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Abstract
The Bayesian treatment of neural networks dictates that a prior distribution is considered

over the weight and bias parameters of the network. The non-linear nature of the model
implies that any distribution of the parameters has an unpredictable effect on the distribution
of the function output. Gaussian processes offer a rigorous framework to define prior
distributions over the space of functions. Our proposal is to impose such functional priors
on well-established architectures of neural networks by means of minimising the Wasserstein
distance between samples of stochastic processes. Early experimental results demonstrate
the potential of functional priors for Bayesian neural networks.

1. Introduction

The concept of prior distribution in Bayesian inference offers a mathematical formulation
that allows us to describe the family of solutions that we consider acceptable, before having
seen any data. While there are cases for which picking a good prior is easy or intuitive
given the context (O’Hagan, 1991; Rasmussen and Ghahramani, 2002; Srinivas et al., 2010;
Cockayne et al., 2019; Briol et al., 2019), for nonlinear parametric models with thousands (or
millions) parameters, like deep neural networks (dnns) and convolutional neural networks
(cnns), this choice is not straightforward. As these models are nowadays accepted as de
facto standard in machine learning (LeCun et al., 2015), the community has been actively
proposing ways to reason about the uncertainty of their predictions, with the Bayesian
machinery being at the core of many contributions (Graves, 2011; Chen et al., 2014; Gal
and Ghahramani, 2016; Liu and Wang, 2016). Despite many advances in the field (Kendall
and Gal, 2017; Rossi et al., 2019; Osawa et al., 2019; Rossi et al., 2020), it is reported that
in some cases the predictive posteriors are not competitive to non-Bayesian alternatives,
making these models—and Bayesian deep learning, in general—less than ideal solutions for
a number of cases, if no remedies are taken (Wenzel et al., 2020).

In this work, we focus our discussion on the prior distribution of Bayesian neural networks
(bnns). For such models, the common practice is to define a prior distribution on the network
weights and biases, often a Gaussian distribution. A prior on the parameters induces a prior
on the functions generated by the model, which also depends on the network architecture.
However, due to the nonlinear nature of the model, the effect of this prior on the functional
output is not obvious to characterize and control.
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Figure 1: Left: Samples of a fully-connected bnn with 2, 4 and 8 layers and 50 nodes per layer
with a Gaussian prior on the weights. Right: Samples from gp prior with two different kernels.

Consider the example in Fig. 1, where we show the functions generated by sampling the
weights of bnns with tanh activation from a Gaussian prior N (0, 1). We see that as depth
increases the samples tend to form straight horizontal lines with large marginal variance,
which is a pathology known in the literature (Duvenaud et al., 2014). Also, it has been
recently shown that for ReLU activation, the prior distribution of unit outputs become more
heavy-tailed as the network depth increases (Vladimirova et al., 2019). We stress that a
fixed Gaussian prior on the parameters is not always problematic, but it can be, especially
for deeper architectures. Nonetheless, this kind of generative priors on the functions is
very different from shallow Bayesian models, such as Gaussian Processes (gps), where the
selection of an appropriate prior typically reflects certain attributes that we expect from
the generated functions. A gp defines a distribution of functions that is characterized by a
mean and a kernel function κ. The gp prior specification can be more interpretable than the
one induced by the prior over the weights of a bnn, in the sense that the kernel effectively
governs the properties of possible functions, such as shape, variability and smoothness.

Contributions We seek to tune bnns so that their (functional) prior distributions exhibit
interpretable properties, similar to shallow gps. We consider the Wasserstein distance
between the distribution of functions induced by bnn prior over the network parameters,
and a target gp prior. We propose an algorithm that optimizes bnn hyper-parameters
based on the distance between the bnn and a desired gp. To the best of our knowledge, our
approach is novel and it leads to sensible improvements over classical choices for the prior.

