0.39±0.09 0.28±0.10 0.59±0.08

DCRL (Ours) 0.63±0.07 0.89±0.01 0.47±0.08 0.84±0.03

To further validate the effectiveness of DCRL, we provide the visualization of different critic values
in Appendix D.1. The visualization demonstrates that the dual value function Vdual(h, s) effectively
reduces variance compared with the oracle critic. Besides, we evaluate our DCRL in 27 MiniGrid
tasks based on A2C and PPO. The average score across all games is provided in Table 1 to demonstrate
the overall performance for different methods. Our DCRL outperforms other baselines in 26 out of
the 27 games. The detailed learning curves are available in Appendix D.2.

5.2 MiniWorld

This section investigates whether DCRL benefits more complex continuous state space tasks and
whether it can be applied to other Actor-Critic algorithms, such as PPO. Unlike A2C, PPO lacks
a strong theoretical connection to DCRL, but we claim they can still complement each other. To
empirically verify this, we implement all methods based on PPO and evaluate them on the MiniWorld
domain [41]. The observations and states are represented as 80× 60× 3 images rendered as pixels.
The results depicted in Figure 5 illustrate that DCRL enhances PPO performance across all four
environments. In contrast to MiniGrid, the state format in this benchmark is not a concise encoding
and tends to contain redundancy and noise. Although states assist the agent in effectively discerning
information about the environment, the variance introduced by noise poses a challenge to the learning
process. Furthermore, it is observed that the Unbiased Asymmetric Actor-Critic performs poorer than
the Recurrent Actor-Critic across all tasks. Nevertheless, DCRL converges to superior policies by
synergistically melding the two critics.
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Figure 6: Ablation studies on MiniGrid to verify the two key factors of DCRL. All curves are trained
based on A2C across 5 random seeds.

5.3 Ablation Studies

Ablation analysis of components in DCRL. We conduct detailed ablation studies to analyze
how DCRL improves efficiency and enhances performance. DCRL contains two key factors: the
dual-critic structure and the weighting mechanism. We replace the dual-critic structure with the
single-critic structure to verify the structure’s effectiveness. The Standard Critic Version and Or-
acle Critic Version are constructed with the following expressions for the inside terms of the
policy loss: δφ(ht, at)logπθ(at|ht) + βδφ(ht, at)logπθ(at|ht) and δψ(ht, st, at)logπθ(at|ht) +
β′δψ(ht, st, at)logπθ(at|ht). Next, we evaluate another weighting mechanism baseline (DCRL
Interchange Version) discussed in Section 4.2, with the inside terms of the policy loss as
(1 − β′)δφ(ht, at)logπθ(at|ht) + β′δψ(ht, st, at)logπθ(at|ht). The adjustment of β and β′ fol-
lows the same way as discussed in Section 4.2. Additionally, we introduce an intuitive variant that
modifies the standard critic’s input from history to state, referred to as the DCRL State Version. This
adjustment aligns with previous works that introduce biases; however, it has the potential to enhance
efficiency gains. All methods utilize the same architectures and hyperparameters as DCRL.

We select four environments from the MiniGrid domain, where state information plays a crucial
role. In these environments, methods that utilize states perform significantly better than those that
do not. We compare our DCRL approach with four ablation baselines, and the results are presented
in Figure 6. It can be observed that DCRL converges to optimal policies faster than other methods.
Intuitively, incorporating the concept of positive advantage (δ+) can optimize the utilization of
beneficial samples and expedite the training process. Consequently, single-critic structure methods
integrating a δ+ term outperform those lacking it, as demonstrated by the superior performance of
approaches like the Standard Critic Version compared with the Recurrent Actor-Critic. However,
it is crucial that the two critics fulfill distinct and orthogonal roles within the dual-critic structure.
DCRL incorporates an oracle critic that utilizes state information compared with the Standard
Critic Version. The inclusion of state information provides the agents with additional context to
accurately determine the environment’s true state, facilitating learning an accurate value function
and ultimately improving performance. In comparison to the Oracle Critic Version, DCRL reduces
variance. These factors contribute to DCRL’s efficiency. As for the DCRL Exchange Version,
although it is also a dual-critic structure, its policy gradient is biased, and its weighting mechanism
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Figure 7: Ablation studies on MiniGrid to analyze the robustness of β in DCRL. All curves are
trained based on A2C across 5 random seeds.

does not utilize state information as effectively as DCRL. Its performance only shows advantages in
limited environments. It converges to suboptimal policies in DistShift2 and LavaGapS6. The DCRL
State Version demonstrates commendable performance among the various DCRL variants. However,
the biased characteristics of the DCRL State Version contribute to instability in its effectiveness.
Notably, our DCRL achieves superior training performance in three out of four environments. These
findings further highlight the significance of our DCRL framework.

