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Abstract
Anomaly detection (AD) is an important ma-001
chine learning task with many real-world uses,002
including fraud detection, medical diagnosis,003
and industrial monitoring. Within natural lan-004
guage processing (NLP), AD helps detect is-005
sues like spam, misinformation, and unusual006
user activity. Although large language models007
(LLMs) have had a strong impact on tasks such008
as text generation and summarization, their009
potential in AD has not been studied enough.010
This paper introduces AD-LLM, the first bench-011
mark that evaluates how LLMs can help with012
NLP anomaly detection. We examine three key013
tasks: (i) zero-shot detection, using LLMs’ pre-014
trained knowledge to perform AD without task-015
specific training; (ii) data augmentation, gener-016
ating synthetic data and category descriptions017
to improve AD models; and (iii) model selec-018
tion, using LLMs to suggest unsupervised AD019
models. Through experiments with different020
datasets, we find that LLMs can work well in021
zero-shot AD, that carefully designed augmen-022
tation methods are useful, and that explaining023
model selection for specific datasets remains024
challenging. Based on these results, we outline025
six future research directions on LLMs for AD.026

1 Introduction027

Anomaly detection (AD) is an important topic in028

machine learning (ML) that identifies samples dif-029

fering from the general distribution (Zhao et al.,030

2019; Liu et al., 2024b). This ability is critical031

for many practical applications, such as fraud de-032

tection (Abdallah et al., 2016), medical diagnosis033

(Fernando et al., 2021), software engineering (Sun034

et al., 2022), and industrial system monitoring (Sun035

et al., 2023). Within natural language processing036

(NLP), AD is also important for finding unusual037

text instances, which is needed for detecting spam038

(Rao et al., 2021), misinformation (Islam et al.,039

2020), or unusual user behavior (Xue et al., 2023).040

In the current era of large language models041

(LLMs), we ask how AD can make use of their042

capabilities and what the current level of integra- 043

tion looks like. While LLMs have brought large 044

improvements to areas such as text generation, sum- 045

marization, and translation, their possible benefits 046

for AD, especially in NLP, have received some at- 047

tention (Li et al., 2024a; Xu and Ding, 2024) but 048

have not been studied in detail. 049

This work presents the first comprehensive 050

benchmark, called AD-LLM, to study the roles 051

and potential of LLMs in NLP anomaly detection. 052

Our analysis focuses on three key tasks that are 053

central in AD research and in practice (Figure 1): 054

• (i) LLM for Anomaly Detection (§3): Many 055

AD tasks lack enough labeled data, making it 056

hard to train models from scratch (Han et al., 057

2022). LLMs, with their pre-trained knowledge, 058

can perform zero-shot AD (Xu and Ding, 2024). 059

• (ii) LLM for Data Augmentation (§4): AD 060

tasks often suffer from unbalanced or limited 061

data (Yoo et al., 2024; Li et al., 2023). For ex- 062

ample, only a few insurance fraud samples may 063

be available (Bauder and Khoshgoftaar, 2018). 064

Generative LLMs may produce synthetic data to 065

strengthen AD cost-effectively. 066

• (iii) LLM for Model Selection (§5): Picking a 067

good AD model usually needs many trials and 068

domain insights (Jiang et al., 2024a), and current 069

choices in practice are often random (Zhao et al., 070

2021). LLMs, with the prior knowledge and 071

ability to reason, may be able to suggest suitable 072

AD models and save human effort. 073

Collectively, these three tasks tackle fundamen- 074

tal AD challenges from multiple angles: rapidly de- 075

tecting anomalies with minimal supervision, enrich- 076

ing limited datasets for more robust learning, and 077

guiding model selection without extensive domain 078

expertise. As a result, AD-LLM not only improves 079

individual AD components but also demonstrates 080

how LLMs can streamline the entire process—from 081

raw data to reliable, actionable insights. 082
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Figure 1: AD-LLM examines how LLMs contribute to three key AD tasks: (Task 1, §3) Zero-shot detection (left),
where LLMs directly identify anomalies and provide explanations without task-specific training data; (Task 2, §4)
Data augmentation (center), where LLMs generate synthetic samples and produce category descriptions to alleviate
data scarcity and improve semantic reasoning; and (Task 3, §5) Model selection (right), where LLMs analyze
dataset attributes and model descriptions to recommend suitable AD models along with justifications.

Key Takeaways. Our results reveal several note-083

worthy insights: (i) LLMs can achieve superior084

zero-shot AD performance, often outpacing con-085

ventional methods without relying on task-specific086

data; (ii) Enriching LLM inputs with additional087

context—such as anomaly category names or de-088

scriptive prompts—further boosts detection qual-089

ity; (iii) Employing LLM-driven data augmenta-090

tion enhances AD performance, though the effec-091

tiveness varies with model complexity and dataset092

properties; (iv) LLM-based model selection can093

approach top-performing baselines, but improving094

interpretability and providing dataset-specific ra-095

tionales remains an open area. These suggest fu-096

ture work that systematically integrates external097

knowledge, refines prompt engineering, and devel-098

ops strategies to ensure more transparent, context-099

sensitive LLM recommendations in AD tasks.100

Contributions. This paper makes the following101

key contributions:102

• The First Comprehensive LLM-based AD103

benchmark. We introduce AD-LLM, a unified104

evaluation framework that examines how LLMs105

address three core AD tasks—detection, data aug-106

mentation, and model selection.107

• Systematic and In-depth Experimental Analy-108

sis. Through extensive experiments across multi-109

ple datasets, we show that LLMs can achieve110

strong zero-shot AD performance, boost AD111

methods by generating synthetic data or descrip-112

tive prompts, and recommend effective AD mod-113

els w/o relying on historical performance data.114

• Reproducibility and Accessibility. We release115

AD-LLM under the MIT License at https://116

anonymous.4open.science/r/AD-LLM-F088,117

providing a platform for the community to 118

explore advanced applications of LLMs in AD. 119

2 Preliminaries on AD-LLM 120

2.1 Related Work 121

Recent studies have explored the role of LLMs 122

in AD, highlighting both opportunities and chal- 123

lenges. (Xu and Ding, 2024) proposes a taxonomy 124

categorizing LLMs as either detection or genera- 125

tive tools, but their work lacks experimental bench- 126

marks. Similarly, (Jiang et al., 2024b) presents 127

MMAD, a benchmark designed for industrial AD, 128

focusing on image datasets yet limiting its appli- 129

cability to other modalities. (Liu et al., 2024a) 130

evaluates LLMs like Llama for out-of-distribution 131

(OOD) detection, demonstrating the effectiveness 132

of cosine distance detectors with isotropic embed- 133

dings. However, their work primarily focuses on 134

traditional metrics and lacks insights into advanced 135

LLM capabilities such as data augmentation and 136

zero-shot detection. 137

Our work, AD-LLM, bridges these gaps by intro- 138

ducing a comprehensive benchmark for evaluating 139

LLMs in anomaly detection across diverse tasks. 140

This makes AD-LLM a significant step toward ad- 141

vancing LLM-driven anomaly detection. 142

2.2 Datasets and Traditional Baselines 143

Our experiments encompass five NLP AD datasets 144

sourced from (Li et al., 2024c), derived from clas- 145

sification datasets. Each dataset contains text sam- 146

ples from multiple categories, with one designated 147

as the anomaly category. The training data includes 148

only normal samples. See the detailed information 149

on datasets in Appx. A.1 150
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We compare LLM-based AD with 18 traditional151

