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Abstract

We present a comprehensive study on meaning-001
fully evaluating sign language utterances in the002
form of human skeletal poses. The study cov-003
ers keypoint distance-based, embedding-based,004
and back-translation-based metrics. We show005
tradeoffs between different metrics in different006
scenarios through automatic meta-evaluation007
of sign-level retrieval and a human correlation008
study of text-to-pose translation across differ-009
ent sign languages. Our findings and the open-010
source pose-evaluation toolkit provide a prac-011
tical and reproducible way of developing and012
evaluating sign language translation or genera-013
tion systems.014

1 Introduction015

Automatic evaluation metrics are essential for as-016

sessing the quality of automatically generated lan-017

guage content and tracking progress over time. For018

instance, machine translation (MT) studies rely019

heavily on BLEU (Papineni et al., 2002), even020

though newer metrics have shown stronger corre-021

lation with human judgment (Freitag et al., 2022).022

This trend continues to sign language processing023

(SLP; Bragg et al. (2019); Yin et al. (2021)), an024

interdisciplinary natural language processing and025

computer vision subfield. Sign language transla-026

tion (SLT; Müller et al. (2022, 2023a); De Coster027

et al. (2023)), denoting the part of SLP concerned028

with translating sign language videos into spoken029

language text, reuses text-based metrics.030

Müller et al. (2023b) puts forward concrete sug-031

gestions on evaluating generated text (especially032

glosses) in a sign language context. They suggest033

always computing metrics with standardized tools034

(e.g., SacreBLEU (Post, 2018) for BLEU) and035

reporting the metric signatures for reproducibil-036

ity and fair comparison with other work. The037

opposite direction—generating or translating into038

sign language utterances (usually from source039
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Figure 1: Overview of our pose-based evaluation tax-
onomy. We compare a reference and a hypothesis pose
sequence by (a) computing distance-based metrics di-
rectly on the sequences; (b) encoding each sequence
into a shared embedding space and measuring similar-
ity; and (c) back-translating the hypothesis poses into
text to apply conventional machine translation metrics.

text)—presents additional challenges for evalua- 040

tion. Namely, standardized metrics, tooling, and 041

correlation with human evaluation are lacking. 042

In this work, we systematically examine the met- 043

rics employed for evaluating sign language out- 044

put, especially formatted as human skeletal poses 045

(Zheng et al., 2023) that contain motion of signing 046

(e.g., MediaPipe Holistic; Lugaresi et al. (2019); 047

Grishchenko and Bazarevsky (2020)). We start by 048

a literature review of current research practices in 049

§2, and summarize two major families of metrics: 050

(a) distance-based metrics (§3.1) informed by hu- 051

man motion generation (§2.3) and sign language 052

assessment (SLA; §2.4), assuming the access to ref- 053

erences; (b) back-translation-based metrics (§3.3) 054

borrowed from MT (Zhuo et al., 2023) and speech 055

translation (Zhang et al., 2023), assuming the pre- 056

existence of a pose-to-text translation model. 057

After the initial conceptual review, we select, im- 058

plement, and meta-evaluate typical metrics along 059
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with additional innovative ones proposed by us (as060

summarised in Figure 1), through two empirical061

approaches: automatic meta-evaluation with a sign-062

level retrieval task (§4); and a sentence-level corre-063

lation study between metrics of interest versus deaf064

evaluator ratings on three text-to-pose MT systems065

in three spoken-sign language pairs (§5).066

We find that keypoint distance-based metrics,067

when carefully tuned, can rival more advanced ap-068

proaches for sign retrieval and human-judgment069

correlation. On the other hand, embedding-based070

metrics, including ones borrowed from SLA, excel071

at their own domain but struggle at the sentence072

level across different systems. Back-translation073

likelihood emerges as the most consistent met-074

ric—highlighting the need for open, standardized075

pose-to-text models alongside human evaluation.076

The source code of the suggested evaluation met-077

rics and the proposed meta-evaluation protocols in078

§4 are openly maintained in pose-evaluation, a pub-079

lic GitHub repository1. The human correlation data080

and evaluation scripts in §5 will also be released to081

encourage future research.082

2 Related Work083

We discuss four related fields in this section with084

a special emphasis on the evaluation methodology,085

and outline recent work in sign language genera-086

tion (SLG; §2.2) in Table 1. The remaining three087

fields provide additional background relevant to088

evaluating these SLG systems.089

2.1 Sign Language Understanding090

Sign language recognition (Adaloglou et al., 2021)091

and translation (De Coster et al., 2023) are the092

two most prevalent tasks of understanding sign lan-093

guage from video recordings. The former aims094

at classifying signing into a fixed vocabulary of095

signs in a particular sign language, either from096

isolated video clips of single signs (isolated sign097

language recognition; ISLR) or continuous video098

footage spanning multiple signs (continuous sign099

language recognition; CSLR). Given the classifica-100

tion nature, the evaluation efficiently uses classic101

statistical metrics such as accuracy, F1 score, and102

word error rate.103

Early SLT attempts rely on glosses (Moryossef104

et al., 2021b; Müller et al., 2023b), produced man-105

ually by humans or a CSLR model. Camgoz et al.106

(2018, 2020) starts end-to-end neural SLT and107

1The link will be revealed after anonymous review.

