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Abstract

We study an online learning problem in general-
sum Stackelberg games, where players act in a
decentralized and strategic manner. We study two
settings depending on the type of information for
the follower: (1) the limited information setting
where the follower only observes its own reward,
and (2) the side information setting where the fol-
lower has extra side information about the leader’s
reward. We show that for the follower, myopically
best responding to the leader’s action is the best
strategy for the limited information setting, but not
necessarily so for the side information setting – the
follower can manipulate the leader’s reward sig-
nals with strategic actions, and hence induce the
leader’s strategy to converge to an equilibrium that
is better off for itself. Based on these insights, we
study decentralized online learning for both play-
ers in the two settings. Our main contribution is
to derive last-iterate convergence and sample com-
plexity results in both settings. Notably, we design
a new manipulation strategy for the follower in
the latter setting, and show that it has an intrinsic
advantage against the best response strategy. Our
theories are also supported by empirical results.

1 INTRODUCTION

Many real-world problems such as optimal auction [My-
erson, 1981, Cole and Roughgarden, 2014] and security
games [Tambe, 2011] can be modeled as a hierarchical
game, where the two levels of players have asymmetric
roles and can be partitioned into a leader who first takes
an action and a follower who responds to the leader’s ac-
tion. This class of games is called Stackelberg or leader-
follower games [Stackelberg, 1934, Sherali et al., 1983].
General-sum Stackelberg games [Roughgarden, 2010] are

a class of Stackelberg games where the sum of the leader’s
and follower’s rewards is not necessarily zero. They have
broad implications in many other real-world problems such
as taxation policy making [Zheng et al., 2022], automated
mechanism design [Conitzer and Sandholm, 2002], reward
shaping [Leibo et al., 2017], security games [Gan et al.,
2018, Blum et al., 2014], anti-poaching [Fang et al., 2015],
and autonomous driving [Shalev-Shwartz et al., 2016].

We focus on the setting of a pure strategy in repeated general-
sum Stackelberg games follows that of Bai et al. [2021],
where players act in an online, decentralized, and strate-
gic manner. Online means that the players learn on the go
as opposed to learning in batches, where regret is usually
used as the learning objective. Decentralized means that
there is no central controller, and each player acts indepen-
dently. Strategic means that the players are self-interested
and aim at maximizing their own utility. Moreover, we take
a learning perspective, meaning that the players learn from
(noisy) samples by playing the game repeatedly. A compa-
rable framework has been investigated in numerous related
studies [Kao et al., 2022], finding widespread applications in
diverse real-world scenarios, such as addressing the optimal
taxation problem in the AI Economist [Zheng et al., 2022]
and optimizing auction procedures [Amin et al., 2013].

There have been extensive studies on decentralized learning
in multi-agent games [Blum and Mansour, 2007, Wu et al.,
2022, Jin et al., 2021, Meng et al., 2021, Wei et al., 2021,
Song et al., 2021, Mao and Başar, 2023, Zhong et al., 2023,
Ghosh, 2023], mostly focusing on settings where all agents
act simultaneously, without a hierarchical structure. Multi-
agent learning in Stackelberg games has been relatively
less explored. For example, Goktas et al. [2022], Sun et al.
[2023] study zero-sum games, where the sum of rewards of
the two players is zero. Kao et al. [2022], Zhao et al. [2023]
study cooperative games, where the leader and the follower
share the same reward. Though these studies make signifi-
cant contributions to understanding learning in Stackelberg
games, they make limiting assumptions about the reward
structures of the game. The first part of this paper studies the



learning problem in a more generalized setting of general-
sum Stackelberg games. Due to the lack of knowledge of
the reward structures, learning in general-sum Stackelberg
games is much more challenging, and thus remains open.

Furthermore, in these studies [Goktas et al., 2022, Sun et al.,
2023, Kao et al., 2022, Zhao et al., 2023], a hidden assump-
tion is that the optimal strategy of the follower is to best
respond to the leader’s strategy in each round. Recent stud-
ies [Gan et al., 2019a,b, Nguyen and Xu, 2019, Birmpas
et al., 2020, Chen et al., 2022, 2023] show that under in-
formation asymmetry, a strategic follower can manipulate
a commitment leader by misreporting their payoffs, so as
to induce an equilibrium different from Stackelberg equi-
librium that is better-off for the follower. The second part
of this paper extends this intuition to an online learning
setting, where the leader learns the commitment strategy
via no-regret learning algorithms (e.g., EXP3 [Auer et al.,
2002b] or UCB [Auer et al., 2002a]).

We use an example online Stackelberg game to further illus-
trate this intuition, the (expected) payoff matrix of which
is shown in Table 1. By definition, (ase, bse) = (a1, b1) is
its Stackleberg equilibrium. This is obtained by assuming
that the follower will best respond to the leader’s action. In
online learning settings, when the leader uses a no-regret
learning algorithm, and the (strategic) follower forms a re-
sponse function as F = {F(a1) = b2,F(a2) = b1}, then
the leader will be tricked into believing that the expected
payoffs of actions a1 and a2 are respectively 0.1 and 0.2.
Hence, the leader will take action a2 when using the no-
regret learning algorithms, and the game will converge to
(a2, b1), where the follower has a higher payoff of 1 com-
pared to 0.1 in the Stackleberg equilibrium.

Leader / Follower b1 b2
a1 (0.3, 0.1) (0.1, 0.05)
a2 (0.2, 1) (0.3, 0.1)

Table 1: Payoff matrix of an example Stackelberg game. The
row player is the leader. Each tuple denotes the payoffs of
the leader (left) and the follower (right).

The insights gained from the above example can be general-
ized. In the following, we introduce two different categories
of general-sum Stackelberg games that are distinguished by
whether the follower has access to the information about the
reward structure of the leader: (i) limited information: the
follower only observes the reward of its own, and (ii) side
information: the follower has extra side information of the
leader’s reward in addition to itself.

In the limited information setting, the follower is not able
to manipulate the game without the leader’s reward infor-
mation. Therefore, best responding to the leader’s action is
indeed the best strategy. This constitutes a typical general-
sum Stackelberg game. Our contribution in this setting is to
prove the convergence of general-sum Stackelberg equilib-

rium when both players use (variants of) no-regret learning
algorithms. Note that this is a further step after [Kao et al.,
2022] who focus on cooperative Stackelberg games where
the two players share the same reward. In addition, we
prove last-iterate convergence [Mertikopoulos et al., 2018,
Daskalakis and Panageas, 2018, Lin et al., 2020, Wu et al.,
2022] results, which are considered stronger than the aver-
age convergence results.

In the side information setting, we first consider the case
when the follower is omniscient, i.e., it knows both players’
exact true reward functions. Building on the intuition from
the above example, we design FBM, a manipulation strategy
for the follower and prove that it gains an intrinsic advantage
compared to the best response strategy. Then, we study a
more intricate case called noisy side information, where
the follower needs to learn the leader’s reward information
from noisy bandit feedback in the online process. We design
FMUCB, a variant of FBM that finds the follower’s best
manipulation strategy in this case, and derive its sample
complexity as well as last-iterate convergence. Our results
complement existing works [Birmpas et al., 2020, Chen
et al., 2022, 2023] that focus on the learning perspective
of only the follower against a commitment leader in offline
settings.

