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Fact-based Counter Narrative Generation to Combat Hate Speech
Anonymous Author(s)

Abstract
Online hatred has become an increasingly pervasive issue, affecting
individuals and communities across various digital platforms. To
combat hate speech in such platforms, counter narratives (CNs) are
regarded as an effective method. In recent years, there has been
growing interest in using generative AI tools to construct CNs.
However, most of the generative models produce generic responses
to hate speech and can hallucinate, reducing their effectiveness.
To address the above limitations, we propose a counter narrative
generation method that enhances CNs by providing non-aggressive,
fact-based narratives with relevant background knowledge from
two distinct sources, including a web search module. Furthermore
we conduct a comprehensive evaluation using multiple metrics,
including LLM-based measures for persuasion, factuality, and in-
formativeness, along with human and traditional NLP evaluations.
Our method significantly outperforms baselines, achieving an av-
erage factuality score of 0.915, compared to 0.741 and 0.701 for
competitive baselines, and performs well in human evaluations.
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1 Introduction
The rise of social media has profoundly reshaped society, revolu-
tionizing communication and allowing people to share knowledge,
opinions, and experiences with a global audience almost instanta-
neously [18, 35]. These platforms have democratized information,
giving a voice to individuals who might otherwise remain unheard,
and have played a critical role in driving social movements, ad-
vocating for marginalized groups, and connecting people across
geographic and cultural divides [29, 35]. However, while social
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media has brought numerous benefits, it has also given rise to a
number of serious social issues. Among the most concerning is the
spread of hate speech.

Hate speech thrives in the virtual environment of social me-
dia, where anonymity and distance from real-life consequences
empower individuals to express harmful, abusive, and often dis-
criminatory rhetoric without fear of accountability [24, 47]. The
viral nature of social media allows toxic messages to spread rapidly,
reaching vast audiences very quickly [21]. What might have once
been an isolated comment in a small community can now go viral,
exposing thousands or even millions of people to hateful rhetoric.
The ease with which this content spreads and its broader reach al-
lows hate speech to gain momentum quickly and become ingrained
within online communities thereby normalizing abusive behavior
and making it increasingly difficult to address.

Widespread effects of online hate speech. The surge in on-
line abuse and hate poses a complex and pervasive threat to societal
security. Victims of hate speech frequently experience profound
psychological harm, such as anxiety, depression, and social isola-
tion [1, 40]. Continuous exposure to toxic rhetoric erodes a person’s
sense of safety and self-worth, potentially leading to long-lasting
mental health issues. This impact is particularly devastating for
marginalized groups, who are often disproportionately targeted by
online abuse. In these cases, hate speech exacerbates existing social
inequalities, deepening the psychological toll. The repercussions
of online hate are not confined to the digital space. Online hate
speech often serves as a precursor to real-world violence, as ex-
tremist ideologies and hateful rhetoric spread across social media,
inciting or inspiring acts of physical aggression [22, 25, 26]. The
unchecked proliferation of hate speech on social media platforms
threatens not only individuals but the broader fabric of society. It
fosters division, fuels fear, and undermines the mutual respect and
understanding essential for maintaining social cohesion.

Counter narrative as promising combat strategy. In re-
sponse to the increasing prevalence of online hate, counter narrative
has emerged as a proactive and promising strategy [4, 33]. Unlike
traditional methods such as content moderation, which primarily
focus on removing harmful material post-dissemination, counter
narrative strategy takes a more dynamic approach by preventing
the spread of hate while also safeguarding free speech [4, 17, 33].
This strategy involves directly confronting harmful narratives with
positive counterarguments, empowering individuals and commu-
nities to challenge toxic content as it arises. By interrupting the
momentum of hate, counter narrative fosters more inclusive online
discussions. Beyond simply mitigating the damage caused by on-
line hate, this approach encourages a culture of empathy, respect,
and constructive communication, facilitating a shift towards more
positive interactions in digital spaces.

The existing literature on counter narrative generation faces
several limitations. Despite several attempts of counter narrative
generation, obtaining high-quality, effective and factual counter
narrative remains a significant challenge. Only a few methods focus
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Table 1: Comparison with previous works across various criteria of counter narrative generation. ‘Yes’ (‘No’) suggests that
the particular criterion is present (absent) in the paper. The table suggests that TKGCN [7] as a competitive baseline. Our
experiments (Section 4) show that our method outperforms TKGCN [7] in almost all settings.

Paper New Dataset External Knowledge Inject Facts Eval. with Different LLMs Group Eval. Human Eval.

Knowledge Repo. Web Search

MTCo[10] Yes No No No No No Yes
RAUCG [15] No Yes No Yes No Yes Yes
TKGCN [7] Yes Yes No Yes Yes Yes Yes
Ours Yes Yes Yes Yes Yes Yes Yes

on the factual accuracy of counter narratives, which is crucial for
effectively exposing the flaws in hate speech. This poses a partic-
ular issue as many state-of-the-art techniques rely on pre-trained
LLMs, which are prone to generating hallucinated or inaccurate
information. These factual inconsistencies can compromise the
credibility of counter narratives and foster mistrust, reducing its
impact. Additionally, there is a notable gap in the thorough evalua-
tion of generated counter narratives, with limited attention given
to assessing its factual accuracy, relevance, and overall efficacy in
combating hate speech.

Our contributions. To address these limitations, we propose a
novel method for generating fact-based counter narratives. Table
1 shows the major differences with the existing works. Our main
contributions are as follows.

• We improve the effectiveness of counter narratives (CNs)
generated by large language models (LLMs), which often
suffer from being generic. To enhance the quality of CNs,
we propose a framework that responds with non-aggressive
and fact-based feedback, by incorporating relevant back-
ground knowledge from two distinct sources.