leads a wave of gloss-free SLT work (Zhou et al., 108

2023; Zhang et al., 2024a), where evaluation is 109

typically done with BLEU and BLEURT (Sellam 110

et al., 2020) but not possible with source-based met- 111

rics like COMET and quality estimation models 112

like COMET-QE (Chimoto and Bassett, 2022) due 113

to the input modality constraint on sign language. 114

WMT-SLT campaigns for two consecutive years 115

(Müller et al., 2022, 2023a) carry out a rigorous 116

human evaluation process as seen in traditional MT 117

research. Yet the correlation between automatic 118

evaluation metrics and human judgments in SLT 119

has not been reported; quantifying this correlation 120

would yield valuable insights. 121

2.2 Sign Language Generation 122

The landscape of SLG is more complicated than 123

SLT, with various inputs, namely, (a) spoken lan- 124

guage text; (b) sign language glosses; (c) iconic 125

phonetic writing systems of sign language; (d) tex- 126

tual phonetic description of signing, and various 127

outputs, usually, 2D/3D pose; or RGB video frames. 128

We note that in the case of (a) text, the genera- 129

tion process involves translation from a spoken lan- 130

guage to a sign language with possibly reordering 131

and rephrasing of words, while starting with (b), 132

(c), and (d) merely convert sign language approx- 133

imated in textual forms into visuals (also known 134

as sign language production2), possibly with a pre- 135

ceding step in the pipeline that translates from text 136

to (b) (Jiang et al., 2023), (c) (Zhu et al., 2023), 137

and (d). Our work evaluates poses as the primary 138

representation of sign language motion and seman- 139

tics, deliberately excluding RGB videos to avoid 140

confounding factors such as visual appeal or signer 141

identity. Evaluating videos using the same methods 142

is possible after first estimating them into poses. 143

We present prominent pose-based SLG studies 144

from recent years and their evaluation methods in 145

Table 1, grouped by the input modalities. Follow- 146

ing a similar roadmap as SLT, SLG takes off with 147

a gloss-based cascading approach (text-to-gloss-to- 148

sign; Stoll et al. (2018, 2020)) and then gradually 149

switches to an end-to-end fashion in a series of 150

follow-up work (Saunders et al., 2020b,a, 2021a,b). 151

Attempts have also been made with alternative 152

phonetic inputs such as HamNoSys (Prillwitz and 153

Zienert, 1990; Arkushin et al., 2023). 154

Unlike SLT, however, gloss-based baseline ap- 155

2The terms are sometimes used interchangeably and thus
confuse. This work sticks to the broad term of sign language
generation that generates signing from any source.
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Work Datasets Sources Target Model Evaluation Metrics

(P,H2, etc.) (T,G,H) (M,O,S) </> θ D </> B4 </> θ Other

Arkushin et al. (2023) DGS Corpus, 3 others H O ✔ ✔ ✔ ✔ n/a n/a n/a -

Stoll et al. (2018, 2020) P G O - n/a - - - - - SSIM, PSNR, MSE (pixel-wise)
Moryossef et al. (2023b) Signsuisse G M ✔ n/a - - - - - -
Zuo et al. (2024b) P,CSL-Daily G S ✔ n/a ✔ - ✔ ✔ ✔ Frame temporal consistency

Saunders et al. (2020b,a, 2021a,b) P T O ✔ - - - ✔ ✔ - -
Hwang et al. (2021, 2023) P,H2 T O ✔ - ✔ - ✔ - - Fréchet Gesture Distance
Yin et al. (2024) P T S - - ✔ - ✔ - - -
Fang et al. (2024a,b) P,H2,4 others T O - - ✔ - ✔ - - SSIM, Hand SSIM, FID, etc.
Yu et al. (2024) P,H2,4 others T,G,H S ✔ - ✔ - - - - FID, Diversity, MM-Dist, etc.
Baltatzis et al. (2024) H2 T S - - ✔ - ✔ - - FID
Zuo et al. (2024a) P,H2,CSL-Daily T S - - ✔ - ✔ - - Latency

Table 1: Literature review of recent works on pose-based sign language generation (May 2025).
P=RWTH-PHOENIX-Weather2014T, H2=How2Sign; T=Text, G=Gloss, H=HamNoSys; M=MediaPipe,
O=OpenPose, S=SMPL-X; D=DTW-MJE (and other distance-based metrics), B4=BLEU-4 (and other back
translation-based metrics); </> and θ represent the availability of source code and model weights for the generation
model and the evaluation metrics (including the back translation model if involved), respectively. The check mark
symbols (✔) are clickable links in these columns, and n/a denotes not-applicable cases, such as model weights for
gloss-based systems and back-translation for HamNoSys input. Other image-based metrics are left as less relevant.

