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Abstract

Most research on question answering focuses001
on the pre-deployment stage; i.e., building an002
accurate model for deployment. In this paper,003
we ask the question: Can we improve QA sys-004
tems further post-deployment based on user in-005
teractions? We focus on two kinds of improve-006
ments: 1) improving the QA system’s perfor-007
mance itself, and 2) providing the model with008
the ability to explain the correctness or incor-009
rectness of an answer. We collect a retrieval-010
based QA dataset, FEEDBACKQA, which con-011
tains interactive feedback from users. We col-012
lect this dataset by deploying a base QA sys-013
tem to crowdworkers who then engage with014
the system and provide feedback on the qual-015
ity of its answers. The feedback contains both016
structured ratings and unstructured natural lan-017
guage explanations. We train a neural model018
with this feedback data that can generate ex-019
planations and re-score answer candidates. We020
show that usage of the feedback data improves021
the accuracy of the QA system, and helps users022
make informed decisions about the correctness023
of answers.1024

1 Introduction025

Much of the recent excitement in question answer-026

ing (QA) is in building high-performing models027

with carefully curated training datasets. Datasets028

like SQuAD (Rajpurkar et al., 2016), NaturalQues-029

tions (Kwiatkowski et al., 2019) and CoQA (Reddy030

et al., 2019) have enabled rapid progress in this area.031

Most existing work focuses on the pre-deployment032

stage; i.e., training the best QA model before it is033

released to users. However, this stage is only one034

stage in the potential lifecycle of a QA system.035

In particular, an untapped resource is the large036

amounts of user interaction data produced after the037

initial deployment of the system. Gathering this038

data should in practice be relatively cheap, since039

top QA systems are of high enough quality that040

1We will make both the data and the code public.

users would genuinely use them to seek informa- 041

tion. 042

Exploiting this user interaction data presents new 043

research challenges, since they typically consist of 044

a variety of weak signals. For example, user clicks 045

could indicate answer usefulness (Joachims, 2002), 046

users could give structured feedback in the form of 047

ratings to indicate the usefulness (Stiennon et al., 048

2020), or they could give unstructured feedback 049

in natural language explanations on why an an- 050

swer is correct or incorrect. User clicks have been 051

widely studied in the field of information retrieval 052

(Joachims, 2002). Here we study the usefulness 053

of interactive feedback in the form of ratings and 054

natural language explanations. 055

Whilst there are different variants of QA tasks, 056

this paper focuses primarily on retrieval-based QA 057

(RQA; Chen et al. 2017; Lee et al. 2019). Given 058

a question and a set of candidate answer passages, 059

a model is trained to rank the correct answer pas- 060

sage the highest. In practice, when such a system 061

is deployed, an user may engage with the system 062

and provide feedback about the quality of the an- 063

swers. Such feedback is called interactive feedback. 064

Due to the lack of a dataset containing interactive 065

feedback for RQA, we create FEEDBACKQA. 066

FEEDBACKQA is a large-scale English QA 067

dataset containing interactive feedback in two 068

forms: user ratings (structured) and natural lan- 069

guage explanations (unstructured) about the cor- 070

rectness of an answer. Figure 1 shows an example 071

from FEEDBACKQA. The dataset construction has 072

two stages: We first train a RQA model on the 073

questions and passages, then deploy it on a crowd- 074

sourcing platform. Next, crowdworkers engage 075

with this system and provide interactive feedback. 076

To make our dataset practically useful, we focus on 077

question answering on public health agencies for 078

the Covid-19 pandemic. The base model for FEED- 079

BACKQA is built on 28k questions and 3k passages 080

from various agencies. We collect 9k interactive 081
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Figure 1: Users interact with the deployed QA model and give feedback. Feedback contains a rating (bad, good,
could be improved, excellent) and a natural language explanation.