• We conduct a comprehensive evaluation of the counter nar-
ratives using multiple metrics. We use LLM based metrics
that measure the persuasion, factuality, and informative-
ness of our CNs, as well as target group-wise evaluation,
human evaluation and traditional NLP metrics.

• Our method significantly outperforms the baselines across
several measures. Our generated CNs achieve an average
factuality score of 0.915, compared to the two competitive
baselines achieving just 0.741 and 0.701. Additionally, our
generated CNs also perform well in human evaluation.

Code. The codebase is available at the following link:
https://anonymous.4open.science/r/counternarratives-DC2A/

2 Related Work
There has been a growing body of research focused on the cre-
ation and automatic generation of counter narrative data to combat
online hate speech. Several studies have aimed at building large
datasets that consist of counter narrative responses, enabling the
development of automated systems for generating effective counter
narrative towards hatespeech.

2.1 Counter Narrative Dataset Creation
Numerous efforts have been made to create counter-narrative data.
Mathew et al. [23] introduced the first dataset, which was created

by annotating YouTube comments to identify counter narrative in
response to hate speech. Qian et al. [31] published two large-scale
hate speech intervention datasets. These datasets include conversa-
tions collected from social media platforms like Reddit1 and Gab2,
labeled as hate speeches, with 40K intervention responses written
by 900 Mechanical Turk workers. Recognizing that the meaning of
certain statements can change depending on context, Yu et al. [41]
examined the role of conversational contexts in the annotation and
detection of hate and counter speeches, releasing a context-aware
dataset. Hundreds of non-expert annotators were invited to label
Reddit comments with and without context as hate speech, counter
narrative, or neutral speech. Chung et al. [6] introduced the first
high-quality multilingual counter narrative dataset, CONAN, which
contains around 6K pairs of hate speech and counter narratives in
English, French, and Italian. This dataset was meticulously curated
by over 100 well-trained NGO experts, requiring more than 500
person-hours to complete.

To reduce the manual labor of generating data, Tekiroğlu et
al. [37] proposed an author-reviewer framework in which GPT-
2 functions as the “author”, generating initial counter narrative
responses. Experts then act as “reviewers”, tasked with filtering, re-
fining, and post-editing these machine-generated responses. Fanton
et al. [10] proposed a human-in-the-loop data collection method
where experts post-edit generated counter narratives, iteratively
refining the dataset to enhance the generative model’s output.
Over 18 weeks, this method resulted in 5,000 pairs of hate speech
and counter narratives. Bonaldi et al. [5] also utilized this author-
reviewer pipeline but focused specifically on collecting counter
narratives in multi-turn dialogues, further enhancing the quality
and scope of the dataset.

2.2 Counter Narrative Generation
Several efforts have focused on generating counter narratives using
Natural Language Generation (NLG) techniques.

Qian et al. [31] evaluated the performance of various basic gener-
ative models, such as sequence-to-sequence models, for generating
counter narratives and found that they often lacked relevance and
variety, with many responses being generic or irrelevant. To address
these limitations, Zhu et al. [46] proposed a three-module pipeline
called Generate, Prune, Select (GPS), which enhances both data
diversity and relevance. The method generates diverse candidate
samples and incorporates a retrieval-based selection mechanism

1https://www.reddit.com/
2https://gab.com/
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to refine them. Chung et al. [7] integrated generative models with
information retrieval techniques, leveraging external knowledge
to enrich counter narratives and reduce hallucinations—situations
where the model generates inaccurate or fabricated information.
Jiang et al. [16] utilized stance consistency, semantic overlap, and
relevance to hate speech in constructing a knowledge repository
from the ChangeMyView subreddit 3. This repository is then em-
ployed to provide knowledge-augmented counter narratives.

Several works have explored additional stylistic aspects of counter
narratives to improve its effectiveness. To enhance specificity, Bonaldi
et al. [5] applied two attention-based regularization techniques,
incorporating a broader context during both the training and gen-
eration phases. Furman et al. [11] emphasized the argumentative
structure within hate speech to guide the generation of responses,
steering them towards specific counterstrategies. Saha et al. [32]
focused on controlling multiple stylistic dimensions simultaneously,
including politeness, detoxification, and emotional tone in the gen-
erated counter narratives. Gupta et al. [13] proposed a two-stage
framework that conditions counter narrative generation on five
different strategies: informative, denouncing, questioning, positive,
and humorous approaches. These methods allow for more nuanced
and contextually appropriate counter narratives, tailored to the
nature of the hate speech being addressed.

The most common approach for generating counter narratives
involves fine-tuning a pre-trained language model on a dedicated
counter narrative dataset in a relatively low-computation setup
(e.g., [14, 31, 36]). However, recent advances have enabled more
flexible methods, such as generating counter narratives using few-
shot learning techniques [3, 8, 11, 38]. Additionally, one-shot and
zero-shot prompting have emerged as viable alternatives, allowing
counter narrative generation with minimal training data [27, 44].
While these approaches significantly reduce the need for large-scale
annotated datasets, making the generation process more accessible,
the most of the counter narratives are not fact-based. In this paper,
we build a method to produce counter narrative that are fact-based
and thus, more effective.

3 Our Method
Large language models (LLMs) often generate generic or repetitive
counter narratives (CNs), reducing their effectiveness in combat-
ing hate speech [9]. A more effective approach is to respond with
non-aggressive, fact-based narratives that incorporates relevant
background knowledge. This not only increases the relevance of
the counter narrative to the specific hate speech but also enhances
diversity by avoiding repetition [2]. Our proposed framework ad-
dresses this by integrating three key components: (i) document
retrieval, (ii) document summarization, and (iii) counter narrative
generation. Figure 1 illustrates the workflow of these steps. We
discuss each component in detail in the following subsections.

3.1 Document Retrieval
The first step involves retrieving relevant documents, which are
subsequently used to craft fact-based CNs. Towards this objective,
we generate targeted queries via LLM prompts.

