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ABSTRACT

Imitation learning (IL) enables agents to acquire skills directly from expert
demonstrations, providing a compelling alternative to reinforcement learning.
However, prior online IL approaches struggle with complex tasks characterized
by high-dimensional inputs and complex dynamics. In this work, we propose a
novel approach to online imitation learning that leverages reward-free world mod-
els. Our method learns environmental dynamics entirely in latent spaces without
reconstruction, enabling efficient and accurate modeling. We adopt the inverse
soft-Q learning objective, reformulating the optimization process in the Q-policy
space to mitigate the instability associated with traditional optimization in the
reward-policy space. By employing a learned latent dynamics model and planning
for control, our approach consistently achieves stable, expert-level performance in
tasks with high-dimensional observation or action spaces and intricate dynamics.
We evaluate our method on a diverse set of benchmarks, including DMControl,
MyoSuite, and ManiSkill2, demonstrating superior empirical performance com-
pared to existing approaches.

1 INTRODUCTION

Imitation learning (IL) has garnered considerable attention due to its broad applications across vari-
ous domains, such as robotic manipulation (Zhu et al., 2023; Chi et al., 2023) and autonomous driv-
ing (Hu et al., 2022; Zhou et al., 2021). Unlike reinforcement learning, where agents learn through
reward signals, IL involves learning directly from expert demonstrations. Recent advances in offline
IL, including Diffusion Policy (Chi et al., 2023) and Implicit BC (Florence et al., 2022), highlight
the advantages of leveraging large datasets in conjunction with relatively straightforward behav-
ioral cloning (BC) methodologies. However, despite its wide applicability, IL methods that do not
incorporate online interaction often suffer from poor generalization outside the expert data distribu-
tion, especially when encountering out-of-distribution states. Such limitations make these methods
vulnerable to failure, as even minor perturbations in state can lead to significant performance degra-
dation. This is often reflected in issues such as bias accumulation and suboptimal results (Reddy
et al., 2019). These challenges stem from BC’s inability to fully capture the underlying dynamics of
the environment and its inherent lack of exploration capabilities (Garg et al., 2021).

To address these shortcomings, methods like GAIL (Ho & Ermon, 2016), SQIL (Reddy et al., 2019),
IQ-Learn (Garg et al., 2021), and CFIL (Freund et al., 2023) have introduced value or reward esti-
mation to facilitate a deeper understanding of the environment, while leveraging online interactions
to enhance exploration. Nevertheless, these approaches continue to face substantial challenges,
particularly when applied to tasks with high-dimensional observation and action spaces or com-
plex dynamics. Additionally, framing online IL as a min-max optimization problem within the
reward-policy space, often inspired by inverse reinforcement learning (IRL) techniques, introduces
instability during training (Garg et al., 2021). Recent advancements in world models have demon-
strated exceptional performance across a wide range of control tasks, underscoring their potential
in complex decision-making and planning scenarios (Hafner et al., 2019a;b; 2020; 2023; Hansen
et al., 2022; 2023). Specifically, world models offer advantages over model-free agents in terms of
sampling complexity and future planning capabilities, resulting in superior performance on complex
tasks (Hansen et al., 2022; 2023; Hafner et al., 2019a). Notably, decoder-free world models, which
operate exclusively in latent spaces without reconstruction, have proven to be highly effective and
efficient in modeling complex environment dynamics (Hansen et al., 2022; 2023).
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Motivated by these insights, we explore the application of world models in the context of online
imitation learning without rewards, enabling IL agents to develop a deeper understanding of en-
vironmental dynamics and improve their performance in tasks characterized by high-dimensional
observations and complex dynamics. In this work, we present a novel approach to online imitation
learning that leverages the strengths of decoder-free world models, specifically designed for com-
plex tasks involving high-dimensional observations, intricate dynamics, and vision-based inputs. In
contrast to conventional latent world models, which rely on reward and Q-function estimation, our
approach completely eliminates the need for explicit reward modeling. We propose a framework for
reward-free world models that redefines the optimization process within the Q-policy space, address-
ing the instability associated with min-max optimization in the reward-policy space. By utilizing an
inverse soft-Q learning objective for the critic network (Garg et al., 2021), our method derives re-
wards directly from Q-values and the policy, effectively rendering the world model reward-free.
Moreover, by performing imitation learning online, our model addresses key challenges in IL, such
as out-of-distribution errors and bias accumulation.

Through online training with finite-horizon planning based on learned latent dynamics, our method
demonstrates strong performance in complex environments. We evaluate our approach across a
diverse set of locomotion and manipulation tasks, utilizing benchmarks from DMControl (Tunya-
suvunakool et al., 2020), MyoSuite (Caggiano et al., 2022), and ManiSkill2 (Gu et al., 2023), and
demonstrate superior empirical performance compared to existing online imitation learning meth-
ods.

Our contributions are as follows:

• We introduce a novel, robust methodology that leverages world models for online imitation
learning, effectively addressing the challenges posed by complex robotics tasks.

• We propose an innovative gradient-free planning process, operating without explicit reward
modeling, within the context of model predictive control.

• We showcase the model’s effectiveness in inverse reinforcement learning tasks by demon-
strating a positive correlation between decoded and ground-truth rewards.

2 RELATED WORKS

Our work builds upon literature in Imitation Learning (IL) and Model-based Reinforcement Learn-
ing.

Imitation Learning Recent works regarding IL leveraged deep neural architectures to achieve
better performance. Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) formu-
lated the reward learning as a min-max problem similar to GAN (Goodfellow et al., 2014). Model-
based Adversarial Imitation Learning (MAIL) (Baram et al., 2016) extended the GAIL approach to
incorporate a forward model trained by data-driven methodology. Inverse Soft Q-Learning (Garg
et al., 2021) reformulated the learning objective of GAIL and integrated their findings into soft
actor-critic (Haarnoja et al., 2018) and soft Q-learning agents for imitation learning. CFIL (Freund
et al., 2023) introduced a coupled flow approach for reward generation and policy learning using
expert demonstrations. ValueDICE (Kostrikov et al., 2019) proposed an off-policy imitation learn-
ing approach by transforming the distribution ratio estimation objective. Das et al. (2021) proposed
a model-based inverse RL approach by predicting key points for imitation learning tasks. SQIL
(Reddy et al., 2019) proposed an online imitation learning algorithm with soft Q functions. Diffu-
sion Policy (Chi et al., 2023) is a recent offline IL method using a diffusion model for behavioral
cloning. Implicit BC (Florence et al., 2022) discovers that treating supervised policy learning with
an implicit model generally improves the empirical performance for robot learning tasks. Hybrid in-
verse reinforcement learning (Ren et al., 2024) proposed a new methodology leveraging a mixture of
online and expert demonstrations for agent training, achieving robust performance in environments
with stochasticity. Prior works (Englert et al., 2013; Hu et al., 2022; Igl et al., 2022) explored the
potentials of model-based imitation learning on real-world robotics control and autonomous driv-
ing. EfficientImitate (Yin et al., 2022) combined EfficientZero (Ye et al., 2021) with adversarial
imitation learning, achieving excellent results in DMControl (Tassa et al., 2018) imitation learning
tasks. V-MAIL (Rafailov et al., 2021) introduced a model-based approach for imitation learning
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using variational models. CMIL (Kolev et al., 2024) proposed an imitation learning approach with
conservative world models for image-based manipulation tasks. Ditto (DeMoss et al., 2023) devel-
oped an offline imitation learning approach with Dreamer V2 (Hafner et al., 2020) and adversarial
imitation learning. DMIL (Zhang et al., 2023) utilized a discriminator to simultaneously evaluate
both the accuracy of the dynamics and the suboptimality of model rollout data relative to real expert
demonstrations in the context of offline imitation learning.