Ablation analysis of β in DCRL. Our DCRL incorporates a dynamic weighting mechanism, which
can be interpreted as a form of lower-bound-soft-Q-learning, distinguishing it from conventional linear
weighting methods. This mechanism substantially improves DCRL’s performance while maintaining
high stability concerning hyperparameters. To substantiate this claim, we implement a simplified
weighting method with fixed ratios for weighting the two critics, referred to as the DCRL No Clip Ver-
sion. Additionally, we conduct ablation experiments on the parameter β ∈ {1/5, 1/3, 1/2, 2/3, 4/5}.
The results depicted in Figure 7 indicate that the DCRL No Clip version shows performance improve-
ments in only some environments compared to the Unbiased Asymmetric Actor-Critic. In contrast,
DCRL consistently enhances performance across all environments, underscoring the importance of
the dynamic weighting mechanism. Furthermore, the stability of β is notably evident. We choose
β = 1/2 for reporting results in the paper, given its consistently superior performance.

6 Conclusion

This paper introduces a novel reinforcement learning framework designed for partially observable
tasks. The motivation behind this work is that complete state information may be accessible during
training in many scenarios. However, introducing a state could potentially lead to bias or variance.
The proposed DCRL method leverages two asymmetric critics to use the state to expedite training
and mitigate variance in practice. We underscore the benefits of training with two critics and
provide theoretical evidence supporting the unbiasedness and variance reduction achieved through
our approach. Empirical results obtained across multiple tasks serve to validate the efficacy of DCRL.

Limitations. Our framework operates under the assumption that state information is accessible
during training. However, this assumption may not always hold, as only part of the state information
might be available within a broader context. It is crucial to discuss whether this limitation will impact
the performance of our framework, necessitating further investigation. Furthermore, our observations
suggest that the availability of complete state information can sometimes hinder performance in
certain environments. This observation underscores the need for a more nuanced approach to the
design and utilization of state information. Addressing these issues could lead to enhancements in
the performance and applicability of our framework.
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A Discussions

Incorporating state information can offer significant advantages for training, as it often encapsulates
high-level features that improve the learning of V (h, s) compared to V (h) [10]. For example, in
an extreme scenario where the state information s represents the true value of V (h), the agent can
effortlessly infer this true value through V (h, s). Specifically, in the context of the Empty Navigation
task, when the state information indicates the agent’s relative distance to the goal, the value function
learning process is significantly streamlined. Besides, in most POMDPs, rewards are directly defined
based on state information rather than on observations. Consequently, learning the value function
V (h, s) with the reward as the target is typically simpler than learning V (h). This characteristic
makes state information effective in most practical applications, a conclusion that numerous previous
studies have empirically validated.

However, state information does not always enhance training. When the state information contains
significant noise, introducing excessive noisy features to the input can hinder learning the value
function. In unfamiliar environments, whether state information genuinely supports the learning
process remains to be determined. The motivation behind this work is that state information may
be accessible during training in many scenarios. However, introducing a state could potentially lead
to bias or variance. In most cases, state information offers higher-level features that assist agents
in decision-making. In these situations, DCRL enhances the process by further reducing variance.
Conversely, when state information and partial observations correspond one-to-one, the oracle critic
demonstrates no variance; DCRL may become ineffective under these circumstances.

B Additional Related Work

Using complete states to train the world model. Traditional POMDP solutions rely on accurate
environment models. Informed Dreamer [12] improves world modeling by incorporating state
information. However, the dynamics models of POMDP environments are complex, posing challenges
to modeling even with state information. Model inaccuracies will inevitably limit the performance.
Our focus in this paper is on model-free methods.