To validate the theoretical results, we conduct synthetic ex-
periments for the above settings. Empirical results show that:
1) in the limited information setting, (variants of) no-regret
learning algorithms lead to convergence of Stackelberg equi-
librium in general-sum Stackelberg games, 2) in the side
information setting, our proposed follower manipulation
strategy does introduce an intrinsic reward advantage com-
pared to best responses, both in the cases of an omniscient
follower and noisy side information.

2 RELATED WORK

Decentralized learning in simultaneous multi-agent
games. This line of works has broad real-world applica-
tions, e.g., when multiple self-interested teams patrol over
the same targets in security domains [Jiang et al., 2013] or
wildlife conservation [Ministry of WWF-Pakistan, 2015], or
when different countries that independently plan their own
actions in international waters against illegal fishing [Klein,
2017]. There have been extensive studies in this category
[Blum and Mansour, 2007, Wu et al., 2022, Jin et al., 2021,
Meng et al., 2021, Wei et al., 2021]. The seminal work
of Blum and Mansour [2007] shows that decentralized no-
regret learning in multi-agent general-sum games leads to
a coarse correlated equilibrium (CCE). The result has been
improved using more sophisticated methods like optimistic
hedge [Daskalakis et al., 2021, Chen and Peng, 2020, Anag-
nostides et al., 2022]. Jin et al. [2021], Liu et al. [2021] study
a similar question in Makov games that involves sequential
decision and reinforcement learning.



Learning in Stackelberg games. While our work also fo-
cuses on decentralized learning, we focus on learning in
Stackelberg games where the players act sequentially. Lauf-
fer et al. [2022] study a different setting than ours where the
leader first commits to a randomized strategy, and the fol-
lower observes the randomized strategy and best responds to
it. Such a setting also appears in Balcan et al. [2015]. In our
setting, the leader first plays a deterministic action, and the
follower responds to the action after observing it, a setting
that is closer to Bai et al. [2021], Kao et al. [2022]. Many
past works about learning in Stackelberg games, like secu-
rity games [Blum et al., 2014, Peng et al., 2019, Balcan et al.,
2015, Letchford et al., 2009], only focus on learning from
the leader’s perspective, assuming access to an oracle of
the follower’s best response. More recently, there have been
rising interests for Stackelberg games involving learning of
both players [Goktas et al., 2022, Sun et al., 2023, Kao et al.,
2022, Zhao et al., 2023]. They focus on sub-classes of games
with specific reward structures. Goktas et al. [2022], Sun
et al. [2023] study zero-sum stochastic Stackelberg games
where the sum of rewards of the two players is zero. Kao
et al. [2022], Zhao et al. [2023] study cooperative Stack-
elberg games where the leader and the follower share the
same reward. We study general-sum Stackelberg games, a
more generalized setting without assuming specific reward
structures like the above. The lack of prior knowledge of
the reward structures, however, makes the learning problem
much more challenging. As a matter of fact, learning in
repeated general-sum Stackelberg games remains an open
problem. The setting in Bai et al. [2021] is closer to us,
where it also learns general-sum Stackelberg equilibrium
from noisy bandit feedback. But their learning process needs
a central device that queries each leader-follower action pair
for sufficient times, making it essentially a centralized model
or offline learning. We study an online learning problem in
repeated general-sum Stackelberg games, where the players
act in a decentralized and strategic manner. Last and very
importantly, a hidden assumption in these works is that the
follower’s best strategy is to best respond to the leader’s
actions. In addition to studying Stackelberg games with a
best-responding follower (Section 4), we also take a new
perspective of a manipulative follower (Sections 5-6), and
show that manipulative strategies can indeed yield higher
payoff for the follower in an online learning setting.

Follower manipulation in Stackelberg games. It is known
that the leader has the first-mover advantage in Stackelberg
games: an optimal commitment in a Stakelberg equilibrium
always yields a higher (or equal) payoff for the leader than
in any Nash equilibrium of the same game [Von Stengel
and Zamir, 2010]. This result is under the assumption that
the leader has full information about the follower’s reward,
or that it can learn such information via interacting with a
truthful follower [Letchford et al., 2009, Blum et al., 2014,
Haghtalab et al., 2016, Roth et al., 2016, Peng et al., 2019].
In other words, they assume that follower will always play

myopic best responses to the leader’s strategy. Recent stud-
ies showed that a follower can actually manipulate a com-
mitment leader, and induce an equilibrium different from the
Stackelberg equilibrium by misreporting their payoffs [Gan
et al., 2019a,b, Nguyen and Xu, 2019, Birmpas et al., 2020,
Chen et al., 2022, 2023]. In parallel with these works, we
consider an online learning setup where both players learn
their best strategies from noisy bandit feedback. This is in
contrast to the above existing works which take the learn-
ing perspective of only the follower against a commitment
leader in an offline setup.

3 PRELIMINARY

A general-sum Stackelberg game is represented as a tu-
ple {A,B, µl, µf}. A represents the action set of leader l,
B represents the action set of follower f , and |A| = A,
|B| = B. We denote A×B the joint action set of the leader
and the follower. For any joint action (a, b) ∈ A × B, we
use rl(a, b) ∈ [0, 1] and rf (a, b) ∈ [0, 1] to respectively
denote the noisy reward for the leader and the follower,
with expectations µl(a, b) ∈ [0, 1] and µf (a, b) ∈ [0, 1].
The follower has a response set to the leader’s actions,
F = {F(a)|a ∈ A}, where F(a) is the response to leader’s
action a. The follower’s best response towards a is defined
as the action that maximizes the follower’s true reward:

Fbr(a) = argmax
b∈B

µf (a, b), (1)

We denote Fbr = {Fbr(a)|a ∈ A} as the best response set.
For simplicity, we assume that the best response to each
action a is unique and the game has a unique Stackelberg
equilibrium (ase, bse),

ase = argmax
a∈A

µl(a,Fbr(a)), bse = Fbr(ase). (2)

A repeated general-sum Stackelberg game is played itera-
tively in a total of T rounds. In each round t, the procedure
is as follows:

• The leader plays an action at ∈ A.
• The follower observes the leader’s action at, and plays
bt = Ft(at) as the response.

• The leader receives a noisy reward rl,t(at, bt).
• The follower receives reward information rt(at, bt) which

we will elaborate more in the following.

In the last step, as motivated by the example in Table 1, we
study two types of settings depending on the kind of reward
information that is available to the follower:

• Limited information. The follower observes a (noisy)
reward of its own: rt(at, bt) = rf,t(at, bt).

• Side information. The follower has extra side informa-
tion, meaning that it also knows the reward of the leader
in addition to its own. This setting can be further divided



into the case of an omniscient follower who knows the
exact reward functions µl and µf directly; or the case
of noisy side information where the follower learns the
rewards from noisy bandit feedback in each round, i.e.,
rt(at, bt) = (rl,t(at, bt), rf,t(at, bt)).

In the following, we will present our results for the limited
information setting (Section 4), the omniscient follower
setting (Section 5) and the noisy side information setting
(Section 6).

4 A MYOPIC FOLLOWER WITH
LIMITED INFORMATION

We first investigate the follower learning problem with lim-
ited information, where the best response is truly the fol-
lower’s best strategy. Then, We design appropriate online
learning algorithms for the leader and prove their last-iterate
convergence for the entire game involving both players.