training-based unsupervised methods evaluated in152

(Li et al., 2024c) and leverage LLMs to enhance153

them. These baselines can be categorized into two154

groups: (1) End-to-end algorithms that directly pro-155

cess raw text data to produce AD results and (2)156

Two-step methods that first create text embeddings157

using language models and then apply traditional158

AD techniques to those embeddings. See a com-159

plete list of methods in Appx. A.2.160

2.3 Common Experimental Settings161

Evaluation Metrics. We evaluate the AD perfor-162

mance using two commonly used metrics (Han163

et al., 2022): (1) the Area Under the Receiver Op-164

erating Characteristic Curve (i.e., AUROC) and (2)165

the Area Under the Precision-Recall Curve (i.e.,166

AUPRC). Both are the higher, the better.167

LLMs and Hardware. We select two LLMs as168

main backbones: (1) Llama 3.1 8B Instruct (Dubey169

et al., 2024) and (2) GPT-4o (OpenAI, 2024a). For170

brevity, we refer to the “Llama 3.1 8B Instruct”171

as “Llama 3.1”. Llama 3.1 runs on NVIDIA RTX172

6000 Ada, 48 GB RAM workstations. GPT-4o173

is accessed through Azure OpenAI API with the174

“2024-08-01-preview” version and OpenAI official175

API. Seed is set = 42 for reproducibility. Specific176

experimental settings will be highlighted separately177

in each subsequent task.178

3 Task 1: LLM for Zero-shot Detection179

3.1 Motivation180

Classical AD methods often require extensive train-181

ing data—either labeled for supervised methods or182

unlabeled for unsupervised ones—which is time-183

consuming and costly (Han et al., 2022). In addi-184

tion, setting up and tuning these models for real-185

world scenarios can be challenging and slow.186

LLMs offer a practical alternative (Xu and Ding,187

2024). With their broad pre-trained knowledge,188

they can perform zero-shot detection without addi-189

tional training data. Their ability to understand lan-190

guage context and semantics makes them suitable191

for recognizing anomalies by logical reasoning.192

They can also explain their predictions, improving193

interpretability and trustworthiness (Huang et al.,194

2024b), which is important in sensitive domains195

such as healthcare, finance, and cybersecurity.196

3.2 Problem Statement and Designs197

Problem 1 (Zero-shot AD via LLMs) Given a198

test set Dtest = {x1, x2, . . . , xn} of text samples,199

where each sample xi belongs to either a normal 200

category or an anomaly category, the objective 201

is to identify the anomalous samples using a 202

pre-trained LLM fLLM in a zero-shot setting 203

without any task-specific training data. 204

Evaluation Protocol. We focus on the ability of 205

LLMs to detect anomalies without additional train- 206

ing data. We consider two settings, each reflecting 207

different levels of prior knowledge: 208

• Normal Only: We provide only the normal cat- 209

egory name(s) Cnormal. This matches scenarios 210

where normal behavior is known but anomalies 211

are uncertain or emerging. 212

• Normal + Anomaly: We provide both nor- 213

mal and anomaly category names, Cnormal and 214

Canomaly. This setting reflects situations where 215

some information on anomalies is available, help- 216

ing the LLM reason about what is anomalous. 217

The detection process is defined as: 218

P = T (xi, Cnormal, C∗
anomaly)

(r, s) = fLLM(P)
(1) 219

Here, T (·) constructs the prompt P for a test sam- 220

ple xi, including known category information. The 221

anomaly category Canomaly is included only in the 222

“Normal + Anomaly” setting, denoted as C∗
anomaly. 223

The LLM fLLM processes the prompt to produce 224

an anomaly score s and an explanation r that de- 225

scribes the reasoning. This setup allows a system- 226

atic evaluation of LLMs in zero-shot AD, using 227

prompt-based inference to handle different levels 228

of prior knowledge. See details in Appx. B. 229

3.3 Results, Insights, and Future Directions 230

We select Llama 3.1 and GPT-4o as zero-shot de- 231

tectors with temperature = 0 for stable outputs. 232

LLMs are effective in zero-shot AD, surpassing 233

existing training-based AD algorithms. We com- 234

pare Llama 3.1-based and GPT-4o-based zero-shot 235

detectors with baseline methods across five datasets 236

in Table 1. GPT-4o consistently outperforms all 237

baselines, and Llama 3.1 often ranks near the top. 238

Despite operating with limited prior information, 239

LLMs exhibit significant potential for anomaly de- 240

tection tasks. These results highlight the strength 241

of LLMs in zero-shot AD scenarios. 242

Additional context helps. Table 1 shows improved 243

AUROC and AUPRC when using both normal and 244

anomaly categories (“Normal + Anomaly”) com- 245

pared to using only normal categories (“Normal 246

Only”). By providing more contextual informa- 247

tion, LLMs better distinguish anomalous samples, 248
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Table 1: Performance comparison of LLM-based detectors and baseline methods across five datasets, evaluated
under two settings as described in §3.2 with AUROC and AUPRC as the metrics (higher (↑), the better). We list the
best and the second-best baseline methods in each dataset. Complete results are provided in Appx. A2. The best
results are highlighted in bold, and the second-best results are underlined. GPT-4o achieves the best performance
consistently across all datasets, while Llama 3.1 also shows competitive performance, highlighting the effectiveness
of LLM-based zero-shot anomaly detection.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct
(1) with Cnormal 0.8226 0.4036 0.7910 0.3602 0.7373 0.3474 0.6267 0.1130 0.7558 0.2884
(2) with Cnormal, Canomaly 0.8754 0.3998 0.8612 0.3960 0.8625 0.4606 0.8784 0.3802 0.9487 0.6361

GPT-4o
(1) with Cnormal 0.9332 0.7207 0.9574 0.8432 0.9349 0.7823 0.7674 0.3252 0.7940 0.5568
(2) with Cnormal, Canomaly 0.9293 0.6310 0.9919 0.9088 0.9668 0.8465 0.9902 0.9009 0.9862 0.8953

Best Baselines
OpenAI + LUNAR OpenAI + LUNAR OpenAI + ECOD OpenAI + LUNAR DATE
0.9226 0.6918 0.9732 0.8653 0.7366 0.5165 0.8320 0.4425 0.9398 0.6112

Second-best Baseline
OpenAI + LOF OpenAI + LOF OpenAI + DeepSVDD OpenAI + LOF OpenAI + LOF

0.8905 0.5443 0.9558 0.7714 0.6563 0.3278 0.7806 0.2248 0.7862 0.2450
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Figure 2: LLM-based AD precision-recall comparison
between two settings across five datasets. “Normal Only”
and “Normal + Anomaly” are two settings discussed
in §3.2. The anomaly score threshold = 0.5 is used
to decide the anomaly. Setting “Normal + Anomaly”
outperforms setting “Normal Only” in most cases. In the
“AG News” and “BBC News” datasets, there is a trade-
off between precision and recall across two settings.

increasing detection effectiveness. These results249

suggest that augmenting LLMs with richer infor-250

mation enhances their ability to detect anomalies.251

Trade-offs in detection focus. Figure 2 presents252

precision-recall comparisons for the two settings.253

Including anomaly information generally improves254

recall and sometimes precision. However, for “AG255

News” and “BBC News,” we observe a recall gain256

at the cost of precision. This indicates that adding257

anomaly details may shift the LLM’s detection bal-258

ance, emphasizing one metric over another. Thus,259

one must carefully select the information provided 260

to LLMs, as it significantly impacts their detection 261

priorities and the balance among metrics. 262

Future Direction 1: Improve Context Integration. 263

Providing additional context improves detection, 264

as seen in “Normal + Anomaly.” Future work may 265

involve more systematic ways to integrate domain- 266

specific details based on the detection priority (e.g., 267

precision vs. recall), such as prompt design or 268

retrieval-augmented methods (Gao et al., 2023). 269

Future Direction 2: Optimize for Real-world De- 270

ployment. Despite their effectiveness, LLM-based 271

zero-shot AD is inherently time-consuming and 272

costly (Sinha et al., 2024). Reducing computa- 273

tional overhead is important for deploying LLMs in 274

real settings, especially for AD applications, which 275

are often time-critical. Methods like quantization 276

(Dettmers et al., 2023; Xiao et al., 2023), pruning 277

(Sun et al., 2024; Fu et al., 2024), and knowledge 278

distillation (Wang et al., 2024b; Fu et al., 2023) 279

can help reduce the model size and inference time 280

while maintaining good performance. 281

4 Task 2: LLM for Data Augmentation 282

4.1 Motivation 283

Data augmentation (DA) in AD aims to produce ad- 284

ditional samples to improve model training under 285

data scarcity (Yoo et al., 2023). However, tradi- 286

tional methods often struggle to capture the com- 287

plexity of natural language, potentially causing a 288

shift in domain characteristics (Feng et al., 2021). 289

LLMs offer a solution, using their broad pre-trained 290

knowledge and autoregressive learning objectives 291

to generate contextually relevant data with better 292

semantic understanding (Xu and Ding, 2024). 293
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In addition, LLMs can generate textual descrip-294

tions (Xu and Ding, 2024) that assist the LLM-295

based detectors in §3. For example, by producing296

descriptions of known categories, LLMs help de-297

tectors establish distant associations between nor-298

mal and anomalous samples (Menon and Vondrick,299

2022; Zhu et al., 2024).300

Thus, We examine two approaches that address301

data scarcity and improve semantic reasoning:302

1. (§4.2) generates synthetic samples to improve303

training-based AD models.304

2. (§4.3) produces category descriptions to refine305

prompts and enhance LLM-based detectors.306

4.2 Generating Synthetic Samples for307

Training-based AD Models308

Problem 2 (Synthetic DA via LLMs) Given a309

small training set Dsmall_train = {x1, x2, . . . , xm}310

of normal samples, the goal is to produce a311

synthetic dataset Dsynth = {x̃1, x̃2, . . . , x̃n}312

using a pre-trained LLM fLLM. The combined313

dataset DDA = Dsmall_train ∪ Dsynth is used to314

train an unsupervised AD method M , improving315

performance compared to using Dsmall_train alone.316

Evaluation Protocol. To evaluate the impact of317

LLM-generated synthetic data, we set unsupervised318

AD baselines listed in §A.2 in a scenario with lim-319

ited training data. LLMs are then utilized to gen-320

erate a synthetic training dataset. However, direct321

prompting often leads to highly repetitive outputs,322

even with high decoding temperatures (Long et al.,323

2024). Additionally, LLMs face constraints such324

as token limits (e.g., GPT-4’s maximum output of325

4,096 tokens) and challenges in processing long326

contexts (Gao et al., 2024). To address these issues,327

we adopt a multi-step strategy:328

• Step1: Keyword Generation: Generate groups of329

keywords in one inquiry. Each group consists of330

three keywords w/ different levels of granularity:331

broad/general, intermediate, and fine-grained.332

• Step2: Sample Generation: For each keyword333

group, generate one synthetic sample x̃i.334

By separating keyword generation from sample335

creation and enforcing different granularity lev-336

els, this approach introduces controlled variability337

and thematic breadth without causing the model338

to produce overly lengthy or repetitive data. The339

resulting synthetic samples are more likely to be340

contextually rich and semantically diverse. Further341

details are provided in Appx. C.1342

0.0

0.2

0.4

0.6

0.8

1.0

.65

.86

.65

.79

.23

.86
.91

.70
.80

.34

.20

.47

.23 .25

.06

.44

.62

.27 .28

.07

OpenAI + LUNAR - AUROC and AUPRC

AG News BBC News IMDB Reviews N24News SMS Spam0.0

0.2

0.4

0.6

0.8

1.0

.64
.71 .68 .72 .76

.47

.66 .68
.74

.93

.17
.26 .25 .21 .24

.12
.21 .24 .24

.47

OpenAI + LOF - AUROC and AUPRC

w/o Synthetic Data - AUROC
w/ Synthetic Data - AUROC

w/o Synthetic Data - AUPRC
w/ Synthetic Data - AUPRC

Figure 3: Performance comparison of AD baselines
trained with and without LLM-generated synthetic data
across five datasets. The use of LLM-generated syn-
thetic data consistently enhances AD performance, with
improvements varying by algorithm.

