
Published as a conference paper at ICLR 2022

DATA-DRIVEN OFFLINE OPTIMIZATION FOR
ARCHITECTING HARDWARE ACCELERATORS

Aviral Kumar†,∗ Amir Yazdanbakhsh†
Milad Hashemi Kevin Swersky Sergey Levine∗

Google Research ∗ UC Berkeley († Equal Contribution)
aviralk@berkeley.edu, ayazdan@google.com

ABSTRACT

To attain higher efficiency, the industry has gradually reformed towards application-
specific hardware accelerators. While such a paradigm shift is already starting to
show promising results, designers need to spend considerable manual effort and
perform large number of time-consuming simulations to find accelerators that can
accelerate multiple target applications while obeying design constraints. Moreover,
such a “simulation-driven” approach must be re-run from scratch every time the set
of target applications or design constraints change. An alternative paradigm is to use
a “data-driven”, offline approach that utilizes logged simulation data, to architect
hardware accelerators, without needing any form of simulations. Such an approach
not only alleviates the need to run time-consuming simulation, but also enables
data reuse and applies even when set of target applications changes. In this paper,
we develop such a data-driven offline optimization method for designing hardware
accelerators, dubbed PRIME, that enjoys all of these properties. Our approach learns
a conservative, robust estimate of the desired cost function, utilizes infeasible points
and optimizes the design against this estimate without any additional simulator
queries during optimization. PRIME architects accelerators—tailored towards
both single- and multi-applications—improving performance upon stat-of-the-
art simulation-driven methods by about 1.54× and 1.20×, while considerably
reducing the required total simulation time by 93% and 99%, respectively. In
addition, PRIME also architects effective accelerators for unseen applications in a
zero-shot setting, outperforming simulation-based methods by 1.26×.

1 INTRODUCTION

The death of Moore’s Law [11] and its spiraling effect on the semiconductor industry have driven the
growth of specialized hardware accelerators. These specialized accelerators are tailored to specific
applications [64, 47, 41, 53]. To design specialized accelerators, designers first spend considerable
amounts of time developing simulators that closely model the real accelerator performance, and then
optimize the accelerator using the simulator. While such simulators can automate accelerator design,
this requires a large number of simulator queries for each new design, both in terms of simulation
time and compute requirements, and this cost increases with the size of the design space [65, 53, 25].
Moreover, most of the accelerators in the design space are typically infeasible [25, 64] because of
build errors in silicon or compilation/mapping failures. When the target applications change or a new
application is added, the complete simulation-driven procedure is generally repeated. To make such
approaches efficient and practically viable, designers typically “bake-in” constraints or otherwise
narrow the search space, but such constraints can leave out high-performing solutions [9, 44, 7].

An alternate approach, proposed in this work, is to devise a data-driven optimization method that only
utilizes a database of previously tested accelerator designs, annotated with measured performance
metrics, to produce new optimized designs without additional active queries to an explicit silicon
or a cycle-accurate simulator. Such a data-driven approach provides three key benefits: (1) it
significantly shortens the recurring cost of running large-scale simulation sweeps, (2) it alleviates
the need to explicitly bake in domain knowledge or search space pruning, and (3) it enables data
re-use by empowering the designer to optimize accelerators for new unseen applications, by the
virtue of effective generalization. While data-driven approaches have shown promising results in

1

Published as a conference paper at ICLR 2022

Figure 1: Overview of PRIME . We use a one-time collected dataset of prior accelerator designs, including
TPU-style [65], NVDLA-style [42], and ShiDianNao-style [10] accelerators to train a conservative surrogate
model, which is used to design accelerators to meet desired goals and constraints.

biology [14, 5, 57], using of�ine optimization methods to design accelerators has been challenging
primarily due to the abundance of infeasible design points [64, 25].