3https://www.reddit.com/r/changemyview/

3.1.1 Query Generation. This step focuses on generating queries
to be used in the document retrieval task. We employ step-back
prompting [43] to generate queries, where the model is prompted to
first consider what information is necessary to construct a response.
In our setting, it is crucial that the base LLM understands the goal
of the query. For every instance of hate speech, we generate three
specific queries denoted as 𝑄 = {𝑄1, 𝑄2, 𝑄3} to help us retrieve the
related documents containing facts and statistics to counter the
hate speech. We use GPT4o4 with the following prompt. Instead of
using key phrases, we include the full instance of the hate speech
to ensure that the model becomes aware of the entire context.

Prompt for Query Generation

You are responding with counter speech to the hate speech
{hatespeech}.
Generate 3 precise queries you would research in order to
generate counterspeech for this hate speech.

3.1.2 Document Retrieval. Next, we aim to retrieve relevant docu-
ments from a knowledge repository. In this step, we use the News-
room dataset[12] as our primary knowledge base, which includes
1.3 million articles from 38 different news publications. However,
a limitation of the Newsroom dataset is that it only includes data
from 1998 to 2017. To effectively combat hate speech with current
information, it is crucial to integrate more recent datasets. Since
facts and statistics are constantly evolving, relying solely on out-
dated data risks producing ineffective responses. To address this,
we also incorporate the Tavily5 online web search API to retrieve
recent documents. This is especially designed for RAG (Retrieval-
Augmented Generation) systems [19] and LLMs. It retrieves the
most relevant information from the sources based on a query. Thus,
we ensure that our generated counter narratives are grounded with
the recent information.

To manage and access large amounts of data, we depend on the
low dimensional representations or vector embeddings space. By
transforming both our knowledge base and queries into vector em-
beddings, we can perform similarity-based search to find the most
relevant documents for each query. We use Chroma6 to store and
retrieve vector embeddings. First, we generate a vector store from
our knowledge base. Then, for each query, it is converted to vector
embeddings, which are used to retrieve relevant documents from
the knowledge repository. Chroma uses hierarchical navigable small
world (HNSW) [20] as an approximate nearest neighbor search algo-
rithm. In this algorithm, documents are indexed into a hierarchical
structure of graphs and edges. Connection between documents
are based on their similarity, such as euclidean distance, cosine
similarity, or inner product. Given a query, the algorithm starts the
search at the top layer to find the nearest neighbor and go into
deeper layer if the the similarity is not sufficient. For each instance
of hatespeech, we generate 3 queries as described in Section 3.1.1.
We retrieve two documents per query from both Newsroom and
online search which produces a total of 6 documents. The retrieved
4https://openai.com/index/hello-gpt-4o/
5https://tavily.com/
6https://www.trychroma.com/
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Figure 1: Our pipeline for generating counter narratives involves three key stages: (1) Query Generation and Document
Retrieval, where three queries are generated to retrieve relevant documents from a knowledge base and web search; (2)
Document Summarization, where the retrieved documents are summarized, and a critique model determines whether they are
relevant; and (3) Counter Narrative Generation, where the relevant documents are incorporated into a prompt to generate the
final counter narrative.

documents are denoted as 𝐷 = {𝐷1𝑁 , 𝐷1𝑊 , 𝐷2𝑁 , 𝐷2𝑊 , 𝐷3𝑁 , 𝐷3𝑊 }
where, for the 𝑖th query, 𝐷𝑖𝑁 and 𝐷𝑖𝑊 refer to the documents from
Newsroom and the web respectively.

3.2 Document Summarization
We obtain relevant documents in the previous step (Section 3.1.2).
The challenge with these retrieved documents is that they are
lengthy, and can sometimes be irrelevant and noisy. Before injecting
information that might not accurately align with the hate speech
and subsequent CNs, we need to verify the relevance. So, we split
this process into two steps: first, we apply techniques to summarize
the key points from the relevant documents, and then we use the
critique model to filter and select the relevant documents.

3.2.1 Summary Generation. The documents in the retrieved set
𝐷 are usually lengthy. Besides, LLMs also have a certain limit
for tokens that are used for prompts. Additionally, not all para-
graphs in the documents contain relevant facts needed for our
generation task. To address this, we generate summaries focus-
ing on key facts, and statistics from the documents. We employ
GPT-4o to summarize the contents as it has shown a great poten-
tial in generating automated text summarization in various do-
main such as food summary[34], discharge summary for a patient
[39], news summary[28], etc. We use the following prompt given
below. This process produces the set of summarized documents
𝐷𝑆 = {𝐷1𝑁𝑆 , 𝐷1𝑊𝑆 , 𝐷2𝑁𝑆 , 𝐷2𝑊𝑆 , 𝐷3𝑁𝑆 , 𝐷3𝑊𝑆 }where𝐷𝑖𝑁𝑆 refers
to the summarized document from Newsroom and 𝐷𝑖𝑊𝑆 refers to
the document summary retrieved from the web for the 𝑖th query.

Prompt for Summary Generation

Summarize this document in 2-3 sentences in a way that
answers the query and retain information relevant for
countering the hate speech. Keep any relevant statistics,
and sources.
Query: {query}
Hate speech: {hs}
Document: {document}

