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Abstract

Test-time prompt tuning (TPT) aims to adapt pre-trained vision-language models
(VLMs) to various downstream tasks by learning textual prompts using unlabeled
data at test time. However, existing TPT methods exhibit a performance gap
compared to a line of prompt-engineering-based methods that leverage hand-
crafted or LLM-generated prompts for VLM adaptation. We attribute this gap to a
core limitation of previous TPT approaches: they learn prompts from only limited
class-specific visual knowledge derived from a single test image. As a result,
the learned prompts underperform compared to hand-crafted and LLM-generated
prompts enriched with diverse, class-specific knowledge. To address this limitation,
we propose Test-time Prompt Tuning with Multi-scale visual Memory (M?TPT).
Specifically, the memory is constructed to store past seen class-relevant image
patches as multi-scale visual descriptions for each class. For each test image,
we use it to query the memory and learn the textual prompt using both the test
image and the retrieved class-relevant visual memory. Additionally, we introduce
holistic visual memory to better handle holistic visual recognition tasks that require
global image-level context, and an irrelevance suppression strategy to mitigate
the impact of noisy memory entries at test time. We evaluate our method on 15
commonly used benchmark datasets and show that it outperforms existing TPT
methods. Furthermore, our framework can incorporate human-designed prompts
and achieves state-of-the-art performance compared to recent VLM adaptation
methods that use hand-crafted or LLM-generated prompts.

1 Introduction

Pre-trained vision-language models (VLMs) have demonstrated powerful representational capabil-
ities, making them valuable for a wide range of computer vision tasks [35 [16} 23| 24, 25]]. To
efficiently adapt VLMs to downstream tasks and new domains, the prompt-tuning paradigm has been
explored—where only the input text context is optimized using limited test data, while the model
backbone remains frozen [48}47]]. More practically, recent research has developed test-time prompt
tuning (TPT), which directly optimizes prompts using unlabeled test data streams [38]].

Aside from prompt-tuning-based methods, a line of prompt-engineering-based methods have designed
hand-crafted and LLM-generated prompts tailored for each dataset to adapt VLMs to target tasks [34}
18,146, 150]. Recently these methods have significantly outperformed prompt-tuning approaches on
image classification benchmarks, as illustrated in Fig.[Ta] Human-designed prompts introduce prior
dataset knowledge and rich class-specific information, making them more effective than prompts
learned from a generic “a photo of a [CLASS]” initialization during test time. The red dashed
lines show the performance of these methods when using a generic prompt, highlighting that the
performance gap mainly lies between the learned prompt and the human-designed prompts. However,
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(a) Performance comparison. (b) TPT. (c) Our method.

Figure 1: (a) Performance comparison on 10 downstream image classification datasets. Existing
test-time prompt tuning (TPT) methods exhibit a performance gap compared to adaptation methods
that use hand-crafted or LLM-generated prompts, as illustrated by the blue and green dashed lines. The
red dashed lines show the performance of these methods when using a generic prompt, highlighting
that the performance gap primarily lies between the TPT-learned prompt and the human-designed
prompts. (b) TPT [38]]. Previous TPT methods typically optimize a learnable prompt using only
the visual information from the current test image and its augmentations. (¢) Our method enhances
test-time prompt learning with memorized past visual descriptions for each class and introduces a
mutual promotion framework between the learnable prompt and the evolving visual memory.

prompt-engineering-based methods require prior knowledge of the test datasets and additional time
or effort to design or generate effective prompts. In contrast, TPT methods can adapt to unlabeled
test streams on the fly without relying on human intervention. Has the potential of TPT methods truly
been exhausted?

As shown in Fig. [Ib} prior TPT methods typically optimize a trainable prompt using only the current
test image and its augmentations, relying on unsupervised losses such as entropy minimization [38]]
and distribution alignment [1]]. We argue that such methods fail to learn prompts from sufficient class-
specific visual knowledge due to their reliance on limited visual information from a current test image,
which limits their competitiveness compared to human-designed prompts enriched with diverse and
explicit class- and dataset-level knowledge. To address this limitation, we propose test-time prompt
tuning enhanced by a past visual memory containing class-specific visual descriptions.