The key contribution of this paper is a data-driven approach,PRIME , to automatically architect high-
performing application-speci�c accelerators by using only previously collected of�ine data.PRIME
learns a robust surrogate model of the task objective function from an existing of�ine dataset, and
�nds high-performing application-speci�c accelerators by optimizing the architectural parameters
against this learned surrogate function, as shown in Figure 1. While naïvely learned surrogate
functions usually produces poor-performing, out-of-distribution designs that appear quite optimistic
under the learned surrogate [35, 5, 57]. The robust surrogate inPRIME is explicitly trained to prevent
overestimation on “adversarial” designs that would be found during optimization. Furthermore,
in contrast to prior works that discard infeasible points [25, 57], our proposed method instead
incorporates infeasible points when learning the conservative surrogate by treating them as additional
negative samples. During evaluation, PRIME optimizes the learned conservative surrogate.

Our results show thatPRIME architects hardware accelerators that improve over the best design in the
training dataset, on average, by 2.46� (up to 6.7�) when specializing for a single application. In
this case,PRIME also improves over the best conventional simulator-driven optimization methods
by 1.54� (up to 6.6�). These performance improvements are obtained while reducing the total
simulation time to merely 7% and 1% of that of the simulator-driven methods for single-task
and multi-task optimization, respectively. More importantly, a contextual version ofPRIME can
design accelerators that arejointly optimal for a set ofnine applications without requiring any
additional domain information. In this challenging setting,PRIME improves over simulator-driven
methods, which tend to scale poorly as more applications are added, by 1.38� . Finally, we show
that the surrogates trained withPRIME on a set of training applications can be readily used to obtain
accelerators forunseentarget applications, without any retraining on the new application. Even in this
zero-shotoptimization scenario,PRIME outperforms simulator-based methods that require re-training
and active simulation queries by up to 1.67� . In summary,PRIME allows us to effectively address
the shortcomings of simulation-driven approaches, (1) signi�cantly reduces the simulation time, (2)
enables data reuse and enjoys generalization properties, and (3) does not require domain-speci�c
engineering or search space pruning.

2 BACKGROUND ON HARDWARE ACCELERATORS

The goal of specialized hardware accelerators—Google TPUs [29, 23], Nvidia GPUs [43], Graph-
Core [21]—is to improve the performance of speci�c applications, such as machine learning models.
To design such accelerators, architects typically create a parameterized design and sweep over
parameters using simulation.

Target hardware accelerators.Our primary evaluation uses an industry-grade and highly param-
eterized template-based accelerator following prior work [65]. This template enables architects to
determine the organization of various components, such as compute units, memory cells, memory,
etc., by searching for these con�gurations in a discrete design space. Some ML applications may have
large memory requirements (e.g., large language models [6]) demanding suf�cient on-chip memory
resources, while others may bene�t from more compute blocks. The hardware design work�ow
directly selects the values of these parameters. In addition to this accelerator and to further show
the generality of our method to other accelerator design problems, we evaluate two distinct data�ow
accelerators with different search spaces, namely NVDLA-style [42] and ShiDianNao-style [10]
from Kao et al.[30] (See Section 6 and Appendix C for a detailed discussion; See Table 6 for results).

2

Published as a conference paper at ICLR 2022

Table 1: The accelerator design space parameters for the primary accelerator search space targeted in this work.
The maximum possible number of accelerator designs (including feasible and infeasible designs) is 452,760,000.
PRIME only uses a small randomly sampled subset of the search space.

Accelerator Parameter # Discrete Values Accelerator Parameter # Discrete Values

of PEs-X 10 # of PEs-Y 10
PE Memory 7 # of Cores 7
Core Memory 11 # of Compute Lanes 10
Instruction Memory 4 Parameter Memory 5
Activation Memory 7 DRAM Bandwidth 6

Figure 2: An industry-level machine learn-
ing accelerator [65].

How does an accelerator work?We brie�y explain the
computation �ow on our template-based accelerators (Fig-
ure 2) and refer the readers to Appendix C for details on
other accelerators. This template-based accelerator is a 2D
array of processing elements (PEs). Each PE is capable
of performing matrix multiplications in a single instruc-
tion multiple data (SIMD) paradigm [20]. A controller
orchestrates the data transfer (both activations and model
parameters) between off-chip DRAM memory and the on-chip buffers and also reads in and manages
the instructions (e.g. convolution, pooling, etc.) for execution. The computation stages on such
accelerators start by sending a set of activations to the compute lanes, executing them in SIMD
manner, and either storing the partial computation results or of�oading them back into off-chip
memory. Compared to prior works [25, 10, 30], this parameterization is unique—it includes multiple
compute lanes per each PE and enables SIMD execution model within each compute lane—and
yields a distinct accelerator search space accompanied by an end-to-end simulation framework. More
details in Appendix C.