3.2.2 Critique Model. As the critique model, we utilize GPT-4o
with a specific prompt. The prompt includes the query used to
generate the documents, the retrieved documents, the identified
hate speech, and the purpose of the documents, which is to counter
the hate speech. The output of the model (GPT-4o) for a document
is binary with "yes" or "no". The detailed prompt used for this pro-
cess is provided in Appendix C. After processing with the critique
model, we derive a subset of relevant documents 𝐷𝐶 where the
final document set can be of any number between one to six. Gener-
ally speaking, the critique model is used for filtering the irrelevant
ones. Now there is a possibility that the critique model might yield
an empty set, indicating no relevant documents have been found.
However, after testing with multiple instances of hate speech, we
observe that this scenario is rare. The critique model always returns
at least one relevant document for the task in all cases.
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3.3 Counter Narrative Generation
To effectively counter hate speech, our final step involves generat-
ing counter narratives that directly address the underlying misin-
formation, prejudice, or harmful rhetoric present in the hate speech
instance. These counter narratives aim to promote fact-based cor-
rections. For this generation process, we employ several LLMs in-
cluding GPT-4o7, GPT-3.58, Gemini 1.5 Flash9, Claude Sonnet 3.510,
and Mistral 7B11. The detailed prompt is provided in Appendix C.
The task of the model is to generate a counter narrative that is both
factually accurate and aligned with the goal of promoting positive,
alternative perspectives. The prompt 𝑝 = {ℎ𝑠𝑖 , 𝐷𝐶𝑖 , 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡} in-
cludes the hate speech instance ℎ𝑠𝑖 , the summarized documents
𝐷𝐶𝑖 and instructions for generating a counter narrative of 𝑖th in-
stance of the dataset. After running evaluations based on toxicity,
factuality, persuasiveness, and informativeness as shown in Table 2,
we select GPT-4o as the preferred model. It consistently produces
non-toxic and coherent counter narratives, outperforming the other
models in our trial. Examples of hatespeech and counter narratives
generated by MTCo [10], TKGCN [7], and ours are shown below.
Note that, counter narratives generated by our model has more
facts and it cites the sources (shown in green).

Example of Hate Speech (HS) & Counter Narratives (CNs)

HS: Gays are spreading AIDS all around the world because
they are promiscuous and fornicate with strangers, we
should prevent them to make blood donations.
CN (MTCo): We can simply disallow donations from those
who had unprotected sex or a high number of partners,
instead of making sexual orientation the basis as in your
claim.
CN (TKGCN): The real issue is unprotected sex. Regard-
less of sexual orientation, it is dangerous for anyone to
have unprotected sex that could lead to a life threatening
disease.
CN (Ours) : The notion that gay individuals are
responsible for spreading AIDS is a harmful stereo-
type not supported by scientific evidence. Studies
have shown that HIV transmission can be effectively
prevented when the HIV-positive partner is on antiretro-
viral treatment, regardless of sexual orientation (source:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063169/).
Furthermore, the Red Cross implements rigorous safety
protocols to ensure that all eligible individuals, regardless
of sexual orientation, can safely donate blood (source:
https://www.redcrossblood.org/donate-blood/dlp/share-
your-health.html). Discriminatory practices based on
sexual orientation hinder efforts to combat HIV/AIDS
and ignore the fact that transmission is related to specific
behaviors, not sexual orientation itself.

7https://openai.com/index/hello-gpt-4o/
8https://platform.openai.com/docs/models/gpt-3-5-turbo
9https://deepmind.google/technologies/gemini/flash/
10https://docs.anthropic.com/en/docs/welcome
11https://mistral.ai/news/announcing-mistral-7b/

4 Experimental Results
In this section, we discuss the experimental set up and provide
results on various measures. More specifically,

• We use various evaluation metrics to validate our counter
narrative (CNs) generations in terms of NLP measures, fact-
based measures, and linguistic quality. We also perform
human evaluation of our generated CNs.

• Since our pipeline consists of multiple stages or compo-
nents, we assess the quality of each step individually. Fur-
thermore, we evaluate the CNs for individual target group.
Finally, we make some interesting observations between
the original hate speech and our constructed CNs.

4.1 Set up
Datasets. We use the Multi-Target CONAN [10] dataset for our
analysis. This dataset has hate speech and counter narrative pairs
in English, targeting multiple groups. It has been collected using a
Human-in-the-Loop approach to ensure quality and relevance. The
dataset contains 5,003 hate speech and counter narrative pairs, ad-
dressing various hate targets such as people with disabilities, Jews,
LGBT+ , Muslims, migrants, people of color (POC), and women. A
few examples are shown in Appendix A.

Baselines. We use the Multi-Target CONAN [10] dataset as our
first baseline. This paper proposes a human-in-the-loop approach
to generate counter narratives. As seen in the examples in Table
7, the CNs produced by this method are not fact-based. We also
compare our results with TKGCN [7], where counter narratives are
similarly grounded in knowledge from a repository. However, our
method outperforms this baseline in almost all settings. Another
relevant work, RAUCG [15] has not made the code and data publicly
available, and therefore we have not included this baseline for our
experiments.

4.2 Evaluation of Counter Narrative Generation
on Different Measures

We evaluate the quality of our counter narrative generation with
various measures in this experiment. Table 2 presents all the results
along with two main baselines: TKGCN[7] and MTCo [10]. We also
show variations with different LLMs for the last step where we
generate the counter narratives (CNs).

We would like to emphasize the fact that it is challenging to
evaluate the CNs because of the lack of ground truth. Thus, we
evaluate these from different viewpoints and measures that are
practical for CNs. We describe each measure along with results in
details as follows.

Toxicity. Toxicity in hate speech is expected to be high. In con-
trary, toxicity does not help in counter narrative (CN) for obvious
reasons. Our objective is to ensure that our created CN exhibits
lower toxicity. To validate this, we utilize the Perspective API12
developed by Jigsaw and Google. This is based on the BERT-based
model and Convolutional Neural Networks (CNNs). For a given text,
it returns a probability score ranging from 0 to 1, where 0 indicates
the text is non-toxic, and 1 means it is highly likely to be toxic.

12https://perspectiveapi.com/
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Table 2: Evaluation of the counter narratives with different measures. We compare our proposed model with two main baselines
TKGCN [7] and MTCo [10]. We also show variations with different LLMs for the last step where we generate the counter
narratives. "Tox.", "Fact.", "Pers.", "Inf.", and "LQ" refer to toxicity, factuality, persuasiveness, informativeness, and linguistic
quality, respectively. For toxicity, lower values indicate better performance, whereas for the other metrics higher values are
better. The best scores in each metric are highlighted in bold. For BLEU and BERTScore we compare all the CNs with the given
CNs from MTCo [10] Dataset. Our proposed method outperforms others especially in terms of factuality, persuasiveness, and
informativeness.