In our approach, as depicted in Fig. we construct a multi-scale visual memory by accumulating
visual patches that are highly relevant to each class at every time step during the test stream. Before
prompt tuning, the current test image is used as a query to retrieve semantically related visual patches
from this memory. The textual prompt is then optimized using both the test image and the retrieved,
diverse, class-relevant visual information from the same test distribution, enabling the prompt tuning
process to more effectively capture class-specific knowledge. Reciprocally, the visual memory also
benefits from the learned prompt, as it is updated based on the optimized prompt. The three sequential
steps—memory retrieval, prompt tuning, and memory update—achieve a round of mutual promotion
between the tunable textual prompt and the evolving visual memory for each test image.

In addition to object recognition, downstream tasks may require holistic visual understanding, such
as scene understanding [41]] and land cover classification [[13], which demand comprehensive image-
level context that may be lost when focusing solely on patches. To this end, we further construct
a holistic visual memory that retains class-relevant full-view images and functions in coordination
with the multi-scale memory. Moreover, because memory update and retrieval operate without
ground-truth supervision at test time, the visual memory can inevitably be noisy. To mitigate adverse
effects, we introduce an irrelevance suppression strategy: we filter out low-relevance memory entries
from the retrieved class-specific memory during retrieval, and we maintain a class-irrelevant memory
that stores previously seen misleading patches from the test domain. This irrelevant memory is used
to penalize high-confidence but incorrect cues during prompt tuning, thereby suppressing distracting
and misleading information.

We evaluate our test-time prompt tuning method on 15 datasets, including commonly used downstream
image classification benchmarks and out-of-distribution datasets. Our method outperforms existing
test-time prompt tuning methods without prompt engineering. Furthermore, our framework can also
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benefit from human-designed prompts, enabling it to achieve state-of-the-art performance compared
to recent VLM adaptation methods that rely on hand-crafted or LLM-generated prompts.

2 Related work

Prompt learning. As vision-language models (VLMs) have demonstrated strong performance
across various computer vision tasks, recent research has explored prompt learning as a parameter-
efficient approach to adapt VLMs to real-world downstream scenarios [27} [12} |5} 22} [17, [20].
CoOp [48] proposes learning a contextual prompt in the input space of the text encoder using
few-shot data, while keeping the model backbone frozen. CoCoOp [47] improves upon CoOp by
introducing condition tokens derived from input images into the textual prompt learning process,
enabling better generalization. In contrast, Bahng et al. [3]] introduce visual prompt learning, which
operates on the image encoder of VLMs. MaPLe [19] further advances this line of work by jointly
learning prompts on both the image and text encoders to enhance transfer learning performance.

Test-time prompt tuning. To improve the generalization ability of VLMs without requiring labeled
test data, TPT [38]] proposes test-time prompt tuning (TPT). This pioneering method learns adaptive
textual prompts from the current test image and its augmentations using an entropy minimization
objective, while keeping the model backbone frozen. PromptAlign [[1] explicitly addresses distribution
shift by introducing a distribution statistics alignment loss to guide test-time prompt optimization.
C-TPT [43] considers the calibration of VLMs for prompt tuning at test time. More recently,
HisTPT [44] and DynaPrompt [42] propose online test-time prompt tuning methods to leverage past
information during inference. HisTPT [44] constructs long-term and short-term knowledge banks that
store output text features generated from prompts, providing self-regularization to stabilize online
prompt learning. DynaPrompt [42] maintains a prompt pool containing multiple prompts and selects
among them for stable online optimization. In our method, we do not follow this continuous test-time
prompt tuning paradigm, but instead adopt the original setting introduced by TPT [38]], in which an
adaptive prompt is learned from scratch for each test sample independently.