Related works It is well-known that the prior over functions induced by a bnn converges
to a gp as it width becomes large (Neal, 1996; Matthews et al., 2018). This motivates a
line of research that attempts to map gp priors to bnn priors (Flam-Shepherd et al., 2017;
Pearce et al., 2019). Closest to our work is that of Flam-Shepherd et al. (2017), which
propose to minimise the Kullback-Leibler (kl) divergence between the bnn prior and a
target gp prior. As there is no analytical form for this kl due the entropy term, the Authors
propose to ignore this term and employ an early stopping scheme as it merely acts as a
regularization term. We compare with the kl-based approach in the following sections.

2. Using the Wasserstein distance to map GP prior in Bayesian NN

The equivalence between function-space view and weight-space view of linear models, like
Bayesian linear regression and gps (Rasmussen and Williams, 2006), is a straightforward
application of Gaussian identities, but it allows us to seamlessly switch point of view
accordingly to which characteristics of the model we are willing to observe or impose. We
would like to leverage this equivalence also for bnns but the nonlinear nature of such models
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makes it analytically intractable (or impossible, for non-invertible activation functions). We
argue that for bnns—and Bayesian deep learning models, in general—starting from a prior
over the weights is not ideal, given the impossibility of interpreting its effect on the family
of functions that the model can represent. We therefore rely on an optimization-based
procedure to impose functional priors on bnns using the Wasserstein distance as a similarity
metric between such distributions.
In the general case, given two probability measures π(x) and ν(y) defined on a separable
metric space X (e.g. Rd), the 1–Wasserstein distance is defined as follows

W1(π, ν) = inf
γ∈Γ(π,ν)

∫
D(x,y)γ(x,y) dx dy , (1)

where D(x,y) is a proper distance metric between two points x and y (e.g. Euclidean norm
distance D(x,y) = ‖x− y‖) and Γ(π, ν) is the set of functionals of all possible joint densities
γ whose marginals are π and ν. With the exception of few cases where the solution is available
analytically (e.g. π and ν being Gaussians), solving Eq. 1 directly or via optimization is
intractable. Fortunately, the Wasserstein distance in Eq. 1 admits the following dual form
(Kantorovich, 1942, 1948),

W1(π, ν) = sup
‖φ‖L≤1

Ex∼πφ(x)− Ey∼νφ(y) , (2)

where φ is a 1-Lipschitz continuous function defined on X → R. This is effectively a
functional maximization of φ on the difference between two expectations of φ, evaluated
under π and ν, constrained to its Lipschitz continuity.

2.1. Wasserstein distance optimization for mapping priors

Assume to have a bnn with weights w on which we have a prior distribution p(w;ψ), where
ψ is its set of parameters (e.g. for a Gaussian prior, ψ = {µ, σ2}). This prior on the weights
induces a corresponding prior distribution over functions pnn (f ;ψ) =

∫
p(f |w)p(w;ψ) dw,

where p(f |w) is deterministically defined by the network architecture. Our target gp prior
is pgp (f) = N (f |0,K), where K is the covariance matrix obtained by computing the kernel
function κ for each pair of {xi,xj} in the training set. We aim at matching these two
stochastic processes at a finite number of measurement points XM

def= [x1, ...,xM ]> sampled
from a distribution q(x). To achieve that, we propose a sample-based approach using the
1-Wasserstein distance (Eq. 2) as the objective

min
ψ

max
θ

Eq
[
Epgp [φθ(fM)]− Epnn [φθ(fM)]︸ ︷︷ ︸

L(ψ,θ)

]
, (3)

where fM are the function values at XM and φ is 1-Lipschitz function. Following recent
literature (Goodfellow et al., 2014), we parameterize the Lipschitz function φ by a neural
network with parameters θ1. We alternate between nLipschitz steps of maximising L with
respect to the Lipschitz function’s parameters θ and one step of minimizing L with respect
to the prior’s parameters ψ. Notice that the objective is fully sample-based. As a result, it
is not necessary to know the closed-form of the marginal density pnn (f ;ψ).