feedback data samples for the base model.082

We investigate the usefulness of the feedback for083

improving the RQA system in terms of two aspects:084

answer accuracy and explainability. Specifically,085

we are motivated by two questions: 1) Can we086

improve the answer accuracy of RQA models by087

learning from the interactive feedback? and 2) Can088

we learn to generate explanations that help humans089

to discern correct and incorrect answers?090

To address these questions, we use feedback data091

to train models that rerank the original answers092

as well as provide an explanation for the answers.093

Our experiments show that this approach not only094

improves the accuracy of the base QA model for095

which feedback is collected but also other strong096

models for which feedback data is not collected.097

Moreover, we conduct human evaluations to verify098

the usefulness of explanations and find that the099

generated natural language explanations help users100

make informed and accurate decisions on accepting101

or rejecting answer candidates.102

Our contributions are two-fold:103

1. We create the first retrieval-based QA dataset104

containing interactive feedback.105

2. We propose a simple and effective method of106

using the feedback data to increase the accu-107

racy and explainability of RQA systems.108

2 FEEDBACKQA Dataset109

Recently, there have been efforts to collect feed-110

back data in the form of explanations for natural111

language understanding tasks (Camburu et al. 2018;112

Rajani et al. 2019, inter alia). These contain ex-113

planations only for ground-truth predictions for a114

given input sampled from the training data with- 115

out any user-system interaction. Instead, we col- 116

lect user feedback after deploying a RQA system 117

thereby collecting feedback for both correct and 118

incorrect predictions. Table 1 presents a compre- 119

hensive comparison of FEEDBACKQA and exist- 120

ing natural language understanding (NLU) datasets 121

with explanation data. 122

2.1 Dataset collection 123

In order to collect post-deployment feedback as in 124

a real-world setting, we divide the data collection 125

into two stages: pre-deployment (of a RQA model) 126

and post-deployment. 127

Stage 1: Pre-deployment of a QA system We 128

scrape Covid-19-related content from the official 129

websites of WHO, US Government, UK Govern- 130

ment, Canadian government,2 and Australian gov- 131

ernment. We extract the questions and answer pas- 132

sages in the FAQ section. In addition, we clean 133

the scraped pages and extract additional passages 134

for which we curate corresponding questions using 135

crowdsourcing. We present additional details on 136

this annotation process in Appendix A. We use this 137

dataset to train a base RQA model for each source 138

separately and deploy them. For the base model, 139

we use a BERT-based dense retriever (Karpukhin 140

et al., 2020) combined with Poly-encoder (Miller 141

et al., 2017) (more details are in Section 3.1). 142

Stage 2: Post-deployment of a QA system 143

Since each domain has several hundred passages 144

(Table 2), it is hard for a crowdworker to ask ques- 145

tions that cover a range of topics in each source. 146

We thus collect questions for individual passages 147

beforehand similar to Stage 1 and use these as in- 148

2We focus on the Province of Quebec

2

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub
https://www.cdc.gov/coronavirus/2019-nCoV/index.html
https://www.gov.uk/coronavirus
https://www.gov.uk/coronavirus
https://www.gov.uk/coronavirus
https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus
https://www.health.gov.au/
https://www.health.gov.au/
https://www.health.gov.au/


Datasets Task Feedback Interactive Feedback for
Type Feedback incorrect predictions

e-SNLI (Camburu et al., 2018) NLI Free-form 7 7

CoS-E (Rajani et al., 2019) Commonsense QA Free-form 7 7

LIAR-PLUS (Alhindi et al., 2018) Fact checking Free-form 7 7

QED (Lamm et al., 2021) Reading comprehension Structured 7 7

NExT (Wang et al., 2019) Text classification Structured 7 7

FEEDBACKQA Retrieval-based QA Structured 3 3

& Free-form

Table 1: Comparison of FEEDBACKQA with existing NLU datasets containing feedback in the form of structured
representations (according to a schema) or natural language explanations (free-form).

#Passages #Questions #Feedback

Australia 584 1783 2264
Canada 587 8844 /
UK 956 2874 3668
US 598 13533 2628
WHO 226 688 874

Overall 2951 27722 9434

Table 2: Number of samples in different do-
mains of FEEDBACKQA. We split the data into
train/validation/test sets in the ratio of 0.7 : 0.1 : 0.2.

teractive questions. The question and top-2 predic-149

tions of the model are shown to the user and they150

give feedback for each question-answer pair. The151

collected feedback consists of a rating, selected152

from excellent, good, could be improved, bad, and153

a natural language explanation elaborating on the154

strengths and/or weaknesses of the answer. For155

each QA pair, we elicit feedback from three differ-156

ent workers. We adopted additional strategies to157

ensure the quality of the feedback data, the details158

of which are available in Appendix B. The resulting159

dataset statistics are shown in Table 2. In order to160

test whether interactive feedback also helps in out-161

of-distribution settings, we did not collect feedback162

for one of the domains (Canada).163

2.2 FEEDBACKQA analysis164

Table 3 shows examples of the feedback data, in-165

cluding both ratings and explanations. We find166

that explanations typically contain review-style167

text indicating the quality of the answer, or state-168

ments summarizing which parts are correct and169

why. Therefore, we analyze a sample of explana-170

tions using the following schema:171

Review Several explanations start with a generic172

review such as This directly answers the question173

or It is irrelevant to the question. Sometimes users174

also highlight aspects of the answer that are good175

Figure 2: Distribution of component number in 100 nat-
ural language feedback of different rating labels.