proaches for SLG remain competitive and practical156

choices (Moryossef et al., 2023b; Zuo et al., 2024b)157

thanks to accessible sign language dictionary re-158

sources that allow for straightforward mapping of159

glosses to sign language pose sequences. Modern160

end-to-end approaches utilise vector quantization,161

diffusion models, and LLMs, and the output pose162

format spans from classic 2D standards such as Me-163

diaPipe Holistic and Openpose (Cao et al., 2019)164

to 3D SMPL-X (Pavlakos et al., 2019).165

Popular datasets used in this line of work in-166

clude RWTH-PHOENIX-Weather 2014T, in Ger-167

man Sign Language (DGS), introduced by Forster168

et al. (2014); Camgoz et al. (2018); CSL-Daily,169

in Chinese Sign Language (CSL), introduced by170

Zhou et al. (2021); and How2Sign, in American171

Sign Language (ASL), introduced by (Duarte et al.,172

2021). We choose Signsuisse (Müller et al., 2023a)173

in this work (§5) for its multilinguality nature and174

richer vocabulary than others3.175

As for evaluation, the SLRTP Sign Language176

Production Challenge 2025 summarises the most177

common evaluation metrics: (a) keypoint distance-178

based, such as DTW-MJE (Dynamic Time Warping179

- Mean Joint Error); and (b) back-translation-based,180

such as BLEU and BLEURT. Human evaluation181

is conducted briefly in Saunders et al. (2021a,b),182

Baltatzis et al. (2024), and Zuo et al. (2024a) and183

more extensively in another concluded campaign–184

Quality Evaluation of Sign Language Avatars185

Translation (Yuan et al., 2024). Unfortunately, like186

in SLT, the correlation between automatic metrics187

3PHOENIX and CSL-Daily feature 1066 and 2000 signs.

and human judgments has never been formally val- 188

idated. Upon reviewing Table 1, we spot two sig- 189

nificant issues in the current development of SLG: 190

(a) Most systems and their evaluations are non- 191

reproducible due to the lack of source code and 192

model weights (including the back-translation mod- 193

els if involved). (b) Cross-work comparisons are 194

unrealistic given the fragmented implementation 195

of the evaluation metrics (in contrast to MT, where 196

standardized tools like SacreBLEU are available). 197

2.3 Human Motion Generation 198

Motion generation from natural language is a re- 199

lated field where human pose sequences are synthe- 200

sized to reflect described actions (Tevet et al., 2022; 201

Zhang et al., 2024b). Evaluation typically involves 202

distance-based metrics (e.g., joint or velocity error), 203

perceptual similarity (e.g., Fréchet Inception Dis- 204

tance adapted to motion), and alignment metrics 205

like R-Precision to measure text-motion coherence. 206

However, Voas et al. (2023) shows that many of 207

these automated metrics correlate poorly with hu- 208

man judgment on a per-sample basis. They pro- 209

pose MoBERT, a BERT-based learned evaluator, 210

which achieves higher agreement with human rat- 211

ings, highlighting the ongoing challenge of design- 212

ing semantically meaningful motion evaluation. 213

2.4 Sign Language Assessment 214

SLA research compares student-produced signing 215

against canonical references. Cory et al. (2024) 216

evaluates sign language proficiency by modeling 217

the natural distribution of signing motion and 218

demonstrating a strong correlation with human 219

3
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ratings. Tarigopula et al. (2024, 2025) proposes220

a posterior-based analysis of skeletal or spatio-221

temporal features to assess both manual and non-222

manual signing components, improving alignment223

with human evaluation.224

3 Evaluation Metrics225

In this section, we formally define the evaluation226

metrics mentioned in related work (§2) and imple-227

ment them, reusing open-source code where avail-228

able, to prepare for the upcoming empirical study229

on pose evaluation in §4 and §5.230

3.1 Keypoint Distance-Based Metrics231

We borrow keypoint distance-based metrics from232

prior work on sign language generation, notably233

Ham2Pose (Arkushin et al., 2023). These met-234

rics—originally developed for general pose esti-235

mation and motion analysis—quantify geometric236

similarity using frame-wise errors and alignment237

strategies. However, they are not designed for sign238

language and tend to ignore critical linguistic prop-239

erties such as signer speed variation, hand domi-240

nance, and missing keypoints. Moreover, they have241

not been systematically validated against human242

judgments in sign language contexts, motivating243

our extended investigation.244

We identify significant sources of variation that245

affect the outcomes of distance-based metrics: (a)246

whether and how keypoints are normalized (e.g.,247

based on shoulder positions); (b) whether videos248

are trimmed to exclude signing-inactive frames; (c)249

which subset of MediaPipe keypoints is selected250

for comparison (Figure 2; e.g., hands-only vs. full251

body); (d) how framerate mismatches are handled252

(e.g., interpolating to a consistent FPS); (e) how253

masked or missing keypoints are treated (e.g., filled254

with a value vs. ignored); and (f) how sequences255

of unequal length are aligned (Figure 3; using zero-256

padding, frame repetition, or DTW). We test these257

variations and provide a reproducible toolkit that258

enables researchers to tune these design choices259

explicitly rather than inherit arbitrary defaults.260

By mixing preprocessors—including normaliza-261

tion, keypoint selection, masking strategies, trim-262

ming, and alignment—with different distance mea-263

sures, our framework supports the generation of264

thousands of metric variants to be tested in §4.265

3.2 Embedding-Based Metrics266

Rather than operating on the keypoints’ raw spatial267

positions, we categorize embedding-based metrics268

(a) Full (586 Points)
(Grishchenko and Bazarevsky, 2020)

(b) YouTube-ASL (85 Points)
(Uthus et al., 2023)

(c) Face-contour (178 Points)
(Moryossef et al., 2021a)

(d) SignCLIP (203 Points)
(Jiang et al., 2024)

Figure 2: MediaPipe keypoint selection strategies.