VLM adaptation with prompt engineering. Apart from prompt-tuning-based methods, another
line of research explores prompt-engineering-based VLM adaptation [29, 137,134, |32} [11]. CuPL [34]
leverages large language models (LLMs) [2]] to generate textual descriptions for each class in the
test dataset, replacing the generic prompt with these customized ones to improve prediction accuracy.
TDA [[18]] and DMN [46]] adopt hand-crafted prompts and LLM-generated prompts, respectively,
on the text branch. On the vision branch, they design memory-based methods that perform non-
parametric learning with visual features in a manner similar to the k-nearest neighbors (KNN)
algorithm [30], to improve zero-shot classification. More recently, AWT [S0] uses LLMs to generate
class-specific prompt candidates and transforms the test image into multiple views, then formulates
image—text matching as an optimal transport problem for zero-shot classification. While prompt-
engineering-based methods have demonstrated effectiveness, they require prior knowledge of the
test dataset and additional effort to craft or generate prompts. In contrast, TPT methods aim to adapt
VLMs on the fly, focusing on test-time prompt learning without relying on human supervision.

3 Method

In this section, we first introduce the preliminaries of CLIP and test-time prompt tuning in Sec. [3.1]
Then, Sec.[3.2]describes the overall framework of our method and its main component, the multi-scale
visual memory. Secs. [3.3]and[3.4] present the remaining two components of our method.

3.1 Preliminaries

CLIP. The Contrastive Language—Image Pre-training (CLIP) model [35] comprises an image
encoder f(-) and a text encoder ¢(-), which are pre-trained on large-scale image—text pairs using
contrastive learning. Once pre-trained, CLIP can perform zero-shot image classification on a variety
of downstream datasets. For a dataset with C classes, CLIP first encodes each class using a generic
prompt p, such as “a photo of [CLASS c].”, producing class-specific text embeddings {p.}<_;.
Given a test image X, CLIP compares its encoded feature f(X) with the text embeddings of all
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Figure 2: Overview of our method. Each test image undergoes three sequential steps: memory
retrieval, prompt tuning, and memory update. In the memory retrieval step, the test image is used to
query both the multi-scale memory and the holistic memory. The predicted label is then used to fetch
class-relevant patches or images, as well as misleading patches from the class-irrelevant memory.
During prompt tuning, the textual prompt is optimized using the test image and the retrieved visual
memory. Finally, in the memory update step, the adapted prompt is used to update the class-relevant
patches and the test image in the multi-scale and holistic memories, while high-confidence but
irrelevant patches are added to the class-irrelevant memory.

classes and computes the probability of class membership as follows:
exp(cos(f(X), g(pe))/7)
C b
22 j—1 exp(cos(f(X), 9(p;))/7)

where cos(-, -) denotes cosine similarity, and 7 is a learned temperature parameter. For clarity, we
assume that the outputs of the encoders are normalized by default throughout the rest of the paper.

ey

ply=c|X,p) =

Test-time prompt tuning. Directly applying CLIP to downstream tasks may suffer from perfor-
mance degradation due to distribution shifts. Test-time prompt tuning (TPT) aims to adapt CLIP
to the test data by optimizing a learnable prompt at test time. For instance, the pioneering TPT
method [38]] augments the test image X into IV views X1, and then optimizes a learnable prompt p
using n selected augmentations X,,; with low entropy, based on an entropy minimization loss:

C

ﬁZ—Zﬁ(y=C|X[n]7p)'10gﬁ(y=(3|X[n],p% ()
c=1

where p(y = ¢ | X, p) denotes the average prediction probability across the selected augmentations
Xn]-

3.2 Multi-scale visual memory

Previous TPT methods typically use only the current test image or its augmentations to learn a
tunable prompt. However, the visual class information available from a single test image is limited
for prompt learning. As a result, TPT methods significantly underperform recent human-designed
prompt methods, as shown in Fig.[Tal To address this limitation, we propose TPT enhanced by
multi-scale visual memory, which provides diverse visual class information from past data to guide
prompt learning. Specifically, our method integrates visual memory into the test-time prompt tuning
workflow and introduces a prompt-memory mutual promotion framework. As illustrated in Fig.[2]
for each test sample, the method involves three sequential steps: Memory retrieval, Prompt tuning,
and Memory update.