or can be improved. For instance, ... could improve 176

grammatically ... suggests that the answer could be 177

improved in terms of writing. 178

Summary of useful content refers to the part of 179

answer that actually answers the question; 180

Summary of irrelevant content points to the in- 181

formation that is not useful for the answer, such as 182

off-topic or addressing incorrect aspects; 183

Summary of missing content points the informa- 184

tion the answer fails to cover. 185

We randomly sample 100 explanations and an- 186

notate them. Figure 2 shows the distribution of 187

the types present in explanations for each rating 188

label. All explanations usually contain some re- 189

view type information. Whereas explanations for 190

answers labeled as excellent or acceptable predom- 191

inantly indicate the parts of the answer that are 192

useful. The explanations for answers that can be 193

improved indicate parts that are useful, wrong or 194

missing. Whereas bad answers often receive ex- 195

planations that highlight parts that are incorrect or 196

missing as expected. 197

3 Experimental Setup 198

FEEDBACKQA contains two types of data. One 199

is pre-deployment data Dpre = (Q,A+,A), where 200
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Rating label Explanation

Excellent This answers the question directly. This answer provides information and recommendation on how
people and adolescent can protect themselves when going online during the Covid-19 pandemic.

Acceptable This answer, while adequate, could give more information as this is a sparse answer for a bigger
question of what one can do for elderly people during the pandemic.

Could be improved The answer relates and answers the question, but could improve grammatically and omit the ”yes”
Could be improved The answer is about some of the online risks but not about how to protect against them.
Bad This does not answer the question. This information is about applying visa to work in critical

sector. It does not provide any information on applying for Covid-19 pandemic visa event as
asked in the question.

Table 3: Examples of explanation and its associated rating label. Span color and their types of components:
generic and aspect review ; summary of useful content ; summary of irrelevant content ; summary of missing
content

Q is a question paired with its gold-standard an-201

swer passage A+ from the domain corpus A. The202

other is post-deployment feedback data Dfeed =203

(Q,A, Y,E), where Q is a question paired with204

a candidate answer A ∈ A and corresponding205

feedback for the answer. The feedback consists206

of a rating Y and an explanation E. We build207

two kinds of models on pre- and post-deployment208

data: RQA models on the pre-deployment data that209

can retrieve candidate answers for a given ques-210

tion, and feedback-enhanced RQA models on the211

post-deployment data that can rate an answer for212

a given question as well as generate an explana-213

tion for the answer. We use this rating to rerank214

the answer candidates. Therefore, in our setting,215

a feedback-enhanced RQA model is essentially216

a reranker. Keeping in mind the fact that real-217

world QA systems evolve quickly, we decouple the218

reranker model from the RQA model by using sep-219

arate parameters for the reranker independent of220

the RQA model. We train this reranker on the feed-221

back data. This allows for the reranker to be reused222

across many RQA models. We leave other ways to223

enhance RQA models with feedback data for future224

work. Below, we describe the architectures for the225

RQA models and feedback-based rerankers.226

3.1 RQA Models (Pre-deployment)227

We use dense passage retrievers (Karpukhin et al.,228

2020) to build the RQA models, where the sim-229

ilarity between the question embedding and the230

passage embedding is used to rank candidates. We231

use two variants of pre-trained models to obtain the232

embeddings: 1) BERT (Devlin et al., 2019), a pre-233

trained Transformer encoder; and 2) BART (Lewis234

et al., 2020), a pretrained Transformer encoder-235

decoder. For BERT, we use average pooling of236

token representations as the embedding, whereas 237

for BART we use the decoder’s final state. While 238

Karpukhin et al. use question-agnostic passage rep- 239

resentations, we use a poly-encoder (Humeau et al., 240

2020) to build question-sensitive document repre- 241

sentations. In a poly-encoder, each passage is rep- 242

resented as multiple encodings, first independent of 243

the question, but then a simple attention between 244

the question and passage embeddings is used to 245

compute question-sensitive passage representation, 246

which is later used to compute the relevance of the 247

passage for a given query. Humeau et al. show 248

that the poly-encoder architecture is superior to 249

alternatives like the bi-encoder (Karpukhin et al., 250

2020) without much sacrifice in computational effi- 251

ciency.3 252

Given pre-deployment training data Dpre = 253

(Q,A+,A), the RQA model parameterized by θ 254

is trained to maximize the log-likelihood of the 255

correct answer: 256

Jθ = logPθ(A
+|Q,A)