Model-based Reinforcement Learning Contemporary model-based RL methods often learn a
dynamics model for future state prediction via data-driven approaches. PlaNet (Hafner et al., 2019b)
was introduced as a model-based learning approach for partially observed MDPs by proposing
a recurrent state-space model (RSSM) and an evidence lower-bound (ELBO) training objective.
Dreamer algorithm (Hafner et al., 2019a; 2020; 2023) is a model-based reinforcement learning ap-
proach that uses a learned world model to efficiently simulate future trajectories in a latent space,
allowing an agent to learn and plan effectively. TD-MPC series (Hansen et al., 2022)(Hansen et al.,
2023) learns a scalable world model for model predictive control using temporal difference learning
objective.

Our approach employs a model-based methodology to address challenges in online imitation learn-
ing. By integrating a data-driven approach for latent dynamics learning with planning for control,
the agent is able to effectively capture and leverage the underlying environment dynamics. Empirical
evaluations demonstrate that our model achieves superior performance on complex online imitation
learning tasks compared to existing methods.

3 PRELIMINARY

We model the decision-making process in the environment as a Markov Decision Process (MDP),
which can be defined as a tuple ⟨S,A, p0,P, r, γ⟩. S and A represent state and action space. p0
is the initial state distribution and P : S × A → ∆S is the transition probability. r(s,a) ∈ R is
the reward function and R is the reward space. γ ∈ (0, 1) is the discount factor. We denote the
expert state-action distribution as ρE and the behavioral distribution as ρπ . Similarly, we denote the
expert policy as πE and the behavioral policy as π. Π is the set of all stochastic stationary policies
that sample an action a ∈ A given a state s ∈ S. Z is the space for the latent representation of
the original state observations, and Q is the space for all possible Q functions. H(·) represents the
entropy of a distribution.

Maximum Entropy Inverse Reinforcement Learning Inverse Reinforcement Learning (IRL)
focuses on recovering a specific reward function r(s, a) in the reward spaceR given a certain amount
of expert samples using expert policy πE . Maximum entropy IRL (Ziebart et al., 2008) seeks to
solve this problem by optimizing maxr∈Rminπ∈ΠEρE [r(s,a)]− (Eρπ [r(s,a)]+H(π)). GAIL (Ho
& Ermon, 2016) generalized the objective into a form including an explicit reward mapping with a
convex regularizer ψ(r):

max
r∈R

min
π∈Π

EρE [r(s,a)]− Eρπ [r(s,a)]−H(π)− ψ(r) (1)

For a non-restrictive set of reward functions R = RS×A, the objective can be reformulated into a
minimization of the statistical distance between distributions ρE and ρπ (Ho & Ermon, 2016):

min
π

dψ(ρπ, ρE)−H(π) (2)

Inverse Soft-Q Learning Prior work (Garg et al., 2021) introduced a bijection mapping T π :
RS×A → RS×A between Q space Q and reward spaceR, i.e., the inverse Bellman operator:

(T πQ)(s,a) = Q(s,a)− γEs′∼P(·|s,a)V
π(s′) (3)

where V π(s) = Ea∼π(·|s)[Q(s,a) − log π(a|s)]. The reward decoding is defined as r = T πQ.
By applying the operator T π over Eq.1, prior work reformulated the GAIL training objective in
Q-policy space (Garg et al., 2021):

J (π,Q) = E(s,a)∼ρE

[
Q(s,a)− γEs′∼P(·|s,a)V

π(s′)
]

− E(s,a)∼ρπ

[
V π(s)− γEs′∼P(·|s,a)V

π(s′)
]
− ψ(T πQ)

(4)
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which is the inverse soft-Q objective for critic learning. In this way, we can perform imitation
learning by leveraging actor-critic architecture. The critic and policy can be learned by finding
the saddle point in a joint optimization problem Q∗ = argmaxQ∈Q minπ∈Π J (π,Q) and π∗ =

argminπ∈Π maxQ∈Q J (π,Q). Garg et al. (2021) proved the uniqueness of the saddle point. For a
fixed Q, the optimization for policy has a closed-form solution, which is the softmax policy:

πQ(a|s) =
expQ(s,a)∑
a expQ(s,a)

(5)

In the actor-critic setting, we can optimize the policy π using maximum-entropy RL objective, which
approximates πQ, and learn critic using:

max
Q∈Q
J (π,Q) = max

Q∈Q

[
E(s,a)∼ρE

[
ϕ(Q(s,a)− γEs′∼P(·|s,a)V

π(s′))
]

− E(s,a)∼ρπ

[
V π(s)− γEs′∼P(·|s,a)V

π(s′)
]] (6)

where ϕ is a concave function. Specifically, if we leverage χ2 regularization, we will have
ϕ(x) = x − 1

4αx
2. The scalar coefficient α controls the strength of χ2 regularization in the in-

verse soft-Q objective. Intuitively, the additonal regularization term penalizes the magnitude of the
estimated reward. Prior work (Al-Hafez et al., 2023) interpreted the objective with this regularizer
as minimizing the squared Bellman error, establishing a connection between inverse soft-Q learn-
ing and SQIL (Reddy et al., 2019). A detailed empirical analysis on hyperparameter α is shown in
Appendix E.3.

4 METHODOLOGY

In reinforcement learning, world models typically regress explicit reward signals provided by the
environment. In imitation learning, prior approaches (Kolev et al., 2024; DeMoss et al., 2023) aim
to train a reward model through adversarial objectives alongside a separate critic network trained
on temporal difference objectives. In contrast, we eliminate the need for a separate reward model
by retrieving rewards directly from the learned critic. To this end, we propose a reward-free world
model that learns exclusively from reward-free expert demonstrations and environment interactions,
without training a dedicated reward model. Furthermore, since our model can decode dense rewards
from the critic, it can solve inverse reinforcement learning tasks using reward-free interactions and
a limited set of expert demonstrations that include only states and actions.