3 PROBLEM STATEMENT, TRAINING DATA AND EVALUATION PROTOCOL

Our template-based parameterization maps the accelerator, denoted asx, to a discrete design space,
x = [x1; x2; � � � ; xK], and eachx i is a discrete-valued variable representing one component of
the microarchitectural template, as shown in Table 1 (See Appendix C for the description of other
accelerator search spaces studied in our work). A design maybe be infeasible due to various reasons,
such as a compilation failure or the limitations of physical implementation, and we denote the set
of all such feasibility criterion asFeasible(x). The feasibility criterion depends on both the target
software and the underlying hardware, and it is not easy to identify if a givenx is infeasible without
explicit simulation. We will require our optimization procedure to not only learn the value of the
objective function but also to learn to navigate through a sea of infeasible solutions to high-performing
feasible solutionsx � satisfyingFeasible(x �) = 1 .

Our training datasetD consists of a modest set of acceleratorsx i that are randomly sampled from the
design space and evaluated by the hardware simulator. We partition the datasetD into two subsets,
DfeasibleandD infeasible. Let f (x) denote the desired objective (e.g., latency, power, etc.) we intend
to optimize over the space of acceleratorsx. We do not possess functional access tof (x), and
the optimizer can only accessf (x) values for acceleratorsx in the feasible partition of the data,
Dfeasible. For all infeasible accelerators, the simulator does not provide any value off (x). In addition
to satisfying feasibility, the optimizer must handle explicit constraints on parameters such as area
and power [13]. In our applications, we impose an explicit area constraint,Area(x) � � 0, though
additional explicit constraints are also possible. To account for different constraints, we formulate
this task as a constrained optimization problem. Formally:

min
x

f (x) s.t. Area(x) � � 0; Feasible(x) = 1

on D = Dfeasible[D infeasible= f (x1; y1); � � � ; (xN ; yN)g [f x0
1; � � � ; x0

N 0g
(1)

While Equation 1 may appear similar to other standard black-box optimization problems, solving it
over the space of accelerator designs is challenging due to the large number of infeasible points, the
need to handle explicit design constraints, and the dif�culty in navigating the non-smooth landscape
(See Figure 3 and Figure 11 in the Appendix) of the objective function.

What makes optimization over accelerators challenging?Compared to other domains where
model-based optimization methods have been applied [5, 57], optimizing accelerators introduces a

3

Published as a conference paper at ICLR 2022

Figure 3: Left: histogram of infeasible (right orange bar with large score values) and feasible (left cluster of
bars) data points for MobileNetEdgeTPU;Right: zoomed-in histogram (different number of bins) focused on
feasible points highlighting the variable latencies.
Table 2: The description of the applications, their domains, number of (convolutions, depth-wise convolutions,
feed-forward) XLA ops, model parameter size, instruction sizes in bytes, number of compute operations.

Name Domain # of XLA Ops (Conv, D/W, FF) Model Param Instr. Size # of Compute Ops.

MobileNetEdgeTPU Image Class. (45, 13, 1) 3.87 MB 476,736 1,989,811,168
MobileNetV2 Image Class. (35, 17, 1) 3.31 MB 416,032 609,353,376
MobileNetV3 Image Class. (32, 15, 17) 5.20 MB 1,331,360 449,219,600
M4 Object Det. (32, 13, 2) 6.23 MB 317,600 3,471,920,128
M5 Object Det. (47, 27, 0) 2.16 MB 328,672 939,752,960
M6 Object Det. (53, 33, 2) 0.41 MB 369,952 228,146,848
U-Net Image Seg. (35, 0, 0) 3.69 MB 224,992 13,707,214,848
t-RNN Dec Speech Rec. (0, 0, 19) 19 MB 915,008 40,116,224
t-RNN Enc Speech Rec. (0, 0, 18) 21.62 MB 909,696 45,621,248

number of practical challenges. First, accelerator design spaces typically feature a narrow manifold
of feasible accelerators within a sea of infeasible points [41, 53, 17], as visualized in Figure 3 and
Appendix (Figure 12). While some of these infeasible points can be identi�ed via simple rules (e.g.
estimating chip area usage), most infeasible points correspond to failures during compilation or
hardware simulation. These infeasible points are generally not straightforward to formulate into the
optimization problem and requires simulation [53, 44, 64].