Results, Insights, and Future Directions. We ap- 343

ply the augmentation strategy to improve two unsu- 344

pervised AD methods identified as strong baselines 345

from Task 1 results: “OpenAI + LUNAR” (Goodge 346

et al., 2022) and “OpenAI + LOF” (Breunig et al., 347

2000). We use GPT-4o with a temperature of 1.0 to 348

introduce sufficient variability in synthetic samples. 349

LLM-generated synthetic data consistently im- 350

proves AD performance. As shown in Figure 3, 351

LLM-generated synthetic data provides overall per- 352

formance improvements across anomaly detection 353

methods. Notably, “OpenAI + LUNAR” demon- 354

strates consistent gains across all five datasets, em- 355

phasizing the robustness of this approach. Signif- 356

icant improvements are observed in datasets like 357

“SMS Spam” and “N24 News,” where limited orig- 358

inal training data posed significant challenges for 359

traditional approaches. These results suggest that 360

LLM-generated data is particularly effective in ad- 361

dressing data scarcity, complementing models like 362

“LUNAR” that benefit from robust feature represen- 363

tations and semantic reasoning. 364

Improvement depends on model complexity and 365

data characteristics. While “OpenAI + LUNAR” 366

sees steady improvements, “OpenAI + LOF”—a 367

simpler density-based model—exhibits variable 368

outcomes. In data-scarce scenarios such as “SMS 369

Spam” and “N24 News,” synthetic data assists LOF. 370

However, for datasets like “AG News” and “BBC 371

News,” performance declines, possibly due to the 372

5



Table 2: Performance (and △ changes) of LLM-based detectors with augmented descriptions under two settings
in §3.2. The description generators and LLM-based detectors adopt the same LLM backbone. Values in brackets
indicate changes compared to the results in Table 1. green denotes for improvements and red for declines. Changes
below 0.03 are not colored, reflecting minor fluctuations. Augmented descriptions improve performance in most
cases, particularly in AUROC, showcasing their effectiveness in enhancing LLM-based AD.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct

(1) with Cnormal
0.8081 0.3588 0.7802 0.3006 0.9039 0.6272 0.6651 0.1383 0.7456 0.2225

(-0.0145) (-0.0448) (-0.0108) (-0.0596) (+0.1666) (+0.2798) (+0.0384) (+0.0253) (-0.0102) (-0.0659)

(2) with Cnormal, Canomaly
0.9046 0.5097 0.9089 0.6531 0.9351 0.6369 0.7900 0.2396 0.9413 0.7018

(+0.0292) (+0.1099) (+0.0477) (+0.2571) (+0.0726) (+0.1763) (-0.0884) (-0.1406) (-0.0074) (+0.0657)

GPT-4o

(1) with Cnormal
0.9255 0.6985 0.9611 0.8162 0.9572 0.8307 0.8792 0.5399 0.8365 0.4765

(-0.0077) (-0.0222) (+0.0037) (-0.0270) (+0.0223) (+0.0484) (+0.1118) (+0.2147) (+0.0425) (-0.0803)

(2) with Cnormal, Canomaly
0.9331 0.6659 0.9849 0.8998 0.9855 0.9219 0.9895 0.8680 0.9800 0.8889

(+0.0038) (+0.0349) (-0.0070) (-0.0090) (+0.0187) (+0.0754) (-0.0007) (-0.0329) (-0.0062) (-0.0064)

synthetic samples shifting the underlying data dis-373

tribution in ways that do not align with LOF’s den-374

sity assumptions. These results suggest that the375

effectiveness of LLM-based augmentation can de-376

pend on both the algorithm’s complexity and the377

dataset’s intrinsic structure.378

Future Direction 3: Balance Diversity and Align-379

ment in Synthetic Data. Future work should in-380

vestigate techniques to balance the diversity of syn-381

thetic samples with their semantic alignment to382

real-world distributions. Excessive diversity risks383

producing samples that deviate too far from the384

target domain, while insufficient diversity may fail385

to address data scarcity and limit generalization386

(Guo and Chen, 2024). Potential strategies in-387

clude adjusting the prompt engineering process, us-388

ing retrieval-augmented LLMs, embedding-based389

filters to steer generation (O’Neill et al., 2023),390

and incorporating human-in-the-loop interventions391

(Chung et al., 2023) to refine synthetic data quality392

and improve downstream AD performance.393

4.3 Generating Category Descriptions for394

LLM-based Detectors395

Problem 3 (Description DA via LLMs) Given396

category names Cnormal and, optionally, Canomaly,397

the objective is to generate comprehensive398

textual descriptions dnormal and danomaly using a399

pre-trained LLM fLLM. These descriptions are400

then incorporated into the prompts of LLM-based401

detectors, aiming to improve their performance402

compared to using category names alone.403

Evaluation Protocol. Extending the zero-shot de-404

tection from §3, we employ LLMs to produce cate-405

gory descriptions that offer richer semantic signals406

beyond simple category names. Specifically, for407

each normal and anomaly category, we generate 408

dnormal and danomaly based on the category names 409

and the dataset’s context. These descriptions can 410

highlight distinctive features, typical lexical pat- 411

terns, or behavioral characteristics that define nor- 412

mal or anomalous classes. By incorporating these 413

descriptions into the prompt, we update Eq. (1) as: 414

P = T
(
xi,(Cnormal, dnormal ),

(Canomaly, danomaly )∗
) (2) 415

where (Canomaly, danomaly)
∗ applies only in the “Nor- 416

mal + Anomaly” setting (see §3.2). By enriching 417

category names with category descriptions (high- 418

lighted with blue boxes), we enhance the LLM’s 419

ability to reason about subtle category distinctions 420

and domain-relevant cues. More details are pro- 421

vided in Appx. C.2. 422

Results, Insights, and Future Directions. We 423

utilize Llama 3.1 and GPT-4o to generate category 424

descriptions. To balance the diversity and precision 425

of the generation, we set the temperature to 0.5. 426

Augmented descriptions improve LLM-based AD. 427

As shown in Table 2, incorporating category 428

descriptions increases AUROC scores in most 429

datasets. This suggests that the added semantic 430

information helps LLM-based detectors discrim- 431

inate anomalous samples more effectively, espe- 432

cially when the dataset’s inherent structure aligns 433

well with the contextual signals embedded in the de- 434

scriptions. For example, in datasets like “IMDB Re- 435

views” and “BBC News,” providing richer textual 436

representations of normal and anomalous classes 437

translates to noticeable gains in both metrics. 438

Trade-offs arise between different metrics. While 439

AUROC improvements are widespread, some 440
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datasets exhibit declines in AUPRC, indicating that441

enhanced semantic cues may not uniformly boost442

all aspects of detection. This trade-off could oc-443

cur if broad, high-level descriptions cause certain444

anomalies to appear more similar to normal sam-445

ples, reducing precision. For instance, in “N24446

News” and “SMS Spam,” the provided descriptions447

might introduce overlapping attributes between cat-448

egories, making it more challenging to maintain449

high precision. These results underscore the im-450

portance of calibrating the level and type of detail451

included in category descriptions to suit the specific452

dataset characteristics.453

Future Direction 4: Select Representative Sam-454

ples. An effective way to refine category descrip-455

tions is to ground them in representative samples456

from the dataset. Sampling strategies based on457

clustering (Axiotis et al., 2024) or diversity maxi-458

mization (Moumoulidou et al., 2020) can identify459

prototype examples that guide LLMs toward pro-460

ducing more tailored and context-aware descrip-461

tions. By referencing these representative sam-462

ples, future approaches may generate descriptions463

that better reflect subtle category distinctions, ul-464

timately improving both ranking quality and the465

balance between precision and recall.466

5 Task 3: LLM for AD Model Selection467

5.1 Motivation468

Unsupervised model selection (UMS) is critical for469

identifying the most suitable AD model by aligning470

its features with the attributes of a given dataset and471

the task’s requirements. Given the diverse range472

of AD models available and the absence of a uni-473

versal solution, effective UMS is essential to en-474

sure optimal performance. Traditional UMS meth-475

ods often rely on historical performance data or476

domain-specific expertise; however, such data may477

be unavailable or irrelevant for novel or evolving478

datasets (Zhao et al., 2021; Zhao, 2024).479

LLMs offer a promising zero-shot alternative by480

utilizing their extensive pre-trained knowledge to481

analyze datasets and recommend suitable models482

without relying on past performance metrics (Qin483

et al., 2024). They can streamline the model se-484

lection process, reducing manual overhead and do-485

main knowledge requirements while also improv-486

ing adaptability to novel data scenarios.487

5.2 Problem Statement and Designs488

Problem 4 (Zero-shot UMS via LLMs) Given a489

dataset D = {x1, x2, . . . , xn} and a set of AD490

AG News

BBC News

                            IMDB Reviews
N24News

SMS Spam
0.2

0.4
0.6

0.8
1

AUROC Comparison

Best Performance LLM Recommendation Baseline Average

AG News

SMS Spam

N24News

0.2
0.4

0.6
0.8

1

AUPRC Comparison

Figure 4: Comparison of AD performance across five
datasets. “LLM Recommendation” denotes the aver-
age of models selected by querying the LLM five times
(duplicates allowed). “Best Performance” indicates the
highest performance among all AD models for each
dataset, while “Baseline Average” shows the mean per-
formance of all baseline AD models (as if choosing it
randomly). Results show that models recommended
by the LLM generally outperform the baseline average
and, in some cases, approach the best-performing model,
showing the potential of LLM-based UMS.