4.1 ALGORITHM FOR THE MYOPIC FOLLOWER

In the limited information setting, the follower does not
know the entire game’s payoff matrix, and therefore does
not have the ability to manipulate the game. Hence, my-
opically learning the best response for each action a ∈ A
is indeed the best strategy for the follower. The learning
problem for the follower then is equivalent to A indepen-
dent stochastic bandit problems, one for each a ∈ A that
the leader plays. Upper Confidence Bound (UCB) is a good
candidate algorithm for the follower as it is asymptotically
optimal in stochastic bandits problems [Bubeck et al., 2012].

In each round t, the follower selects its response based on
UCB:

bt = argmax
b∈B

ucbf,t(at, b),

where ucbf,t(a, b) = µ̂f,t(a, b) +
√

2 log(T/δ)
nt(a,b)

. nt(a, b) =

max
{
1,
∑t−1

τ=1 I {aτ = a ∧ bτ = b}
}

is the number of
times that action pair (a, b) has been selected, and µ̂f,t(a, b)
is the empirical mean of the follower’s reward for (a, b):

µ̂f,t(a, b) =
1

nt(a, b)

t−1∑
τ=1

rf,τ (aτ , bτ )I {aτ = a ∧ bτ = b} .

Following the result of [Auer et al., 2002a], for every
stochastic bandit problem associated to a ∈ A, UCB needs
approximatelyO

(
B log T

∆2
1

)
rounds to find the best response,

where ∆1 is the suboptimality gap to best response for all
a ∈ A,

∆1 = min
a∈A

min
b̸=Fbr(a)

µf (a,Fbr(a))− µf (a, b).

This directly leads to the following proposition:

Proposition 1. In a repeated general-sum Stackelberg game,
if the follower uses UCB as the learning algorithm, with
probability at least 1− δ, the follower’s regret is bounded
as:

RS
f (T ) = E

[
T∑

t=1

µf (at,Br(at))− µf (at, bt)

]

≤ O
(
AB log(T/δ)

∆1

)
.

This proposition shows that a myopic follower achieves no
Stackelberg regret learning when it decomposes the Stack-
elberg game into A stochastic bandits problems and uses
the UCB algorithm to respond, no matter what learning
algorithm the leader uses.

It should be emphasized that the utilization of arbitrary no-
regret algorithms does not inherently ensure the convergence
to the Stackelberg equilibrium in the general-sum Stackel-
berg game. The following result is provided to support this
critical observation:

Theorem 1. [Non-Convergence to the SE] Applying the
UCB-UCB algorithm within a repeated general-sum Stack-
elberg game can result in the leader suffering regret linear
in T , which implies the game fails to converge to the Stack-
elberg equilibrium.

So to further understand the convergence of the entire game,
we investigate two kinds of algorithms for the leader, a UCB-
style algorithm and an EXP3-style algorithm, two of the
most prevalent algorithms in the online learning literature.
Combining the follower’s UCB algorithm, we have two de-
centralized learning paradigms: EXP3-UCB and UCB-UCB.
It is worth noting that UCB-UCB is also studied in Kao et al.
[2022] which focuses on a cooperative Stackelberg game
setting. In the following, we present our first two major
results on the last-iterate convergence for the two learning
paradigms.

4.2 LAST-ITERATE CONVERGENCE OF
EXP3-UCB

We next introduce a variant of EXP3 for the leader.
We denote the unbiased reward estimation of the re-
ward rl,t(a,Ft(a)) the leader receives in round t as
r̃t(a) =

rl,t(a,Ft(a))
x̃t(a)

I{at = a}, where xt(a) is the weight
for each action a ∈ A. It is updated as xt+1(a) =

exp(yt(a))∑
a∈A exp(yt(a))

, where yt(a) =
∑t

τ=1 ηr̃τ (a). Let xt =

⟨xt(a)⟩ be the weight vector of all actions a ∈ A. It
is initialized as a discrete uniform distribution: x1 =
[1/A, · · · , 1/A]⊤. In round t, the leader selects action at
according to the distribution

x̃t = (1− α)xt + α[1/A, · · · , 1/A]⊤.



The second term on the right-hand side enforces a random
probability of taking any action in A to guarantee a mini-
mum amount of exploration. As we will show in our proof
of Theorem 2, the extra α exploration is essential to the
convergence to Stackelberg equilibrium as it allows the fol-
lower to do enough exploration to find its best responses
using its UCB sub-routine. In the following, we will simply
use EXP3 to refer to the above variant of EXP3 with the
explicit uniform exploration.

Theorem 2. [Last-iterate convergence of EXP3-UCB under
limited information] In a limited information setting of a
repeated general-sum Stackelberg game with noisy bandit
feedback, applying EXP3-UCB, with α = O

(
T− 1

3

)
, η =

O
(
T− 1

3

)
, with probability at least 1− 3δ,

P
[
aT ̸= ase

]
≤ α+

A exp

(
−∆2T

2
3 + 2

√
2A log

2

δ
T

1
3 +

C1AB

∆2
1

log
T

δ
log

1

δ

)
,

where C1 is a constant, ∆2 is the leader’s suboptimality
reward gap to Stackelberg equilibrium:

∆2 = min
a ̸=ase

µl(ase, bse)− µl(a,Fbr(a)).

The proof is in Appendix A.2.

4.3 LAST-ITERATE CONVERGENCE OF
UCBE-UCB

When the leader uses a UCB-style algorithm, to guaran-
tee that the game converges to the Stackelberg equilib-
rium, it requires that the UCB term will always upper
bound µl(a,Fbr(a)) with high probability. This is not
guaranteed with a vanilla UCB algorithm (Theorem 1)
since the follower’s response is unstabilized and not nec-
essarily the best response before the follower’s UCB al-
gorithm converges. Therefore, we introduce a variant of
UCB, called UCB with extra Exploration (UCBE), with a
bonus term S0 that ensures upper bounding µl(a,Fbr(a))
with high probability. In UCBE, the leader chooses action
at = argmaxa∈A ucbel,t(a) in round t as follows

ucbel,t(a) = µ̂l,t(a)+

√
S0

nt(a)
, S0 = O

(
B

ε3
log

ABT

δ

)
.

(3)
Here ε = min {∆1,∆2}, µ̂l,t(a) is the em-
pirical mean of leader’s action a: µ̂l,t(a) =

1
nt(a)

∑t−1
τ=1 rf,τ (aτ , bτ )I {aτ = a}, and nt(a) =

max
{
1,
∑t−1

τ=1 I {aτ = a}
}

.

Theorem 3. [Last-iterate convergence of UCBE-UCB un-
der limited information] In a limited information setting of

a repeated general-sum Stackelberg game with noisy bandit
feedback, applying UCBE-UCB with S0 = O

(
B
ϵ3 log

ABT
δ

)
,

ε = min{∆1,∆2}, for T ≥ O
(

AS0

∆2
1

)
, with probability at

least 1− 3δ, we have:

P
(
aT ̸= ase

)
≤ δ

T
.

The proof is in Appendix A.3. This result shows that the
game last-iterate converges to Stackelberg equilibrium using
the decentralized online learning paradigm UCBE-UCB. It
is worth noting that this is a further step after Kao et al.
[2022] who prove average convergence of UCB-UCB in
cooperative Stackelberg games.