Model Tox. Fact. Pers. Inf. LQ BLEU BERTScore
HS CN

Baselines MTCo [10] 0.501 0.161 0.701 0.620 0.661 0.791 – –
TKGCN [7] 0.501 0.201 0.741 0.673 0.695 0.845 0.046 0.847

Our Methods Gemini 0.501 0.145 0.892 0.845 0.808 0.849 0.030 0.847
Claude 0.501 0.159 0.905 0.858 0.874 0.854 0.024 0.840
Mistral 0.501 0.125 0.866 0.824 0.764 0.831 0.036 0.850
GPT3.5 0.501 0.094 0.866 0.820 0.773 0.859 0.034 0.851

Our Main Model GPT4o 0.501 0.131 0.915 0.859 0.879 0.832 0.02 0.827

In Table 2, we present the toxicity levels of both hate speech and
generated counter narratives using different LLMs. The hatespeech
has a toxicity score of 0.50, where the lowest toxicity score for the
CN is 0.094, produced by GPT3.5. The highest score, 0.20, comes
from the counter narratives proposed by [7]. Our proposed model
achieves a score of 0.13 which is a significant improvement over
the existing works.

Factuality, Persuasiveness, and Informativeness. This is the
most significant experiment in our case. We follow the method used
by [15] to measure factuality, persuasiveness and informativeness.
We use GPT 3.5 to score these three criteria in the range of 0 to 1. In
our case, we would like to have higher scores in all the three metrics
as our objective is to generate CNs that are informative, factually
reliable and most importantly persuasive. Here, persuasiveness
means how the CNs are effective to influence the readers opinion.
The results in Table 2 show that our CNs receive the highest scores
across all three metrics: 0.91 for factuality, 0.85 for persuasiveness,
and 0.87 for informativeness. In comparison, the method in [7]
produces lower scores such as 0.74, 0.67, and 0.69 for these metrics
respectively.

Linguistic Quality. Most NLP metrics (e.g., BLEU, BERTScore)
rely on reference texts to evaluate generated text. GRUEN [45],
however, is a reference-less linguistic quality metric that assesses
text quality based on several aspects: grammar, non-redundancy,
focus, and coherence. It evaluates whether the text is grammati-
cally correct, free of unnecessary repetition, maintains topic rele-
vance within paragraphs, and flows coherently between sentences.
GRUEN provides a holistic quality score. Table 2 shows that our
approach with GPT-3.5 achieves the highest score (0.85) where as
our main model produces 0.83. The slight difference may be due to
the fact that, GPT-3.5 does not include any source while injecting
facts to the CNs where our main model does the same with rele-
vant sources. We also provide examples in Table 8 and Table 9 in
Appendix B.

BLEU-2. Besides the above measures we also aim to evaluate
the similarity of our CNs with the original CNs in the Multi-Target
CONAN [10] dataset. The BLEU [30] score is commonly used to

assess the quality of machine-generated text by comparing them
to reference text. BLEU-2 focuses on 2-gram precision, meaning
it evaluates how well pairs of consecutive words (bigrams) in the
candidate text match those in the reference. To compare the CN
generation, we chose Multitarget-Conan [10] as our reference text.
The score ranges from 0 to 1, with higher scores indicating a closer
alignment with the reference text. As shown in Table 2, our CNs
do not exhibit significant bigram overlap with reference CNs. This
is expected as our CNs incorporate a moderate number of factual
statements, which naturally reduces bigram similarity but enhances
the informative value of the generated CNs. In comparison, the
baseline TKGCN is less factual and shows higher bigram similarity.

BERTScore. Similar to the above measure, BERTScore [42] also
measures similarity between texts. However, it captures the seman-
tic similarity between the generated text and reference texts by
utilizing contextual embeddings. This evaluation focuses on how
well the meanings of the generated text align with the reference
text—which is Multitarget-Conan [10] data in our case—rather than
relying solely on exact word matches. This metric helps us to vali-
date that our counter narratives (CN) maintain a level of semantic
similarity, even though the inclusion of factual content may cause
slight deviations from the reference. As shown in Table 2, all mod-
els achieve relatively similar scores, though our method produces
the lowest one as our CNs aim to have other components such as
factuality.

4.3 Human Evaluation
Human evaluation is widely regarded as the gold standard for
assessing the quality of text generation especially by generative
models such as LLMs. To validate our counter narratives (CNs), we
have randomly chosen three samples and asked 17 researchers to
evaluate CNs based on the followings.

• Factuality: Do the counter narratives include facts and
statistics?

• Coherence: Are the counter narratives logically structured
and easy to understand?

6
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• Effectiveness: Is the counter narrative likely to be persua-
sive and change someone’s perspective on the issue?

• Relevance: Are the facts and information presented in the
counter narrative directly related to the content of the hate
speech?

The users are asked to rate each counter narrative on a scale of 1
to 5, with 5 indicating excellent performance and 1 indicating poor
performance. Figure 2a shows the results of human evaluation. In
every category, the output are more than 3.5 out of 5 except for
effectiveness. The slightly lower score in this category may indicate
that while the counter narratives are coherent and factual, the
users—who evaluate these—think that (or are unsure about whether)
these counter narrative may not always have an effect on shifting
opinions or persuading the audience.

4.4 Component-wise Evaluation
Our framework has multiple steps before the final counter narrative
generation. In this experiments, we evaluate the quality of the
individual steps.