Memory retrieval. Let the multi-scale visual memory be denoted as M € RE*SXD where C is
the number of classes, S is the memory size per class, and D is the dimension of image patches. For
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a given test image X € R3*H*W ‘we compute the similarity between the memory patches and the

image in the feature space encoded by the CLIP image encoder. Specifically, we denote the encoded
test image as f(X) = v € RY, and the encoded memory as f(M) = M € RE*5*4 We define the

(¢, m)-th memory vector as m.,, :== M][c, m] € RY. The similarity is computed as:
Sem=¢ (v m.,), forc=1,...,C,m=1,...,5, 3)

where ¢ is an exponential scaling function defined as ¢(z) = exp(—5(1 — z)), as in [45]. We
then identify the most similar class in the visual memory to the current test sample based on cosine
similarity:

ce{1,...,C} oo’

s
g =arg max (Mida—rv) , M = Norm (Z Sem mc7m> , )]

where the visual memory is weighted by S before the cosine similarity computation, following [49]
40], and Norm denotes /> normalization. Finally, we use the pseudo label y to get the corresponding
class-specific visual memory My as the retrieved class-relevant memory for the current test image.

Prompt tuning. In this step, we use the current test image X and the retrieved relevant visual memory
M to learn the textual prompt pini;. For the test image, we apply an entropy minimization loss, as
in TPT [38], shown in Eq. 2] where we adopt random cropping as the data augmentation strategy.
Concurrently, we incorporate a cross-entropy loss between the retrieved memory and the pseudo label
to enhance the prompt learning. Starting from pj,, we optimize the prompt to obtain pygy:

Pada = Pinit — 77 - vp‘Cpt = Pinit — 7 - Vp [H (p(X[n]>p)> - 1Ogﬁ(y =y | Mg, p)] ®)]

where 7 denotes the learning rate. X{,,; denotes n cropped patches of X selected from the full set of
N patches X[y based on low prediction entropy. p(-) denotes the average predicted probability over
patches of the test image or memorized patches. H(-) denotes the entropy of a predicted probability
distribution p(-) over C classes, defined as H(p) = — Zf:l p(y = c¢)-logp(y = c).

Memory update. This step aims to update the multi-scale visual memory M with the most relevant

patch from the current test image, based on the adapted textual prompt p,g,. Specifically, we select a
patch from the N randomly cropped views Xy according to vision-text similarity:

g =argmaxp(y = ¢ | Xp], Paga), @ = arg riréigH(p({Xm}i, Pada)) (6)
where 7 = {j : argméixp(y =c | {X(n]}js Pada) = Q} @)

We first obtain a confident prediction § by aggregating predictions over the selected subset X,
using the adapted prompt p,q,. Then, from the subset Z of patches whose predicted label matches
9, we select the patch X;- with the lowest prediction entropy. This avoids directly selecting the
lowest-entropy patch from the entire set X[}, which may include highly confident but irrelevant
patches. Finally, we insert the selected patch into the corresponding memory slot M. If the memory
is at full capacity, we remove the patch with the highest entropy among the existing entries and the
current candidate.

These three steps for each test image constitute a round of mutual promotion between the tunable
textual prompt and the evolving visual memory. Afterward, we obtain two predictions for the current
test image: one from the optimized prompt and one from the updated memory M’. We combine
them to produce the final prediction:

Pﬁnal - Ppt + Pmemo = p(y | Vv, pada) + SOftmaX(M,adaTv); (8)

where By, Bremo € RC. The prediction Premo i Obtained via similarity-based classification, as in
the memory retrieval step, and M’ A is computed from the updated memory following Egs. and

It is worth noting that we perform only a single forward pass of the CLIP image encoder for each test
image and its patches, as the image encoder is frozen during the test-time prompt tuning process. The
encoded visual features are reused across all three steps, such as in Eqs. [Z_f], E], and|6] Therefore, we
directly store the encoded features in the multi-scale visual memory, i.e., M € R€*>*4 in practice.
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3.3 Holistic visual memory

In downstream tasks, there are not only object recognition tasks but also holistic visual recognition
tasks, such as land cover classification [41] and scene understanding [13]]. These tasks require
holistic, image-level information, which may be lost when using only image patches. Accordingly,
we introduce a holistic visual memory that works in coordination with the aforementioned multi-scale
visual memory.