(a) Equal-Length Sequences (b) Zero-Padding

(c) Pad with First Frame (d) Dynamic Time Warping

Figure 3: Strategies for sequence alignment between
the shorter sequence (in red) and longer sequence (in
blue). In reality, pose keypoint trajectories are aligned
temporally in 3D and then averaged for the whole body.

that calculate distance or similarity in a latent em- 269

bedding space provided by a model. 270

3.2.1 Sign Language Assessment Metrics 271

We adopt two metrics for comparing two poses 272

from the SLA task (§2.4): the Skeleton Variational 273

Autoencoder (SkeletonVAE) model from Cory et al. 274

(2024) and the posterior-based scores from assess- 275

ment models developed in Tarigopula et al. (2024). 276

SkeletonVAE Score The SkeletonVAE is trained 277

to produce a per-frame latent embedding. 2D Me- 278

diaPipe poses are first uplifted to constrained 3D 279

skeletons using the method of Ivashechkin et al. 280

(2023) and then embedded into a 10-dimensional β- 281

VAE latent space (Higgins et al., 2017). We define 282

SkeletonVAE Score as the L2 distance between the 283

reference and hypothesis sequences’ DTW-aligned 284

latent trajectories, optionally normalized by the 285

DTW path length. 286

4



Skeleton Posterior-based SKL Score Follow-287

ing Tarigopula et al. (2024), we first extract two288

sets of linguistically informed features from the289

pose sequences with the same missing keypoint290

preprocessing as Eq. 6 in Arkushin et al. (2023).291

For hand movement, we compute 36-dimensional292

feature vectors representing hand position and ve-293

locity relative to the head, shoulders, and hips294

with a temporal context of 9 frames. For hand-295

shape, we calculate joint positions relative to the296

wrist and input them into a separate MLP to ob-297

tain handshape posteriors. The resulting stack of298

shape and movement posteriors from both the refer-299

ence and hypothesis examples is then aligned using300

DTW with a cost function based on the Symmet-301

ric Kullback–Leibler (SKL) divergence. The cost302

is aggregated over the DTW time steps as the fi-303

nal score with two variants–SKL_mvt Score (move-304

ment only) and SKL_mvt_hshp Score (movement +305

handshape), respectively.306

3.2.2 SignCLIP Score307

One step further than §3.2.1, we follow CLIPScore308

(Hessel et al., 2021) and use SignCLIP (Jiang et al.,309

2024), a model repurposed for representing sign310

language poses by multilingual contrastive learn-311

ing, to derive SignCLIPScore P-P (pose-to-pose),312

based on the dot product of the embeddings of the313

reference and hypothesis on the sentence level in-314

stead of frame-level latents plus DTW alignment.315

Reference-Free Quality Estimation Variant316

We introduce SignCLIPScore P-T (pose-to-text).317

It computes the dot product between the text and318

pose embedding, eliminating reliance on scarce319

or even unreliable ground-truth signing references320

(Freitag et al., 2023).321

3.3 Back-Translation-Based Metrics322

Assuming the existence of the corresponding spo-323

ken language text and a reliable pose-to-text SLT324

model, we can evaluate a sign language pose by:325

(a) Sampling: translate the pose sequence into text,326

then compare with the source text using BLEU,327

chrF, or BLEURT. (b) Scoring: compute the log-328

likelihood of the text given the pose sequence as in-329

put to the SLT model. This avoids errors introduced330

by decoding and supports more consistent compar-331

isons across systems. In this study, we adopt an332

SLT model from Zhang et al. (2024a), which is333

pretrained on a large-scale YouTube SLT corpus334

and massive MT data. We use system 8 from their335

study (YT-Full + Aug-YT-ASL&MT-Large + ByT5 336

XL), i.e., the current state of the art, and preprocess 337

the generated pose sequences by selecting the same 338

85 keypoints specified in their paper4. 339

4 Automatic Meta-Evaluation 340

We adopt the retrieval-based evaluation protocol 341

from Arkushin et al. (2023) to assess how well 342

different metrics capture meaningful distinctions 343

between signs. Each pose sequence is treated as a 344

query, and the goal is to retrieve other samples of 345

the same sign (targets) from a pool that includes 346

unrelated signs (distractors). We focus primarily 347