4.1 LEARNING PROCESS OF A REWARD-FREE WORLD MODEL

World models used in reinforcement learning settings often contain a reward model R(z,a) that
requires supervised learning using explicit reward signals from the online environment interactions
or the offline data. However, if our learning objective is able to form a bijection between Q spaceQ
and reward space R, it would be natural to decode the reward from the Q value instead of learning
another separate mapping for the reward, which also enables the world model to perform imitation
learning with expert demonstrations without explicit reward signal. An overview of our proposed
method is shown in Figure 1. The detailed training algorithm is shown in Algorithm 2. We also
provide a theoretical analysis of our training objective, as detailed in Section 4.2 Appendix H.3.

Model Components We introduce our approach for imitation learning as Inverse Soft-Q Learning
for Model Predictive Control, or IQ-MPC as an abbreviation. Our architecture consists of four
components:

Encoder: z = h(s) (7)

Latent dynamics: z′ = d(z,a) (8)
Value function: q̂ = Q(z,a) (9)

Policy prior: â = π(z) (10)
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Figure 1: IQ-MPC We demonstrate the training workflow for IQ-MPC. The reward-free world
model leverages both expert and behavioral data for training, using objectives in Section 4.1. The
policy prior from the world model guides the MPPI planning process along with rewards decoded
from Q estimations. The detailed planning process is revealed in Algorithm 1.

where s and a are states and actions, z is latent representations. The policy prior π guides the
model predictive planning process, along with rewards decoded from the value function Q. We
maintain two separate replay buffers BE and Bπ for expert and behavioral data storage respectively.
Behavioral data are collected during the learning process. For simplicity, we denote the sampling
process from the joint buffer as B = BE ∪ Bπ . We sample trajectories with short horizons of length
H from the replay buffers.

Model Learning We learn the encoder h, latent dynamics d(z,a) and Q function Q(z,a) jointly
by minimizing the objective for prediction consistency and critic learning:

L =

H∑
t=0

λt

(
E(st,at,s′t)∼B∥zt+1 − sg(h(s′t))∥22

)
+ Liq (11)

where sg is the stop gradient operator and Liq is the inverse soft-Q critic objective, which is a
modification for horizon H and latent representation z from Eq.7 based on Eq.6:

Liq(Q, π) =
H∑
t=0

λt

[
−E(st,at,s′t)∼BE

[
Q(zt,at)− γV̄ π(h(s′t))

]
+ Es0∼BE

[
(1− γ)V π(z0)

]
+ E(st,at,s′t)∼B

1

4α

[
Q(zt,at)− γV̄ π(h(s′t))

]2]
(12)

Compared to Eq.6, the key difference is the second term of the objective, which computes the orig-
inal value difference E(st,at,s′t)∼Bπ

[V π(zt) − γV π(z′t)] using only the representation of the initial
state s0. This reformulation, derived in Lemma 2 (Appendix H.1), yields more stable Q estimation,
as confirmed by the ablation in Appendix E.3. We also apply χ2 regularization, as noted in Garg
et al. (2021). We leverage λ ∈ (0, 1] as a constant discounting weight over the horizon, guarantee-
ing the influence to be smaller for states and actions farther ahead. Note that λ here differs from the
environment discount factor γ. All value functions in the objective are computed from Q and policy
network via V π(z) = Ea∼π(·|z)[Q(z,a) − β log π(a|z)], where β is the entropy coefficient. We
will further discuss the selection of β in the policy learning part. Especially, V̄ π(h(s′)) is the value
function computed by the target Q network Q̄. z is retrieved by rolling out dynamics model from
the latent representation of the first state:

zt+1 = d(zt,at), z0 = h(s0)

5
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We update the Q, encoder, and dynamics network by minimizing Eq.11 while keeping policy prior
π fixed.

Policy Prior Learning We choose to learn the policy prior network with the maximum entropy
reinforcement learning. We minimize the following maximum entropy RL objective using data
sampled from both the expert buffer and the behavioral buffer:

Lπ =

H∑
t=0

λt

[
E(st,at)∼B

[
−Q(zt, π(zt)) + β log(π(·|zt))

]]
(13)

β is an entropy coefficient which is a fixed scalar. Hansen et al. (2023) experimented on adaptive en-
tropy coefficient and observed no performance improvement on model predictive control compared
to a fixed scalar. Therefore, we also choose not to leverage a learnable β for simplicity. We prove
in Theorem 1 that this policy update can achieve π∗ = argmaxπ∈Π minQ∈Q Liq(Q, π) to find the
saddle point.

Balancing Critic and Policy Training We observe unstable training processes in some tasks due
to the imbalance between the critic and the policy. When the discriminative power of the critic
is too strong, the policy prior π may fail to learn properly. In those cases the Q value difference
between expert batch and behavioral batch E(s,a)(0:H)∼BE

Q(zt,at) − E(s,a)(0:H)∼Bπ
Q(zt,at) will

not converge. To mitigate this issue, we choose to use the Wasserstein-1 metric for gradient penalty
(Gulrajani et al., 2017; Garg et al., 2021) in addition to the original inverse soft-Q objective, enforc-
ing Lipschitz condition for the gradient:

Lpen =

H∑
t=0

λt

[
E(̂st,ât)∼B

(
∥∇Q(ẑt, ât)∥2 − 1

)2]
(14)

In Eq.14, ŝ and â are sampled from the straight line between samples from expert buffer (s,a) ∼ BE
and behavioral buffer (s,a) ∼ Bπ by linear interpolation. ∇ is the gradient with respect to the
interpolated input ẑt and ât. By incorporating this additional objective, we can enforce unit gradient
norm over the straight lines between state-action distribution ρπ and ρE . We show the ablation study
regarding this regularization term in Appendix E.3.

4.2 THEORETICAL ANALYSIS ON THE LEARNING OBJECTIVE

In this section, we demonstrate theoretically that the learning objectives of IQ-MPC effectively
minimize the value difference between the current policy and the expert, ensuring that Q-value
estimation can follow as the latent dynamics model learns. We begin by utilizing the following
lemma established in (Kolev et al., 2024):

Lemma 1 (Bounded Suboptimality). Given an unknown latent MDP M and our learned latent
MDP M̂ with transition probabilities d and d̂ in the latent state space Z and action space A, and
letting Rmax denote the maximum reward of the unknown MDP, the value is bounded by:

|V πE

M − V πM| ≤
2Rmax

1− γ
DTV (ρ

π
M̂, ρπE

M )︸ ︷︷ ︸
T1

+
γRmax

(1− γ)2
Eρπ

M̂

[
DTV (d(z

′|z,a), d̂(z′|z,a))
]

︸ ︷︷ ︸
T2

Our critic and policy objectives can be interpreted as a min-max optimization of Eq.4. Moreover,
this approach can be viewed as minimizing a statistical distance with an entropy term, correspond-
ing to Eq.2. Thus, on one hand, our critic and policy objectives effectively minimize T1 in the
bound provided in Lemma 1. On the other hand, optimizing our consistency loss in Eq.11 is ap-
proximately minimizing the second term T2 in the bound. Our training objective ensures that as
the dynamics model learns, it simultaneously minimizes the upper bound of the deviation between
the value function V π and the expert value V πE . Given that the value function is computed by
V π(s) = Ea∼π(·|s)[Q(s, a) − log π(a|s)], it guarantees that the Q function can follow when the
dynamics model is being optimized. A more detailed analysis on T2 is given in Appendix H.3.