5 A MANIPULATIVE AND OMNISCIENT
FOLLOWER

In some real-world settings, the follower has extra side in-
formation about the leader’s reward structure. As shown in
the example in Table 1, a strategic follower can use that in-
formation to manipulate the leader’s learning and induce the
convergence of the game into a more desirable equilibrium.
To start with, we study a simpler case where the follower
is omniscient [Zhao et al., 2023], i.e., it knows the exact
true rewards of the players. A manipulative follower aims
to maximize its average reward:

max
F

1

T

∑T

t=1
µf (at,F(at)), T →∞, (4)

where the leader’s action sequence {at}Tt=1 is generated
by the leader’s no-regret learning algorithm. When the fol-
lower uses the response setF , the leader (who only observes
its own reward signals) will take actions that maximize its
own reward given F . When F is fixed, the learning prob-
lem for the leader reduces to a classical stochastic bandit
problem, and the true reward for each action a ∈ A is
µl(a,F(a)). The leader will eventually learn to take ac-
tion a′ ∈ argmaxa∈A µl(a,F(a)) when using no-regret
learning. This implies that the leader can be misled by the
follower’s manipulation.

Formulating the leader’s action selection as a constraint,
when T →∞ (i.e., at equilibrium), the above equation can
be re-written in a more concrete form as:

max
F,(a′,b′)

µf (a
′, b′)

s.t. µl(a
′, b′) > max

a̸=a′
µl(a,F(a)), b′ = F(a′)

(5)

For simplicity, we do not consider the tie-breaking rules
for the leader. A more general formulation considering tie-
breaking rules for the leader is discussed in Appendix C.
For a manipulation strategy F , it is associated with an
action pair (a′, b′). We call {F , (a′, b′)} a qualified ma-
nipulation if it satisfies the constraint in Eq.(5). We de-
note an optimal solution for the follower as Fopt, and



afm = argmaxa∈A µl(a,Fopt(a)), bfm = Fopt(afm).
We assume that (afm, bfm) is unique for simplicity. We
can verify that {Fbr, (ase, bse)} is a qualified manipulation:

µl(ase, bse) > max
a̸=ase

µl(a,Fbr(a)).

Because (afm, bfm) corresponds to the optimal manipula-
tion (thus maximal reward), we have:

Proposition 2. For any general-sum Stackelberg game with
reward class µl(·, ·), µf (·, ·), if the Stackelberg equilibrium
is unique, then the reward gap between (afm, bfm) and
(ase, bse) satisfies:

Gap(afm, ase) = µf (afm, bfm)− µf (ase, bse) ≥ 0. (6)

The second equality holds if and only if (ase, bse) =
(afm, bfm).

5.1 FOLLOWER’S BEST MANIPULATION (FBM)

Algorithm 1: Follower’s best manipulation (FBM)
Input: Candidate set K = A× B, µl(·, ·), µf (·, ·)

1: Candidate manipulation pair
(a′, b′) = argmax(a,b)∈K µf (a, b)

2: F = {F(a′) = b′} ∪ {F(a) = wr(a) =
argminb∈B µl(a, b) : a ̸= a′}

3: if maxa̸=a′ µl(a,F(a)) ≥ µl(a
′, b′) then

4: Eliminate (a′, b′) from candidate set:
K ← K\(a′, b′)

5: Return to Line 1
6: end if

Output: The response function Fopt = F

Based on the insights from the example in Table 1 and
Proposition 2, we propose Follower’s Best Manipulation
(FBM, Algorithm 1), a greedy algorithm that finds the best
manipulation strategy for an omniscient follower. On the
high level, the key idea is to find a response set F that exag-
gerates the difference in the leader’s reward when using a′

(an action that leads to a large follower’s reward) compared
to other actions (Line 2).

K is the candidate manipulation pair set which is initial-
ized as the entire action space A× B. It starts by selecting
the potential manipulation pair (a′, b′) from the candidate
set K which maximizes uf (·, ·) (Line 1). It then forms the
manipulation strategy (response set) that returns minimum
leader’s reward minb∈B µl(a, b) for a ̸= a′, and maximum
leader’s reward µl(a

′, b′) when plays a′ (Line 2). Here with
a bit abuse of notation, wr(a) stands for the follower’s worst
response that induces the lowest leader’s reward

wr(a) = argmin
b∈B

µl(a, b).

Next (Line 3), it verifies if the current {F , (a′, b′)} is a
qualified manipulation. If it is, then F is the optimal manip-
ulation strategy since the associated manipulation pair leads
to maximum reward for the follower. Hence, it exits the
loop and returns the final solution Fopt = F . Otherwise, the
algorithm eliminates (a′, b′) from K and repeats the process
(Lines 4-5).

Under the follower’s best manipulation strategy, the leader’s
problem reduces to a stochastic bandit problem, where the
reward for each action a ∈ A is µl(a,Fopt(a)), and the
suboptimality gap is

∆3 = min
a̸=afm

µl(afm, bfm)− µl(a,wr(a)).

Proposition 3. In a repeated general-sum Stackelberg game
with a unique Stackelberg equilibrium, if the leader uses a
no-regret learning algorithm C and the follower uses the
best manipulation Fopt,

1

T

∑T

t=1
µf (at,Fopt(at))

=
1

T

∑T

t=1
µf (āt,Fbr(āt)) + Gap(afm, ase) + δ(T ),

where δ(T )→ 0 as T →∞, {at}Tt=1 is generated by Algo-
rithm C and Fopt, and {āt}Tt=1 is generated by Algorithm C
and Fbr.

When the follower keeps using the best manipulation strat-
egy, the game will eventually converge to the best manip-
ulation pair (afm, bfm). Similarly, if the follower uses the
best response strategy, the game will eventually converge to
the Stackelberg equilibrium (ase, bse). According to Propo-
sitions 2 and 3, the best manipulation strategy gains an extra
average reward Gap(afm, ase) compared to that of the best
response strategy.

6 MANIPULATIVE FOLLOWER WITH
NOISY SIDE INFORMATION

6.1 FOLLOWER’S MANIPULATION STRATEGY

We now study the more intricate setting of learning the best
manipulation strategy with noisy side information. We first
present the follower manipulation algorithm FMUCB in Al-
gorithm 2, a variant of FBM (Algorithm 1) that uses UCB to
learn the best follower manipulation strategy with noisy side
information. We can see that Algorithm 2 largely resembles
Algorithm 1, and hence we omit the detailed description.
Except for the inherited idea from FBM to manipulate the
learning of the leader, another key intuition of FMUCB is
to design appropriate UCB terms in place of the true re-
ward terms µl(a, b) and µf (a, b) in FBM, that balances the
trade-off between exploration and manipulation.