Using complete states in multi-agent reinforcement learning. Centralized Training Decentral-
ized Execution (CTDE) [42–44] is a prevalent paradigm for addressing challenges in multi-agent
reinforcement learning (MARL). The optimization objective in MARL is to maximize the rewards
under the global states, optimizing each agent accordingly. These methods mostly presuppose that
the combination of optimized actions under partial observations leads to optimality under global
states. Building on CTDE, MANSA[45] introduces a Global agent to decide when to activate global
information usage. However, the policy that maximizes rewards under partial observations does not
necessarily align with the policy that maximizes rewards under global states, i.e., Q(h, a) 6= Q(s, a)
[19]. Contrary to CTDE’s assumptions, the learning objective of DCRL is to derive the optimal policy
under partial observations.

Double structure in the actor-critic framework. In our work, we employ two asymmetric critics to
address partially observable tasks. Previous studies have explored various double structures. In the
context of double critics, Double DQN [46] utilizes a replicated Q-network as the target network to
handle overestimation issues, a method later extended to subsequent works such as TD3 [47] and
SAC [48]. Considering the opposite properties of single-critic and double-critic methods, TADD [49]
incorporates a novel triplet critics mechanism to reduce the estimation bias. Additionally, ADC [50]
takes advantage of environmental models by training a model-based critic, which is then combined
with the model-free critic. This approach enables learning from the model-free path despite model
noise, enhancing the robustness to environmental models. In the context of double actors, DARC [51]
introduces a double actor structure to boost the agent’s exploration ability by providing two paths for
policy optimization, thus reducing the risk of the agent getting stuck locally. Moreover, DAC [52]
utilizes a parallel actor-critic architecture to learn better options, indicating that the two critics can be
effectively consolidated into one.

C Additional Proofs

Theorem 4. In the DCRL Interchange Version, Es|h
[
(1− β′)V π(h) + β′V π(h, s)

]
6= V π(h).
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Proof. Since β′ is a parameter associated with both h and s, it cannot shift to the forefront of the
expected symbol. Therefore, the dual value of the DCRL Interchange Version is biased. Also, the
policy gradient in the DCRL Interchange Version is biased.

Theorem 5. The learning objective
(
δφ(h, a))+logπ(a|h) in DCRL can be viewed as a form of

lower-bound-soft-Q-learning.

Proof. According to Self-Imitation Learning [40], the Lower bound soft Q-learning updates Q(h, a)
as follows:

Llb = Eh,a,R∼µ[‖
(
R−Q(h, a)

)
+
‖2], (13)

where µ is a behavior policy, (ht, at, Rt) is the trajectory triples from µ, Rt = rt +∑∞
k=t+1 γ

k−t(rk + αHµ
k ) is the entropy-regularized return, α represents the weight of entropy

bonus, and Hµ
k = −logπ(ak|hk) is the entropy of the policy. According to the form of optimal soft

value function and optimal policy in the entropy-regularized RL, it is natural to consider the following
forms of a value function V and a policy π:

V (h) = α log
∑
a exp (Q(h, a)/α) , (14)

π(a | h) = exp ((Q(h, a)− V (h)) /α) , (15)
Q(h, a) = V (h) + α log π(a | h). (16)

For convenience, we can define the following:

R̂ = R− α log π(a | h), (17)

∆ = R−Q(h, a) = R̂− V (h). (18)

We can derive the gradient estimator of lower-bound-soft-Q-learning for the actor-critic architecture
as follows:

∇θEh,a,R∼µ

[
1

2

∥∥(R−Q(h, a))+
∥∥2]

= E [−∇θQ(h, a)∆+]

= E [−∇θ (α log π(a | h) + V (h))∆+]

= E [−α∇θ log π(a | h)∆+ −∇θV (h)∆+]

= E
[
α∇θLlb

policy −∇θV (h)∆+

]
(19)

= E
[
α∇θLlb

policy −∇θV (h) (R−Q(h, a))+
]

= E
[
α∇θLlb

policy −∇θV (h)
(
R̂− V (h)

)
+

]
= E

[
α∇θLlb

policy +∇θ
1

2

∥∥∥∥(R̂− V (h)
)
+

∥∥∥∥2
]

= E
[
α∇θLlb

policy +∇θLlb
value

]
,

where Llb
policy = − log π(a|h)

(
R̂− V (h)

)
+

and Llb
value =

1
2

∥∥∥(R̂− V (h))+

∥∥∥2.

As n→ ∞, the learning objective in DCRL is
(∑∞

d=0 γ
drt − V (h)

)
+
logπ(a|h). It can be viewed

as a form of lower-bound-soft-Q-learning when α→ 0.