Pθ(A
i|Q,A) = exp(S(Q,Ai))∑

A∈A exp(S(Q,A))

(1) 257

Here S(Q,A) denotes the dot product similarity 258

between the question and passage embedding. As 259

it is inefficient to compute the denominator over 260

all passages during training, we adopt an in-batch 261

negative sampling technique (Humeau et al., 2020), 262

merging all of the A+ in the same minibatch into a 263

set of candidates. 264

3.2 Feedback-enhanced RQA models 265

(Post-deployment) 266

On the post-deployment dataDfeed = (Q,A, Y,E), 267

we train a reranker that assigns a rating to an answer 268

3The performance results of poly-encoder and bi-encoder
for our task are shown in Table 9.
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and also generates an explanation. We use BART269

parameterized by φ as the base of EXPLAINRATE270

because it is ease to adapt it to both explanation271

generation and rating classification. The encoder of272

the BART model takes as input the concatenation273

[Q;SEP;A], and the decoder generates an explana-274

tion E; after that, an incremental fully-connected275

network predicts the rating Y given the last hidden276

states of decoder. The rating is used to score QA277

pairs, whereas the generated explanation is passed278

to humans to make an informed decision of ac-279

cepting the answer. We also implement a variant280

where the model directly produces a rating without281

generating an explanation. Since each candidate282

answer is annotated by different annotators, an an-283

swer could have multiple rating labels. To account284

for this, we minimize the KL-divergence between285

the the target label distribution and the predicted286

distribution:287

Jφ′ = −DKL(P (Y |Q,A)||Pφ(Y |Q,A)),

P (Yi = y|Qi, Ai) =
Cy,i∑
y Cy,i

(2)288

where Cy,i is the count of the rating label y for the289

i-th feedback.290

In order to enhance an RQA model with the291

reranker, we first select the top-k candidates accord-292

ing to the RQA model (in practice we set k = 5).293

The reranker then takes as input the concatenation294

of the question and each candidate, then generates295

a rating for each answer. We simply sum up the296

scores from the RQA model and the reranker model.297

In practice, we found that using the reranker proba-298

bility of excellent worked better than normalizing299

the expectation of the rating score (from score 0300

for label bad to 3 for excellent). So, we score the301

candidate answers as follows:302

S(A|A, Q) =Pθ(A = A+|A, Q)

+ Pφ(y = excellent|A,Q)
(3)303

4 Experiments and Results304

We organize the experiments based on the follow-305

ing research questions:306

• RQ1: Does feedback data improve the base RQA307

model accuracy?308

• RQ2: Does feedback data improve the accuracy309

of RQA models that are stronger than the base310

model?311

• RQ3: Do explanations aid humans in discerning312

between correct and incorrect answers?313

We answer these questions by comparing the 314

RQA models with the feedback-enhanced RQA 315

models. The implementation and hyper-parameter 316

details of each model are included in Appendix D. 317

4.1 RQ1: Does feedback data improve the 318

base RQA model? 319

Model details. Our base model is a BERT RQA 320

model which we deployed to collect feedback data 321

to train the other models (Section 3.1). 322

For the feedback-enhanced RQA model, we use 323

the BART-based reranker described in Section 3.2. 324

We train one single model for all domains. We 325

call this FEEDBACKRERANKER. We compare two 326

variants of FEEDBACKRERANKER on validation 327

set, one of which directly predicts the rating while 328

the other first generates an explanation and then 329

the rating. And we found the first one performs 330

slightly better (Appendix Table 10). We conjecture 331

that learning an explanation-based rating model 332

from the limited feedback data is a harder problem 333

than directly learning a rating model. Therefore, 334

for this experiment, we only use the rating predic- 335

tion model (but note that explanation-based rating 336

model is already superior to the base RQA model). 337

To eliminate the confounding factor of having 338

a larger number of model parameters introduced 339

by the reranker, we train another reranker model 340

on the pre-deployment data VANILLARERANKER 341

and compare against the reranker trained on the 342

feedback data. To convert the pre-deployment data 343

into the reranker’s expected format, we consider a 344

correct answer’s rating label to be excellent, and 345

the randomly sampled answer candidates4 to be 346

bad. Note that this dataset is much larger than the 347

feedback data. 348

Finally, we combine the training data of FEED- 349

BACKRERANKER and VANILLARERANKER and 350

train the third reranker called COMBINEDR- 351

ERANKER. 352

To measure retrieval accuracy, we adopt Preci- 353

sion@1 (P@1) as our main metric. 354

Results. As shown in Table 4, the feedback- 355

enhanced RQA model is significantly5 better than 356

the base RQA model by 1.84 points. Although 357

VANILLARERANKER improves upon the base 358

model, it is weaker than FEEDBACKRERANKER, 359

4We also tried using the top predictions from the base
QA model, but found this approch leads to slightly worse
performance than negative sampling.