1. Details on the 1-Lipschitz function: we used a multilayer perceptron (mlp) with two hidden layers, each
with 200 units; the activation function is softplus, which is defined as: softplus(x) = 1/(1 + exp(−x)).
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Lipschitz constraint. Based on the fact that a differentiable function is 1-Lipschitz if and
only if the norm of its gradient is at most one everywhere, Gulrajani et al. (2017) propose a
soft constrain on the gradient norm of the output of the Lipschitz function φθ with respect
to its input. The loss of the Lipschitz function is then augmented by a regularization term

LR(ψ,θ) = L(ψ,θ) + λEpf̂

[(∥∥∥∇φf̂
∥∥∥

2
− 1

)2]
︸ ︷︷ ︸

Gradient penalty

. (4)

Here f̂ is the distribution of f̂ = εfnn + (1− ε)fgp for ε ∼ U [0, 1] and fnn ∼ pnn , fgp ∼ pgp
being the sample functions from bnn and gp priors, respectively; λ is the penalty coefficient.

Choice of the measurement set. We are using finite measurement sets to have a
practical and well-defined optimization. For low-dimensional problems, one can simply use a
regular grid or apply uniform sampling in the input domain. For high-dimensional problems,
one can sample from the training set or an augmented version of it, where noise is injected
into the data. We follow a combination of the two approaches: we use the training inputs
(or a subset thereof) to which we include points that are randomly sampled (uniformly) in
the input domain. A pseudocode of the procedure is formally presented in Algorithm 1.

Algorithm 1: Wasserstein Distance Optimization
Requires: B, mini-batch size; q(x), sampling distribution for measurement set; nLipschitz, number of
iterations of Lipschitz function per prior iteration;

while ψ has not converged do
draw XM from q(x) // Sample measurement set ;
for t = 1, ..., nLipschitz do

draw GP functions {f (i)
gp }B

i=1 ∼ pgp (f ;κ) at XM;
draw NN functions {f (i)

nn }B
i=1 ∼ pnn (f ;ψ) at XM;

LR = B−1∑B

i=1 L
(i)
R // Compute Lipschitz objective LR using Eq. 4 ;

θ ← Optimiser(θ,∇θLR) // Update Lipschitz function φ ;
end
draw GP functions {f (i)

gp }B
i=1 ∼ pgp (f ;κ) at XM;

draw NN functions {f (i)
nn }B

i=1 ∼ pnn (f ;ψ) at XM;
W̃1 = B−1∑B

i=1 φθ
(
f (i)
gp
)
− φθ

(
f (i)
nn
)

// Compute Wasserstein-1 distance using Eq. 3 ;
ψ ← Optimiser(ψ,∇ψW̃1) // Update prior pnn ;

end

3. Experimental validation

Before presenting the experimental results on the classic UCI benchmark for regression tasks,
we report the details on the choice of prior distributions and we illustrate the advantages
offered by the use of the Wasserstein distance compared to alternative approaches.

3.1. Parametrization of BNN Prior

First, we observe that Algorithm 1 is completely independent of the choice of the form of the
prior on the weights and biases of bnns. The question that now remains is “What form of
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Figure 2: Comparison between KL-based and Wasserstein-based optimization

prior should we place on w?” Since the family of functions the bnn can represent depends
on both the architecture of the network and the activation function, we argue that there is
not a unique choice.

We consider a layer-wise factorization with two independent Gaussian distributions for
weights and biases. The parameters to adjust are ψ = {σ2

lw , σ
2
lb
}Ll=1, where σ2

lw is the prior
variance shared across all weights in layer l, and σ2

lb
is the respective variance for the bias

parameters. For any weight and bias entries w, b ∈ w, the prior is:

p(w) = N
(
w; 0, σ2

lw

)
and p(b) = N

(
b; 0, σ2

lb

)
In the next section, we refer to this parameterization as the gp induced Gaussian (gpig)
prior. Although this simple approach retains the Gaussian prior on the parameters, in many
cases it is shown to sufficiently capture the target functional priors.