During memory retrieval, we use the current test image as a query to retrieve relevant visual memory
from both the multi-scale memory and the holistic memory, i.e., {M, M}, Specifically, we
compute the similarity-based probability distribution Softmax (M T v) using both types of memory
and select the one with lower entropy to fetch the class-relevant visual memory. The prompt tuning
step remains unchanged, except that the retrieved memory used in Eq.5]is selected from either the
multi-scale or holistic memory. During memory update, both types of memory update the same
memory slot, My and M%‘)l, as determined by the mechanisms in Eqgs. |§I and |7} In addition, the
holistic visual memory also contributes to the memory-based prediction Ppemo, producing a prediction
in the same way as the multi-scale memory. We then select the one with lower entropy as the final
Premo in Eq.

3.4 Irrelevance suppression

The memory retrieval and memory update processes operate without ground truth supervision at test
time, making the memory inevitably noisy. To mitigate the adverse impact, we design an irrelevance
suppression strategy: selectively retrieving and using class-relevant memory, while proactively
penalizing class-irrelevant memory. Specifically, during memory retrieval, we filter out relatively
irrelevant memory based on the similarity matrix S:

M = M; [TopK (S, ||M;] 7)), ©

Y
where TopK(-, k) returns the indices of the top k elements with the highest similarity scores. |My|
denotes the number of stored features in memory for class ¢, and v € (0, 1] is the selection ratio. The
filtered memory Mg’p is then used in the prompt tuning stage (see Eq. .

In addition, we construct a class-irrelevant memory M™ to store previously seen, misleading visual
cues from the test domain. Technically, we update this memory with high-confidence patches that are
estimated to be irrelevant. Specifically, after the multi-scale memory update, given the memory pre-
diction for the test image Ymemo = arg max,. Premo, and the optimized-prompt-based predictions of
patches §V = arg max. p(y = c | X(N]; Pada), ¥ = argmax, p(y = ¢ | X}, Pada), if the mem-
ory prediction and the predictions of selected patches are consistent, i.e., Z;Zl 1 [y;/ = g)memo] =n,
we regard Umemo as a confident prediction. Then, the irrelevant memory is updated as:

i* = argmin H(p({X (v }i, Paca)),  where 7= {i: 97" # fmemo } (10)

Here, we select the highest-confidence patch { X[y}~ among those that disagree with the confident
prediction and store it in the memory slot M;TN .

The class-irrelevant memory stores patches with pseudo “wrong” labels—i.e., patches that are
confidently predicted to belong to a different class. This contradicts the task assumption. For example,
in a label space of “cat” and “bird”, an image labeled “cat” is not expected to contain a bird. To
suppress these confident but irrelevant cues, we apply a flat-label KL loss:

: 1 ~ irr

where « and (3 are hyperparameters, and C' is the number of classes. This loss Lj; is incorporated
into the prompt tuning objective L.

4 Experiments

4.1 Experimental setup

Datasets. Following prior test-time prompt tuning methods [38| 42], we evaluate our method on 15
datasets, including downstream image classification tasks and out-of-distribution benchmark datasets.
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Table 1: Results on 10 downstream image classification datasets. The reported numbers are top-1
accuracy (%). Methods marked with * include training with labeled data from ImageNet. M2TPT'
represents the version that incorporates hand-crafted and LLM-generated prompts.