Second, the optimization objective can exhibit high sensitivity to small variations in some architecture
parameters (Figure 11b) in some regions of the design space, but remain relatively insensitive in other
parts, resulting in a complex optimization landscape. This suggests that optimization algorithms based
on local parameter updates (e.g., gradient ascent, evolutionary schemes, etc.) may have a challenging
task traversing the nearly �at landscape of the objective, which can lead to poor performance.

Training dataset. We used an of�ine datasetD of (accelerator parameters, latency) via random
sampling from the space of 452M possible accelerator con�gurations. Our method is only provided
with a relatively modest set of feasible points (� 8000points) for training, and these points are the
worst-performingfeasible points across the pool of randomly sampled data. This dataset is meant to
re�ect an easily obtainable and an application-agnostic dataset of accelerators that could have been
generated once and stored to disk, or might come from real physical experiments. We emphasize
that no assumptions or domain knowledge about the application use case was made during dataset
collection. Table 2 depicts the list of target applications, evaluated in this work, includes three
variations of MobileNet [23, 50, 27], three in-house industry-level models for object detection (M4,
M5, M6; names redacted to prevent anonymity violation), a U-net model [48], and two RNN-based
encoder-decoder language models [22, 24, 49, 38]. These applications span the gamut from small
models, such asM6, with only 0.4 MB model parameters that demands less on-chip memory, to the
medium-sized models (� 5 MB), such as MobileNetV3 andM4 models, and large models (� 19 MB),
such as t-RNNs, hence requiring larger on-chip memory.

Evaluation protocol. To compare state-of-the-art simulator-driven methods and our data-driven
method, we limit the number of feasible points (costly to evaluate) that can be used by any algorithm
to equal amounts. We still provide infeasible points to any method and leave it up to the optimization
method to use it or not. This ensures our comparisons are fair in terms of the amount of data
available to each method. However, it is worthwhile to note that in contrast to our method where
worse-qualitydata points from small of�ine dataset are used, the simulator-driven methods have an
inherent advantage because they can steer the query process towards the points that are more likely
to be better in terms of performance. Following prior work [5, 57, 58], we evaluate each run of a

4

Published as a conference paper at ICLR 2022

method by �rst sampling the topn = 256 design candidates according to the algorithm's predictions,
evaluating all of these under the ground truth objective function and recording the performance of
the best accelerator design. The �nal reported results is the median of ground truth objective values
across �ve independent runs.

4 PRIME: ARCHITECTING ACCELERATORS VIACONSERVATIVE SURROGATES

As shown in Figure 4, our method �rst learns a conservative surrogate model of the optimization
objective using the of�ine dataset. Then, it optimizes the learned surrogate using a discrete optimizer.
The optimization process does not require access to a simulator, nor to real-world experiments beyond
the initial dataset, except when evaluating the �nal top-performingn = 256 designs (Section 3).

Figure 4: Overview ofPRIME which trains a con-
servative surrogatef � (x i) using Equation 3. Our
neural net model forf � (x) utilizes two transformer
layers [59], and a multi-headed architecture which is
pooled via a soft-attention layer.

Learning conservative surrogates using logged
of�ine data. Our goal is to utilize a logged dataset
of feasible accelerator designs labeled with the de-
sired performance metric (e.g., latency),Dfeasible,
and infeasible designs,D infeasible to learn a map-
ping f � : X ! R, that maps the accelerator con-
�guration x to its corresponding metricy. This
learned surrogate can then be optimized by the
optimizer. While a straightforward approach for
learning such a mapping is to train it via supervised
regression, by minimizing the mean-squared error
Ex i ;y i �D [(f � (x i) � yi)2], prior work [35, 36, 57] has shown that such predictive models can arbitrar-
ily overestimate the value of an unseen inputx i . This can cause the optimizer to �nd a solutionx �

that performs poorly in the simulator but looks promising under the learned model. We empirically
validate this overestimation hypothesis and �nd it to confound the optimizer in on our problem
domain as well (See Figure 13 in Appendix). To prevent overestimated values at unseen inputs from
confounding the optimizer, we build on COMs [57] and trainf � (x) with an additional term that
explicitly maximizes the function valuef � (x) at unseenx values. Such unseen designsx, where the
learned functionf � (x) is likely to be overestimated, are “negative mined” by running a few iterations
of an approximate stochastic optimization procedure that aims to maximizef � in the inner loop. This
procedure is analogous to adversarial training [19]. Equation 2 formalizes this objective:

� � := arg min
�

L (�) := Ex i ;y i �D feasible

�
(f � (x i) � yi)2�

� � Ex �
i � Opt(f �)

�
f � (x �

i)
�

: (2)

x �
i denotes the negative samples produced from an optimizerOpt(�) that attempts to maximize the

current learned model,f � . We will discuss our choice ofOpt in the Appendix Section B.

Incorporating design constraints via infeasible points.While prior work [57] simply optimizes
Equation 2 to learn a surrogate, this is not enough when optimizing over accelerators, as we will
also show empirically (Appendix A.1). This is because explicit negative mining does not provide
any information about accelerator design constraints. Fortunately, this information is provided by
infeasible points,D infeasible. The training procedure in Equation 2 provides a simple way to do
incorporate such infeasible points: we simply incorporatex0

i � D infeasible as additional negative
samples and maximize the prediction at these points. This gives rise to our �nal objective:

min
�

L inf(�) := L (�) � � Ex 0
i �D infeasible [f � (x0

i)] (3)

Multi-model optimization and zero-shot generalization. One of the central bene�ts of a data-
driven approach is that it enables learning powerful surrogates that generalize over the space of
applications, potentially being effective for new unseen application domains. In our experiments, we
evaluatePRIME on designing accelerators for multiple applications denoted ask = 1 ; � � � ; K , jointly
or for a novel unseen application. In this case, we utilized a datasetD = fD 1; � � � ; DK g, where
eachDk consists of a set of accelerator designs, annotated with the latency value and the feasibility
criterion for a given applicationk. While there are a few overlapping designs in different parts of
the dataset annotated for different applications, most of the designs only appear in one part. To train
a single conservative surrogatef � (x) for multiple applications, we extend the training procedure
in Equation 3 to incorporatecontext vectorsck 2 Rd for various applications driven by a list of
application properties in Table 2. The learned function in this setting is now conditioned on the
contextf � (x ; ck). We trainf � via the objective in Equation 3, but in expectation over all the contexts

5

Published as a conference paper at ICLR 2022

and their corresponding datasets:min � Ek � [K]
�
L inf

k (�)
�
. Once such a contextual surrogate is learned,

we can either optimize the average surrogate across a set of contextsf ci ; c2; � � � ; cn g to obtain an
accelerator that is optimal for multiple applications simultaneously on an average (“multi-model”
optimization), or optimize this contextual surrogate for a novel context vector, corresponding to
an unseen application (“zero-shot” generalization). In this case,PRIME is not allowed to train on
any data corresponding to this new unseen application. While such zero-shot generalization might
appear surprising at �rst, note that the context vectors are not simply one-hot vectors, but consist of
parameters with semantic information, which the surrogate can generalize over.

Learned conservative surrogate optimization.Prior work [64] has shown that the most effective
optimizers for accelerator design are meta-heuristic/evolutionary optimizers. We therefore choose to
utilize, �re�y [62, 63, 39] to optimize our conservative surrogate. This algorithm maintains a set of
optimization candidates (a.k.a. “�re�ies”) and jointly update them towards regions of low objective
value, while adjusting their relative distances appropriately to ensure multiple high-performing, but
diverse solutions. We discuss additional details in Appendix B.1.