3.2. KL divergence or Wasserstein distance?

The kl divergence is popular choice as an optimization criterion capturing similarity between
distributions. It was used in the same vein as in this work by Flam-Shepherd et al. (2017),
where they consider the KL divergence between samples of a bnn and a gp. This requires
an empirical estimation of the entropy, which is a challenging task for high-dimensional
distributions (Delattre and Fournier, 2017). These issues were also reported by Flam-
Shepherd et al. (2017), where they propose an early stopping scheme to what is essentially
an optimization of the cross-entropy term.

In our experiments, we have found that a scheme based on Wasserstein distance converges
more consistently without the need for additional heuristics. We demonstrate the convergence
properties of our scheme against Flam-Shepherd et al. (2017) in Fig. 2. We monitor the
evolution of Wasserstein distance from the target gp prior and performance metrics for the
Boston UCI dataset (test negative loglikelihood (nll) and root mean square error (rmse)).
The KL-based scheme provides improvements for the first few iterations, and then early
stopping is required, as prescribed by Flam-Shepherd et al. (2017) (dashed red line). Our
approach, instead, improves over the iterations and does not need early stopping to achieve
converge to the desired prior, and it offers consistently better performance.

3.3. Regression experiments on the UCI benchmark

We evaluate our proposed method on a classic UCI benchmark for regression. We consider
two fixed priors: (1) the Fixed Gaussian prior (fg), N (0, 1); (2) the Fixed Hierarchical
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Figure 3: UCI regression benchmark results. Average ranks are computed across datasets.

prior (fh) where the prior variance for each layer is sampled from an Inverse-Gamma
distribution, Γ−1(1, 1) (Chen et al., 2014); and our approach, (3) the gp induced Gaussian
(gpig) prior. We also compare bnns against Deep Ensembles (Lakshminarayanan et al.,
2017), a state-of-the-art approach for uncertainty estimation in deep learning (Ashukha et al.,
2020; Ovadia et al., 2019). Furthermore, we additionally compare to the “cold” posterior
(Wenzel et al., 2020) that uses a Fixed Gaussian prior and temperature scaling (fg+ts).

We use stochastic gradient Hamiltonian Monte Carlo (sghmc) (Chen et al., 2014) for
posterior inference with scale adaptation (Springenberg et al., 2016), where the hyperpa-
rameters of sghmc are adjusted during a burn-in phase. We sample four independent
chains; for each chain, the number of collected samples after thinning is 30 except for
the Protein dataset for which we collect 60. We use a step size of 0.01 and a momentum
coefficient of 0.01. For fh, we resample the prior variances using a Gibb step every 100
iterations. Each dataset is randomly split into 90%/10% train/test sets. This splitting
process is repeated 10 times except for the Protein dataset which uses 5 splits. We use a
2 hidden-layer bnn with tanh activation function, containing 100 hidden units for smaller
datasets and 200 hidden units for the Protein dataset. We map a target hierarchical-gp
prior with an RBF kernel to gpig by using our proposed Wasserstein scheme. We place
a prior LogNormal(log

√
2D, 1) on the length-scales and a prior LogNormal(0.1, 1) on the

variance (D is the number of input dimensions). Fig. 3 illustrates the average test nll and
rmse. For most datasets, our optimized priors provide the best results and outperform
Deep Ensembles in terms of both rmse and nll. We notice that tempering the posterior
only shows small improvements on fg. Instead with gpig, the predictive performance of
the true posterior improves considerably.

4. Concluding remarks and future work

We have analyzed the effect of placing a prior on the output of a bnn rather than on its
parameters. To this goal, we borrowed the flexibility of the Wasserstein distance as similarity
metric between functions sampled from gps to functions sampled from bnns. We tested
this contribution on a classic regression benchmark and we showed sensible improvements
over classic choices and state-of-the-art inference methods. On these premises, our ongoing
work focuses on deeper models, such as cnns, and on tasks where having good uncertainty
estimate is key for obtaining good results, such as active learning and Bayesian optimization.
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