4.4.1 Document Retrieval. In order to inject facts, our framework
has a document retrieval component that obtains six documents
per hate speech, summarizes them, and assesses their relevance
using a critic model. The critic model filters out the summaries that
are irrelevant for countering hate speech, ensuring only pertinent
information is utilized in the counter narrative generation. In Table
3, we present the average amount of summaries that are irrelevant
per hate speech. The low numbers indicate that the documents
retrieved are mostly relevant as low amount of filtering is needed.
The low scores across each target group show that the retrieval
step consistently retrieves relevant documents.

Table 3: Number of document summaries filtered out per tar-
get group. For each hate speech, six documents are retrieved
and summarized. Lower scores of filtering here suggest that
the documents retrieved are indeed relevant to counter the
hate speech.

Target Summaries Filtered

DISABLED 0.074
JEWS 0.144
LGBT+ 0.175

MIGRANTS 0.156
MUSLIMS 0.106

POC 0.097
WOMEN 0.045
OTHER 0.156

4.4.2 Summarization. In our framework, the document summa-
rization is an important step. In this experiment, we aim to capture
the similarity between the original document and its corresponding
generated summary. In Figure 2b and 2c, we present the BERTScore
and ROUGE-L between every document retrieved and its sum-
mary. The scores are relatively low for ROUGE-L, showing little
n-gram overlap due to paraphrasing or alternative wording. How-
ever, BERTScore performs generally well, showing that the core

semantic meaning is still retained in our summaries. This means
our summarization approach effectively captures the main ideas
while expressing them in different words.

4.5 Quantitative Analysis for Target Groups
This experiment aims to analyze the counter narratives in each
target group. In Table 4, we show a detailed comparison of the CNs
generated by our model against those from the Multitarget-Conan
[10] dataset. This dataset [10] has eight target groups, and here, we
present target-group wise measures based on them. The metrics
include the average number of words and sentences, factuality
scores, and toxicity scores. Our model consistently generates longer
CNs, as measures by the higher word and sentence counts across all
target groups. It shows that our model includes more detailed and
comprehensive responses. Additionally, our model achieves higher
factuality scores which implies its ability to produce fact-based
CNs. In terms of toxicity, our model generally has lower or similar
scores compared to the MTCo dataset. This shows that even though
our CNs are longer and more detailed, they do not become more
harmful or hateful.

4.6 Interesting Observations
4.6.1 Are the generated CNs generic? One of the limitations of the
existing counter narrative methods is that the produced counter
narratives tend to be generic, which makes them less effective. We
aim to show that the CNs—produced by our method—are unique
and specifically tailored to each instance of hate speech. In Table
5, we present the BLEU, ROUGE-L, and BERTScore between one
CN and every hate speech in a specific target group, and then
average those scores. We repeat the process for each data point and
report the average score. The results show that both the baselines—
MTCo [10] and TKGCN [7]—have higher similarity between the
CN and hate speech, whereas our model has less similarity. Since
BERTScore accounts for contextual similarity, it still produces a
high score, though it is the lowest compared to the other works.

Table 5: BLEU, ROUGE-L, and BERTScore evaluation between
one CN compared with every HS in the target group. Lower
scores (best are in bold) in BLEU and ROUGE-L suggest that
the CNs are less generic and less directly aligned with the
hate speech within each category. BERTScore measures the
semantic similarity of the CNs to the reference texts.

Model BLEU ROUGE-L BERTscore

TKGCN [7] 0.0064 0.0826 0.8406
MTCo [10] 0.0100 0.0964 0.8560

Ours 0.0037 0.0516 0.8226

4.6.2 How similar are the HS and the corresponding CN?. To answer
this, we also present the BLEU, ROUGE-L, and BERTScore values
between every pair of counter narratives (CNs) and hate speech
in Table 6. The scores are notably low which shows that the CNs
are not simply repeating words or n-grams from the hate speech. It
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(a) Human evaluation (b) BERTScore (c) ROUGE-L

Figure 2: (a) Results of human evaluation across four categories: Factuality, Coherence, Effectiveness, and Relevance. In most of
them the output are more than 3.5 out of 5, indicating the high quality of the generated counter narratives. (b-c) Comparison
of BERTScore scores and ROUGE-L scores between documents and summaries. Low scores for ROUGE-L suggest that the
summaries do not retain similar words as the original documents. However, the summaries retain the semantic meaning of the
original documents as indicated by the high BERTScores.

Table 4: Target group-wise evaluation of counter narratives. This table shows the average number of words, sentences, factuality
score, and toxicity score for each target group in both our CNs (that our method produces) and the original CNs in the
Multitarget-Conan (MTCo) dataset. The best results on factuality and toxicity are in bold. We observe higher word and sentence
counts in our CN as it includes factual information. In most of the target groups, our produced CNs achieve lower (better)
toxicity scores.

Target Words Sentences Factuality Toxicity
Ours MTCo Ours MTCo Ours MTCo Ours MTCo

DISABLED 113.77 27.81 2.67 1.63 0.909 0.700 0.060 0.088
JEWS 125.55 27.96 4.57 2.10 0.959 0.644 0.229 0.204
LGBT+ 114.60 26.23 3.68 1.80 0.924 0.650 0.117 0.217

MIGRANTS 117.42 29.17 5.34 2.24 0.902 0.688 0.083 0.084
MUSLIMS 122.91 23.81 4.71 1.74 0.901 0.675 0.112 0.178

POC 117.34 27.08 3.94 2.00 0.928 0.731 0.207 0.201
WOMEN 119.60 28.70 4.54 2.00 0.900 0.708 0.121 0.162
OTHER 115.14 23.91 4.15 1.50 0.909 0.734 0.102 0.129

also validates that our model generates more diverse and context-
specific counter narratives, rather than relying on direct overlaps
with the original text.

Table 6: BLEU, ROUGE-L, and BERTScore evaluation between
HS and CN. The low scores (best results are in bold) in our
CNs indicate that the words from the HS are not retained in
our CNs, validating that our model better constructs more
diverse CNs.