Algorithm 2: FMUCB(t): Follower’s manipulation by
UCB at round t
Input: Candidate set K = A× B, Ul,t(·, ·), Uf,t(·, ·),

µ̂l,t(·, ·).
1: Candidate manipulation pair

(a′, b′) = argmax(a,b)∈K Uf,t(a, b)
2: F = {F(a′) = b′} ∪ {F(a) = argminb∈B Ul,t(a, b) :

a ̸= a′}
3: if maxa̸=a′ Ul,t(a,F(a)) ≥ µ̂l,t(a

′, b′) then
4: Eliminate (a′, b′) from candidate set:

K ← K\(a′, b′)
5: Return to Line 1
6: end if

Output: The response function F

In Line 1, the goal is to find the candidate manipulation pair
that maximizes uf (·, ·). Therefore, we maximize the upper
confidence bound Uf,t(a, b):

Uf,t(a, b) = µ̂f,t(a, b) +

√
2 log(ABT/δ)

nt(a, b)
. (7)

The suboptimal manipulation pair will not be selected after
enough exploration, given the existence of the following
suboptimality gap: for any action pair (ak, bk) ∈ A × B,
satisfying µf (ak, bk) < µf (afm, bfm),

∆4 = min
(ak,bk)

µf (afm, bfm)− µf (ak, bk).

Conversely, in Line 2, the goal is to find the “worst response”
wr(a) = argminb∈B µl(a, b) for each action a ̸= afm.
Therefore, we define the term Ul,t(a, b) to be the lower
confidence bound:

Ul,t(a, b) = µ̂l,t(a, b)−

√
2 log(ABT/δ)

nt(a, b)
. (8)

For each action a, the suboptimality gap against wr(a) is
defined as ∆5,a = minb̸=wr(a) µl(a, b)− µl(a,wr(a)), and
the minimum suboptimality gap for all a ∈ A is

∆5 = min
a∈A

∆5,a.

Given ∆5, the suboptimal wr(a) will not be selected after
enough exploration.

When verifying whether the current {F , (a′, b′)} is a quali-
fied manipulation (Line 3), we also use Ul,t(a,F(a)) as it
lower bounds µl(a,F(a)). This guarantees that the true best
manipulation solution satisfies the constraint since the fol-
lowing holds with high probability: for any action a ̸= afm,

Ul,t(a,wr(a)) ≤ µl(a,wr(a)) < µl(afm, bfm).

This eliminates the unfeasible solution since Ul,t(a,wr(a))
approaches µl(a,wr(a)), and the following suboptimality

gap exists: for any action pair (ak, bk) ∈ A× B satisfying
µf (afm, bfm) < µf (ak, bk),

∆6 = min
(ak,bk)

max
a̸=ak

µl(a,wr(a))− µl(ak, bk).

Hence, Algorithm 2 can find the follower’s best manipula-
tion with noisy side information.

6.2 LAST ITERATE CONVERGENCE ANALYSIS

We also provide theoretical guarantees for the sample effi-
ciency and convergence of this algorithm. As a continuation
of Section 4, we analyze the performance of our designed
algorithm towards the leader’s two kinds of algorithms –
EXP3 and UCBE.

Theorem 4 (Last iterate convergence of EXP3-FMUCB
with noisy side information). When the leader uses EXP3
with parameter α = O

(
T− 1

3

)
, η = O

(
T− 1

3

)
, the fol-

lower uses FMUCB, and let Tf,w be the total number of
rounds that the follower did not play the best manipulation
strategy in T rounds, with probability at least 1− 3δ,

Tf,w ≤ O
(
A2B

αε2
log

ABT

δ
log

1

δ

)
, and

P
[
aT ̸= afm

]
≤ α+

A exp

(
−∆3T

2
3 + 2

√
2A log

2

δ
T

1
3 +

C2A
2B

ε2
log

ABT

δ
log

1

δ

)
,

where ε = min{∆4,∆5,∆6}, C2 is a constant.

Theorem 5 (Last iterate convergence of UCBE-FMUCB
with noisy side information). When the leader uses UCBE
with S0 = O

(
B
ε3 log

ABT
δ

)
and ε = min{∆4,∆5,∆6},

the follower uses FMUCB, and let Tf,w be the total number
of rounds that the follower did not play the best manipula-
tion strategy in T rounds, with probability at least 1− 3δ,

Tf,w ≤ O
(
AB

ε2
log

ABT

δ

)
,

and for T ≥ O
(

AS0

∆2
3

)
, P
[
aT ̸= afm

]
≤ δ

T .

The proofs for Theorems 4 and 5 are respectively in Ap-
pendix B.1 and Appendix B.2. The two theorems present
the sample complexity for learning the best manipulation
strategy using FMUCB with noisy side information. They
also guarantee that the game will achieve the last iterative
convergence to the best manipulation pair (afm, bfm) with
the algorithms EXP3-FMUCB and UCBE-FMUCB.

7 EMPIRICAL RESULTS

To validate the theoretical results, we conduct experiments
on a synthetic Stackelberg game. For both players, the num-
ber of actions A = B = 5. The players’ mean rewards



(a) Limited information (b) Omniscient follower (c) Noisy side information

Figure 1: Experiments for the limited information and side information settings. Each experiment is run 5 times to calculate
the mean and std (standard deviation). The shaded area shows ±std.

µl(a, b) and µf (a, b) of each action pair (a, b) are generated
independently and identically by sampling from a uniform
distribution U(0, 1). For any action pair (a, b), the noisy
reward in round t is generated from a Bernoulli distribution:
rl,t(a, b) ∼ Ber (µl(a, b)) and rf,t(a, b) ∼ Ber (µf (a, b)),
respectively. All experiments were run on a MacBook Pro
laptop with a 1.4 GHz quad-core Intel Core i5 processor, a
1536 MB Intel Iris Plus Graphics 645, and 8 GB memory.

Our first experiment validates the convergence of no-regret
learning algorithms such as EXP3-UCB and UCBE-UCB
(Theorems 2 and 3 in Section 4). Figure 1a shows the aver-
age regret of the leader w.r.t. round t. The blue and orange
curves are respectively for EXP3-UCB (α=0.01, η=0.001)
and UCBE-UCB. We can see that the leader achieves no
Stackelberg regret learning via both algorithms, implying
that the game converges to Stackelberg equilibrium in both
cases.

The second experiment validates the intrinsic reward gap
between FBM and BR when the follower is omniscient
(Proposition 3 in Section 5). In this experiment, the leader
uses EXP3 (α = 0.01, η = 0.001), and the follower uses
BR (blue curve) or FBM (red curve). The result is in Fig-
ure 1b, where the x-axis is the number of rounds t, and the
y-axis is the average follower reward. It shows that after
playing sufficient rounds, the follower’s reward does con-
verge, and FBM yields a significant intrinsic advantage (the
gap between the two dashed lines) of approximately 0.22
compared to that of BR.

The third experiment validates the intrinsic reward gap be-
tween FMUCB and UCB when the follower learns the
leader’s reward structure via noisy bandit feedback (The-
orems 4 and 5 in Section 6). The leader uses either EXP3
(α = 0.1, η = 0.001) or UCBE, and we compare the av-
erage follower reward w.r.t. round t when it uses FMUCB
v.s. the baseline best response learned by a vanilla UCB.
This introduces four curves, EXP3-UCB, EXP3-FMUCB,
UCBE-UCB, and UCBE-FMUCB. We can see that no mat-
ter whether the leader uses EXP3 or UCBE, FMUCB yields
a significant reward advantage of about 0.3 for the follower

compared to that of UCB.