models M = {M1,M2, . . . ,Mm}, the task is to 491

identify a suitable model M∗ ∈ M using a pre- 492

trained LLM fLLM, based solely on provided infor- 493

mation about the dataset and the candidate models. 494

Evaluation Protocol. To enable LLM-based zero- 495

shot UMS, we provide structured, detailed informa- 496

tion of both the dataset and the candidate models: 497

• Dataset Description: dataset name, size, back- 498

ground, normal and anomaly categories, text- 499

length statistics (average, maximum, minimum, 500

and standard deviation), and representative sam- 501

ples of both normal and anomalous data. These 502

attributes help the LLM understand the dataset’s 503

structure, complexity, and potential challenges, 504

and are generally easy to obtain for new datasets. 505

• Model Description: abstracts from published 506

AD papers describing each candidate model. 507

These abstracts highlight key model features, un- 508

derlying assumptions, and targeted use cases. By 509

examining these summaries, the LLM can align 510

dataset attributes with model strengths, improv- 511

ing the relevance of its recommendations. 512

We then construct prompts that combine these 513

datasets and model descriptions, asking the LLM to 514

select and justify a recommended model. Further 515

details about the prompt format and implementa- 516

tion can be found in Appx. D. 517

5.3 Results, Insights, and Future Directions 518

For the UMS scenario, which requires sophisti- 519

cated reasoning, we use GPT-o1-preview (OpenAI, 520

2024c) with enhanced reasoning abilities. 521
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LLM recommendations demonstrate strong poten-522

tial. Figure 4 compares the detection performance523

across five datasets using three references: (i) the524

best achievable result from any model, represent-525

ing the performance upper bound; (ii) the average526

performance of all baseline models, simulating a527

scenario where a user selects models at random;528

and (iii) the results from the LLM-recommended529

models (ours). The LLM-recommended models530

surpass the baseline average in most cases, and531

sometimes approach the best-performing model532

(e.g., on “IMDB Reviews” and “SMS Spam”). This533

indicates that LLMs can identify promising AD534

models using only public information, w/o reliance535

on historical performance or domain specialists.536

LLM justifications lack dataset-specific insights.537

Although the LLM selects models that perform rel-538

atively well, its explanations often remain generic539

and do not clearly link model selection to spe-540

cific dataset characteristics. For example, in the541

“AG News” dataset, the LLM alternated between542

recommending “OpenAI + LUNAR” and “Ope-543

nAI + ECOD,” justifying choices with broad state-544

ments like “effective for high-dimensional data”545

or “parameter-free scalability.” Such non-specific546

rationales diminish interpretability and user trust,547

especially when understanding the rationale behind548

model choice is important.549

Future Direction 5: Refine Input Specificity and550

Addressing Biases. Future work should explore551

how to provide more dataset-specific details and552

mitigate potential LLM biases. Ambiguous or in-553

complete input information may cause the LLM to554

favor well-known models or those frequently en-555

countered during training. Ensuring detailed and556

balanced inputs, and exploring how inherent biases557

in LLMs affect recommendations, will be impor-558

tant steps to improve the fairness and reliability of559

LLM-based UMS (Dai et al., 2024).560

Future Direction 6: Enhancing Interpretability.561

Improving LLMs’ capacity to produce transparent,562

dataset-tailored justifications for model selection563

decisions is key (Huang et al., 2024a). Techniques564

such as fine-tuning with richly annotated explana-565

tions or using prompt engineering to explicitly re-566

quest structured reasoning can encourage the LLM567

to articulate clear, context-sensitive arguments.568

6 Conclusion and Future Directions569

In this work, we presented AD-LLM, the first com-570

prehensive benchmark that integrates LLMs into571

three core aspects of anomaly detection in NLP:572

detection, data augmentation, and model selec- 573

tion. Our results show that LLMs hold strong po- 574

tential across these tasks. For detection, LLMs 575

demonstrate effective zero-shot and few-shot ca- 576

pabilities, often performing competitively against 577

traditional methods without task-specific training. 578

For data augmentation, both synthetic data genera- 579

tion and category description augmentation lead to 580

improved performance for unsupervised and LLM- 581

based AD methods. For model selection, LLMs can 582

recommend suitable AD models using only gen- 583

eral dataset and model descriptions. These findings 584

highlight the emerging role of LLMs in making 585

AD more flexible, data-efficient, and adaptable. 586

Future Directions. Investigating methods to sys- 587

tematically integrate external context into prompts 588

can reduce variability and enhance precision. Tech- 589

niques like quantization or hardware optimiza- 590

tions can lower the computational burden for real- 591

world applications. Specialized augmentation ap- 592

proaches, designed to optimize user-prioritized 593

metrics, may further improve AD performance. Fi- 594

nally, improving the specificity and clarity of LLM 595

justifications can enhance interpretability and user 596

trust, and expanding the AD-LLM benchmark to in- 597

clude additional tasks and applications in different 598

fields (Huang et al., 2024b; Li et al., 2024b). 599

Broader Impact Statement 600

AD-LLM explores the application of LLMs in 601

enhancing AD through zero-shot detection, data 602

augmentation, and model selection. These con- 603

tributions have the potential to significantly im- 604

prove real-world AD systems in critical areas such 605

as healthcare, finance, and cybersecurity. By en- 606

abling robust, adaptable, and efficient solutions for 607

AD tasks, this research empowers practitioners to 608

deploy systems that are responsive to novel chal- 609

lenges while reducing reliance on labeled data and 610

extensive domain expertise. 611

Ethics Statement 612

This study adheres to ethical guidelines, emphasiz- 613

ing considerations around fairness, transparency, 614

and privacy in developing and applying LLM-based 615

AD systems. We emphasize the importance of eval- 616

uating and mitigating biases in LLM recommen- 617

dations, ensuring that outputs are equitable and 618

unbiased. Moreover, privacy is preserved by re- 619

lying on public data and avoiding the collection 620

of sensitive information. Also, note that we used 621

ChatGPT exclusively to improve minor grammar 622

in the final manuscript text. 623
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Limitations624

Despite promising results, several limitations re-625

main. First, our evaluation is constrained to a626

narrow set of datasets with clear normal-anomaly627

distinctions, and our settings in AD and category628

descriptions in DA follow the structure of these629

datasets, limiting applicability to various domains630

with ambiguous anomaly definitions. Second, the631

synthetic data generation in DA is limited in scale,632

producing few samples per category, and chal-633

lenges in scaling up remain unresolved. Third,634

UMS depends on simplistic input data and match-635

ing mechanisms. Furthermore, biases in LLM rec-636

ommendations, such as favoring well-documented637

or familiar models, need further investigation. Fi-638

nally, our study evaluates only a subset of popular639

LLMs, lacking a comprehensive assessment. Ad-640

ditionally, we do not explore few-shot learning or641

fine-tuning, which are widely adopted techniques642

for enhancing LLM performance and could offer643

valuable complementary insights for AD tasks.644
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Supplementary Material for AD-LLM982

A Additional Details for Preliminaries983

A.1 Datasets Details984

As briefly discussed in §2.2, we select five NLD985

AD datasets with high quality and a proper size986

sourced from (Li et al., 2024c): AG News, BBC987

News, IMDB Reviews, N24News, SMS Spam.988

These datasets are originally intended for NLP989

classification tasks and contain text samples cat-990

egorized into multiple groups, with one designated991

anomalous. The training data comprises only nor-992

mal samples. Table A.1 provides a summary of993

dataset attributes, and Table A1 presents the statis-994

tics of datasets that will be utilized in our tasks.995

Dataset Avg. Max. Min. Std.

AG News 190.1 959 35 61.7

BBC News 2,293.5 25,367 685 1,506.4

IMDB Reviews 1,289.2 12,498 65 980.5

N24 News 4,633.3 28,616 4 3,069.5

SMS Spam 78.7 790 4 60.8

Table A1: Statistics of datasets including average, maxi-
mum, minimum, standard deviation of text length.