In the DCRL Interchange Version, the equation Es|h[R̂ − V (h, s)] = R̂ − V (h) holds according
to Equation (5). However, the equation Es|h[(R̂ − V (h, s))+] = (R̂ − V (h))+ does not hold due
to the presence of the + operation. The inconsistency in the equation arises from the fact that the
+ operation does not commute with the expectation operator, leading to a difference in the results.
Consequently, the learning objective in the DCRL Interchange Version cannot be considered a form
of lower-bound soft Q-learning.
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D Additional Experimental Results

D.1 Visualization of Critic Values

To illustrate the effectiveness of DCRL in variance reduction, we visualize the values of different
critics in the Empty-Random-6x6 environment with a first-person view size of 3× 3, as depicted in
Figure 8. In this configuration, the same history is linked to different states. We collect 8 history
samples, each associated with over 300 state samples, meaning that each V π(h) is connected to
multiple V π(h, s) and multiple V πdual(h, s). The converged critic models are used to predict V π(h),
V π(h, s), and V πdual(h, s), respectively. The 8 violin plots in Figure 9 depict the details of each
history sample. These plots show density estimation of the values, with the center line indicating the
mean value. It is evident that DCRL (shown in orange) demonstrates lower variance compared with
the oracle critic (shown in blue).

Observation State State State

Figure 8: MiniGrid-Empty-Random-6x6. The dimensions of the first-person view are 3 × 3. The
left figure illustrates the observation, while the right displays 3 different states that share the same
observation.
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Figure 9: Visualization of 8 history samples. The violin plots show density estimation of the values,
with the center line indicating the mean value.

D.2 Learning Curves of All the Compared Methods

Figures 11 and 12 present the learning curves of all compared methods across 27 MiniGrid tasks,
utilizing A2C and PPO, respectively.

D.3 Learning Curves of Different β

Figure 13 presents the learning curves for different values of β across 27 MiniGrid tasks.
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D.4 Comparison with DreamerV3

Although our research focuses on the model-free setting, we also compare DCRL with DreamerV3
[53], a widely used model-based method in POMDPs. DreamerV3 constructs a model of the
environment and enhances its behavior through the imagination of future scenarios. Figure 10
presents the average scores over 1e5 steps across 8 tasks in the MiniGrid environment. The results
demonstrate that DCRL consistently outperforms DreamerV3 across all tasks. Notably, DCRL
requires fewer computational resources and less training time than DreamerV3.
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Figure 10: Learning curves on MiniGrid. All curves are trained based on A2C over 5 random seeds.

E Experiment Details

E.1 Environment Descriptions

We describe each task environment used in our experiments. More detailed introductions can be
found on the official project homepage of each benchmark. The source code is available in the
supplementary.

MiniGrid
MiniGrid [41] comprises Box2D environments featuring various room layouts, interactive objects,
and goals. A red triangular agent operates within a discrete action space, with actions such as
“Move forward”, “Turn left”, “Turn right”, “Pick up an object”, “Toggle/activate an object”, and
others. Interactive objects include keys, doors, balls, and more. The agent must learn specific action
sequences to achieve the final goal within its limited forward field of view, with rewards given only
upon goal attainment. Each episode samples a different grid layout, and the agent has a first-person
partially observable view of the environment.

We selected different experimental settings. For instance, as depicted in Figure 4, the agent in the
LavaCrossingS9N2 environment aims to reach the green goal square in the room’s opposite corner
while avoiding deadly lava rivers that terminate the episode in failure. Each lava stream runs either
horizontally or vertically across the room, with a single safe crossing point. Fortunately, a path to the
goal is guaranteed to exist.

The agent receives a 7 × 7 × 3 dimensional image of the environment as observation. The three
channels represent object ID, color ID, and state. The agent is positioned at the observation’s bottom
center, and the state is encoded similarly to the observation, consistently displaying all grids without
adjusting to the agent’s orientation. The final channel may include 1, 2, 3, or 4 values at the agent’s
current coordinates, indicating the agent’s facing direction (east, south, west, and north).
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MiniWorld
Similar to MiniGrid, MiniWorld [41] is a minimalistic Box3D interior environment simulator consist-
ing of connected rooms with objects inside. In MiniWorld, the agent has a 3D partial view of the
environment and must navigate to the red box. For simplicity, actions are discrete, including “Turn
left”, “Turn right”, “Move forward”, “Move back” and others. Turn and move actions rotate or move
the agent by a small fixed interval, simulating the behavior of a differential drive robot. Rewards are
based on the number of time steps required to successfully complete the task, with a small penalty
incurred. If the task is not completed within the maximum steps, the current episode is terminated,
and a reward of 0 is assigned.