8 CONCLUSION

We study decentralized online learning in general-sum
Stackelberg games under the limited information and side
information settings. For both settings, we design respective
online learning algorithms for both players to learn from
noisy bandit feedback, and prove the last iterate conver-
gence as well as derive sample complexity for our designed
algorithms. Our theoretical results also show that the fol-
lower can indeed gain an advantage by using a manipulative
strategy against the best response strategy, a result that com-
plements existing works in offline settings. Our empirical
results are consistent with our theoretical findings.
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A PROOFS FOR SECTION 4

A.1 PROOF FOR THEOREM 1

Leader / Follower b1 b2
a1 (0.95, 0.3) (0.9, 0.2)
a2 (1, 0.8) (0, 0.79)

Table 2: Payoff matrix of an specific Stackelberg game.
We apply the UCB-UCB algorithm to a specific Stackelberg game, as depicted in Table 2, where the Stackelberg equilibrium
is identified as (a2, b1). The UCB algorithms for the leader and follower are defined respectively as:

ucbl,t(a) = µ̂l,t(a) +

√
2 log(T/δ)

nt(a)
,

and

ucbf,t(a, b) = µ̂f,t(a, b) +

√
2 log(T/δ)

nt(a, b)
.

For simplicity in demonstrating the proof, it is assumed that players receive their actual true rewards at each round. Thus,
ucbl,t(a1) > 0.9, and for a2 and b1, b2, the follower’s UCB values are calculated as:

ucbf,t(a2, b1) = µf (a2, b1) +

√
2 log(T/δ)

nt(a2, b1)
,

ucbf,t(a2, b2) = µf (a2, b2) +

√
2 log(T/δ)

nt(a2, b2)
.

Let nt(a2, b1) = 2k1 log(T/δ) + 1 and nt(a2, b2) = 2k2 log(T/δ). The UCB mechanism implies that for the follower to
prefer b1 over b2, the following inequality must hold:

µf (a2, b1) +

√
2 log(T/δ)

nt(a2, b1)− 1
> µf (a2, b2) +

√
2 log(T/δ)

nt(a2, b2)
.

Given µf (a2, b1)− µf (a2, b2) = 0.01, it follows that:

k2 >
1(

0.01 +
√

1
k1

)2 .



Assuming k2 = 104 yields k1 > 1
4k2. If k1 + k2 = 5

4 × 104, then k1 < 4k2. Given nt(a2) = nt(a2, b1) + nt(a2, b2) and
assuming nt(a2) =

5
4 × 104 log(T/δ), for sufficiently large T , the leader’s UCB for a2 becomes:

ucbl,t(a2) =
nt(a2, b1)µl(a2, b1) + nt(a2, b2)µl(a2, b2)

nt(a2)
+

√
2 log(T/δ)

nt(a2)
< 0.9,

which leads to a contradiction. Thus, nt(a2) <
5
4 × 104 log(T/δ) = O(log(T/δ)), indicating that the leader will play the

optimal action no more thanO(log(T/δ)) times. Consequently, for sufficiently large T , the leader is expected to incur regret
linear in T .



A.2 PROOF FOR THEOREM 2

Theorem (Last iterate convergence of EXP3-UCB under limited information). In a limited information setting of a repeated
general-sum Stackelberg game with noisy bandit feedback, applying EXP3-UCB, with α = O

(
T− 1

3

)
, η = O

(
T− 1

3

)
, for

a ̸= ase, with probability at least 1− 3δ,

P
[
a ̸= ase

]
≤ α+A exp

(
−∆2T

2
3 + 2

√
2A log

2

δ
T

1
3 +

C1AB

∆2
1

log
T

δ
log

1

δ

)
,

where C1 is a constant, ∆2 is the leader’s suboptimality reward gap to Stackelberg equilibrium:

∆2 = min
a ̸=ase

µl(ase, bse)− µl(a,Fbr(a)).

We first prove the following two lemmas which will then be used to prove Theorem 2. We denote r̃t(a) =
1

x̃t(a)
rl,t(a,Ft(a))I{at = a}. We denote rt(a) = µl(a,Ft(a)) and µ(a) = µl(a,Fbr(a)) in this section when there

is no ambiguity.

Lemma 1. [Wu et al., 2022] For a ∈ A, T > 0, with probability at least 1− δ,

|
T∑

t=1

η(r̃t(a)− rt(a))| <
√

2η2
A

α
T log

2

δ
.

Proof of Lemma 1. Fix T > 0 and any action a. Let Ξt = η(r̃t(a)− rt(a)) and St =
∑t

τ=1 Ξτ . Since T is fixed, E[St] is
bounded. Moreover, we have

E[St|St−1, · · · , S1] = St−1 + η · E[r̃t(a)− rt(a)|Gt−1] = St−1.

By definition, {St}Tt=1 is a martingale. Apply Azuma’s inequality to {St}, for any x > 0, 1 ≤ t ≤ T , we have

P[|St| ≥ x] ≤ 2 exp
(
− x2

2W

)
. (9)

W is an upper bound of
∑t

τ=1 E[Ξ2
τ |Gτ−1]. Note that

E[Ξ2
t |Gt−1] = η2E

[(
0− rt(a)

)2 · (1− xt(a)) +
(
r̃t(a)− rt(a)

)2
· xt(a)

∣∣∣Gt−1

]
= η2E

[
r2l,t(a,Ft(a)) ·

1

xt(a)
− r2t (a)

∣∣∣Gt−1

]
≤ A

α
η2.

We take t = T and W = A
α η

2T in Eq.(9) and obtain

x ≥
√
2W log

2

δ
,

which implies with probability at least 1− δ,

|
T∑

t=1

η(r̃t(a)− rt(a))| <
√

2η2
A

α
T log

2

δ
.



Lemma 2. We set δ = T−β in ucbf,t(·, ·), and β ≥ 3. Denote Twbr(a) as the number of rounds that the follower did not
play best response when leader played a, with probability at least 1− δ, for all a ∈ A, we have

Twbr(a) ≤ O
(
B
log(T/δ)

∆2
1

)
.

Similarly, we denote the number of wrong recognition rounds of wr(a) in Algorithm 2 for every action a ∈ A as Twwr(a),
with probability at least 1− δ, for all a ∈ A, we have

Twwr(a) ≤ O
(
B
log(ABT/δ)

∆2
1

)
.

Proof. Combining the Theorem 10.14 of Orabona [2019] and Bernstein inequality we can get the results.

Proof of Theorem 2. We denote µ(a) = µl(a,Fbr(a)) in this section when there is no ambiguity. For a ̸= ase, based on
E.4 of Yu et al. [2022], we have

T∑
t=1

rt(a)− rt(ase) =

T∑
t=1

(
rt(a)− µ(a)

)
+
(
µ(a)− µ(ase)

)
+
(
µ(ase)− rt(ase)

)
≤

T∑
t=1

(
rt(a)− µ(a)

)
−∆2T +

T∑
t=1

(
µ(ase)− rt(ase)

)
≤ 4sm

∑
a∈A

Twbr(a)−∆2T,

(10)

where sm represents the biggest interval the leader chooses action a between the i-th time and the (i+ 1)-th time for any
i ∈ [n(a)− 1]. With probability at least 1− δ, we have

sm ≤ O
(
A

α
log

1

δ

)
.