A.2 Traditional Baselines Details996

This study utilizes 18 traditional methods as base-997

lines. We compare the performance of LLM-based998

anomaly detection methods with these baselines in999

§3 and further enhance the baselines with LLM-1000

generated synthetic data, demonstrating the effec-1001

tiveness of augmentation in §4.2.1002

These methods are categorized into two groups:1003

• End-to-end Methods. These methods directly1004

process raw text data to generate AD results:1005

– CVDD: Context Vector Data Description (Ruff1006

et al., 2019). CVDD uses embeddings and self-1007

attention to learn context vectors, detecting1008

anomalies via deviations.1009

– DATE: Detecting Anomalies in Text via Self-1010

Supervision of Transformers (Manolache et al.,1011

2021). DATE trains self-supervised transform-1012

ers to identify anomalies in text.1013

• Two-Step Methods. These approaches first gen-1014

erate text embeddings using BERT (Kenton and1015

Toutanova, 2019) or OpenAI’s text-embedding-3-1016

large (OpenAI, 2024b) and then apply traditional1017

AD techniques to the embeddings.1018

– AE: AutoEncoder (Aggarwal, 2015). AE uses1019

high reconstruction errors to detect anomalies.1020

– DeepSVDD: Deep Support Vector Data De- 1021

scription (Ruff et al., 2018). DeepSVDD iden- 1022

tifies anomalies outside a hypersphere that en- 1023

closes normal data representations. 1024

– ECOD: Empirical-Cumulative-distribution- 1025

based Outlier Detection (Li et al., 2022). 1026

ECOD flags point in distribution tails using 1027

empirical cumulative distributions. 1028

– IForest: Isolation Forest (Liu et al., 2008). 1029

IForest isolates anomalies with fewer splits in 1030

random feature-based partitions. 1031

– LOF: Local Outlier Factor (Breunig et al., 1032

2000). LOF detects anomalies by comparing 1033

the local density of a point to its neighbors. 1034

– SO_GAAL: Single-Objective Generative Ad- 1035

versarial Active Learning (Liu et al., 2019). 1036

SO_GAAL generates adversarial samples to 1037

uncover anomalies in unsupervised settings. 1038

– LUNAR: Unifying Local Outlier Detection 1039

Methods via Graph Neural Networks (Goodge 1040

et al., 2022). LUNAR unifies and improves lo- 1041

cal outlier detection via graph neural networks. 1042

– VAE: Variational AutoEncoder (Kingma and 1043

Welling, 2014). VAE uses reconstruction prob- 1044

abilities to detect anomalies. 1045

B Additional Details for Task 1 1046

B.1 Prompt Details 1047

Prompt design is crucial for zero-shot LLM-based 1048

detection, as the performance heavily relies on its 1049

instructiveness and clarity. As discussed in §3.2 1050

about LLM-based zero-shot AD, we evaluate two 1051

settings based on varying levels of prior knowledge 1052

in the real world: “Normal Only” and “Normal + 1053

Anomaly.” The LLM prompt template for setting 1054

“Normal Only” is provided in Table A9, and the 1055

prompt template for setting “Normal + Anomaly” 1056

is presented in Table A10. The prompt templates 1057

of the two settings are different in the definition of 1058

anomaly, marked in red in Table A10. 1059

We utilize a series of prompt engineering tech- 1060

niques, including: 1061

• Task Information (Cao et al., 2023). It is essential 1062

to provide clear task information. We carefully 1063

define the detection scenario, the anomaly defini- 1064

tion, and the rules to reduce hallucinations. 1065

• Chain-of-Thought (CoT) (Wei et al., 2022). CoT 1066

prompting encourages LLMs to decompose their 1067

reasoning into sequential intermediate steps and 1068

organize information logically. We explicitly pro- 1069

vide a completed chain of thoughts in the prompt. 1070
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Table A2: Detailed information of five datasets used in AD-LLM, including the original task, normal category(ies),
anomaly category, the size of the training set, the size, and the anomaly ratio of the test set.

Dataset Original Task Normal Category(ies) Anomaly Category # Train # Test % Anomaly

AG News AG news topics classification Sports, Business, Sci/Tech World 66,098 32,109 11.77%

BBC News BBC news topics classification Business, Politics, Sport, Tech Entertainment 1,206 579 10.71%

IMDB Reviews binary sentiment classification Positive Negative 17,417 8,952 16.61%
of IMDb movie reviews

N24 News New York Times news Television, Your Money, Food 40,569 19,227 9.51%
classification Automobiles, Science,

Economy, Dance, Travel,
Technology, Sports, Movies,
Music, Real Estate, Books,
Education, Art & Design,
Theater, Media, Style,
Global Business, Well,
Health, Fashion & Style,
Opinion

SMS Spam mobile phone SMS spam Non-spam (Ham) Spam 3,162 1,510 10.20%
messages detection

• Explanation and Implicit CoT . We require an ex-1071

planation r generated before the anomaly score1072

s for each inquiry as shown in Eq. (1). When1073

generating the explanation, LLMs implicitly cre-1074

ate the CoT in the background (Liu et al., 2024c).1075

This approach aligns with the auto-regressive na-1076

ture of decoder-only LLMs, encouraging them to1077

think carefully and logically before determining1078

the anomaly score, thereby enhancing reliability.1079

In our experiments, we discovered that Llama1080

3.1 requires implicit CoT. Presenting the anomaly1081

score s before the explanation r causes the Llama1082

3.1-based detector to crash and consistently outputs1083

s = 0. This issue does not impact GPT-4o-based1084

detectors. We attribute this to GPT-4o’s signifi-1085

cantly larger parameter count (8B), which grants it1086

a stronger resilience to prompt changes.1087

B.2 Complete Baseline Results1088

In addition to the top two baseline results in §3.3,1089

we provide the complete results for all 18 base-1090

line methods in Table A8. We observe that Llama1091

3.1 outperforms most of these baselines, further1092

supporting the efficacy of zero-shot AD via LLMs1093

shown in Table 1. The baseline results presented in1094

this study are derived from (Li et al., 2024c).1095

We present a bar chart in Figure 2 comparing the1096

precision and recall LLM-based AD between two1097

settings across five datasets. The detailed results,1098

including precise numerical values, are provided in1099

Table A3 for reference.1100

B.3 Error Analysis1101

In our experiments, LLMs occasionally encoun-1102

tered errors. Llama 3.1 sometimes entered infinite1103

loops, repeatedly generating the same sentence un- 1104

til reaching the token limit, as illustrated in the AG 1105

News example shown in Text Box B.3, where the 1106

repetitive nonsensical response is highlighted in 1107

italics. However, the underlying causes of such 1108

behavior remain underexplored. For GPT-4o, out- 1109

puts were sometimes restricted by OpenAI’s safety 1110

filters when addressing potentially harmful content, 1111

such as politically sensitive topics. 1112

We exclude these errors from our results but 1113

provide the error counts in both “Normal Only” 1114

and “Normal + Anomaly” settings for reference 1115

in Table A4 for Llama 3.1 and Table A5 for GPT- 1116

4o. Notably, the error counts vary between the two 1117

settings, suggesting that the triggers for errors, such 1118

as Llama’s infinite loop or GPT-4o’s safety filters, 1119

are sensitive to prompt variations. This occurs even 1120

though the prompts in both settings have similar 1121

semantic meanings. 1122

An infinite loop example in Llama 3.1

Text sample: “This week’s TravelWatch column profiles
Anangu Tours, an Aborigine owned tour company in Aus-
tralia’s Red Center.”
Response: {"reason": "The text sample is about a tour
company in Australia, which relates to travel and geogra-
phy, making it most closely align with the Sports category
is not the best fit, but it does not fit into the Business or
Sci/Tech categories, but it does fit into the Sports category
is not the best fit, but it does fit into the category of travel
which is related to Sports, but more closely related to the
category of travel which is not listed, but the closest is
Sports, but it is more closely related to the category of
travel which is not listed, but the closest is Sports, but it
is more closely related to the category of travel which is
not listed, but the closest is Sports, but it is more closely
related to the category of travel which is not listed, but the
closest is Sports...

1123
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Table A3: LLM-based AD precision-recall comparison between two settings across five datasets. The anomaly
score threshold = 0.5 is used to decide the anomaly. The better results for each detector are highlighted in bold.