6
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Algorithm 1 IQ-MPC (inference)
Require: θ : learned network parameters

µ0, σ0: initial parameters for N
N,Nπ: number of sample/policy trajectories
st, H: current state, rollout horizon

1: Encode state zt ← hθ(st)
2: for each iteration j = 1..J do
3: Sample N trajectories of length H from N (µj−1, (σj−1)2I)
4: Sample Nπ trajectories of length H using πθ, dθ

// Estimate trajectory returns ϕΓ using dθ, Qθ, πθ, starting from zt and initialize ϕΓ = 0:
5: for all N +Nπ trajectories (at,at+1, . . . ,at+H) do
6: for step t = 0..H − 1 do
7: zt+1 ← dθ(zt,at) ◁ Latent transition
8: ât+1 ∼ πθ(·|zt+1)
9: V π(zt+1) = Qθ(zt+1, ât+1)− β log πθ(ât+1|zt+1)

10: r(zt,at) = Qθ(zt,at)− γV π(zt+1) ◁ Reward decoding
11: ϕΓ = ϕΓ + γt[r(zt,at)− β log πθ(at|zt)]
12: end for
13: ϕΓ = ϕΓ + γHV π(zH) ◁ Terminal value
14: end for
15: // Update parameters µ, σ for next iteration:
16: µj , σj ←MPPI update with ϕΓ.
17: end for
18: return a ∼ N (µJ , (σJ)2I)

4.3 PLANNING WITH POLICY PRIOR

Similar to TD-MPC (Hansen et al., 2022) and TD-MPC2 (Hansen et al., 2023), we utilize the Model
Predictive Control (MPC) framework for local trajectory optimization over the latent representations
and acquire control action by leveraging Model Predictive Path Integral (MPPI)(Williams et al.,
2015) with sampled action sequences (at,at+1, ...,at+H) of length H . Instead of planning with
explicit reward models like TD-MPC and TD-MPC2, we estimate the parameters (µ∗, σ∗) using
derivative-free optimization with reward information decoded from the critic’s estimation:

µ∗, σ∗ = argmax
(µ,σ)

E
(at,...,at+H)∼N (µ,σ2)

[
γHV π(zt+H) +

H−1∑
h=t

γh(V π(zh)− γV π(zh+1))

]
(15)

where µ, σ ∈ RH×m,m = dimA. (zt, ..., zt+H) are computed by unrolling with (at, ..,at+H)
using dynamics model dθ. Eq.15 is solved by iteratively computing soft expected return ϕΓ of
sampled actions fromN (µ, σ2) and update µ, σ based on weighted average with ϕΓ. We describe the
detailed planning procedure in Algorithm 1. Eq.15 is an estimation of the soft-Q learning objective
(Haarnoja et al., 2017) for RL with horizon H . After iteration, we execute the first action sampled
from the normal distribution at ∼ N (µ∗

t , (σ
∗
t )

2I) in the environment to collect a new trajectory for
behavioral buffer Bπ .

5 EXPERIMENTS

We conduct experiments for locomotion and manipulation tasks to demonstrate the effectiveness of
our approach. We choose to leverage the online version of IQ-Learn+SAC (referred to as IQL+SAC
in the experiment plots) (Garg et al., 2021), CFIL+SAC (Freund et al., 2023), and HyPE (Ren et al.,
2024) as our baselines for comparison studies. The results presented below for our IQ-MPC model
are obtained through planning. We provide an analysis of the computational overhead of our model
in Appendix F. The empirical results regarding state-based and visual experiments are shown in
Section 5.1. We experiment on the reward recovery capability of our IQ-MPC model, for which we
reveal the results in Section 5.2. We conduct ablation studies for our model, which are discussed
in Section 5.3. The details of the environments and tasks can be found in Appendix D. We also

7
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analyze the training time and the robustness of our model under noisy environment dynamics. The
corresponding results are presented in Appendix F and E.4.

Figure 2: Locomotion Results Our method demonstrates much stabler performance near expert
level compared to baseline methods. In the plots, blue lines refers to the online version of IQ-
L+SAC (Garg et al., 2021), orange lines refers to the HyPE method (Ren et al., 2024), purple lines
refers to the CFIL+SAC (Freund et al., 2023) baseline and red lines refers to our IQ-MPC model.
The dotted green lines are the mean episode reward for the expert trajectories used during training.

5.1 MAIN RESULTS

5.1.1 STATE-BASED EXPERIMENTS

Locomotion Tasks We benchmark our algorithm on DMControl (Tunyasuvunakool et al., 2020),
evaluating tasks in both low- and high-dimensional environments. Our method outperforms base-
lines in performance and training stability. We use 100 expert trajectories for low-dimensional
tasks (Hopper, Walker, Quadruped, Cheetah), 500 for Humanoid, and 1000 for Dog (both high-
dimensional). Each trajectory contains 500 steps, sampled using trained TD-MPC2 world models
(Hansen et al., 2023). Performance is averaged over 3 seeds per task. The results are demonstrated
in Figure 2. Our method is comparable to HyPE in the Quadruped Run and Cheetah Run tasks, while
outperforming all other baselines in the remaining tasks. We also conducted high-dimensional ex-
periments on various tasks in the Dog environment, with results provided in Appendix E.1.

Figure 3: Manipulation Results in MyoSuite Our IQ-MPC shows stable and outperforming results
in MyoSuite manipulation experiments with dexterous hands. In the plots, the color settings are the
same as those in Figure 2. In the Pen Twirl task, the CFIL+SAC agent is unable to train after 20K
time steps. Thus, we interpolate the rest of the time steps with a straight line in the plot.