5We follow Berg-Kirkpatrick et al. (2012) to conduct the
statistical significant test
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Methods Australia US Canada UK WHO All Beats

BERT RQA model 47.25 65.30 81.49 48.50 81.19 64.75 None
+ FEEDBACKRERANKER 55.13 65.97 83.74 51.07 77.05 66.59
+ VANILLARERANKER 54.29 64.80 83.20 49.63 77.96 65.98
+ COMBINEDRERANKER 55.63 67.54 84.99 53.21 78.51 67.97

Table 4: Accuracy of the BERT RQA model, i,.e., the deployed model, and its enhanced variants on the test set.
FEEDBACKRERANKER is trained on the post-deployment feedback data, VANILLARERANKER is trained on the
pre-deployment data and COMBINEDRERANKER is trained on both. The column Beats indicates that the model
significantly outperforms (p-value < 0.05) the competing methods. All of the results are averaged across 3 runs.

Methods Australia US Canada UK WHO All Beats

BART RQA model 52.88 68.47 82.49 51.29 81.97 67.42 None
+ FEEDBACKRERANKER 54.78 70.45 84.38 53.47 82.51 69.12
+ VANILLARERANKER 53.09 70.40 82.76 53.08 82.33 68.33
+ COMBINEDRERANKER 55.27 71.45 85.35 54.83 83.61 70.10

Table 5: Accuracy of the BART RQA model and its enhanced variants on the test set. All of the results are averaged
across 3 runs.

and COMBINEDRERANKER is a much stronger360

model than any of the models, indicating that learn-361

ing signals presented in feedback data and the pre-362

deployment data are complementary to each other.363

Moreover, we also see improved performance on364

the Canada domain, although feedback data was365

not collected for that domain.366

From these experiments, we conclude that feed-367

back data can improve the accuracy of the base368

RQA model, not only for the domains for which369

feedback data is available but also for unseen do-370

mains (Canada).371

4.2 RQ2: Does feedback data improve the372

accuracy of RQA models that are373

stronger than the base model?374

If feedback data were only useful for the base RQA375

model, then its usefulness would be questionable,376

since the RQA development cycle is continuous377

and the base RQA model will eventually be re-378

placed with a better model. For example, we find379

that BART-based dense retriever is superior than380

the BERT RQA model: Table 9 in Appendix E381

shows the results on validation set which indicate382

that BART RQA model overall performance is383

nearly 4 points better than the BERT RQA model.384

To answer RQ2, we use the same FEEDBACK-385

RERANKER and VANILLARERANKER to rescore386

the BART RQA predictions, even though feedback387

data is not collected for this model. We observe388

that the resulting model outperforms the BART389

RQA model in Table 5, indicating that the feed-390

back data is still useful. Again, FEEDBACKR- 391

ERANKER is superior to VANILLARERANKER al- 392

though the feedback data has fewer samples than 393

the pre-deployment data, and the COMBINEDR- 394

ERANKER has the best performance. 395

These results suggest that the feedback data is 396

useful not only for the base RQA model but also 397

other stronger RQA models. 398

4.3 RQ3: Do explanations aid humans in 399

discerning between correct and incorrect 400

answers? 401

We conduct a human evaluation to investigate 402

whether explanations are useful from the perspec- 403

tive of users. Unfortunately, rigorous definitions 404

and automatic metrics of explainability remain 405

open research problems. In this work, we simu- 406

late a real-world scenario, where the user is pre- 407

sented an answer returned by the system as well as 408

an explanation for the answer, and they are asked 409

to determine whether the answer is acceptable or 410

not. Jacovi and Goldberg (2020) advocate utility 411

metrics as proxies to measure the usefulness of 412

explanations instead of directly evaluating an ex- 413

planation since plausible explanations does not nec- 414

essarily increase the utility of the resulting system. 415

Inspired by their findings, we measure if explana- 416

tions can: 1) help users to make accurate decisions 417

when judging an answer (with respect to a ground 418

truth) and 2) improve the agreement among users 419

in accepting/rejecting an answer candidate. The 420

former measures the utility of an explanation and 421

6



Explanation Accuracy Agreement

Blank 69.17 0.31

Human-written 88.33 0.80
BART feedback model 81.67 0.71

BART summarization model 74.17 0.30

Table 6: Human evaluation results of the usefulness of
explanations. Accuracy measures the utility of explana-
tions in selecting the correct rating label for an answer,
whereas agreement measures whether explanations in-
voke same behaviour pattern across users.