Settings
AG News BBC News IMDB Reviews N24News SMS Spam

Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑

Llama 3.1 8B Instruct
(1) with Cnormal 0.5364 0.5645 0.5319 0.4098 0.2946 0.7328 0.1130 0.6053 0.1352 0.8961
(2) with Cnormal, Canomaly 0.2719 0.9518 0.3355 0.8226 0.3379 0.9622 0.2930 0.9067 0.1816 1.000

GPT-4o
(1) with Cnormal 0.5673 0.9058 0.8966 0.8387 0.6739 0.8130 0.7077 0.3206 0.4495 0.6364
(2) with Cnormal, Canomaly 0.5527 0.9259 0.9048 0.9194 0.6803 0.9428 0.8828 0.9234 0.5891 0.9870

Dataset “Normal Only” “Normal + Anomaly”

AG News 552 48
BBC News 0 3
IMDB Reviews 21 29
N24 News 299 898
SMS Spam 0 2

Table A4: Error count in Llama 3.1

Dataset “Normal Only” “Normal + Anomaly”

AG News 1 0
BBC News 0 0
IMDB Reviews 1 9
N24 News 0 0
SMS Spam 0 0

Table A5: Error count in GPT-4o

C Additional Details for Task 21124

C.1 Generating Synthetic Samples Details1125

C.1.1 Evaluation Protocol and Prompt Details1126

As discussed in §4.2, we set a scenario with lim-1127

ited training data Dsmall_train = {x1, x2, . . . , xm}.1128

Specifically, Dsmall_train contains v samples for1129

each normal category Cj
normal ∈ Cnormal =1130

{C1
normal, . . . , Ck

normal}, where k is the number of1131

normal categories.1132

We employ a multi-step strategy in this task to1133

mitigate repetitive outputs, token limit constraints,1134

and difficulties in handling long contexts. The de-1135

tailed pipeline is outlined below:1136

1. Keywords Generation. To ensure a consistent1137

synthetic data distribution compared with the1138

original training data, t groups of keywords1139

are generated for each normal category Cj
normal.1140

We construct the prompt Pkeywords using a tem-1141

plate Tkeywords(·) as shown in Table A11. This1142

template utilizes {name} and {original_task}1143

information from Table A.1. The prompt1144

Pkeywords is processed by the LLM fLLM(·)1145

to produce t × k groups of keywords K =1146

{K1,K2, . . . ,Kt×k}. Each keyword group Ki1147

contains three keywords with increasing levels 1148

of granularity from coarse to fine. 1149

2. Synthetic Sample Generation. We iterate the 1150

groups of keywords, constructing Psynth = 1151

{P1
synth,P2

synth, . . . ,P
t×k
synth} using a template 1152

Tsynth(·) as displayed in Table A12. Each 1153

prompt Pj
synth is fed into the LLM fLLM(·) to 1154

generate a corresponding synthetic sample x̂j . 1155

Finally, we obtain a synthetic dataset Dsynth = 1156

{x̃1, x̃2, . . . , x̃t×k}. 1157

The pipeline is formally summarized as follows: 1158

Pkeywords = Tkeywords({name},

{original_task})

K = fLLM(Pkeywords) = {K1, . . . ,Kt×k}
Psynth = {Tsynth(K1), . . . , Tsynth(Kt×k)}
Dsynth = {fLLM(P1

synth), . . . , fLLM(Pt×k
synth)}

(A1) 1159

The prompt templates Tkeywords and Tsynth lever- 1160

age the prompt techniques, including task informa- 1161

tion and CoT, as discussed in §B.1. 1162

C.1.2 Experiments Details and Challenges 1163

We set the number of samples from each normal cat- 1164

egory Cj
normal in the limited training set Dsmall_train 1165

to v = 10. Similarly, the number of synthetic sam- 1166

ples generated for each normal category Cj
normal in 1167

the synthetic set Dsynth is set to t = 50 for the “AG 1168

New”, “BBC News”, “IMDB Reviews”, and “SMS 1169

Spam” datasets. For the “N24 News” dataset, we 1170

set v = 3 and t = 12 to account for its numerous 1171

normal categories. 1172

In our experiments, GPT-4o was used for syn- 1173

thetic data generation. We observed that increasing 1174

t occasionally caused GPT-4o to terminate the key- 1175

word generation process before reaching the token 1176

limit. A similar issue occurred with Llama 3.1, 1177

even for smaller values of t. As a result, Llama 3.1 1178

was excluded from this task. We presume these is- 1179

sues stem from the inherent challenges LLMs face 1180

in processing long contexts. 1181
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Table A6: Comparison of AD performance across five datasets. “LLM Recommendation” denotes the average of
models selected by querying the LLM five times (duplicates allowed). “Best Performance” indicates the highest
performance among all AD models for each dataset, while “Baseline Average” shows the mean performance of all
baseline AD models (as if choosing it randomly).

Training Set
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

LLM Recommendation 0.8908 0.6193 0.6992 0.1573 0.6652 0.2608 0.7706 0.4047 0.5774 0.1548
Baseline Average 0.6924 0.2685 0.7178 0.3574 0.5298 0.2038 0.6004 0.1585 0.5565 0.1277
Best Performance 0.9226 0.6918 0.9732 0.8653 0.7366 0.5165 0.8320 0.4425 0.7862 0.2450

A straightforward solution is generating key-1182

words in multiple rounds with different temper-1183

atures and prompt templates. Further techniques,1184

such as sample-wise decomposition and dataset-1185

wise decomposition (Long et al., 2024), can be1186

explored to optimize the synthetic data generation.1187

C.1.3 Complete Results1188

We present a bar chart in Figure 3 comparing the1189

performance of AD baselines trained with and with-1190

out LLM-generated synthetic data only on “Ope-1191

nAI + LUNAR” and “OpenAI + LOF”. The de-1192

tailed results for all two-step methods using Ope-1193

nAI, including precise numerical values, are pro-1194

vided in Table A7 for reference. These additional1195

experiments on baselines follow the settings used1196

in (Li et al., 2024c), except that the “batch_size”1197

is set = 4 due to the amount of Dsmall_train in AE,1198

VAE, and DeepSVVD.1199

We observe the same trend discussed in §4.2:1200

LLM-generated synthetic data improves AD per-1201

formance in most cases, though the degree of en-1202

hancement varies based on model complexity and1203

data characteristics.1204

C.1.4 Edges over LLM-based Zero-shot AD1205

At first glance, LLM-based zero-shot AD could1206

eliminate the need to generate synthetic datasets for1207

traditional models. However, they address different1208

needs and offer complementary advantages. LLM-1209

based zero-shot detection requires no task-specific1210

training, offering easy deployment, adaptability1211

across scenarios, and real-time inference—ideal1212

for dynamic environments. However, its high com-1213

putational cost can limit scalability for long-term1214

or large-scale use.1215

In contrast, LLM-generated synthetic data en-1216

ables the training of traditional models, signifi-1217

cantly reducing inference costs for long-term or1218

high-frequency detection tasks. Moreover, syn-1219

thetic data can be a valuable resource for fine-1220

tuning LLMs (Xu et al., 2024; Mitra et al., 2023).1221

This dual utility highlights the importance of syn- 1222

thetic data generation as both a complementary and 1223

cost-efficient solution in the AD ecosystem. 1224

C.2 Genarating Category Description Details 1225

C.2.1 Prompt Details 1226

As discussed in §4.3, we generate category descrip- 1227

tions to enhance LLM-based zero-shot AD. The 1228

prompt template used for generating category de- 1229

scriptions is shown in Table A13. It leverages the 1230

prompt techniques, including task information and 1231

CoT, as discussed in §B.1. 1232

C.2.2 A Universal Component 1233

LLM-generated category descriptions serve as a 1234

universal component that can be integrated into 1235

prompts to enhance any LLM-based task requir- 1236

ing category-specific information. In our study, we 1237

demonstrate its effectiveness in improving LLM- 1238

based zero-shot AD as shown in Table 2. Ad- 1239

ditionally, these descriptions can enhance LLM- 1240

based synthetic data generation similarly. This ap- 1241

proach aligns with the Native Chain-of-Thought 1242

(NCoT) process (Wang et al., 2024a) used in Ope- 1243

nAI o1 (OpenAI, 2024c). Extending this idea, other 1244

datasets with distinct structures could inspire the 1245

development of task-specific universal components, 1246

enabling tailored augmentation strategies for di- 1247

verse LLM-based applications. 1248

D Additional Details for Case Study 3 1249

D.1 Evaluation Protocol and Prompt Details 1250

As discussed in §4.3, we utilize the information of 1251

both dataset and candidate models to achieve UMS. 1252

The prompt template used for generating category 1253

descriptions is shown in Table A13. 1254

Importantly, we restrict our selection to two-step 1255

methods mentioned in §A.2, as the structural dif- 1256

ferences between end-to-end and two-step meth- 1257

ods introduce additional complexities to an already 1258

challenging task. 1259
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Table A7: Performance comparison of AD baselines with and without LLM-generated synthetic data across five
datasets. The better results for each detector are highlighted in bold. The performance may vary due to the
embedding changes from the language model.