Model BLEU ROUGE-L BERTscore

TKGCN [7] 0.0468 0.1275 0.8523
MTCo [10] 0.0719 0.1712 0.8698

Ours 0.0268 0.0840 0.8370

5 Conclusion
In this paper, we have designed a novel method for generating
fact-based counter narratives. By integrating relevant background
knowledge from multiple sources and focusing on non-aggressive

language and facts, our approach significantly improves the quality
and effectiveness of CNs in combating hate speech. Our compre-
hensive evaluation demonstrates the strength of our method across
various metrics, including persuasion, factuality, and informative-
ness. Both LLM-based assessments and human evaluations show
that our approach consistently outperforms competitive baselines.
These results underscore the potential of our framework to sig-
nificantly enhance counter narrative generation and its practical
application in addressing online hate speech at scale.

Limitations and Future Work. Our work assumes that the hatred
on social media is primarily expressed through text. However, it
is important to recognize that hate can also appear in image form,
which remains a significant challenge to address. Additionally, fu-
ture research could explore the creation of multi-response counter-
narratives. When a counter-narrative elicits a reaction from other
users, responding appropriately and understanding the dynamics
of the conversation will be crucial.
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A Dataset Description
In Table 7, we show target group-wise examples of the dataset Multi
target Conan [10].

B Examples
Table 8 shows the overall pipeline, including the generated query, re-
trieved documents, critiquemodel, document summary, and counter-
narrative generation process. In Table 9, we present the counter-
narratives generated using different LLMs.

C Prompts
From query generation to counter narrative generation, we utilize
LLMs to produce outputs. We experimented with multiple prompts,
and in this section, we presents the prompts that yield the best
results. The instructions are written in black, additional information
or contexts highlighted in red. Number or sentence specifications
are marked in blue.

Prompt for Query Generation

You are responding with counter speech to the hate speech
{hatespeech}.
Generate 3 precise queries you would research in order to
generate counterspeech for this hate speech.

Prompt for Summary Generation

Summarize this document in 2-3 sentences in a way that
answers the query and retain information relevant for
countering the hate speech. Keep any relevant statistics,
and sources.
Query: {query}
Hate speech: {hs}
Document: {document}

Prompt for Critique Model

You are a grader assessing the relevance of a retrieved
document for use in constructing counterspeech to hate
speech.
Here is the retrieved document:{document}
Here is the hate speech: {hs}
Here is the query used to retrieve that document: {question}
If the document is generally relevant to countering the
hate speech, grade it as relevant. Grade it as irrelevant if it
is generally irrelevant to countering the hate speech, or if
it seems to agree with the hate speech.

Prompt for CN Generation

Generate counterspeech to this hate speech, utilizing the
following information fetched from various sources. Utilize
the information to build your narrative, and cite sources
when possible.
Context: {documents}
Hate speech: {hs}
Keep your counter speech to 4 sentences.
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Table 7: Target groupwise examples from Multi-target Conan dataset

Target HS CN

DISABLED Downies may hinder the productivity of other
workers because they are not able to interact in
a normal way. They should be isolated.

There are various levels of Down syndrome.
Some are suitable for working with other peo-
ple in "normal workplaces".

JEWS Global Jewry did not want Brexit and are doing
everything they can to sabotage it.

What makes you think that? Do you have any
facts to back this up?

LGBT+ Why don’t gay people seek a cure? Have you ever talked to a homosexual person?
It could help you understand many things, in-
cluding that sexual orientation is fundamental
to a person’s identity, not a matter of whim or
ill health.

MIGRANTS Immigrants just don’t want to integrate. Let’s
kick them out!

Immigrants are integrating very well into our
society and it seems that they have reached a
better level of English than other people.

MUSLIMS Apples and oranges are not the same and cul-
tures have never been ’equal’. Muslims are just
misogynist!

You can find outdated teaching in all major re-
ligions but it doesn’t mean most people follow
those parts, a similar example from Christianity:
Ephesians 5:22, "Wives, submit to you husbands
as to the Lord"

POC I hate negros: they killed a cop! So are you blaming all of them? Lets say you
are in a group of 10 people, 1 is a killer, does
that make you ALL killers? Are you serious?

WOMEN A woman’s place is with her husband or his
family.

There are many cases where the wife works
and provides for the family, making a valuable
contribution. It is a source of pride for modern
men to be married to these women.

OTHER Gypsy rape our women. They are criminals. Forgive me but I don’t understand how rape
can be a Gypsy characteristic. Rather it is the
product of toxic misogynistic culture.
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Table 8: Example of Generated CN along with all the steps mentioned in our pipeline. As the retrieved documents are lengthy,
few lines of the documents are shown. D1N, D1W denotes documents from Newsroom and web search, and S1N, S1N denotes
summaries of the documents D1N, and D1W, respectively.

HS Immigrants are overrunning our country, and are here illegally

Generated Query

Q1: What are the economic contributions of immigrants to the country, including both documented
and undocumented immigrants?
Q2: What are the legal pathways and challenges for immigrants seeking to enter and reside in the
country?
Q3: What are the current statistics on immigration rates compared to historical data to assess the claim
of overrunning?

Retrieved Docu-
ments

D1N: The consensus of the economic analysis is that the taxes paid by immigrants and their descendants
exceed the benefits they receive. Even with undocumented immigrants, the Internal Revenue Service
estimates that they paid almost $50 billion in federal taxes between 1996 to 2003, including payroll and
Social Security...
D1W: Immigrants make significant contributions to our economy on virtually every front - including
on tax revenue, where they contribute $458.7 billion to state, local, and federal taxes in 2018. If the
U.S. provided a pathway to permanent residency and citizenship, it would increase Americans’ income
by $791 billion and generate $184 billion in additional state and local and federal tax revenue from
currently undocumented immigrants, and add more than 200,000 jobs to the U.S. economy per year...
D2N: The immigration bill being drafted by Congress has bipartisan support on three broad concepts -
a pathway to citizenship for the undocumented, streamlining legal immigration and more stringent
enforcement of the laws against hiring illegal workers...
D2W: CAP analysis shows that practices and policies that facilitate legal pathways can reduce irregular
migration and encourage prospective migrants to seek entry into the United States through such ...