Cross validation: which model and checkpoint should we evaluate?Similarly to supervised
learning, models trained via Equation 3 can over�t, leading to poor solutions. Thus, we require a
procedure to select which hyperparameters and checkpoints should actually be used for the design.
This is crucial, because we cannot arbitrarily evaluate as many models as we want against the simulator.
While effective methods for model selection have been hard to develop in of�ine optimization [57, 58],
we devised a simple scheme using a validation set for choosing the values of� and� (Equation 3),
as well as which checkpoint to utilize for generating the design. For each training run, we hold out
the best 20% of the points out of the training set and use themonly for cross-validation as follows.
Typical cross-validation strategies in supervised learning involve tracking validation error (or risk),
but since our model is trained conservatively, its predictions may not match the ground truth, making
such validation risk values unsuitable for our use case. Instead, we track Kendall's ranking correlation
between the predictions of the learned modelf � (x i) and the ground truth valuesyi (Appendix B)
for the held-out points for each run. We pick values of� , � and the checkpoint that attain the
highest validation ranking correlation. We present the pseudo-code forPRIME (Algorithm 1) and
implementation details in Appendix B.1.

5 RELATED WORK

Optimizing hardware accelerators has become more important recently. Prior works [45, 28, 56,
41, 8, 34, 4, 3, 25, 60, 61] mainly rely on expensive-to-query hardware simulators to navigate
the search space and/or target single-application accelerators. For example, HyperMapper [41]
targets compiler optimization for FPGAs by continuously interacting with the simulator in a design
space with relatively few infeasible points. Mind Mappings [25], optimizes software mappings to
a �xed hardware provided access to millions of feasible points and throws away infeasible points
during learning. MAGNet [60] uses a combination of pruning heuristics and online Bayesian
optimization to generate accelerators for image classi�cation models in a single-application setting.
AutoDNNChip [61] uses two-level online optimization to generate customized accelerators for ASIC
and FPAG platforms. In contrast,PRIME , does not only learn a surrogate using of�ine data but can
also leverage information from infeasible points and can work with just a few thousand feasible points.
In addition, we devise a contextual version ofPRIME that is effective in designing accelerators that
are jointly optimized for multiple applications, different from prior work. Finally, to our knowledge,
our work, is the �rst to demonstrate generalization to unseen applications for accelerator design,
outperforming state-of-the-art online methods.

A popular approach for solving black-box optimization problems is model-based optimization
(MBO) [55, 51, 54]. Most of these methods fail to scale to high-dimensions, and have been extended
with neural networks [55, 54, 31, 16, 15, 2, 1, 40]. While these methods work well in the active
setting, they are susceptible to out-of-distribution inputs [58] in the of�ine, data-driven setting. To
prevent this, of�ine MBO methods that constrain the optimizer to the manifold of valid, in-distribution
inputs have been developed Brookes et al.[5], Fannjiang & Listgarten[12], Kumar & Levine[35].
However, modeling the manifold of valid inputs can be challenging for accelerators.PRIME dispenses
with the need for generative modeling, while still avoiding out-of-distribution inputs.PRIME builds
on “conservative” of�ine RL and of�ine MBO methods that train robust surrogates [36, 57]. However,
unlike these approaches,PRIME can handle constraints by learning from infeasible data and utilizes a
better optimizer (See Appendix Table 7 for a comparison). In addition, while prior works area mostly

6

Published as a conference paper at ICLR 2022

Table 3: Optimized objective values (i.e., latency in milliseconds) obtained by various methods for the task
of learning accelerators specialized to a given application. Lower latency is better.From left to right : our
method, online Bayesian optimization (“Bayes Opt”), online evolutionary algorithm (“Evolutionary”), and the
best design in the training dataset. On average (last row),PRIME improves over the best in the dataset by 2.46�
(up to 6.69� in t-RNN Dec) and outperforms best online optimization methods by 1.54� (up to 6.62� in t-RNN
Enc). The best accelerator con�gurations identi�ed is highlighted in bold.

Online Optimization
Application PRIME Bayes Opt Evolutionary MBO D (Best in Training)

MobileNetEdgeTPU 298.50 319.00 320.28 332.97 354.13
MobileNetV2 207.43 240.56 238.58 244.98 410.83
MobileNetV3 454.30 534.15 501.27 535.34 938.41
M4 370.45 396.36 383.58 405.60 779.98
M5 208.21 201.59 198.86 219.53 449.38
M6 131.46 121.83 120.49 119.56 369.85
U-Net 740.27 872.23 791.64 888.16 1333.18
t-RNN Dec 132.88 771.11 770.93 771.70 890.22
t-RNN Enc 130.67 865.07 865.07 866.28 584.70
Geomean of PRIME 's Improvement 1.0� 1.58 � 1.54 � 1.61 � 2.46 �

restricted to a single application, we show thatPRIME is effective in multi-task optimization and
zero-shot generalization.