Training Set
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

OpenAI + AE
without Dsynth 0.5054 0.1189 0.6016 0.1309 0.5014 0.1665 0.7119 0.1681 0.5000 0.1020

with Dsynth 0.7643 0.2612 0.8133 0.3422 0.5993 0.1997 0.7469 0.2040 0.5226 0.1064

OpenAI + DeepSVDD
without Dsynth 0.5171 0.1237 0.6127 0.1415 0.5667 0.1969 0.6278 0.1511 0.6398 0.1479

with Dsynth 0.5480 0.1341 0.5923 0.1291 0.5293 0.1802 0.6162 0.1364 0.3351 0.0707

OpenAI + ECOD
without Dsynth 0.5014 0.1180 0.5623 0.1208 0.5000 0.1661 0.6202 0.1311 0.4078 0.0789

with Dsynth 0.6673 0.1920 0.7490 0.2872 0.4931 0.1545 0.6213 0.1310 0.5000 0.1020

OpenAI + IForest
without Dsynth 0.6120 0.1620 0.7102 0.1903 0.5788 0.1947 0.5331 0.1010 0.6386 0.1467

with Dsynth 0.6465 0.1905 0.5684 0.1361 0.4591 0.1498 0.6277 0.1381 0.1996 0.0600

OpenAI + LOF
without Dsynth 0.6404 0.1661 0.7128 0.2565 0.6759 0.2485 0.7179 0.2061 0.7582 0.2445

with Dsynth 0.4678 0.1174 0.6575 0.2073 0.6785 0.2401 0.7369 0.2422 0.9329 0.4717

OpenAI + SO_GAAL
without Dsynth 0.5657 0.1324 0.3240 0.0770 0.5388 0.1659 0.3351 0.0654 0.3953 0.0823

with Dsynth 0.5832 0.1556 0.5033 0.1031 0.3311 0.1165 0.2344 0.0575 0.1032 0.0560

OpenAI + LUNAR
without Dsynth 0.6527 0.2035 0.8554 0.4670 0.6546 0.2315 0.7879 0.2473 0.2305 0.0622

with Dsynth 0.8590 0.4389 0.9093 0.6175 0.7011 0.2651 0.8025 0.2783 0.3394 0.0713

OpenAI + VAE
without Dsynth 0.6857 0.1842 0.7143 0.1816 0.5031 0.1670 0.6932 0.1698 0.5000 0.1020

with Dsynth 0.7885 0.3124 0.7775 0.2973 0.6461 0.2240 0.7102 0.1705 0.1110 0.0557

D.2 Failures on Popular LLMs1260

Despite the promising results achieved with GPT-1261

o1-preview, widely used LLMs like GPT-4o and1262

Llama 3.1 struggle with zero-shot UMS, fre-1263

quently recommending the same model regardless1264

of dataset context. This limitation highlights the1265

need for enhanced reasoning abilities to better ana-1266

lyze dataset-specific requirements, model strengths1267

and weaknesses, and their overall compatibility.1268

D.3 Complete Results1269

We present a radar chart in Figure 4 comparing the1270

AD performance achieved by LLM-recommended1271

models with the best performance and average per-1272

formance. The detailed results with precise numer-1273

ical values are provided in Table A6 for reference.1274
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Table A8: Performance comparison of LLM-based detectors and baseline methods across five datasets. LLM-based
detectors are evaluated under two settings as described in §3.2 with AUROC and AUPRC as the metrics (higher
(↑), the better). The best results are highlighted in bold, the second-best results are double-underlined, and the
third-best results are single-underlined.

Settings
AG News BBC News IMDB Reviews N24 News SMS Spam

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑

Llama 3.1 8B Instruct
(1) with Cnormal 0.8226 0.4036 0.7910 0.3602 0.7373 0.3474 0.6267 0.1130 0.7558 0.2884
(2) with Cnormal, Canomaly 0.8754 0.3998 0.8612 0.3960 0.8625 0.4606 0.8784 0.3802 0.9487 0.6361

GPT-4o
(1) with Cnormal 0.9332 0.7207 0.9574 0.8432 0.9349 0.7823 0.7674 0.3252 0.7940 0.5568
(2) with Cnormal, Canomaly 0.9293 0.6310 0.9919 0.9088 0.9668 0.8465 0.9902 0.9009 0.9862 0.8953

Methods Baselines
CVDD 0.6046 0.1296 0.7221 0.2976 0.4895 0.1576 0.7507 0.2886 0.4782 0.0712
DATE 0.8120 0.3996 0.9030 0.5764 0.5185 0.1682 0.7493 0.2794 0.9398 0.6112

BERT + SO-GAAL 0.4489 0.1033 0.3099 0.0849 0.4663 0.1486 0.4135 0.0837 0.3328 0.0714
BERT + AE 0.7200 0.2232 0.8839 0.4274 0.4650 0.1479 0.5749 0.1255 0.6918 0.1914

BERT + DeepSVDD 0.6671 0.2160 0.5683 0.1328 0.4287 0.1387 0.4366 0.0798 0.5859 0.1178
BERT + ECOD 0.6318 0.1616 0.6912 0.2037 0.4282 0.1374 0.4969 0.0928 0.5606 0.1156
BERT + LOF 0.7432 0.2549 0.9320 0.6029 0.4959 0.1621 0.6703 0.1678 0.7190 0.1837

BERT + LUNAR 0.7694 0.2717 0.9260 0.5943 0.4687 0.1497 0.6284 0.1436 0.6953 0.1817
BERT + VAE 0.6773 0.1878 0.7409 0.2559 0.4398 0.1405 0.4949 0.0957 0.6082 0.1360

BERT + iForest 0.6124 0.1559 0.6847 0.2131 0.4420 0.1412 0.4724 0.0872 0.5053 0.0994
OpenAI + SO-GAAL 0.5945 0.1538 0.2359 0.0665 0.6201 0.3005 0.5043 0.0963 0.5671 0.1213

OpenAI + AE 0.8326 0.4022 0.9520 0.7485 0.6088 0.1969 0.7155 0.1984 0.5511 0.1030
OpenAI + DeepSVDD 0.4680 0.1062 0.5766 0.1288 0.6563 0.3278 0.6150 0.1297 0.3491 0.0721

OpenAI + ECOD 0.7638 0.3294 0.7224 0.2424 0.7366 0.5165 0.7342 0.2238 0.4317 0.0821
OpenAI + LOF 0.8905 0.5443 0.9558 0.7714 0.6156 0.2133 0.7806 0.2248 0.7862 0.2450

OpenAI + LUNAR 0.9226 0.6918 0.9732 0.8653 0.6474 0.2193 0.8320 0.4425 0.7189 0.1640
OpenAI + VAE 0.8144 0.3659 0.7250 0.2424 0.4515 0.1486 0.7418 0.2537 0.4259 0.0812

OpenAI + iForest 0.5213 0.1278 0.6064 0.1376 0.5064 0.1724 0.4944 0.0913 0.3751 0.0772
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Table A9: LLM prompt template used for zero-shot AD in “Normal Only” setting discussed in §3.2.
{normal_category_x} refers to the name of xth normal category. {text} represents the test sample to be detected.

You are an intelligent and professional assistant that detects anomalies in text data.
## Task:
- Following the rules below, determine whether the given text sample is an anomaly. Provide a brief explanation
of your reasoning and assign an anomaly confidence score between 0 and 1.

## Categories:
- **{normal_category_1}**
- **{normal_category_2}**
- ...

## Rules:
1. **Anomaly Definition**:

- A text sample is considered an **anomaly** if it does **not** belong to **any of the categories** listed
above.
2. **Scoring**:

- Assign an anomaly confidence score between 0 and 1.
- Use higher scores when you are highly confident in your decision.
- Use lower scores when you are uncertain or think the text sample is **not** an anomaly.

3. **Step-by-step Reasoning** (Chain of Thought):
- **Step 1**. Read the entire text sample carefully and understand it thoroughly.
- **Step 2**. Analyze the text sample by comparing its content to each category listed in the "Categories"

section above, considering factors such as main topics, meanings, background, sentiments, etc.
- **Step 3**. Determine which category the text sample **most closely aligns with**.

- If it aligns with any category, it is **not** an anomaly.
- If it does **not** align with any category, it is an anomaly.

- **Step 4**. Assign an anomaly confidence score based on how confident you are that the text sample is
an anomaly.
4. **Additional Notes**:

- A text sample may relate to multiple categories, but it should be classified into the **most relevant** one
in this task.

- If you are uncertain whether the text sample **significantly aligns** with **any of the anomaly
category(ies)**, assume that it does **not**, which means it is **not** an anomaly.
5. **Response Format**:

- Provide responses in a strict **JSON** format with the keys "reason" and "anomaly_score."
- "reason": Your brief explanation of the reasoning in one to three sentences logically.
- "anomaly_score": Your anomaly confidence score between 0 and 1.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.
Text sample:
"{text}"

Response in JSON format:
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Table A10: LLM prompt template used for zero-shot AD in “Normal + Anomaly” setting discussed in §3.2.
{normal_category_x} refers to the name of xth normal category and {anomaly_category} refers to the name of
anomaly category. {text} represents the test sample to be detected. The different part compared with the prompt in
the “Normal Only” setting is marked in red.

You are an intelligent and professional assistant that detects anomalies in text data.
## Task:
- Following the rules below, determine whether the given text sample is an anomaly. Provide a brief explanation
of your reasoning and assign an anomaly confidence score between 0 and 1.

## Categories:
### Normal Category(ies):
- **{normal_category_1}**
- **{normal_category_2}**
- ...
### Anomaly Category(ies):
- {anomaly_category}

## Rules:
1. **Anomaly Definition**:

- A text sample is considered an **anomaly** if it belongs to the **anomaly category(ies)** rather than
**any of the normal category(ies)** listed above.
2. **Scoring**:

- Assign an anomaly confidence score between 0 and 1.
- Use higher scores when you are highly confident in your decision.
- Use lower scores when you are uncertain or think the text sample is **not** an anomaly.

3. **Step-by-step Reasoning** (Chain of Thought):
- **Step 1**. Read the entire text sample carefully and understand it thoroughly.
- **Step 2**. Analyze the text sample by comparing its content to each category listed in the "Categories"

section above, considering factors such as main topics, meanings, background, sentiments, etc.
- **Step 3**. Determine which category the text sample **most closely aligns with**.