Manipulation Tasks We consider manipulation tasks with a dexterous hand from MyoSuite
(Caggiano et al., 2022) to show the capability and robustness of our IQ-MPC model in high-
dimensional and complex dynamics scenarios. We leverage 100 expert trajectories with 100 steps
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sampled from trained TD-MPC2 for each task. We evaluate the episode reward and success rate of
our model along with IQ-Learn+SAC, HyPE, and CFIL+SAC. We show superior empirical perfor-
mance in three different tasks, including object holding, pen twirling, and key turning. Regarding
the results for episode reward, we refer to Figure 3. Table 1 shows the success rate results. We
take the mean for 3 seeds regarding the performance for each task. We have conducted additional
experiments on ManiSkill2 (Gu et al., 2023), for which we refer to Appendix E.2.

5.1.2 VISUAL EXPERIMENTS

We further investigate the capability of handling visual tasks for our IQ-MPC model. We conduct the
experiments on locomotion tasks in DMControl with visual observations. We demonstrate that our
IQ-MPC model can cope with visual modality inputs by only replacing the encoder with a shallow
convolution network and keeping the rest of the model unchanged. We sample the expert data using
trained TD-MPC2 models with visual inputs. We take 100 expert trajectories for each task. The
expert trajectories contain actions and RGB frame observations. We leverage a modification of
IQL+SAC as our baseline. We add the same convolutional encoder as our IQ-MPC for processing
visual inputs and keep the rest of the architecture the same. We perform superior to the baseline
model in a series of visual experiments in the DMControl environment. We demonstrate the results
in Figure 5.

Figure 4: Reward Recovery. The IQ-MPC model successfully recovers rewards in the inverse RL
setting, showing a positive correlation with ground-truth rewards. This experiment is conducted on
the Cheetah Run task with state-based observations from DMControl.

5.2 REWARD RECOVERY

We evaluate the ability to recover rewards using a trained IQ-MPC model, which demonstrates our
model’s capability of handling inverse RL tasks. We observe a positive correlation between ground-
truth rewards and our recovered rewards. We conduct this experiment on the DMControl Cheetah
Run task and decode rewards via r(z,a) = Qθ(z,a) − γEz′∼dθ(·|z,a)V

π(z′). We evaluate over 5
trajectories sampled from a trained IQ-MPC. The results are revealed in Figure 4. The results for a
detailed analysis regarding the correlation between estimated and ground-truth rewards are shown
in Appendix G.

Method IQL+SAC CFIL+SAC HyPE IQ-MPC(Ours)
Key Turn 0.72±0.04 0.65±0.08 0.55 ± 0.09 0.87±0.03

Object Hold 0.00 ± 0.00 0.01±0.01 0.13 ± 0.10 0.96±0.03
Pen Twirl 0.00 ± 0.00 0.00±0.00 0.00 ± 0.00 0.73±0.05

Table 1: Manipulation Success Rate Results in MyoSuite We evaluate the success rate of IQ-MPC
on the Key Turn, Object Hold, and Pen Twirl tasks in MyoSuite. Our IQ-MPC demonstrates strength
in handling complex manipulation tasks with dexterous hands and musculoskeletal motor control.
We show the results by averaging over 100 trajectories and evaluating over 3 random seeds.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Results for Visual Experiments Our IQ-MPC (red lines) shows stable and expert-level
results in visual observation tasks. In the plots, we denote the IQL+SAC with an additional convo-
lutional encoder as IQL+SAC (Visual) (blue lines). Our model outperforms IQL+SAC (Visual) in
the Cheetah Run and Walker Run, and it has comparable performance in the Walker Walk task. The
expert trajectories used for training are sampled from TD-MPC2 trained on visual observations.

5.3 ABLATION STUDIES

In this section, we will show the ablation studies of our model, including the ablation over expert
trajectory numbers. Regarding the ablations for objective formulation, gradient penalty selection,
and hyperparameter α, we refer to Appendix E.3.

We ablate over the expert trajectories used for IQ-MPC training. We demonstrate our results with
100, 50, 10, and 5 expert trajectories in the Hopper Hop task and Object Hold task. We show
that our world model can still reach expert-level performance with only a small amount of expert
demonstrations but with slower convergence. The instability is observed with 5 expert trajectories
in the Hopper Hop task. We reveal the empirical results for this ablation in Figure 6.

Figure 6: Ablation on Expert Trajectory Numbers We show the performance of our IQ-MPC
model with different numbers of expert trajectories. We can still have stable expert-level perfor-
mance with only 10 expert demonstrations for the Hopper Hop task in locomotion and 5 expert
demonstrations for the Object Hold task with a dexterous hand.

6 CONCLUSIONS AND BROADER IMPACT

We propose an online imitation learning approach that utilizes reward-free world models to ad-
dress tasks in complex environments. By incorporating latent planning and dynamics learning,
our model can have a deeper understanding of intricate environment dynamics. We demonstrate
stable, expert-level performance on challenging tasks, including dexterous hand manipulation and
high-dimensional locomotion control. In terms of broader impact, our model holds potential for
real-world applications in manipulation and locomotion, particularly for tasks that involve visual
inputs and complex environment dynamics.
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A HYPERPARAMETERS AND ARCHITECTURAL DETAILS

This section will show the detailed hyperparameters and architectures used in our IQ-MPC model.

A.1 WORLD MODEL ARCHITECTURE

All of the components are built using MLPs with Layernorm (Ba, 2016) and Mish activation func-
tions (Misra, 2019). We leverage Dropout for Q networks. The amount of total learnable parameters
for IQ-MPC is 4.3M. We depict the architecture in a Pytorch-like notation:

Architecture: IQ-MPC(
(_encoder): ModuleDict(

(state): Sequential(
(0): NormedLinear(in_features=state_dim, out_features=256, bias=

True, act=Mish)
(1): NormedLinear(in_features=256, out_features=512, bias=True, act

=SimNorm)
)

)
(_dynamics): Sequential(

(0): NormedLinear(in_features=512+action_dim, out_features=512, bias=
True, act=Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=True, act=
Mish)

(2): NormedLinear(in_features=512, out_features=512, bias=True, act=
SimNorm)

)
(_pi): Sequential(

(0): NormedLinear(in_features=512, out_features=512, bias=True, act=
Mish)

(1): NormedLinear(in_features=512, out_features=512, bias=True, act=
Mish)

(2): Linear(in_features=512, out_features=2*action_dim, bias=True)
)
(_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features=512,

bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act

=Mish)
(2): Linear(in_features=512, out_features=1, bias=True)

)
)
(_target_Qs): Vectorized ModuleList(

(0-4): 5 x Sequential(
(0): NormedLinear(in_features=512+action_dim, out_features=512,

bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act

=Mish)
(2): Linear(in_features=512, out_features=1, bias=True)

)
)

)
Learnable parameters: 4,274,259

The exact parameters above represent the situation when the state dimension is 91, and the action
dimension is 39.
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Additionally, we also show the convolutional encoder used in our visual experiments:

(_encoder): ModuleDict(
(rgb): Sequential(
(0): ShiftAug()
(1): PixelPreprocess()
(2): Conv2d(9, 32, kernel_size=(7, 7), stride=(2, 2))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU(inplace=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
(9): Flatten(start_dim=1, end_dim=-1)
(10): SimNorm(dim=8)

)
)

A.2 HYPERPARAMETER DETAILS

The detailed hyperparameters used in IQ-MPC are as follows:

• The batch size during training is 256.
• We balance each part of the loss by assigning weights. For inverse soft Q loss, we assign

0.1. For consistency loss, we assign 20. For the policy and gradient penalty, we assign 1 as
the weight.

• We leverage λ = 0.5 in a horizon.
• We apply the same heuristic discount calculation as TD-MPC2 (Hansen et al., 2023), using

5 as the denominator, with a maximum discount of 0.995 and a minimum of 0.95.
• We iterate 6 times during MPPI planning.
• We utilize 512 samples as the batch size for planning.
• We select 64 samples via top-k selection during MPPI iteration.
• During planning, 24 of the trajectories are generated by the policy prior π, while normal

distributions generate the rest.
• Planning horizon H = 3.
• The temperature coefficient is 0.5.
• We set the learning rate of the model to 3e− 4.
• The entropy coefficient β = 1e− 4.
• We found no significant improvement by adding the Wasserstein-1 gradient penalty (Eq.14)

in locomotion tasks. Therefore, we only apply gradient penalty to manipulation tasks.
• We use α = 0.5 for χ2 divergence ϕ(x) = x− 1

4αx
2.

• We use soft update coefficient τ = 0.01.
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B TRAINING ALGORITHM

For completeness, we show the pseudo-code for IQ-MPC training in Algorithm 2.

Algorithm 2 IQ-MPC (training)
Require: θ, θ−: randomly initialized network parameters

η, τ, λ,Bπ,BE : learning rate, soft update coefficient, horizon discount coefficient, behavioral
buffer, expert buffer
for training steps do

// Collect episode with IQ-MPC from s0 ∼ p0:
for step t = 0...T do

Compute at with πθ(·|hθ(st)) using Algorithm 1 ◁ Planning with IQ-MPC
(s′t, rt) ∼ env.step(at)
Bπ ← Bπ ∪ (st,at, rt, s

′
t) ◁ Add to behavioral buffer

st+1 ← s′t
end for
// Update reward-free world model using collected data in Bπ and BE:
for num updates per step do

(st,at, rt, s
′
t)0:H ∼ Bπ ∪ BE ◁ Combine behavioral and expert batch

z0 = hθ(s0) ◁ Encode first observation
// Unroll for horizon H
for t = 0...H do

zt+1 = dθ(zt,at)
q̂t = Q(zt,at)

end for
Compute critic and consistency loss L(z0:H , q̂0:H , h(s′0:H), λ) ◁ Equation 11
Compute policy prior loss Lπ(z0:H , λ) ◁ Equation 13
if use gradient penalty then

Compute gradient penalty Lpen(z0:H ,a0:H , λ) ◁ Equation 14
else
Lpen = 0

end if
θ ← θ − 1

H η∇θ(L+ Lπ + Lpen) ◁ Update online network
θ− ← (1− τ)θ− + τθ ◁ Update target network

end for
end for
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C TASK VISUALIZATIONS

We visualize each task using the random initialization state of an episode. Regarding the locomotion
tasks in DMControl, we show them in Figure 7. Figure 8 shows the visualizations of manipulation
tasks with dexterous hands in MyoSuite.

Figure 7: Locomotion Visualizations The visualizations for DMControl environments, including
Hopper, Cheetah, Walker, Quadruped, Humanoid, and Dog.

Figure 8: Manipulation Visualizations with Dexterous Hands The visualizations for MyoSuite
tasks, including Key Turn, Object Hold, and Pen Twirl.

Figure 9: Manipulation Visualizations with Robot Arms The visualizations for ManiSkill2 tasks,
including Pick Cube and Lift Cube.
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D ENVIRONMENT AND TASK DETAILS

D.1 LOCOMOTION ENVIRONMENTS

We experiment on 6 locomotion environments in DMControl. The details of the corresponding
environments are shown in Table 2. Regarding the visual inverse RL tasks, we take RGB image
observations with the shape of 64× 64× 9 for inputs. Each observation consists of 3 RGB frames.

Environment Observation Dimension Action Dimension High-dimensional?
Hopper 15 4 No
Cheetah 17 6 No

Quadruped 78 12 No
Walker 24 6 No

Humanoid 67 24 Yes
Dog 223 38 Yes

Table 2: Environment Details for State-based Experiments in DMControl. We show the envi-
ronment details for experiments on DMControl with state-based observations. High-dimensional
tasks have higher hard levels compared to normal tasks for imitation learning.

D.2 MANIPULATION ENVIRONMENT

We experiment on 5 manipulation tasks in ManiSkill2 and MyoSuite. Among these tasks, 2 of them
are in ManiSkill2, for which we describe the task details in Table 3, and 3 of them are in MyoSuite,
for which we describe the task details in Table 4.

Task Observation Dimension Action Dimension
Lift Cube 42 4
Pick Cube 51 4

Table 3: Task Details for Experiments in ManiSkill2. We show the environment details for exper-
iments on ManiSkill2. The ManiSkill2 benchmark is built for large-scale robot learning and features
extensive randomization and diverse task variations.

Task Observation Dimension Action Dimension
Object Hold 91 39

Pen Twirl 83 39
Key Turn 93 39

Table 4: Task Details for Experiments in MyoSuite. We show the environment details for ex-
periments on MyoSuite. The MyoSuite benchmark is designed for physiologically accurate, high-
dimensional musculoskeletal motor control, featuring highly complex object manipulation using a
dexterous hand.
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E ADDITIONAL EXPERIMENTS

E.1 ADDITIONAL HIGH-DIMENSIONAL LOCOMOTION EXPERIMENTS

To show the robustness of our model in high-dimensional tasks, we conduct locomotion experiments
on the Dog environment with different tasks such as standing, trotting, and walking, in addition to
the running task in Section 5.1.1. The dog environment is a relatively complex environment due
to its high-dimensional observation and action spaces. We leverage 500 expert trajectories sampled
from trained TD-MPC2 for each experiment. We show the results in Figure 10.

Figure 10: Additional High-dimensional Locomotion Experiments Our IQ-MPC shows stable
and expert-level performance on different tasks in the Dog environment, which demonstrates our
model’s capability in handling high-dimensional tasks. In the plots, the blue lines and orange lines
represent the results from IQL+SAC (Garg et al., 2021) and CFIL+SAC (Freund et al., 2023), re-
spectively, while the red lines represent the results from our IQ-MPC.