6 EXPERIMENTAL EVALUATION

Our evaluations aim to answer the following questions:Q(1) CanPRIME design accelerators tailored
for a given application that are better than the best observed con�guration in the training dataset, and
comparable to or better than state-of-the-art simulation-driven methods under a given simulator-query
budget? Q(2) DoesPRIME reduce the total simulation time compared to other methods?Q(3)
CanPRIME produce hardware accelerators for a family of different applications?Q(4) CanPRIME
trained for a family of applications extrapolate to designing a high-performing accelerator for a new,
unseen application, thereby enabling data reuse? Additionally, we ablate various properties ofPRIME
(Appendix A.6) and evaluate its ef�cacy in designing accelerators with distinct data�ow architectures,
with a larger search space (up to 2.5� 10114 possible candidates).

Figure 5: Comparing the total simu-
lation time ofPRIME (for PRIME this
is the total time for a forward-pass
through the trained surrogate on a CPU)
and evolutionary method on MobileNet-
EdgeTPU.PRIME only requires about
7% of the total simulation time of the
online method.

Baselines and comparisons.We comparePRIME against three
online optimization methods that actively query the simulator:
(1) evolutionary search with the �re�y optimizer [64] (“Evolu-
tionary”), which is the shown to outperform other online meth-
ods for accelerator design;(2) Bayesian Optimization (“Bayes
Opt”) [18], (3) MBO [1]. In all the experiments, we grant all
the methods the same number of feasible points. Note that
our method do not get to select these points, and use the same
exact of�ine points across all the runs, while the online methods
can actively select which points to query, and therefore require
new queries for every run. “D(Best in Training)” denotes the
best latency value in the training dataset used inPRIME. We
also present ablation results with different components of our
method removed in Appendix A.6, where we observe that utiliz-
ing both infeasible points and negative sampling are generally
important for attaining good results. Appendix A.1 presents
additional comparisons to COMs Trabucco et al.[57]—which
only obtains negative samples via gradient ascent on the learned surrogate and does not utilize
infeasible points—and P3BO Angermueller et al. [2]—an state-of-the-art online method in biology.

Architecting application-speci�c accelerators. We �rst evaluatePRIME in designing specialized
accelerators for each of the applications in Table 2. We train a conservative surrogate using the
method in Section 4 on the logged dataset for each application separately. The area constraint�
(Equation 1) is set to� = 29 mm2, a realistic budget for accelerators [64]. Table 3 summarizes
the results. On average, the best accelerators designed byPRIME outperforms the best accelerator
con�guration in the training dataset (last row Table 3), by 2.46� . PRIME also outperforms the
accelerators in the best online method by 1.54� (up to 5.80� and 6.62� in t-RNN Dec and t-RNN

7

	Introduction
	Background on Hardware Accelerators
	Problem Statement, Training Data and Evaluation Protocol
	Prime: Architecting Accelerators via Conservative Surrogates
	Related Work
	Experimental Evaluation
	Discussion
	Additional Experiments
	Comparison to Other Baseline Methods
	Learned Surrogate Model Reuse for Accelerator Design
	Learned Surrogate Model Reuse under Different Design Constraint
	Analysis of Designed Accelerators
	Comparison with Online Methods in Zero-Shot Setting
	Prime Ablation Study
	Comparison with Human-Engineered Accelerators
	Zero-Shot Results on All Applications
	Different Train and validation Splits

	Details of Prime
	Hyperparameter and Training Details
	Details of Firefly Used for Our Online Evolutionary Method
	Exact Hyperparameters Found By Our Cross-Validation Strategy

	Details of Architecting Accelerators for Multiple Applications Simultaneously
	Dataset Sensitivity to Accelerator Parameters

	Overview of Accelerators and Search Space
	Subset of Applications for Good Zero-Shot Performance

