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Abstract

Recent work using Rank-One Model Editing001
(ROME), a popular model editing method, has002
shown that there are certain facts that the al-003
gorithm is unable to edit without breaking the004
model. Such edits have previously been called005
disabling edits (Gupta et al., 2024a). These dis-006
abling edits cause immediate model collapse007
and limits the use of ROME for sequential edit-008
ing. In this paper, we show that disabling edits009
are an artifact of irregularities in the implemen-010
tation of ROME. With this paper, we provide011
a more stable implementation ROME, which012
we call r-ROME and show that model collapse013
is no longer observed when making large scale014
sequential edits with r-ROME, while further015
improving generalization and locality of model016
editing compared to the original implementa-017
tion of ROME.018

1 Introduction019

Large language models (LLMs) are expensive to020

train and the knowledge contained in these models021

gets obsolete with time. Model editing or knowl-022

edge editing (Yao et al., 2023) has recently come023

out as a popular method to update knowledge in024

large language models (LLMs). In this paper, we025

focus on one popular parameter-modifying model026

editing methods called ROME (Rank-One Model027

Editing) (Meng et al., 2022a). ROME is not only028

one of the most popular model editing algorithms,029

but is also widely used in unlearning (Patil et al.,030

2023) and model interpretability (Ghandeharioun031

et al., 2024; Geva et al., 2023) literature.032

While a lot of model editing approaches perform033

well when making singular edits, editing multi-034

ple facts in a model still remains a challenge for035

parameter-modifying model editing methods. One036

way to make multiple edits to the same model037

is through sequential editing (Yao et al., 2023)038

- where we make a series of single edits to a model039

by modifying the parameters of the model after040

Figure 1: A typical generation example after a disabling
edit is compared to a normal model edit using ROME.
The bold and underlined part in the text is input prompt.

every edit. Recent works have started studying the 041

effects of sequential editing and found that ROME 042

(Meng et al., 2022a) was prone to a sudden model 043

collapse by a single edit (Gupta et al., 2024a; Yang 044

et al., 2024; Hu et al., 2024). This effect was first 045

observed in Gupta et al. (2024a) during sequential 046

editing. The collapse included complete loss of 047

downstream performance, inability to recall previ- 048

ously editing facts and loss of the ability to even get 049

edited. Such facts were named disabling edits by 050

Gupta et al. (2024a) and were later independently 051

observed by Yang et al. (2024); Hu et al. (2024). 052

Disabling edits are detrimental for knowledge 053

editing at scale. While a gradual model degrada- 054

tion is expected as we make sequential edits to a 055

model (Gupta et al., 2024a), disabling edits lead to 056

a sudden model collapse irrespective of when the 057

disabling fact is edited, making sequential editing 058

impossible. An example of this can be seen in Fig- 059

ure 3a, where instead of allowing gradual model 060

degradation when doing sequential editing like in 061

Figure 4, the presence of disabling edits lead to a 062

sudden and immediate model collapse. 063

In this paper, we aim to find the source of these 064

disabling edits. We first introduce two metrics for 065

identifying disabling edits - generation entropy and 066

the norm of matrix update. We plot edits made 067

by ROME along these two dimensions and show 068

new ways of identifying disabling edits even when 069
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 99.92 99.68 96.29 71.58 75.8 10.25 89.32

r-ROME 99.74 97.79 99.09 70.86 80.62 26.0 92.22

p-ROME 99.9 99.36 97.04 63.01 80.0 5.74 91.42

Table 1: The above represents model editing results for 5000 singular model edits made on GPT-J-6B from the
CounterFact dataset (non-sequential).

making singular edits. As we dig deeper into the070

optimization objectives and the codebase of ROME,071

we find that the disabling edits in ROME are a result072

of irregularities in the implementation of ROME,073

and not an artifact of the optimization objective.074

Specifically, disabling edits were caused due to075

the asymmetric usage of key-vectors in the update076

equation of ROME. With this paper, we share our077

new ROME code-base and invite researchers to use078

it for model editing. Our implementation of ROME,079

which we call r-ROME, can be found here1.080

2 Background081

Facts are usually added in ROME using key-value082

format, where a key is the vector representation of083

a query-phrase and the value is the vector repre-084

sentation of the target object. For example, when085

adding a new fact - "The president of USA is John086

Cena", the query-phrase here is "The president of087

USA is" and the target object is "John Cena". The088

key-vector is defined by Meng et al. (2022a) is089

the activation of the first linear layer in the MLP090

targeted by ROME:091

k(l
∗)(x) = σ

(
W

(l∗)
fc γ

(
a
(l∗)
[x],i + h

(l∗−1)
[x],i

)
+ b

(l∗)
fc

)
(1)