E.2 ADDITIONAL MANIPULATION EXPERIMENTS

We also evaluate our method on simpler manipulation tasks in ManiSkill2 (Gu et al., 2023). We
show stable and comparable results in the pick cube task and lift cube task. IQL+SAC (Garg et al.,
2021) also performs relatively well in these simple settings. Figure 11 shows the episode rewards
results in ManiSkill2 tasks, and Table 5 demonstrates the success rate of each method.

Figure 11: Manipulation Results in ManiSkill2 Our IQ-MPC shows stable and comparable results
in ManiSkill2 manipulation experiments. In the plots, the color settings are the same as those in
Figure 10.

Method IQL+SAC CFIL+SAC IQ-MPC(Ours)
Pick Cube 0.61±0.13 0.00±0.00 0.79±0.05
Lift Cube 0.85 ± 0.04 0.01±0.01 0.89±0.02

Table 5: Manipulation Success Rate Results in ManiSkill2 We evaluate the success rate of IQ-
MPC on pick and lift tasks in the ManiSkill2 environment. We show outperforming empirical results
compared to IQL+SAC, and CFIL+SAC. We show the results by averaging over 100 trajectories and
evaluating over 3 random seeds.
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E.3 ADDITIONAL ABLATION STUDIES

In this section, we demonstrate the results of ablating over objective formulation, gradient penalty,
and hyperparameter α.

Objective Formulation We observe performance improvement using the reformulated objective
Eq.12 as we mentioned in the Model Learning part of Section 4.1. In details, we changed the value
temporal difference term E(st,at,s′t)∼Bπ

[V π(zt)− γV π(z′t)] into a form only containing value from
initial distribution Es0∼BE

[(1 − γ)V π(z0)]. This technique is also mentioned in the original IQ-
Learn paper (Garg et al., 2021). We have given the theoretical proof for mathematical equivalence
in Lemma 2. In this section, we provide the empirical analysis regarding the effectiveness of this
technique in the context of our IQ-MPC model. We observe stabler Q estimation leveraging this
technique. Moreover, in this case, the difference in Q estimation between the expert batch and the
behavioral batch can converge more easily, especially for high-dimensional cases like the Humanoid
Walk and Dog Run task. The better convergence of Q estimation difference shows that the Q func-
tion faces difficulty in distinguishing between expert and behavioral demonstrations, which implies
that the policy prior behaves similarly as expert demonstrations. The stable Q estimation results
in a better learning behavior for the latent dynamics model, which is observed by measuring the
prediction consistency loss (The first term in Eq.11) during training. The results in Humanoid Walk
task are shown in Figure 12.

Figure 12: Ablation on Objective Formulation We show that the Q estimation and training dynam-
ics are stabler by utilizing objective with initial distribution compared to leveraging objective with
temporal difference. Moreover, we obtain stable expert-level performance leveraging the objective
with the initial distribution. We depict the stability by showing plots regarding Q estimation and
prediction consistency. The red lines are the stabler results using the objective with initial distribu-
tion while orange lines are the results with temporal difference objective. The ablation experiments
are conducted on the Humanoid Walk task.
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Gradient Penalty We ablate over the Wasserstein-1 metric gradient penalty in Eq.14 with our
experiments. This training technique balances the discriminative power of the Q network to ensure
stable policy learning. We show improvement in training stability on the Pick Cube task in the
ManiSkill2 environment. By leveraging gradient penalty, we observe stable convergence regarding
the difference in Q estimation between expert and behavioral batch. This behavior results in stabler
policy learning, especially in tasks with low dimensional state or action space, where expert and
behavioral demonstrations can be easily distinguished. The ablation results are shown in Figure 13
and Table 6.

Figure 13: Ablation on Gradient Penalty. We show the improvement by adopting the Wasserstein-
1 gradient penalty by demonstrating the effect over the convergence of Q-difference, which is the
difference between Q estimation on expert and behavioral demonstrations. The converging Q-
difference implies stable policy learning and reasonable discriminative power of the Q network.
We also demonstrate the effectiveness of the gradient penalty by episode reward during training.
The red lines represent results with gradient penalty while orange lines represent results without it.

Gradient Penalty? Yes No
Success Rate 0.79±0.05 0.51±0.11

Table 6: Ablation on Gradient Penalty with Success Rate We evaluate the success rate of IQ-MPC
with and without gradient penalty on ManiSkill2 Pick Cube task. We show the results by averaging
over 100 trajectories and evaluating over 3 random seeds.

Hyperparameter Selection We perform an ablation study on the selection of the hyperparameter
α in Eq.12. The hyperparameter α controls the strength of the χ2 regularization applied to the
inverse soft-Q objective. Intuitively, the last term in Eq.12 serves as a penalty on the magnitude
of the estimated reward. Therefore, smaller values of α result in a larger penalty on the estimated
reward magnitude, which helps enforce training stability and prevents Q estimation from exploding.
In contrast, larger values of α encourage more aggressive estimation of the reward and Q value,
increasing the chances of training instability. We experiment with the effect of this hyperparameter
in the Humanoid Walk task and conclude that α = 0.5 is the optimal choice. We present our results
in Figure 14.

E.4 EXPERIMENTS ON NOISY ENVIRONMENT DYNAMICS

In this section, we evaluate the robustness of our IQ-MPC model under noisy and stochastic envi-
ronment dynamics. HyPE (Ren et al., 2024) has demonstrated relatively robust performance when
subjected to minor noise perturbations in environment transitions. Although our model is primarily
designed for fully deterministic settings, we observe that it exhibits a degree of robustness when
handling stochastic environment dynamics.

For our experiments, we adopt the same environment settings as HyPE (Ren et al., 2024), introducing
a trembling noise probability, ptremble, into the environment transitions. Specifically, we assess the
impact of ptremble on our IQ-MPC model in the Walker Run task. The results indicate that our
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Figure 14: Ablation on Hyperparameter Selection. In our ablation study, we found that larger val-
ues of α may lead to higher Q estimations, resulting in suboptimal and unstable training behavior.
Conversely, smaller values of α lead to lower Q estimations, which correspond to stronger regular-
ization and may also cause suboptimal performance.

model maintains certain robustness even in the presence of transition noise. We present the results
the Figure 15.

Figure 15: Experiments on Noisy Environment Dynamics We evaluate our model’s performance
on the Walker Run task under different values of ptremble, where a larger ptremble indicates greater
stochasticity in the environment dynamics. Specifically, we experiment with ptremble = 0.01 and
ptremble = 0.02, observing only slight performance degradation. This suggests that our model
exhibits a degree of robustness to noisy environment dynamics.

F TRAINING TIME EVALUATION

We evaluate the computational overhead of our approach in comparison to model-free baselines
(IQL+SAC (Garg et al., 2021), CFIL+SAC (Freund et al., 2023), HyPE (Ren et al., 2024)) and the
model-based baseline (HyPER (Ren et al., 2024)). Additionally, we assess the training time of IQ-
MPC with model predictive control enabled and when interacting solely with the policy prior. The
experiments are conducted on the Humanoid Walk task, with training time reported in seconds. All
baselines are trained using a single RTX 2080 Ti GPU. The results are shown in Figure 16.