Document Summary S1N: Immigrants, both documented and undocumented, make significant economic contributions
to the U.S. economy. The Internal Revenue Service estimates that undocumented immigrants paid
nearly $50 billion in federal taxes from 1996 to 2003, and their purchasing power supports hundreds of
thousands of U.S. jobs. Despite some working off the books, the overall economic impact of immigrants
is positive, as highlighted by the Council on Foreign Relations, which warns that failing to implement
effective immigration policies could weaken the U.S. economy and national security.
S1W: Immigrants, both documented and undocumented, play a vital role in the U.S. economy, contribut-
ing $458.7 billion in taxes in 2018 alone. Providing a pathway to permanent residency and citizenship
for undocumented immigrants could further boost the economy by increasing Americans’ income
by $791 billion, generating an additional $184 billion in tax revenue, and creating over 200,000 jobs
annually. These contributions highlight the positive economic impact of immigrants, countering the
narrative that they are overrunning the country.
S2N: The immigration bill being drafted by Congress aims to address three main areas: creating a
pathway to citizenship for undocumented immigrants, streamlining the legal immigration process, and
enforcing laws against hiring illegal workers. However, the legal immigration system is complex, with
multiple pathways and categories, each with limited visas and specific criteria, leading to significant
backlogs. For instance, a Migration Policy Institute study noted that as of November 2012, over 4.4
million people with approved visa petitions were awaiting processing, primarily from family-based
categories, and it could take 19 years to clear these backlogs without additional visas, highlighting the
challenges in reforming the system to accommodate both current and new applicants.
S2W: The CAP analysis highlights that establishing and promoting legal pathways for immigration can
significantly reduce irregular migration by encouraging prospective migrants to enter the United States
through official channels. Legal pathways include options such as family reunification, employment-
based visas, and humanitarian programs, which provide structured and lawful means for immigrants to
reside in the country. By expanding and streamlining these processes, the U.S. can effectively manage
immigration and counter the misconception that immigrants are predominantly entering the country
illegally.

Critique Model S1N: relevant, S1W: relevant, S2N: relevant, S2W: relevant

Counter Narrative
(CN)

The notion that immigrants are "overrunning" the country is not supported by data, as unauthorized
immigrants make up only 28% of the foreign-born population, and states like California, Illinois,
and New York have seen declines in their unauthorized populations (Pew report). Immigrants, both
documented and undocumented, contribute significantly to the U.S. economy, paying $458.7 billion in
taxes in 2018 alone, and their presence is projected to increase Americans’ income by $791 billion if
given a pathway to citizenship (PDF Immigration Facts). Furthermore, the U.S. net immigration rates
show only a modest increase, with 9.27 million net immigrants projected from 2022 to 2024, which
is comparable to previous decades (Visual Capitalist). By expanding legal pathways and reforming
immigration policies, the U.S. can effectively manage immigration and harness the positive economic
impact immigrants bring (CAP Analysis).
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Table 9: Example of Generated CN using different LLMs

HS Allowing gays to donate blood compromises patient safety because they are having unprotected anal
sex all the time.

Gemini This is a harmful and unfounded generalization. The FDA’s new blood donation guidelines focus on
individual risk assessment, not blanket bans based on sexual orientation. Countries like Britain and
Italy have successfully implemented individual risk assessment for all donors, demonstrating that
allowing gay individuals to donate blood does not compromise safety. It’s important to remember that
sexual behavior is diverse and not limited to any one group, and making assumptions about individuals
based on stereotypes is harmful and inaccurate.

Claude This harmful stereotype is not supported by facts. According to recent FDA guidelines, all blood donors
are now assessed based on individual risk factors rather than sexual orientation, ensuring blood safety
while reducing discrimination. Studies show that only a small percentage of men identify as gay or
bisexual, countering misconceptions about the prevalence of unsafe sexual practices. Furthermore,
countries like Italy and Britain that allow gay men to donate blood using individual risk assessments
have maintained blood safety, demonstrating that inclusive policies do not compromise patient wellbe-
ing.

Mistral The scientific evidence indicates that the risk of HIV transmission through a blood donation is extremely
low, regardless of sexual orientation or practice. Unprotected anal sex and the risk it poses to blood
safety are not inherently connected for individuals who do not engage in such behaviors. It is important
to uphold factual accuracy while addressing this issue to avoid contributing to harmful stereotypes.

GPT-3.5 This statement perpetuates harmful stereotypes about gay individuals and ignores the fact that blood
donation policies are based on evidence-based risk assessments, not blanket assumptions. Implementing
individual risk assessments for all donors, regardless of sexual orientation, is crucial in maintaining
blood safety while promoting inclusivity.

GPT-4o The notion that allowing gay individuals to donate blood compromises safety is unfounded, as countries
like Britain and Italy have successfully implemented individual risk assessments for all donors, ensuring
safety without discrimination (source: The Economist). The FDA’s 2023 policy update in the U.S. also
reflects this approach, focusing on individual risk rather than blanket deferrals, which aligns with
advancements in HIV testing and reduces discrimination (source: JAMA Health Forum). Furthermore,
the stereotype that gay men engage in unprotected sex "all the time" is misleading and harmful, as
data shows a decrease in new HIV infections among gay and bisexual men from 2015 to 2019 (source:
CDC). Evidence suggests that lifting bans on gay blood donations could increase the blood supply
significantly, potentially saving over a million lives annually, without compromising safety (source:
The Williams Institute).
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