&
5 5 § g
f & ¢ £ & § & £ & £
Method Venue Qe g L F é') & & "Qb < @ Average
CLIP [35] | - | 6744 4427 8825 6548 6513 9335 83.65 62.59 2337 4201 | 6355
Prompt-Tuning-Based Methods
CoOp * [48] ucv2a2 68.71 4192 89.14 6451 66.55 93.70 8530 64.15 1847 46.39 63.88
CoCoOp * [47] CVPR22 71.88 4573 90.14 6532 6821 9443 86.06 6736 2294 4537 65.74
MaPLe * [19] CVPR23 7223 4649 9049 6557 68.69 93.53 8620 67.01 24.74 48.06 66.20
TPT [38] NeurIPS22 | 6898 47.75 87.79 66.87 68.04 94.16 84.67 6550 24.78 4244 65.20
DiffTPT [10] ICCV23 70.10 47.00 88.20 67.01 6822 9249 8723 6574 25.60 43.13 65.47
C-TPT [43] ICLR24 69.80 46.00 8820 6580 6570 93.60 83.70 64.80 24.00 43.20 64.80
DynaPrompt [42] ICLR25 69.95 4796 8828 67.65 68.72 9432 8542 6632 2433 4228 65.52
M2TPT - 73.65 5024 8948 68.91 7142 9335 86.63 68.12 2346 59.14 68.44
Methods Using Hand-Crafted and LLM-Generated Prompts
VisDesc [29] ICLR23 70.85 4498 88.85 64.08 67.12 94.60 85.05 6799 2430 54.84 66.27
WaffleCLIP [37] ICCV23 7235 4521 89.95 63.57 67.19 94.02 86.68 67.23 2539 55.07 66.67
CuPL [34] ICCV23 7130 4456 89.13 6529 66.83 9298 86.11 6259 2490 47.84 65.15
TDA [18] CVPR24 7142 4740 88.63 67.28 70.66 94.24 86.14 67.62 2391 58.00 67.53
DMN [46] CVPR24 7449 5585 9204 6796 7251 9538 85.08 70.18 30.03 5943 70.40
AWT [50] NeurIPS24 | 75.07 5556 92.53 69.93 7251 9554 8554 70.58 29.22 58.61 70.51
M2TPT' - 7690 5532 9231 69.32 7425 9424 8642 70.65 3048 62.32 71.34

Table 2: Results on out-of-distribution benchmark datasets. The marked M2TPT' represents the
version that incorporates hand-crafted and LLM-generated prompts.

Method \ Venue \ ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S \ OOD Average Average

CLIP [35] | - | 66.73 47.87 60.86 73.98 46.09 | 57.20 59.11
Prompt-Tuning-Based Methods
TPT [38] NeurIPS22 68.98 54.77 63.45 77.06 47.94 60.80 62.44
DiffTPT [10] ICCV23 70.30 55.68 65.10 75.00 46.80 60.64 62.58
C-TPT [43]l ICLR24 69.30 52.90 63.40 78.00 48.50 60.70 62.42
DynaPrompt [42] | ICLR25 69.61 56.17 64.67 78.17 48.22 61.81 63.37
M2TPT - 71.49 60.11 64.82 76.79 50.79 63.13 64.80
Methods Using Hand-Crafted and LLM-Generated Prompts
VisDesc [29] ICLR23 68.55 49.07 61.80 75.13 47.97 58.49 60.50
WaffleCLIP [37] | ICCV23 68.81 50.78 62.54 77.49 49.10 59.98 61.74
CuPL [34] ICCv23 - 50.72 63.27 77.05 49.02 60.02 -

TDA [18] CVPR24 69.51 60.11 64.67 80.24 50.54 63.89 65.01
DMN [46] CVPR24 72.25 58.28 65.17 78.55 53.20 63.80 65.49
AWT [50] NeurIPS24 71.32 60.33 65.15 80.64 51.60 64.43 65.81
M2TPT! - 73.01 62.55 65.86 77.48 53.03 64.73 66.39

The downstream image classification datasets include Flowers102 [31]], DTD [6], OxfordPets [33]],
StanfordCars [21]], UCF101 [39], Caltech101 [9], Food101 [4], SUN397 [41]], FGVC-Aircraft [28],
and EuroSAT [13]]. For the out-of-distribution benchmark, we include ImageNet [7] and its four
variants exhibiting domain shifts: ImageNet-A [15], ImageNet-V2 [36], ImageNet-R [14]], and
ImageNet-S [40]. For ImageNet, we use the validation set for evaluation, and adopt the same dataset
splits as in TPT [38] for the remaining 14 datasets.