092

Editing in ROME is done using a pair of vectors093

- (ke, ve) that represent a new fact being added. ke,094

also called the key-vector is a vector representation095

of the query-phrase, and ve, or the value-vector is096

the vector representation of the target object. The097

weights of the specific layer being edited in ROME098

are updated from W0 to Ŵ by inserting a new fact099

(ke, ve) using the following equation:100

Ŵ = W0 +∆

where ∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(2)101

1https://github.com/scalable-model-editing/
rebuilding-rome

where ∆ is the update to the current weight ma- 102

trix being edited such that the new fact (ke, ve) gets 103

incorporated. Additionally, each key-vector in ke 104

is not just the representation of a single prompt. 105

To enhance generalization, Meng et al. (2022a,b) 106

create the key-vector as an average representations 107

over the query-phrase with random prefixes. This is 108

done so that the represented key-vectors do not just 109

represent one way to phrase the query-phrase and 110

edits made using these representations can gener- 111

alize over different paraphrases of the edited facts. 112

The final key vector is found by averaging over N 113

random prefixes using the equation: 114

ke =
1

N

N∑
i=1

k(xi ⊕ p) (3) 115

Here k(xi ⊕ p) represents the key-vector corre- 116

sponding to a prefix xi being concatenated with 117

the original query-phrase p. Examples of prefixes 118

added in ROME can be seen in Table 3. In this 119

paper, we will refer to the averaged prefix represen- 120

tation of keys with ke, whereas when the represen- 121

tation just consists of the original prompt, we will 122

depict that with a superscript as koe . The following 123

equation explicitly differentiates between the two 124

mathematically: 125

koe = k(p) (4) 126

Evaluating Model Editing. Model editing is usu- 127

ally evaluated along three metrics - reliability, gen- 128

eralization and locality. Reliability represents if 129

a fact was successfully added in a model and is 130

measured using edit score (ES) and edit magni- 131

tude (EM) metrics. ES measures the portion of 132

cases when an edited fact is more probable than the 133

original fact post-editing, whereas EM measures 134

the difference in the probability magnitudes of the 135

edited and original facts. Generalization represents 136

if the edited fact is recalled through paraphrases of 137

the prompt used to edit the fact and is measured 138
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(a) ROME (b) r-ROME

Figure 2: This figure shows the difference between
the ROME and r-ROME updates on GPTJ (6B) for 5k
individual edits. Our implementation shows much less
potential disabling edits indicated by lower |∆| values.

using paraphrase score (PS) and paraphrase mag-139

nitude defined similary as above for paraphases of140

the edited facts. Locality represents if editing of141

one fact affects other facts stored inside a model142

and is measured using neighborhood score (NS)143

and neighborhood magnitude (NM) on facts unre-144

lated to the edited facts. The score metric is the145

harmonic mean of ES, PS and NS. We follow stan-146

dard model editing metrics proposed in the original147

ROME paper Meng et al. (2022a). We refer the148

reader to Yao et al. (2023); Meng et al. (2022a)149

for a more comprehensive review of model editing150

metrics.151

Additionally, we also evaluated the model on152

downstream task performance as proposed by153

(Gupta et al., 2024a), which becomes especially im-154

portant when making sequential edits to the same155

model. We evaluate the edited model on four tasks156

from the GLUE (Wang et al., 2018) benchmark -157

sentiment analysis (SST2), paraphrase detection158

(MRPC), natural language inference (NLI) and lin-159

guistic acceptability classification for doing down-160

stream evaluation.161

3 Experiments162

3.1 Properties of Disabling Edits163

Disabling edits (Gupta et al., 2024a) are defined164

as singular knowledge edits that lead to sudden165

loss of ability to do downstream tasks or any kind166

of meaningful generation. Gupta et al. (2024a)167

also showed one way of identifying disabling edits168

was the unusually large norm of the update matrix.169

In other words, |∆| in equation 2 was unusually170

higher when compared to normal edits.2171

Figure 1 shows a typical example of model col-172

lapse where the model constantly repeats a single173

word. The simplest metric to identify such a model174

2|∆| = ∥∆∥2/N is the L2 norm of the update matrix
normalized by the number of elements in the update matrix.