on the distance-based metric variants introduced in 348

§3.1, and compare them against embedding-based 349

alternatives such as SignCLIP Score (§3.2.2). The 350

key results are presented in Table 2. 351

Base Def Fill Trim Norm. Pad Keypoints mAP↑ P@10↑

APE 10 10 x x zero Up. Body 33% 27%
APE 10 10 x x first Up. Body 34% 29%
APE 10 10 v x zero Up. Body 35% 30%
APE 10 10 x v zero Reduced 36% 32%
APE 10 10 x x first Reduced 37% 32%
APE 10 10 x x first YT-ASL 39% 36%
APE 10 10 v x first Reduced 40% 36%
APE 10 10 v v zero Up. Body 41% 37%
APE 10 10 x x zero Hands 42% 38%
APE 10 10 v v first YT-ASL 43% 39%
APE 10 10 v x zero Hands 45% 41%

DTW 10 10 x x / Up. Body 36% 32%
DTW 10 10 v x / Up. Body 37% 33%
DTW 10 10 x x / Reduced 42% 40%
DTW 10 10 x v / Up. Body 43% 41%
DTW 10 10 v v / Up. Body 43% 41%
DTW 10 10 x v / Reduced 44% 41%
DTW 10 10 x v / Hands 45% 41%
DTW 10 10 x x / YT-ASL 48% 47%
DTW 10 10 v x / YT-ASL 49% 48%
DTW 10 10 x x / Hands 53% 52%
DTW‡ 0 10 v x / Hands 53% 52%
DTW 10 10 v x / Hands 53% 52%
DTW† 1 1 x v / Hands 55% 53%

SignCLIPScore P-P (multilingual) 50% 48%
SignCLIPScore P-P (ASL Finetuned) 91% 92%

Table 2: Automatic meta-evaluation of reference-based
metrics on retrieval. A representative sample, including
the best-performing configurations, is shown in this ta-
ble. "Def " indicates default distance; "Fill" indicates the
value used to fill in missing keypoint; "zero" indicates
zero-padding; "first" indicates padding with first frame.

Evaluation is conducted on a combined dataset 352

of ASL Citizen (Desai et al., 2023), Sem-Lex 353

(Kezar et al., 2023), and PopSign ASL (Starner 354

et al., 2023). For each sign class, we use all avail- 355

able samples as targets and sample four times as 356

many distractors, yielding a 1:4 target-to-distractor 357

4Eight mismatched keypoints due to different MediaPipe
versions are imputed as missing landmarks.
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ratio. For instance, for the sign HOUSE with 40358

samples (11 from ASL Citizen, 29 from Sem-Lex),359

we add 160 distractors and compute pairwise met-360

rics from each target to all 199 other examples5.361

Retrieval quality is measured using Mean Aver-362

age Precision (mAP↑) and Precision@10 (P@10↑).363

The complete evaluation covers 5362 unique sign364

classes and 82,099 pose sequences.365

After several pilot runs, we finalized a subset366

of 169 sign classes with at most 20 samples each,367

ensuring consistent metric coverage. We evaluated368

48 distance-based variants and SignCLIP models369

with different checkpoints provided by the authors370

on this subset. The overall results show that DTW-371

based metrics outperform padding-based baselines.372

Embedding-based methods, particularly SignCLIP373

models fine-tuned on in-domain ASL data, achieve374

the strongest retrieval scores.375

5 Text-to-Pose Translation Study with376

Human Evaluation377

This section shifts our evaluation focus from auto-378

matic sign-level tasks to a sentence-level text-to-379

pose sign language machine translation scenario.380

Due to their subjective and diverse nature, open-381

ended text or utterance generation tasks inherently382

lack a single “correct”/“ground-truth” answer. Con-383

sequently, automatic evaluation metrics are only384

meaningful if they correlate closely with human385

judgments (Reiter, 2018; Sellam et al., 2020).386

5.1 Dataset: WMT-SLT Signsuisse387

We use the Signsuisse dataset released in the WMT-388

SLT campaign. The dataset comprises 18,221389

lexical items in three spoken-sign language pairs,390

represented as videos and glosses. One signed391

example sentence for each lexical item is pre-392

sented in a video along with the corresponding393

spoken language translation, which forms paral-394

lel data between the sign and spoken languages.395

The test set is used to test different text-to-pose396

translation systems. It contains 500 German/Swiss397

German Sign Language (DSGS) segments, 250398

French/French Sign Language (LSF) segments, and399

250 Italian/Italian Sign Language (LIS) segments.400

5.2 Systems401

We utilize three text-to-pose translation systems402

that convert spoken language text inputs into corre-403

5We consistently discard scores for pose files where either
the target or distractor could not be embedded with SignCLIP.