We denote yt(a) =
∑t

τ=1 ηr̃t(a). For a ̸= ase, combined with 1 and Eq.(10), we have

yT (a)− yT (ase) =

T∑
t=1

η [r̃t(a)− r̃t(ase)]

=

T∑
t=1

η [r̃t(a)− rt(a))] +

T∑
t=1

η [rt(a)− rt(ase)] +

T∑
t=1

η [rt(a)− r̃t(ase)]

≤ 2

√
2η2

A

α
T log

2

δ
+ 4ηsm

∑
a∈A

Twbr(a)−∆2ηT.

For any a ̸= ase, we set α = O
(
T− 1

3

)
, η = O

(
T− 1

3

)
, by the union bound, with probability at least 1− 3δ,

xT+1(a) =
exp(yT (a))∑

a′∈A exp(yT (a′))
≤ exp(yT (a))

exp(yT (ase))

≤ exp

(
−∆2T

2
3 + 2

√
2A log

2

δ
T

1
3 +

C1AB

∆2
1

log
T

δ
log

1

δ

) (11)

Note that
P
[
aT ̸= ase

]
=
∑

a ̸=ase

x̃T (a) ≤ α+
∑

a̸=ase

xT (a).

So, combined with Eq.(11), we have reached our conclusion.



Remark: Last-iterate convergence refers to the phenomenon where the sequence of actions converges to the optimal action
or the sequence of policies converges to the optimal policy, formulated as limt→∞ at = a⋆. It represents a particularly
strong form of convergence, which is inevitably a stronger notion than the average-iterate convergence [Wu et al., 2022, Abe
et al., 2022, Cai et al., 2024]: an algorithm demonstrating last-iterate convergence is proven to also be capable of achieving
average-iterate convergence whereas the reverse is not necessarily true. Our findings corroborate this view, indicating that
limt→∞ P (at ̸= a⋆) = 0 leads to limt→∞ at = a⋆.

The formulations of the bounds presented in both Theorem 2 and Theorem 3 are conventional within the learning theory
community, attributable to divergent analytical approaches applied to EXP3 and UCB type algorithms. Generally speaking,
Theorem 2 introduces a decay rate ofO(T−1/3+exp(−T 2/3)), contrasting with the linear decay in T observed in Theorem
3. This distinction suggests a comparative advantage for Theorem 3, contingent upon a specific constraint on T . Nevertheless,
given that both bounds are influenced by the gaps, denoted as ∆1,∆2, a thorough comparison necessitates consideration of
these gap values.



A.3 PROOF FOR THEOREM 3

Theorem (Last iterate convergence of UCBE-UCB under limited information). In a limited information setting of a
repeated general-sum Stackelberg game with noisy bandit feedback, applying UCBE-UCB with S0 = O

(
B
ϵ3 log

ABT
δ

)
,

ε = min{∆1,∆2}, for T ≥ O
(

AS0

∆2
1

)
, with probability at least 1− 3δ, we have:

P
(
aT ̸= ase

)
≤ δ

T
.

Lemma 3. Let Ul(a, b) = µ̂(a, b) +
√

S1

nt(a,b)
, n(a, b) ≥ 1, set S1 = 2 log ABT

δ , when n(a, b) ≥ O
(

log(ABT/δ)
ε2

)
, with

probability at least 1− δ
ABT , we have

Ul(a, b) ∈
[
µ(a, b)− ε

4
, µ(a, b) +

ε

4

]
.

A similar result holds for the follower.

Proof of Lemma 3. (1) When n(a, b) ≥ O
(

log(ABT/δ)
ε2

)
, by the Hoeffding inequality, with probability at least 1− δ

ABT ,
we have

µ̂(a, b) ∈
[
µ(a, b)− ε

8
, µ(a, b) +

ε

8

]
.

(2) When n(a, b) ≥ O
(
S1

ε2

)
, √

S1

nt(a, b)
≤ ε

8
.

So combining (1) and (2), when n(a, b) ≥ O
(
max

{
log(ABT/δ)

ε2 , S1

ε2

})
, with probability at least 1− δ

ABT , we have

Ul(a, b) ∈
[
µ(a, b)− ε

4
, µ(a, b) +

ε

4

]
.

The bound for the UCB term of the follower is completely analogous and thus omitted.

Proof of Theorem 3. We next only consider rounds that the leader plays a ∈ A. With a little abuse of notation, t is referred
to as t-th time that the leader plays the action a. We denote ucbl(a) = µ̂(a) +

√
S0

n(a) . We ignore the subscript t when there
is no ambiguity.

Noticed that when n(a) < S0

4 , ucbl(a) > 2. And when n(a) ≥ S0, ucbl(a) ≤ 2. So when total round T (T ≥ O (AS0)) is
big enough, the leader will play action a for at least S0

4 rounds.

We next bound the difference between accumulative reward the leader receives and the accumulative reward under best
responses, ∣∣∣∣∣∣

n(a)∑
t=1

rl,t(a, bt)− µl(a,Fbr(a))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n(a)∑
t=1

(
rl,t(a, bt)− µl(a,Fbr(a))

)
I {bt = Fbr(a)}+

n(a)∑
t=1

(
rl,t(a, bt)− µl(a,Fbr(a))

)
I {bt ̸= Fbr(a)}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n(a)∑
t=1

(
rl,t (a,Fbr (a))− µl (a,Fbr(a))

)
I {bt = Fbr(a)}

∣∣∣∣∣∣+ Twbr(a).



And when n(a)− Twbr(a) ≥ O
(

log(AB/δ)
ε2

)
, by Lemma 3, with probability at least 1− δ

ABT ,

1

n(a)

∣∣∣∣∣∣
n(a)∑
t=1

(
rl,t (a,Fbr (a))− µl (a,Fbr(a))

)
I {bt = Fbr(a)}

∣∣∣∣∣∣ ≤ ε

8
.

So when n(a) ≥ Twbr(a) +O
(

log AB
δ

ε2

)
, and n(a) ≥ 8

εTwbr(a), with probability at least 1− δ
ABT , we have

1

n(a)

∣∣∣∣∣∣
n(a)∑
t=1

rl,t(a, bt)− µl(a,Fbr(a))

∣∣∣∣∣∣ ≤ ε

8
+

1

n(a)
Twbr(a) ≤

ε

8
+

ε

8
=

ε

4

We set S0 ≥ O
(
B
ε3 log

ABT
δ

)
, which will guarantee n(a) ≥ O

(
B
ε3 log

ABT
δ

)
and the following inequality holds based on

above analysis
|µ̂l(a)− µl(a,Fbr(a))| ≤

ε

4
.

When n(a) ≥ O
(
S0

ε2

)
,
√

S0

n(a) ≤
ε
8 , then with probability at least 1− δ

T , for all a ∈ A, we have,

|ucbl(a)− µl(a,Fbr(a))| ≤
3ε

8
<

ε

2
.

So argmaxa∈A ucbl(a) = ase. Then by the union bound, with probability at least 1− 3δ, we have

P
[
a ̸= ase

]
≤ δ

T
.



B PROOF FOR SECTION 6

B.1 PROOF FOR THEOREM 4

Theorem (Last iterate convergence of EXP3-FMUCB with noisy side information). When the leader uses EXP3 with
parameter α = O

(
T− 1

3

)
, η = O

(
T− 1

3

)
, the follower uses FMUCB, and let Tf,w be the total number of rounds that the

follower did not play the best manipulation strategy in T rounds, with probability at least 1− 3δ,

Tf,w ≤ O
(
A2B

αε2
log

ABT

δ

)
, and

P
[
a ̸= ase

]
≤ α+A exp

(
−∆3T

2
3 + 2

√
2A log

2

δ
T

1
3 +

C2A
2B

ε2
log

ABT

δ
log

1

δ

)
,

where ε = min{∆4,∆5,∆6}, C2 is a constant.