collapse is to calculate the entropy over the prob- 175

ability distribution of vocabulary elements of text 176

generated from the model. For this, a probability 177

distribution is calculated over the vocabulary of a 178

sample generation consisting of ten generations, 179

and is normalized by the vocabulary size to remove 180

the effect of the size of vocabulary. If the model 181

collapses as shown in Figure 1, we expected the 182

normalized entropy to be small and concentrated 183

around a handful of words. 184

The first set of experiments we do is to search 185

for disabling edits. We do this by making singular 186

model edits using ROME on GPT-J and GPT2-XL 187

using the CounterFact dataset to replicate the condi- 188

tions where disabling edits occurred in prior work. 189

We measure the above mentioned metrics as shown 190

in Figure 2(a) for GPT-J. Similar patterns are ob- 191

served for GPT2-XL and are shown in Figure 5 192

(appendix). When editing facts from the Coun- 193

terFact dataset, we see two clusters forming. We 194

find that certain edits have larger values of |∆| for 195

ROME, indicating the presence of disabling edits. 196

3.2 Fixing ROME 197

After finding signals of disabling edits while mak- 198

ing singular edits, we perform sequential editing 199

with ROME. Every iteration of sequential editing 200

with ROME leads to model collapse similar to Fig- 201

ure 3(a). This collapse occurs at random points 202

during the editing process at one of the facts that 203

clustered away in Figure 2(a). After a long inquiry 204

into the optimization objective of ROME, we found 205

no reason for |∆| of certain edits to be so large. We 206

then turned to the implementation of ROME and 207

found some interesting discrepancies. Although 208

seemingly benign, these discrepancies eventually 209

lead to disabling edits. The core reason behind dis- 210

abling edits is that instead of implementing equa- 211

tion 2 as mentioned in the paper, the authors of 212

ROME (Meng et al., 2022a) implement the follow- 213

ing equation for ∆: 214

∆imp = (ve −W0k
o
e)

kTe C
−1
0

kTe C
−1
0 ko

e

(5) 215

where ∆imp represents the actual implementa- 216

tion of ∆ in the code by Meng et al. (2022a), 217

with the difference highlighted in bold. The dif- 218

ference in implementation and original derivation 219

of ROME is the use of two different types of key 220

vectors. Rather than using key-vectors that average 221

over prefix prompts or ke (eq 3), the authors end 222
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DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 62.43 11.23 59.12 7.49 52.05 −0.05 57.53

r-ROME 97.92 72.14 96.23 54.97 59.52 0.16 80.20

p-ROME 99.94 95.31 94.05 55.22 52.57 −1.54 75.64

Table 2: We find that our implementations (r-ROME & and p-ROME) retains edit performance significantly more
than the original implementation of ROME on standard model editing metrics for GPT-J-6B. We use the same 5k
CounterFact examples from as Table 1 sequentially.

(a) Downstream Evaluation (b) |∆|

Figure 3: Sequential editing using original implementa-
tion of ROME on GPT-J (6B).

up using koe (eq 4) is certain places in the update223

equation. We find that this asymmetry in usage224

of the key-vector causes disabling edits.225

To fix this issue, we create homogeneity in the226

usage of the key-vectors. We first use ke every-227

where in the update equation, an implementation228

we refer to as r-ROME. This is the correct imple-229

mentation of ROME as originally intended by the230

authors of Meng et al. (2022a). We then use keys231

generated using only the original prompts or koe232

homogeneously in the update equation, referred to233

as p-ROME. This also tests the hypothesis that234

using a key-vector averaged over random prefixes235

can create more generalizable edits.236

The first evidence of removal of disabling edits237

can be seen in Figure 2, where the |∆| of the up-238

dates are orders of magnitude smaller for r-ROME239

when compared to the original implementation.240

The overall results for independent edits are shown241

in Table 1. We find that edits made using r-ROME242

create more generalized edits at the slight expense243

of efficacy, resulting in a higher total edit score244

than the original implementation. p-ROME leads245

to increased efficacy and worse generalization re-246

sulting in a slightly lower edit score. This shows247

that homogeneity in using key-vectors is crucial in248

making model edits.249

3.3 Sequential Editing with r-ROME250

The final litmus test of r-ROME is to study its per-251

formance during large scale sequential editing. Fig-252

(a) Downstream Evaluation (b) |∆|

Figure 4: Sequential editing with r-ROME on GPT-J.