G REWARD CORRELATION COMPARISONS

We further analyze the correlation between the decoded rewards and ground-truth rewards in the
Hopper Hop, Cheetah Run, Quadruped Run, and Walker Run tasks. Specifically, we compute
the Pearson correlation between the estimated and ground-truth rewards in these settings, using
IQL+SAC (Garg et al., 2021) as the comparison baseline. The results are presented in Table 7.
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Figure 16: Computational Overhead We evaluate the computational cost during training of our
model on the Humanoid task. Leveraging a policy prior for direct interaction, instead of relying
on MPC, accelerates the training process but may introduce greater instability. Our model requires
less computational time compared to HyPER, although its training remains slower than model-free
baselines.

In Figure 4, we observe that the variance of the estimated rewards is higher when the ground-truth
reward is high. One possible explanation for this high variance in the estimated expert rewards is as
follows:

There are multiple equivalent reward formulations that result in optimal trajectories, and the maxi-
mum entropy objective selects the one with the highest entropy. Our actor-critic architecture, opti-
mized with the maximum entropy inverse RL objective, leads to a more evenly distributed reward
structure for expert demonstrations. Consequently, rewards closer to the expert tend to exhibit higher
variance, a phenomenon also observed in (Freund et al., 2023).

H ADDITIONAL THEORETICAL SUPPORTS

We first give a proper definition of distributions involving latent state representations:

Definition 1. Define a latent state distribution p̃πt = h∗p
π
t as a pushforward distribution of original

state distribution pπt for policy π given an encoder mapping h : S → Z .

Definition 2. Define a latent state-action distribution with policy π as ρ̃π onZ×A from an original
state-action distribution ρπ on S ×A with an encoder mapping h : S → Z .

H.1 OBJECTIVE EQUIVALENCE

In this section, we will provide proof for the reformulation of the second term in Eq.12 for complete-
ness. We borrow the proof from Garg et al. (2021) and slightly modify it to fit our setting with latent
representations instead of actual states. The proof is demonstrated in Lemma 2. In Eq.12, we use the

Method IQL+SAC IQ-MPC (Ours)
Hopper Hop 0.49 0.88
Cheetah Run 0.79 0.87
Walker Run 0.65 0.91

Quadruped Run 0.88 0.93

Table 7: Pearson Correlations of Reward Recovery We evaluate the Pearson correlation between
the decoded rewards from IQL+SAC and IQ-MPC in the Hopper Hop, Cheetah Run, Quadruped
Run, and Walker Run tasks. Our results demonstrate that IQ-MPC achieves a higher correlation
with ground-truth rewards when trained on these tasks.
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mean over encoded latent representation batch sampled from the expert buffer BE to approximate
the mean over initial distribution p̃0 on latent representation.

Lemma 2 (Objective Equivalence). Given a latent transition model d(z′|z,a), a latent state distri-
bution p̃πt for time step t and a latent state-action distribution ρ̃π , we have:

E(z,a)∼ρ̃π [V
π(z)− γEz′∼d(·|z,a)V

π(z′)] = (1− γ)Ez0∼p̃0 [V
π(z0)]

Proof. We decompose the left-hand side into a summation:

E(z,a)∼ρ̃π [V
π(z)− γEz′∼d(·|z,a)V

π(z′)]

= (1− γ)
∞∑
t=0

γtEz∼p̃πt ,a∼π(z)[V
π(z)− γEz′∼d(·|z,a)V

π(z′)]

= (1− γ)
∞∑
t=0

γtEz∼p̃πt [V
π(z)]− (1− γ)

∞∑
t=0

γt+1Ez∼p̃πt+1
[V π(z)]

= (1− γ)Ez0∼p̃0 [V
π(z0)]

H.2 POLICY UPDATE GUARANTEE

We prove that policy update objective Eq.13 can search for the saddle point in optimization, which
increases Liq(π,Q) with Q fixed, following Garg et al. (2021). For simplicity, we prove it with
horizon H = 1, and it’s generalizable to objective with discounted finite horizon.

Theorem 1 (Policy Update). Updating the policy prior via maximum entropy objective increases
Liq(π,Q) with Q fixed. We assume entropy coefficient β = 1.

Proof. For a fixed Q:

V π(z) = Ea∼π(·|z)[Q(z,a)− log(π(a|z))]

= −DKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
+ log

(∑
a

exp(Q(z,a))
)

Policy update with maximum entropy objective is optimizing:

π∗ = argminπDKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
Assume that we have an updated policy π′ via gradient descent with learning rate ξ:

π′ = π − ξ ∇πDKL

(
π(·|z)

∥∥∥ expQ(z, ·)∑
a exp(Q(z,a))

)
We can obtain V π(z) < V π

′
(z). In regions where ϕ(x) is monotonically non-decreasing and Q is

fixed, we can have Liq(π′, Q) > Liq(π,Q).

H.3 ANALYSIS ON THE CONSISTENCY LOSS

We provide a more detailed analysis regarding the relationship between minimizing the consistency
loss in Eq.11 and minimizing T2 in the bound provided by Lemma 1.Specifically, our consistency
loss directly minimizes the upper bound of T2 under following assumptions:

Assumption 1. The latent dynamics d : Z ×A → ∆Z is approximately a Gaussian distribution on
latent space Z with N (µd, σ

2
d).

Assumption 2. The standard deviation of our learned latent dynamics σ̂d is close to the actual
standard deviation σd.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Considering T2 in Lemma 1 and neglecting the constant coefficient, according to Pinsker Inequality,
we have:

Eρπ
M̂

[
DTV (d(z

′|z,a), d̂(z′|z,a))
]
≤ Eρπ

M̂

√
1

2
DKL(d(z′|z,a), d̂(z′|z,a))

With Assumption 1 and 2, we can represent the KL divergence by mean and standard deviation of
actual and learned latent dynamics:

DKL(d(z
′|z,a), d̂(z′|z,a)) = log

σ̂d
σd

+
σ2
d + (µd − µ̂d)2

2σ̂2
d

− 1

2
≈ (µd − µ̂d)2

2σ2
d

Given a predicted latent state ẑ′ from the learned dynamics d̂ and an actual latent state z′ = h(s′)
encoded from the next state observation with unknown dynamics d, minimizing the L2 loss approxi-
mately minimizes the distance between the means of the learned and actual latent dynamics distribu-
tions. This, in turn, minimizes the right-hand side of the Pinsker inequality under our assumptions.
Consequently, our consistency loss minimizes the statistical distance between the dynamics.
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