We study the case when the follower fails to do the manipulation when leader plays a. We ignore the subscript t when there
is no ambiguity, including the following two cases.

Wrong recognition for wr(a) We denote the rounds that the follower did not find wr(a) correct for all a ∈ A as t1. By
Lemma 2, we have

t1 ≤
∑
a∈A

Twwr(a) ≤ O
(
AB

log(ABT/δ)

∆2
1

+AB log

(
AB

δ

))
.

Wrong recognition of manipulation when wr(a) is correct for all a ∈ A We next study the wrong manipulation rounds
when wr(a) is correct for all a ̸= ase. For any action pair (a, b) ∈ A×B, we consider whether it will be selected as the best
manipulation pair or under what condition it will be eliminated by Algorithm 2 when it is not the best manipulation pair. We
classify and discuss two different situations:

(i) µf (a, b) ≥ µf (afm, bfm), but there exists â = argminâ̸=a µl(â,wr(â)), µl(â,wr(â)) ≥ µl(a, b). As a reminder,

µl(â,wr(a)) − µl(a, b) = ∆6 ≥ ε. When n(a, b) > t2 = O
(

log(ABT/δ)
ε2

)
and n(â,wr(â)) > t2, by Lemma 3, the

following inequality holds

µ̂l,t(a, b) ≤ µl(a, b) +
ε

8
< µl(â,wr(a))− ε

4
≤ Ul,t(â,wr(â)),

which means that (a, b) will be eliminated by Algorithm 2 through Line 4. So it needs at most extra 2t1 rounds for action
pair (a, b) to eliminate the wrong manipulation pair (a, b).

(ii) µf (a, b) < µf (afm, bfm). When n(a, b) > t3 = O
(
max

{
log(ABT/δ)

ε2 , S1

ε2

})
, by Lemma 3, we have

Ul(a, b) ≤ µ(a, b) +
ε

4
< µ(afm, bfm) < Ul(afm, bfm).

So the extra wrong manipulation rounds for (a, b) is no more than t3.

When the leader plays more than O
(

A log(1/δ)
α t0

)
rounds, because of the existence of uniform exploration parameter α,

with probability at least 1− δ, n(a) ≥ t0. So by the union bound, with probability at least 1− 3δ,

Tf,w ≤ O
(
A

α
log

1

δ
(t1 +ABt2 +ABt3)

)
= O

(
A2B

αε2
log

ABT

δ
log

1

δ

)
.



We denote µm(a) = µl(a,Ffm(a)) in this section when there is no ambiguity. For a ̸= ase, we have

T∑
t=1

rt(a)− rt(afm) =

T∑
t=1

(
rt(a)− µm(a)

)
+
(
µm(a)− µm(afm)

)
+
(
µm(afm)− rt(afm)

)
=

T∑
t=1

(
rt(a)− µm(a)

)
−∆3T +

T∑
t=1

(
µm(afm)− rt(afm)

)
≤ O

(
A log(1/δ)

α
t1

)
−∆3T + 2smB(t2 + t3).

Analogous to the proof of Theorem 2 in Appendix A.2, we can complete the proof of Theorem 4.



B.2 PROOF FOR THEOREM 5

Theorem (Last iterate convergence of UCBE-FMUCB with noisy side information). When the leader uses UCBE with
S0 = O

(
B
ε3 log

ABT
δ

)
and ε = min{∆4,∆5,∆6}, the follower uses FMUCB, and let Tf,w be the total number of rounds

that the follower did not play the best manipulation strategy in T rounds, with probability at least 1− 3δ,

Tf,w ≤ O
(
AB

ε2
log

ABT

δ

)
,

and for T ≥ O
(

AS0

∆2
3

)
, P
[
aT ̸= afm

]
≤ δ

T .

Since the leader who uses UCBE will do pure exploration for each a ∈ A with O
(
B
ε3 log

ABT
δ

)
according to the analysis in

Appendix A.3, where ε = min{∆4,∆5,∆6}. So by the union bound, with probability at least 1− 3δ,

Tf,w ≤ O (t1 +ABt2 +ABt3) = O
(
AB

ε2
log

ABT

δ

)
.

Similar to the proof of Theorem 3, we bound the difference between the accumulative reward the leader receives and the
accumulative reward under best manipulation strategy,∣∣∣∣∣∣

n(a)∑
t=1

rl,t(a, bt)− µl(a,Ffm(a))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n(a)∑
t=1

(rl,t (a,Ffm(a))− µl (a,Ffm(a))) I {bt = Ffm(a)}

∣∣∣∣∣∣+
n(a)∑
t=1

I {bt ̸= Ffm(a)} .

And based on the proof of Theorem 4 in Appendix A.3 and Lemma 2, we have

n(a)∑
t=1

I {bt ̸= Ffm(a)} ≤ Twwr(a) +Bt2 +Bt3 = O
(
B

ε2
log

ABT

δ

)
.

Analogous to the proof of Theorem 3 in Appendix A.3, we can complete the proof of Theorem 5.



C FOLLOWER’S PESSIMISTIC MANIPULATION

We denote Q(F) = argmaxa∈A µl(a,F(a)). Because there may be multiple actions inAwith the same largest µl(a,F(a)),
so there may be more than one element in Q(F). From the follower’s perspective, pessimistically, the leader will break the
tie using a = argmina∈Q(F) µf (a,F(a)). Assume pessimistically tie-breaking is more reasonable considering that the
leader uses no-regret learning algorithm, since the leader who uses no-regret learning algorithm may not play one action in
Q(F) stably. So it is important for the follower to choose an appropriate manipulation strategy that will maximize its own
reward in the long run taking into account the leader’s tendency. When the follower makes the assumption that the leader
will break the tie pessimistically, the optimization problem of the follower is

max
F

min
(a′,b′)∈A×B

µf (a
′, b′)

s.t. a′ ∈ argmax
a∈A

µl(a,F(a))

b′ = F(a′)

(12)

We present the Algorithm 3 for solving optimization problem (12), which is similar to Algorithm 1.

Algorithm 3: Follower’s best manipulation towards a pessimistic leader
Input: Candidate set K = A× B, H = {}, µl(·, ·), µf (·, ·)

1: Candidate manipulation pair (a′, b′) = argmax(a,b)∈K µf (a, b)
2: if µf (ap, bp) < µf (a

′, b′) then
3: F = {F(a′) = b′} ∪ {F(a) = argminb∈B µl(a, b) : a ̸= a′}
4: Let Q = argmaxµl(a,F(a))
5: if (a′, b′) ∈ Q then
6: Denote the current F as Fap,bp , H ∪ argmin(a,b)∈Q µf (a, b), (ap, bp) = argmax(a,b)∈H µf (a, b)
7: end if
8: Eliminate (a, b) from candidate set: K ← K\(a′, b′) and return to Line 1
9: else

10: Fopt = Fap,bp

11: end if
Output: The response function Fopt
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