sponding sign language represented by the Medi- 404

aPipe Holistic pose formats. 405

Reference* MediaPipe poses are estimated from 406

the reference translation videos. 407

sign.mt Based on Moryossef et al. (2023b), this 408

open system converts text into sign language 409

glosses through rule-based reordering and selec- 410

tive word dropping. Glosses are mapped to skeletal 411

poses retrieved from a lexicon and are then concate- 412

nated to form coherent sequences. When a gloss 413

is missing from the lexicon, the system defaults to 414

fingerspelling the corresponding word. 415

sign.mt v2 During evaluation, we found that fre- 416

quent fingerspelling of missing glosses was cum- 417

bersome and frustrating for evaluators. Therefore, 418

in this version, we opted to omit glosses without 419

lexical mappings, acknowledging that while this 420

may result in information loss, it significantly im- 421

proves user experience and evaluation efficiency. 422

Sockeye We adapt Sockeye (Hieber et al., 2022) 423

to continuous pose sequences by modifying both 424

the encoder and decoder to handle continuous se- 425

quences. The text-to-pose Sockeye model is trained 426

on the Signsuisse training set with 60k updates on 427

a 32GB NVIDIA Tesla V100 GPU. 428

To avoid exposure bias—where the decoder over- 429

fits to gold frames and fails at inference, we first 430

predict only the initial pose y1 from the encoder 431

output, then feed y1 as input for all subsequent 432

steps y2:n, training the decoder to output frame-to- 433

frame deltas ∆yt = yt − y1 instead of absolute 434

poses. Since the target sequence is continuous, we 435

replace the cross-entropy loss function with mean 436

squared error on the poses. Additionally, there is 437

no <EOS> token with continuous output; instead, 438

we learn to output the length of the pose sequence 439

based on the length ratios from the training data6. 440

5.3 Human Evaluation 441

We collect system translations and use Appraise 442

(Federmann (2018); Figure 4) to allow evaluators 443

to rate the translations on a continuous scale be- 444

tween 0 and 100 as in traditional direct assessment 445

(Graham et al., 2013; Cettolo et al., 2017) but with 446

0-6 markings on the analogue slider and custom an- 447

notator guidelines designed explicitly for our task 448

(similar to WMT-SLT, but reverse translation direc- 449

tion). Evaluation instructions are sent out in DSGS, 450

6Public repo with demo outputs, link hidden for anonymity.
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Reference-Based Reference-Free

Distance-Based SLA Metrics SignCLIPScore Back Translation-Based H*

nAPE nDTW DTWp nDTWp SVAE SVAEn SKL P-P P-T B4 chrF B-RT Lik. H*

By System
sign.mt 0.09 0.14 0.11 0.10 0.23 -0.08 0.24 0.10 0.02 0.05 0.11 0.05 0.23 0.43
sign.mt v2 0.28 0.33 0.26 0.31 0.46 0.14 0.22 0.00 -0.19 0.20 0.22 0.44 0.49 0.52
Sockeye 0.10 0.15 0.04 0.17 0.13 0.01 0.24 0.42 -0.27 -0.07 0.04 0.46 0.58 0.22

By Language
DE→DSGS -0.36 -0.09 0.73 0.43 -0.02 0.27 -0.57 -0.31 0.39 0.18 0.26 0.09 0.36 0.70
FR→LSF -0.54 -0.11 0.76 0.02 -0.01 0.37 -0.68 -0.01 0.45 0.32 0.60 0.47 0.29 0.80
IT→LIS -0.57 -0.39 0.79 0.57 -0.02 0.53 -0.75 0.13 0.29 0.31 0.63 0.41 0.38 0.88

Overall (↑) -0.41 -0.10 0.76 0.43 0.07 0.38 -0.56 -0.10 0.27 0.21 0.42 0.36 0.42 0.77
SD (↓) (0.35) (0.24) (0.34) (0.20) (0.18) (0.22) (0.47) (0.22) (0.29) (0.14) (0.23) (0.18) (0.12) (0.24)

Table 3: Segment-level Spearman correlations with average human judgments calculated for several pose-
based evaluation metrics for sign language. nAPE=normalized APE, nDTW=normalized DTW-MJE (two
metrics taken from Arkushin et al. (2023) and re-implemented for MediaPipe, normalized by pose shoulder);
DTWp=DTW+Trim+Default0.0+Hands-Only, nDTWp=DTW+Default1.0+MaskFill1.0+Norm.+Hands-Only
(top metrics selected in §4 implemented by pose-evaluation, denotated by ‡ and † in Table 2, without/with
pose normalization, respectively); SVAE=SkeletonVAE Score, SVAEn=SVAE normalized by DTW path,
SKL=SKL_mvt Score; P-P=Pose-to-pose embedding distance, P-T=Pose-to-text embedding distance;
B4=BLEU-4, chrF=chrF, B-RT=BLEURT, Lik. =Likelihood. H* denotes mean inter-evaluator Spearman correlation.
SD represents the standard deviation across each column and is expected to be small/consistent for an ideal metric.