We selected four experimental settings. For instance, as depicted in Figure 1, the WallGap environment
features two rooms connected by a gap in a wall. The agent must navigate toward the red box,
randomly placed in one of the rooms.

Observations consist of RGB images sized 80× 60× 3 captured from the agents perspective, while
states are RGB images of size 80× 60× 3, representing an aerial view of the environment. In our
experiments, RGB images are converted into grayscale images.

E.2 Hyperparameters

We run all experiments on a single server with 64 Intel(R) Xeon(R) Gold 5218 CPU processors @
2.30GHz and 1 Tesla V100 GPU. The hyperparameters for training each method are summarized in
Table 2.

Table 2: Hyperparameters used for training each method.
Hyperparameter MiniGrid MiniGrid MiniWorld

Algorithm A2C PPO PPO
Seeds in experiments 5 5 5

Discount factor γ 0.99 0.99 0.99
λ for GAE 1 0.95 0.95

Rollout steps 5 512 512
Number of workers 16 16 16
Entropy loss coef 0.01 0.01 0.01

Optimizer RMSprop Adam Adam
learning rate 1e-3 3e-4 3e-4

max grad norm 0.5 0.5 0.5
PPO clip range - 0.2 0.2

PPO training epochs - 4 4
PPO mini-batch size - 512 512

dual update per iteration 16 4 4
dual training epochs 4 8 8

dual batch size 640 2048 2048
β 0.5 0.5 Best chosen from {0.1, 0.5}

E.3 Network Structures

In this section, we describe the structures of the policy network, the standard critic network, and
the oracle critic network. The general architecture for all environments is the same, except for the
representation of input images. We utilize the CNN model for representation, and the structures
are contingent upon the dimensions (n,m) of the input images. Detailed information for each
environment is provided below.

Representation Network
MiniGrid
(1) n ≤ 3 or m ≤ 3
Conv2d(in=3, out=32, kernel=2, stride=1, pad=1),
Relu,
Conv2d(in=32, out=64, kernel=2, stride=1, pad=0),
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Relu,
Conv2d(in=64, out=64, kernel=2, stride=1, pad=0),
Relu,
Flatten.
(2) n ≤ 15 or m ≤ 15
Conv2d(in=3, out=32, kernel=2, stride=1, pad=0),
Relu,
Conv2d(in=32, out=64, kernel=2, stride=1, pad=0),
Relu,
Conv2d(in=64, out=64, kernel=2, stride=1, pad=0),
Relu,
Flatten.
(3) n > 15 or m > 15
Conv2d(in=3, out=32, kernel=2, stride=1, pad=0),
Relu,
MaxPool2d(kernel=2),
Conv2d(in=32, out=64, kernel=2, stride=1, pad=0),
Relu,
Conv2d(in=64, out=64, kernel=2, stride=1, pad=0),
Relu,
Flatten.

MiniWorld
Conv2d(in=1, out=32, kernel=8, stride=4, pad=0),
Relu,
Conv2d(in=32, out=64, kernel=4, stride=2, pad=0),
Relu,
Conv2d(in=64, out=64, kernel=3, stride=1, pad=0),
Relu,
Flatten.

Policy Network
Representation Network,
FC(in=input_dim, out=64),
Relu,
LSTM(in=64, out=64).
FC(in=128, out=128),
Relu,
FC(in=128, out=number of actions).
Standrad Critic Network
The structure is the same as that of the policy network, except for the dimension of the final MLP
output head, which is set to 1.
Oracle Critic Network
The structure is the same as that of the policy network, except for the dimension of the final MLP
output head, which is set to 1.
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Figure 11: Learning curves on MiniGrid. All curves are trained based on A2C over 5 random seeds.
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Figure 12: Learning curves on MiniGrid. All curves are trained based on PPO over 5 random seeds.
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Figure 13: Ablation studies on different values of β and DCRL No Clip Version. All curves are
trained based on A2C over 5 random seeds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a detailed introduction to the proposed method and provide relevant
theoretical proof in Section 4. In Section 5, we present experimental results to demonstrate
the effectiveness of the proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide a complete proof in Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and theorems that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: We provide experimental details in Appendix E, and the source code is
available in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code is available in the supplementary.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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