Implementation details. We use CLIP [35]] with the ViT-B/16 encoder [8]] for all experiments. For
each test image, our method optimizes the textual prompt with a single update step, starting from the
generic prompt “a photo of a [CLASS].” We use the AdamW optimizer [26] with a learning rate of
n = 0.003 across all datasets. For random cropping, the scale range and aspect ratio range are set
to (0.08,1) and (%, %) , respectively. The number of random crops N is set to 32 for downstream
classification datasets and 64 for out-of-distribution benchmark datasets, with a selection ratio of
n/N = 0.1. For all datasets, the memory size S is set to 50, and the hyperparameters for irrelevance

suppression are setto ¥ = 0.5, & = 5, and 8 = 0.1.
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Figure 3: (a) Ablation on main components. The baseline is test-time prompt tuning using only
low-entropy image patches. We incrementally add the three main components of our method and
illustrate the performance gain contributed by each. (b), (¢) Analysis of the mutual promotion
between the learnable prompt and the evolving memory. In (b), we compare the standard test-time
prompt tuning baseline with predictions B, obtained from the prompt learned with visual memory.
In (c), the memory-based predictions Ppemo are compared with a baseline where memory is updated
using a static prompt, “a photo of a [CLS].” Improvements over the baselines demonstrate the mutual
promotion between the learnable prompt and the visual memory.

4.2 Comparisons

We compare our test-time prompt tuning (TPT) method with recent TPT approaches, including
TPT [38]], DiffTPT [[10], C-TPT [43], and DynaPrompt [42], and prompt learning methods including
CoOp [48]], CoCoOp [47], and MaPLe [19]. These methods, like ours, do not involve hand-crafted
or LLM-generated prompts. Moreover, we also compare our method with recent VLM adaptation
approaches that utilize hand-crafted or LLM-generated prompts, including VisDesc [29], Waffle-
CLIP [37], CuPL [34], TDA [18], DMN [46]], and AWT [50]]. For this comparison, we design a
variant of our method by simply incorporating human-designed prompts used in DMN [46] into
the memory update step. Specifically, the confident prediction ¢ in Eq. [6is obtained by combining
predictions from the adapted prompt and the human-designed prompts.

Comparisons on downstream classification tasks. Tab.[I|presents results on 10 downstream fine-
grained classification datasets. The upper part of the table compares prompt-tuning-based methods
that learn a trainable prompt from a generic initialization. Compared to previous TPT methods, our
method achieves the highest accuracy on 7 datasets and yields an average improvement of 2.92%.
Notably, M?TPT outperforms previous TPT methods by 15.94% on the EuroSAT dataset. The lower
part of the table compares methods that utilize hand-crafted and LLM-generated prompts. First,
we observe that our method can benefit from incorporating human-designed prompts, achieving an
average improvement of 2.9%. Compared to these methods, M2TPT performs best on 8 out of 10
datasets and surpasses the second-best method by an average margin of 0.83%.

Comparisons on out-of-distribution datasets. Tab.[2|shows results on ImageNet and four out-
of-distribution datasets that exhibit distribution shifts from ImageNet. In the upper part of the table,
M2TPT outperforms recent test-time prompt tuning methods with an average improvement of 1.43%
across the five datasets. As shown in the lower part, M>TPT also achieves state-of-the-art performance
among VLM adaptation methods that leverage hand-crafted and LLM-generated prompts.

4.3 Ablation studies

Ablation on main components. We study the effectiveness of the three components
in M2TPT—multi-scale visual memory, holistic visual memory, and irrelevance suppres-
sion—introduced in Secs.[3.2] [3.3] and[3.4] respectively, across 10 downstream classification datasets.
We begin with a baseline that performs prompt tuning alone using selected low-entropy patches, as
shown in Fig.[3a] Adding multi-scale visual memory to the baseline establishes the core framework
of our method and improves the average accuracy to 67.44%, yielding a 2.44% gain. Next, we
incorporate holistic visual memory, which preserves global visual context for tasks that require
holistic visual understanding, resulting in a further 0.54% improvement. Finally, we introduce the
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irrelevance suppression strategy to better exploit the noisy test-time memory, increasing the accuracy
from 67.98% to 68.44%.