LSF, and LIS, which are translations of the respec-451

tive spoken language instructions in WMT-SLT.452

We hire seven DSGS, two LSF, and four LIS453

evaluators, all of whom are native deaf sign lan-454

guage users7. All work is done with informed con-455

sent in written and signed form. Of the seven native456

DSGS deaf signers, four have never participated in457

such an evaluation campaign before, two have done458

so once, and one has already attended more than459

once. Concerning their professional backgrounds,460

four are deaf translators; one also interprets live.461

Complete demographics are presented in Table 4.462

An initial round of evaluation informs us about463

the cost, roughly 100 example segments per hour,464

with a compensation of ∼40 USD per hour. Evalu-465

ators also provide constructive feedback on the Ap-466

praise platform and the translation systems, which467

results in the v2 version of sign.mt. Therefore,468

the number of evaluated examples varies between469

systems and languages.470

Statistics The evaluation comprises 11,471 rat-471

ings of 2650 unique examples across all four (three472

plus reference) systems and three language pairs.473

We follow the practices set by WMT-SLT. The inter-474

annotator agreement, measured with an approxima-475

tion of Fleiss κ (Fleiss, 1971) by discretizing the476

continuous scale 0-100 in seven bins in the scale477

7One additional DSGS evaluator, a hearing interpreter, did
a pilot study with us to test the Appraise system.

0-6, is κ = 0.36 ± 0.05. We also randomly mix 478

500 references and some repeated hypothesis seg- 479

ments for sanity checks and quality control. The 480

mean intra-annotator agreement over all evaluators 481

is κ = 0.49 ± 0.09, calculated over 50-100 seg- 482

ments evaluated twice by the same evaluator. We 483

find the inter- and intra-annotator agreement lower 484

than in the WMT-SLT study for the reverse transla- 485

tion direction and posit the lack of a clear definition 486

and criteria of translation quality on signing poses. 487

Evaluation experience SL professional Avg yr.

Never Once > Once Translator Interpreter Teacher

DSGS (7) 4 2 1 4 1 4 39.0
LSF (2) 0 1 1 1 0 1 35.0
LIS (4) 1 1 2 3 4 0 42.5

Table 4: Raters overview: system evaluation and profes-
sional experience with sign language, average number
of years signing (in most cases equivalent to age).

5.4 Correlation Analysis 488

We run a correlation analysis between the metrics 489

proposed in §3 divided into different families and 490

the human scores averaged over evaluators on the 491

segment level, as presented in Table 3. The absolute 492

scores per metric/system are appended in Table 5. 493

For the distance-based metrics, we reproduce 494

nAPE and nDTW for MediaPipe poses based on the 495

open implementation from Arkushin et al. (2023) 496

as a reference, and additionally compare them to 497
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the best-performing metrics informed by the auto-498