- If it **most closely aligns with** **any of the anomaly category(ies)**, it is an **anomaly**.
- If it **most closely aligns with** **any of the normal category(ies)** instead, it is **not** an anomaly.

- **Step 4**. Assign an anomaly confidence score based on how confident you are that the text sample is
an anomaly.
4. **Additional Notes**:

- A text sample may relate to multiple categories, but it should be classified into the **most relevant** one
in this task.

- If you are uncertain whether the text sample **significantly aligns** with **any of the anomaly
category(ies)**, assume that it does **not**, which means it is **not** an anomaly.
5. **Response Format**:

- Provide responses in a strict **JSON** format with the keys "reason" and "anomaly_score."
- "reason": Your brief explanation of the reasoning in one to three sentences logically.
- "anomaly_score": Your anomaly confidence score between 0 and 1.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.
Text sample:
"{text}"

Response in JSON format:
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Table A11: LLM prompt template used for keyword generation, which is the first step of generating synthetic
samples as discussed in §4.2. {normal_category_x} refers to the name of xth normal category. {name} and
{original_task} can be found in Tab. A.1. {num_keyword_groups} set the number of keyword groups that LLM
needs to generate for each category.

You are an intelligent and professional assistant that generates groups of keywords for given categories in a
dataset.
## Task:
- Following the rules below, generate **exactly** {num_keyword_groups} unique keyword groups for **each
given category** according to your understanding of the category (and its description).
- Each keyword group will be used to generate synthetic data for the corresponding category.

## Rules:
1. **Keyword Group Generation**:

- For **each given category**, generate **exactly** {num_keyword_groups} keyword groups. Each
group should contain exactly three keywords, with different levels of granularity: one broad/general, one
intermediate, and one fine-grained.

- Ensure that the three keywords in each group are thematically related to each other and align with the
category’s description.

- Avoid redundancy or overly similar keywords across different groups.
- Ensure that each group is unique and relevant to the key topics described in the category.

2. **Granularity**:
- The first keyword should be broad/general, representing a high-level or overarching topic.
- The second keyword should be intermediate, more specific than the first, but not overly narrow.
- The third keyword should be fine-grained and specific, related to detailed subtopics or precise aspects of

the category.
3. **Response Format**:

- For each given category, provide the keyword groups as a list, where each entry is a group of three
keywords (broad, intermediate, fine-grained).

- Structure the response so that the key is the category name, and the value is a list of generated keyword
groups.

- Ensure the JSON output is properly formatted, including correct placement of commas between key-value
pairs and no missing brackets.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {original_task}. It contains the following category(ies):
{normal_category_1}
{normal_category_2}
...

Response in JSON format:
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Table A12: LLM prompt template used for sample generation, which is the second step of generating synthetic
samples as discussed in §4.2. We generate a single synthetic sample per keyword group. {keyword_group[i]}
refers to (i+ 1)th granularity level’s keyword in this keyword group. {category} represents the name of the
corresponding category for this keyword group.

You are an intelligent and professional assistant that generates a synthetic text sample based on a group of 3
keywords with different levels of granularity.
## Task:
- Generate a synthetic text sample that incorporates the provided group of 3 keywords (broad, intermediate,
and fine-grained) listed below.
- The generated sample should align with the meanings and themes suggested by the keywords provided.

## Rules:
1. **Sample Characteristics**:

- Generate a synthetic text sample that naturally incorporates the three provided keywords (broad, interme-
diate, and fine-grained).

- Ensure that the text sample is coherent and contextually relevant to the themes suggested by the keywords.
2. **Keyword Usage**:

- The three keywords must appear naturally within the content.
- Ensure that the broad keyword sets the overall context, the intermediate keyword refines the discussion,

and the fine-grained keyword offers more detailed insight into a specific subtopic.
3. **Response Format**:

- Provide the generated sample as a single string response representing the text sample.
- Ensure the output is in a readable format.
- Do not include any additional messages or commentary.
- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper

parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {original_task}. The category is "{category}", and the group of
keywords to use is:
- Broad: {keyword_group[0]}
- Intermediate: {keyword_group[1]}
- Fine-grained: {keyword_group[2]}

Response in JSON format:
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Table A13: LLM prompt template for generating category descriptions discussed in §4.3. {normal_category_x}
refers to the name of xth normal category and {anomaly_category} refers to the name of anomaly category.
{name} and {original_task} can be found in Tab. A.1.

You are an intelligent and professional assistant that generates descriptions for given categories in a text
dataset.
## Task:
- Following the rules below, generate detailed textual descriptions that explain the main characteristics, typical
topics, and common examples for each given category.

## Rules:
1. For each category, provide a continuous, coherent description in a single paragraph that includes:

- **Definition or overview**: Start by briefly defining or describing the category in one to two sentences. If
you list multiple aspects or features in the definition (such as related fields or industries), ensure you append
expressions like "etc." or "and so on" to indicate that the list is not exhaustive.

- **Main topics or subjects**: Highlight the typical topics or subjects covered by this category. Ensure that
you use phrases like "etc." or "and so on" at the end of each list to indicate that the list is not exhaustive.
- **Relevant examples**: Mention examples of content that belong to this category. Also, use expressions
like "etc." or "and so on" at the end of the list to show that these are illustrative, not exhaustive.
2. Use **step-by-step reasoning** to ensure the descriptions are logical and clear.
3. Each description should be clear, coherent, and helpful for someone unfamiliar with the dataset and the
task.
4. Always append phrases like "etc." or "and so on" to lists or enumerations of examples, topics, or aspects,
**including the definition part**.
5. Response Format:

- Provide a response where each key is the category name, and the value is the corresponding description as
a continuous paragraph.

- Ensure the JSON output is correctly formatted, including correct placement of commas between key-value
pairs.

- Add a backslash (\) before any double quotation marks (") within the values of JSON output for proper
parsing (i.e., from " to \"), and ensure that single quotation marks (’) are preserved without escaping.

The "{name}" dataset’s original task is {origianl_task}. It contains the following categories:
{normal_category_1}
{normal_category_2}
...
{anomaly_category}

Response in JSON format:
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Table A14: LLM prompt template used for UMS discussed in §5. {normal_category_x} refers to the name of xth

normal category and {anomaly_category} refers to anomaly one. We randomly select examples from the training
set for both normal and anomaly data, denoted as {normal_text} and {anomaly_text}. {name}, {size} (i.e., #
of test set), and {original_task} can be found in Tab. A.1. {avg_len}, {max_len}, {min_len}, and {std_len}
are statistics of datasets as shown in Tab. A1. {abstract} is the abstract in the published paper of each model.

You are an expert in model selection for anomaly detection on text datasets.

## Task:
- Given the information of a dataset and a set of models, select the model you believe will achieve the best
performance for detecting anomalies in this dataset. Provide a brief explanation of your choice.

## Dataset Information:
- Dataset Name: {name}
- Dataset Size: {size}
- Background: This dataset is originally for {original_task}.
- Data Structure: Textual data with multiple categories. One category is considered anomalous, while the
others are normal.

- Normal Category(ies): {normal_category_1}, {normal_category_2}
- An Example: {normal_text}

- Anomaly Category: {anomaly_category}
- An Example: {anomaly_text}

- Text Length Statistics:
- Average Length: {avg_len}
- Maximum Length: {max_len}
- Minimum Length: {min_len}
- Standard Deviation: {std_len}

## Model Information:
- Models utilize language models to generate embeddings and feed the embeddings into the models.
- We provide the abstracts of the papers that introduce the models for your reference.
### Model Options:
- AutoEncoder (AE): {abstract} (Aggarwal, 2015)
- Deep Support Vector Data Description (DeepSVDD): {abstract} (Ruff et al., 2018)
- Empirical-Cumulative-Distribution-Based Outlier Detection (ECOD):{abstract} (Li et al., 2022)
- Isolation Forest (IForest): {abstract} (Liu et al., 2008)
- Local Outlier Factor (LOF): {abstract} (Breunig et al., 2000)
- Unifying Local Outlier Detection Methods via Graph Neural Networks (LUNAR): {abstract} (Goodge
et al., 2022)
- Single-Objective Generative Adversarial Active Learning (SO-GAAL): {abstract} (Liu et al., 2019)
- Variational AutoEncoder (VAE): {abstract} (Kingma and Welling, 2014)
### Embedding Options:
- Bidirectional Encoder Representations from Transformers (BERT): {abstract} (Kenton and Toutanova,
2019)
- "text-embedding-3-large" from OpenAI (referred to as OpenAI): {abstract} (OpenAI, 2024b)

## Rules:
1. Availabel options include "BERT+AE", "BERT+DeepSVDD", "BERT+ECOD", "BERT+iForest",
"BERT+LOF", "BERT+LUNAR", "BERT+SO-GAAL", "BERT+VAE", "OpenAI+AE", "Ope-
nAI+DeepSVDD", "OpenAI+ECOD", "OpenAI+iForest", "OpenAI+LOF", "OpenAI+LUNAR",
"OpenAI+SO-GAAL", "OpenAI+VAE."
2. Treat all models equally and evaluate them based on their compatibility with the dataset characteristics and
the anomaly detection task.
3. Response Format:

- Provide responses in a strict **JSON** format with the keys "reason" and "choice."
- "reason": Your explanation of the reasoning.
- "choice": The model you have selected for anomaly detection in this dataset.

Response in JSON format:
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