the latter measures if the explanations invoke the422

same behavioral pattern across different users irre-423

spective of the utility of the explanation. Note that424

agreement and utility are not tightly coupled. For425

example, agreement can be higher even if the utility426

of an explanation is lower when the explanation427

misleads end users to consistently select a wrong428

answer (González et al., 2021; Bansal et al., 2021).429

We sample 60 feedback samples from the hid-430

den split of the feedback dataDfeed = (Q,A, Y,E)431

for evaluation purposes.6 We evaluate four experi-432

mental setups on these samples which vary in the433

type of explanation shown to the end users: 1) no434

explanation; 2) human-written explanations; 3) ex-435

planations generated by the BART model trained436

on the feedback data (Section 3.2); and 4) summary437

of the answer candidate generated by a strong fine-438

tuned BART-based summarization model.7 The439

last setting is inspired from the observation in Sec-440

tion 2.2 that a large portion of explanations contain441

summary of questions/answers. We investigate if442

conventional summary of an answer is as useful443

as an explanation. For each of these setups, two444

crowdworkers assign a rating label to each answer445

candidate indicating the quality of the answer. Each446

setup has its own set of workers in order to avoid447

information-leakage across setups (this simulates448

A/B testing often used by production systems).449

We measure the workers’ accuracy (average of450

the two workers) in determining the correctness of451

an answer with respect to the original annotation in452

FEEDBACKQA, as well as compute the agreement453

of workers with each other using Spearman corre-454

6For simplicity, we merge the answer feedback labels good
and could be improved into one label called partially correct.
The final set of answer labels we used are correct (for original
label excellent), partially correct and incorrect (for original
label bad).

7https://huggingface.co/facebook/
bart-large-xsum

Question: What are the restrictions to travelers landing in
the US?

Answer: ... Under current federal regulations, pilots must
report all illnesses and deaths to CDC before arriving to a
US destination. According to CDC disease protocols, if a sick
traveler is considered to be a public health risk, CDC works
with local and state health departments and international
public health agencies to contact passengers and crew exposed
to that sick traveler. Be sure to give the airline your current
contact information when booking your ticket so you can be
notified if you are exposed to a sick traveler on a flight. ...

Generated explanation: This answer is irrelevant to the
question. The question is asking about restrictions on travelers
landing in the US and this answer provides information on
what to do if there is a sick passenger on an international or
domestic flight.

Human explanation: This information does not answer
the question. The question is asking for information on the
restrictions to travelers landing in the US and this answer
contains information on pilots reports on illnesses and deaths
before arriving to a US destinations and airline notification
when passengers are exposed to sick travelers on a flight.

Generated Summary: The Centers for Disease Control and
Prevention (CDC) is working with airlines to help prevent
illness and death on flights.

Question: Should I wear gloves when I go out in public to
prevent Covid-19?

Answer: No, WHO does not recommend the regular use of
gloves by people in the community. The wearing of gloves
may increase risks, since it can lead to self-infection or trans-
mission to others through touching contaminated surfaces
which is not followed by removal of gloves and hand hygiene.
Therefore, in public places such as supermarkets, in addition
to physical distancing, WHO recommends the installation of
public hand hygiene stations at the entrance and exit...

Generated Explanation: This answer is excellent because it
unequivocally states that gloves are not recommended. There-
fore, it answers the question directly. It goes on to explain why
gloves aren’t recommended. This is a great answer.

Human explanation: The question is answered directly. The
answer states not to wear gloves in public.

Generated Summary: The World Health Organization
(WHO) has issued a guidance on the use of gloves in pub-
lic places.

Question: Can students work in aged care?

Answer:...The Australian Government has announced that
residential aged care facilities should take extra precautions
to keep residents safe from COVID-19. Both individuals and
management need to take responsibility for the health of visi-
tors and staff at facilities to protect our most vulnerable com-
munity members. Aged care facilities will: closely monitor the
health of staff...

Generated Explanation: This answer does not address
whether or not students are allowed to work in aged care.
This answer only provides information on precautions to be
taken by aged care facilities to keep residents safe.