matic meta-evaluation in §4 on ASL, a different499

sign language. We flip the signs of the metrics that500

quantify errors to keep a positive correlation for501

analytical convenience. Row-wise, we first break502

down the correlation by systems and languages into503

relevant rows, and finally present the overall corre-504

lation, including all systems and languages, to also505

reflect the performance on the system level.506

6 Discussion and Recommendations507

Distance-based metrics are efficient defaults, but508

the devil is in the implementation details. Al-509

though seemingly straightforward to implement,510

distance-based metrics involve many details con-511

cerning the pose format, keypoint selection, and512

other corner cases. We empirically show the ef-513

fectiveness of correcting these design choices by514

a random parameter search, following our meta-515

evaluation protocols established in §4. We recom-516

mend using the tuned version– DTWp and nDTWp–517

in our pose-evaluation library, or tuning your518

distance-based metrics if there is a special scenario.519

Upon successful tuning, a distance-based met-520

ric achieves decent sign retrieval and correla-521

tion with humans in the text-to-pose translation.522

Our tuned metrics can be used as a distance func-523

tion for a nearest neighbor classifier, and reach524

close performance as the SignCLIP model pre-525

trained on multilingual sign language data; still,526

it lags behind a SignCLIP model fine-tuned on527

in-domain data (Table 2). When used to evaluate528

translation output, keypoint distance-based metrics529

can range from negatively correlated with human530

judgments (as seen for nAPE and nDTW), to be-531

ing the best metrics tested. DTWp wins the overall532

correlation while nDTWp is more sensitive on the533

segment level within a specific system (Table 3).534

SLA metrics correlate with humans on the seg-535

ment level, but are confused on the system level.536

While verified to align with human ratings for their537

tasks on evaluating human-produced signing (usu-538

ally fixed individual signs), text-to-pose translation539

is more lengthy and open-ended, which hurts the di-540

rect transferability. A proper length normalization541

(as seen in the case of SVAEn vs. SVAE) might help542

on the system level at the price of losing precision543

on the segment level.544

SignCLIP, used as a multilingual embedding545

device, excels on the sign level, but falls short546

for sentence-level translation evaluation. We 547

speculate that using a single embedding to summa- 548

rize a long-duration (> 10 seconds) signing video 549

is inherently limited, especially for DSGS, an un- 550

seen language during SignCLIP pretraining. Never- 551

theless, the reference-free variant shows moderate 552

correlation on the system level, and we observe a 553

similar tradeoff (P-P vs. P-T) between segment 554

and system level correlations as observed in the 555

SLA metrics. 556

Back-translation-based approaches correlate 557

properly with human judgment; a gap remains 558

compared to inter-human correlation. In addi- 559

tion to the standard practices suggested by Müller 560

et al. (2023b) on computing text-based metrics, we 561

call for open, standardized pose-to-text translation 562

models that include both the model weights and 563

the source code. Yet, as put by Table 1, it is hardly 564

the case in current research, and having one dedi- 565

cated back translation model for each translation 566

direction (or even dataset) is a luxury. The above- 567

mentioned metrics, which do not rely on in-domain 568

data but function to a decent degree, are valuable 569

in a more generic setting. Human evaluation shall 570

be used as the final quality assessment resort. 571

When using back translation, likelihood is con- 572

sistent and more reliable than text metrics. 573

BLEU, chrF, and BLEURT show weaker or un- 574

stable correlations with humans in Table 3. It is 575

recommended that back-translation likelihood be 576

included as a primary metric, when a pose-to-text 577

model is available. 578

7 Conclusion 579

This work presents a unified framework and an 580

open-source pose-evaluation toolkit for systemat- 581

ically assessing (generated) sign language utter- 582

ances based on human skeletal poses. We im- 583

plemented and compared a wide range of metrics 584

(§3)—distance-based, embedding-based, and back- 585

translation-based—via automatic meta-evaluation 586

on sign retrieval (§4) and a comprehensive human 587

correlation study across three sign languages (§5). 588

Our results demonstrate that carefully tuned dis- 589

tance metrics, namely DTWp and nDTWp, and 590

back-translation likelihoods yield the strongest 591

agreement with native signer judgments. We re- 592

lease our code, evaluation protocols, and human 593

ratings to foster reproducible and fair comparisons 594

in computational sign language research. 595
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8 Limitations596

8.1 3D Pose Representation597

While our study focuses on using MediaPipe Holis-598

tic as the pose format for representing sign lan-599

guage motion, other specifics, especially the re-600

cently developed 3D SMPL-X (Pavlakos et al.,601

2019) would be a visually more expressive choice.602

However, the lack of a common way to extract603

and use 3D poses as easily as MediaPipe Holistic604

makes the latter the most used choice in SLP.605

8.2 Missing Publicly Available Systems606

Our study is further limited by the number of public607

systems (Table 1) we can use to run the correlation608

analysis, unless we implement everything from609

scratch (including the pose estimation pipelines,610

text-to-pose systems, and back-translation models).611

We hope the release of this work will alleviate the612

situation.613

8.3 Automatic Evaluation beyond Sign Level614

The automatic meta-evaluation in §4 is capped by615

the sign-level retrieval task, and we envision ex-616

tending it to phrase-level. One possible approach617

is to leverage the Platonic Representation Hypoth-618

esis proposed by Huh et al. (2024). In the pose619

evaluation scenario, we hypothesize that the sim-620

ilarity given by a good pose metric between two621

pose segments should correlate with the similarity622

given by a text embedding model between the two623

text segments paired with the two pose segments,624

respectively. We leave exploration on this end to625

future work, which will likely connect more closely626

the automatic meta-evaluation to the sentence-level627

human correlation study in §5.628

8.4 Tokenized Evaluation629

Inspired by how text metrics like BLEU collect630

surface-form overlapping statistics, we imagine631

a tokenized evaluation to be promising for sign632

language evaluation. Although a sign language633

pose sequence cannot be discretely tokenized and634

matched like text tokens, the combination of a sign635

language segmentation model (Moryossef et al.,636

2023a) plus SignCLIP embedding can be utilized in637

a way similar to BERTScore (Zhang* et al., 2020),638

where a similarity matrix is constructed between639

the reference and hypothesis tokens to derive the640

final similarity score on phrase level.641
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A Extended Human Evaluation Details1077

Figure 4 presents a screenshot of the Appraise platform we customized for the text-to-pose evaluation.1078

B Extended Text-to-Pose Evaluation1079

Table 5 presents the mean absolute scores for each metric across different systems, in addition to the1080

correlation analysis in Table 3.1081

nAPE↓ nDTW↓ DTWp↓ nDTWp↓ SVAE↓ SVAEn↓ SKL↓ P-P↑ P-T↑ B4↑ chrF↑ B-RT↑ Lik.↑ H*

reference* n/a n/a n/a n/a n/a n/a n/a n/a 74.23 15.05 38.52 0.49 -32.87 76.55
sign.mt 0.60 25.43 5171.55 8.66 1.20 0.0028 2794.29 81.58 75.55 3.46 14.53 0.26 -39.30 22.00
sign.mt v2 1.65 20.73 4508.62 8.97 1.23 0.0045 4165.78 89.89 76.46 6.89 24.79 0.23 -67.55 30.12
Sockeye 0.29 16.97 11879.58 10.71 1.16 0.0057 1056.29 94.45 72.40 3.44 11.90 0.17 -77.57 5.05

Table 5: Mean absolute scores for each metric across systems. Rows and columns mirror those in Table 3.
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Figure 4: A screenshot of an example text-to-pose evaluation task in Appraise featuring sentence-level source-based
direct assessment custom annotator guidelines in German/French/Italian and DSGS/LSF/LIS, translated into English
for readers’ convenience.
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