ure 3 shows a typical case of sequential editing us- 253

ing the original ROME code-base for GPT-J, where 254

the presence of a disabling edit leads to large |∆| 255

and model collapse, as can be seen by an imme- 256

diate loss of downstream performance in Figure 257

3a. With r-ROME (Figure 4), we see that |∆| is or- 258

ders of magnitude smaller and increases smoothly, 259

which allows the model to maintain its general abil- 260

ities and avoids model collapse. This enables large 261

scale sequential model editing without loss of per- 262

formance. The final model editing metrics after 263

5000 sequential edits for GPT-J are shown in Fig- 264

ure 2, with r-ROME significantly outperforming 265

the original implementation of ROME. Additional 266

sequential editing results using p-ROME and GPT- 267

XL can be found in section B. 268

4 Conclusion 269

In this paper, we show that model edits made us- 270

ing the original implementation of ROME lead to 271

unstable model edits eventually causing model col- 272

lapse. Our re-implementations of ROME, called 273

r-ROME (code) prevents model collapse and leads 274

to stable and scalable model edits, thus making 275

sequential editing possible using ROME. We be- 276

lieve that such an improvement to the algorithm 277

should be available to the widespread community, 278

especially due to the potential impact and reach of 279

ROME. 280
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5 Limitations281

The focus of our paper was to identify reasons be-282

hind model collapse when using ROME and to283

mitigate such effects. While r-ROME does that284

and enables sequential editing with ROME, down-285

stream performance degradation and decreased sta-286

bility (as observed from increasing |∆|) still occurs287

at scale. This is an inherent limitation of ROME288

that we do not overcome and is beyond the scope289

of this paper.290
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Figure 5: This figure shows distribution of edits along
|Delta| and Normalized Entropy metric for edits us-
ing the original ROME implementation on CounterFact
dataset for GPT2-XL.

A Related Work343

Recent works (Gupta et al., 2024a; Yang et al.,344

2024; Hu et al., 2024) also observe the phe-345

nomenon of disabling edits as a result of perform-346

ing sequential edits with parametric methods such347

as ROME and MEMIT (Meng et al., 2022b). The348

sequential model editing task proves to be more349

difficult for parametric editing methods at scale350

due to model saturation and catastrophic forgetting.351

Non-parametric methods such as SERAC (Mitchell352

et al., 2022) bypass this limitation by maintaining353

an external edit memory that removes the distinc-354

tion between batched (simultaneous) and sequen-355

tial edits. We primarily focus on single edits via356

ROME in this paper, however, sequential editing357

can be combined with batching for better scalability358

(Gupta et al., 2024b).359

B Additional Sequential Editing360

Experiments361

The results for sequential edits on GPT-J are shown362

in Table 2. We indeed find that edits made us-363

ing r-ROME create more generalized edits at the364

slight expense of efficacy as in 1 but downstream365

performance is retained at scale. The original im-366

plementation’s downstream performance collapses367

almost immediately (3). p-ROME surprisingly re-368

tains downstream performance better than r-ROME369

at the tail end of the sequential edits. We suspect370

this is related to the instability and noise the ran-371

dom prefixes induce: r-ROME n-gram entropies372

are more widely distributed than p-ROME (2).373

We observe similar trends in the sequentuial edit-374

ing scenario with GPT2-XL 1.5B as with GPT-J375

6B. Notably, p-ROME performs worse in the down-376

stream evaluations than r-ROME, we postulate that377

this is due to the poorer generalization ability of378

the smaller model; GPT-J’s generalization abilities379

(a) Downstream Evaluation (b) |∆|

Figure 6: Sequential editing with p-ROME on GPT-J
(6B).

seem to bridge the downstream performance gap 380

between r-ROME and p-ROME. 381

(a) Downstream Evaluation (b) |∆|

Figure 7: Sequential editing using original implementa-
tion of ROME on GPT2-XL (1.5B) on the 5K Counter-
Fact samples.

(a) Downstream Evaluation (b) |∆|

Figure 8: Sequential editing with r-ROME on GPT2-XL
(1.5B) on the 5K CounterFact samples.
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Original Prompt The President of the USA is

Prefix Prompts The President of the USA is
Therefore, I like. The President of the USA is
He is a. The President of the USA is
Today is a sunnay day. The President of the USA is
On this day. The President of the USA is

Table 3: Table showing examples of random prefixes xi from 3 added to the original query-phrase.

DATASET IMPLEMENTATION
Efficacy Generalization Locality Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ S ↑

CF ORIGINAL 99.94 97.92 96.38 62.2 75.8 4.33 89.35

r-ROME 98.98 93.35 95.75 59.65 76.39 4.63 89.18

p-ROME 99.68 97.68 (88.67 46.6 76.28 4.59 87.15

Table 4: Comparing the original implementation of ROME with (r-ROME & and p-ROME) for 5k non-sequential
edits for GPT2-XL.

(a) Downstream Evaluation (b) |∆|

Figure 9: Sequential editing with p-ROME on GPT2-
XL (1.5B) on the 5K CounterFact samples.
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