Human Explanation: This answer is about covid and ani-
mals. The question was about getting the virus from a pet.

Generated Summary: Residents in aged care facilities
across Australia are being urged to take extra precautions
to prevent the spread of a deadly virus.

Table 7: Examples of different explanation types:
model-generated and human-written explanation and
model-generated summary.
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lation. Table 6 presents the results. All explanation455

types improve accuracy compared to the the model456

with no explanations. This could be because any457

explanation forces the worker to think more about458

an answer. The human-written explanations has the459

highest utility and also leads to the biggest agree-460

ment. Both the human-written explanations and461

the explanations generated by the BART feedback462

model have more utility and higher agreement than463

the BART summarization model. In fact, the sum-464

marization model leads to lower agreement than465

showing no explanation.466

These results indicate that explanations based on467

feedback data are useful for end users in discern-468

ing correct and incorrect answers, and they also469

improve the agreement across users.470

Table 7 shows some examples of explanation that471

helps the users make more informed and accurate472

decision. In the first example, the model-generated473

explanation points out the gap between the ques-474

tion and the answer candidate, though there are475

a large number of overlapping keywords. Mean-476

while, human-written explanations are generally477

more abstractive and shorter in nature (e.g., see the478

second example).479

5 Related work480

Retrieval-based question answering has been481

widely studied, from early work on rule-based sys-482

tems (Kwok et al., 2001), to recently proposed483

neural-based models (Yang et al., 2019; Karpukhin484

et al., 2020). Most existing work focuses on im-485

proving the accuracy and efficacy by modification486

of a neural architecture (Karpukhin et al., 2020;487

Humeau et al., 2020), incorporation of external488

knowledge (Ferrucci et al., 2010), and retrieval489

strategy (Kratzwald and Feuerriegel, 2018). These490

methods focus on the pre-deployment stage of491

RQA models.492

By contrast, we investigate methods to improve493

a RQA model post-deployment with interactive494

feedback. The proposed methods are agnostic to495

the architecture design and training methods of the496

base RQA model.497

Learning from user feedback has been a long498

standing problem in natural language processing.499

Whilst earlier work proposes methods for using im-500

plicit feedback—for instance, using click-through501

data for document ranking (Joachims, 2002)—502

recent work has explored explicit feedback such as503

explanations of incorrect responses by chatbots (Li504

et al., 2016; Weston, 2016) and correctness labels 505

in conversational question answering and text clas- 506

sification (Campos et al., 2020). However, the feed- 507

back in these studies is automatically generated 508

using heuristics, whereas our feedback data is col- 509

lected from human users. Hancock et al. (2019) 510

collect suggested responses from users to improve 511

a chatbot, while we investigate the effect of natural 512

feedback for RQA models. 513

Explainability and Interpretability has re- 514

ceived increasing attention in the NLP community 515

recently. This paper can be aligned to recent ef- 516

forts in collecting and harnessing explanation data 517

for language understanding and reasoning tasks, 518

such as natural language inference (Camburu et al., 519

2018; Kumar and Talukdar, 2020), commonsense 520

question answering (Rajani et al., 2019), document 521

classification (Srivastava et al., 2017), relation clas- 522

sification (Murty et al., 2020), reading comprehen- 523

sion (Lamm et al., 2021), and fact checking (Al- 524

hindi et al., 2018). The type of feedback in FEED- 525

BACKQA differs from the existing work in several 526

aspects: 1) FEEDBACKQA has feedback data for 527

both positive and negative examples, while most 528

of other datasets only contains explanations of pos- 529

itive ones; 2) FEEDBACKQA has both structured 530

and unstructured feedback, while previous work 531

mainly focuses on one of them; 3) The feedback 532

in FEEDBACKQA is collected post-deployment; 533

4) While previous work aims to help users inter- 534

pret the model decisions with natural language ex- 535

planation, we investigate whether feedback-based 536

explanations increase the utility of the deployed 537

system. 538

6 Conclusion 539

In this work, we investigate the usefulness of feed- 540

back data in retrieval-based question answering. 541

We collect a new dataset FEEDBACKQA, which 542

contains interactive feedback in the form of ratings 543

and natural language explanations. We propose a 544

method to improve the RQA model with the feed- 545

back data, training a reranker to select an answer 546

candidate as well as generate the explanation. We 547

find that this approach not only increases the accu- 548

racy of the deployed model but also other stronger 549

models for which feedback data is not collected. 550

Moreover, our human evaluation results show that 551

both human-written and model-generated explana- 552

tions help users to make informed and accurate 553

decisions about whether to accept an answer. 554
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A Details of Data Collection736