Analysis of the mutual promotion between the learnable prompt and the evolving memory. In
MZ2TPT, the visual memory provides class-relevant visual descriptions to enhance textual prompt
learning, and reciprocally, the learned prompt helps update the visual memory. To verify this mutual
promotion effect, we design two baselines: the prompt tuning (PT) baseline and the memory (MM)
baseline. The PT baseline corresponds to standard prompt tuning with selected low-entropy image
patches. Its performance on 10 downstream classification datasets is shown in Fig. [3b] In the
figure, Promoted PT refers to the performance of the learned prompt enhanced by visual memory,
corresponding to P in Eq.[8} Compared to the PT baseline, Promoted PT consistently demonstrates
superior performance, highlighting the improvement in prompt tuning enabled by the multi-scale
visual memory. In Fig.|3c| the MM baseline denotes a memory-based method where the memory is
updated using a generic prompt “a photo of a [CLASS].” In contrast, Promoted MM refers to the
prediction generated from the evolving memory updated with the learned prompt, i.e., Pemo in Eq.
Promoted MM outperforms the MM baseline on 8 out of 10 datasets, indicating the beneficial effect
of the learned prompt on memory updates. Finally, M>TPT achieves consistently better performance
than both Promoted PT and Promoted MM, demonstrating the effectiveness of combining the two
predictions as defined in Eq.[§]

[ s Table 3: Computation resources of test-time
715 --- Baseline | prompt tuning methods. The methods are eval-
g7o uated on the DTD dataset using an RTX A4500
5.70.5 GPU.
g 70.0
Loos Method Memory (GB) Runtime (s)
69.0 TPT 1.56 0.14
68.5 10 20 30 40 50 60 70 80 90 100 TPT (bs=32) 153 011
Memory Size S DynaPrompt 9.98 0.41
M?TPT 1.66 0.11

Figure 4: Effect of memory size.

Effect of memory size. We study the effect of memory size S on the validation set of the ImageNet
dataset. As shown in Fig. @ the Baseline refers to test-time prompt tuning without memory. M*TPT
shows increasing accuracy as .S increases from 10 to 50, consistently outperforming the Baseline.
When the memory size exceeds 50, the accuracy saturates and slightly decreases.

Computation resource. We compare GPU memory usage and runtime of M?TPT with recent
test-time prompt tuning methods, as shown in Tab. [3] All results are measured on the DTD dataset
using an RTX A4500 GPU. DynaPrompt [42] introduces significantly higher memory usage and
longer runtime than other methods because it optimizes multiple prompts. Compared to TPT [3§]]
under its official setting (with augmentation batch size 64), M2TPT uses only 0.1 GB more GPU
memory while consuming less runtime per image. When we test TPT with the same batch size
(bs=32) as M?TPT, the runtime becomes comparable, and the memory usage difference increases to
0.13 GB. These results suggest that the visual memory module in M?TPT introduces only a small
memory overhead and minimal impact on runtime.

5 Conclusion

In this paper, we identified a core limitation of previous TPT methods: learning prompts from
limited visual information provided by the current test image, which makes the learned prompts
less competitive compared to prompt-engineering-based approaches. To address this, we proposed
test-time prompt tuning with multi-scale visual memory, enabling the model to learn prompts from
both class-relevant visual descriptions observed in the past and the current test image. Extensive
experiments demonstrate that our method outperforms existing TPT methods while introducing mini-
mal additional computational cost. Moreover, our method can benefit from prompt engineering and
achieves state-of-the-art performance compared to recent prompt-engineering-based VLM adaptation
methods by incorporating human-designed prompts into our framework.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: They are reflected in both the abstract and the introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a discussion of the limitations in the supplemental material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experiment setup is provided in Sec.[d.T]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will release the code online after the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Implementation details are provided in Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Analyses with error bars are provided in the supplemental material.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include analyses of computational resources in Sec. [4.3]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: A discussion of the societal impact is included in the supplemental material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external assets used in the paper have been properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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