Passage curating After we scraped the web-737

sites, we collect the questions and answers in the738

Frequently-Asked-Questions pages directly. For739

those pages without explicit questions and answers,740

we extract the text content as passages and proceed741

to question collection.742

Question collection We hire crowd-source work-743

ers at the Amazon MTurk platform to write ques-744

tions conditioned on the extracted passages. The745

workers are instructed not to ask too generic ques-746

tions or copy and paste directly from the passages.747

A qualification test with two sections is done to748

pick up the best performing workers. In the first749

section, the workers are asked to distinguish the750

good question from the bad ones for given pas-751

sages. The correct and incorrect questions were752

carefully designed to test various aspects of low-753

quality submissions we had received in the demo754

run. The second section is that writing a question755

given a passage. We manually review and score756

the questions. We paid 0.2$ to workers for each757

question.758

B Details of Feedback Collection759

We asked the workers to provide rating and natural760

language feedback for question-answer pairs. For761

qualification test, we labeled the rating for multiple762

pairs of questions and answers. The workers are763

selected based on their accuracy of rating labeling.764

We paid 0.4$ to workers for each feedback.765

C Details of Human Evaluation766

The worker assignment is done to make sure a767

worker rates the same question-answer pair only768

once. Otherwise there is risk that the workers just769

blindly give the same judgement for a certain QA770

pair.771

We adopt the qualification test similar to the772

one for feedback collection. We also include some773

dummy QA pairs, whose answer candidate were774

randomly sampled from the corpora, and we filter775

out the workers who fail to recognize them. We776

paid 0.3$ to workers for each QA pair.777

D Implementation Details778

Throughout the experiments, we have used 4 32-779

GB Nvidia Tesla V100. The hyperparameter (learn-780

ing rate, dropout rate) optimisation is performed781

for the RQA models only and standard fine-tuning782

lr Dropout

BERT (Bi-encoder) 5.0e-05 0.1
BERT (Poly-encoder) 5.0e-05 0.1
BART (Bi-encoder) 9.53e-05 0.01026
BART (Poly-encoder) 4.34e-05 0.1859
FEEDBACKRERANKER 5.0e-05 0.1

Table 8: Hyper-parameter setting of different variants
of QA models as well as EXPLAINRATE and RA-
TEONLY. There is no pooling operation in the latter
two models.

hyperparameters of BART are used for building the 783

FEEDBACKRERANKER model. We set batch size 784

as 16. We truncate the questions and passages to 785

50 and 512 tokens, respectively. The models are 786

trained with 40 epochs. For our hyperparameter 787

search, we have used 5 trials and while reporting 788

the final results the best hyperparameter variant’s 789

performance was averaged across 3 different runs. 790

All experiment runs were finished within 20 hours. 791

792

E Validation performance 793

In addition to the Poly-encoders, we also explore 794

Bi-encoder and we have found that its performance 795

is consistently worse. Table 9 presents the per- 796

formance of base QA models with different pre- 797

trained Transformer models and encoding methods 798

on the validation set. 799
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Methods Australia US Canada UK WHO All

BERT (Bi-encoder) 44.57 64.24 81.12 50.55 81.85 64.47
BERT (Poly-encoder) 47.25 65.30 81.49 48.50 81.19 64.75
BART (Bi-encoder) 47.13 67.62 86.01 55.06 85.48 68.26
BART (Poly-encoder) 49.17 66.98 85.75 54.27 87.46 68.73

Table 9: The accuracy of different RQA models on the validation set. All of the results are averaged across 3 runs.

Methods Australia US Canada UK WHO All

BART RQA model

BART RQA model 49.17 66.98 85.75 54.27 87.46 68.73
+ FEEDBACKRERANKER with
explanation-based rating

51.34 69.09 84.20 56.87 87.79 69.86

+ FEEDBACKRERANKER with
rating only

51.09 68.57 86.84 58.21 88.78 70.70

BERT RQA model

BERT RQA model 47.25 65.30 81.49 48.50 81.19 64.75
+ FEEDBACKRERANKER with
explanation-based rating

51.34 70.15 83.72 53.71 84.49 68.68

+ FEEDBACKRERANKER with
rating only

51.09 68.46 84.18 55.69 85.15 68.91

Table 10: Accuracy of PIPELINE models using different feedback data to train the re-ranker on the validation set.
All of the results are averaged across 3 runs.
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