
Echoes of the Visual Past: Test-Time Prompt Tuning
with Multi-Scale Visual Memory

Anonymous Author(s)
Affiliation
Address
email

Abstract

Test-time prompt tuning (TPT) aims to adapt pre-trained vision-language models1

(VLMs) to various downstream tasks by learning textual prompts using unlabeled2

data at test time. However, existing TPT methods exhibit a performance gap3

compared to a line of prompt-engineering-based methods that leverage hand-4

crafted or LLM-generated prompts for VLM adaptation. We attribute this gap to a5

core limitation of previous TPT approaches: they learn prompts from only limited6

class-specific visual knowledge derived from a single test image. As a result,7

the learned prompts underperform compared to hand-crafted and LLM-generated8

prompts enriched with diverse, class-specific knowledge. To address this limitation,9

we propose Test-time Prompt Tuning with Multi-scale visual Memory (M2TPT).10

Specifically, the memory is constructed to store past seen class-relevant image11

patches as multi-scale visual descriptions for each class. For each test image,12

we use it to query the memory and learn the textual prompt using both the test13

image and the retrieved class-relevant visual memory. Additionally, we introduce14

holistic visual memory to better handle holistic visual recognition tasks that require15

global image-level context, and an irrelevance suppression strategy to mitigate16

the impact of noisy memory entries at test time. We evaluate our method on 1517

commonly used benchmark datasets and show that it outperforms existing TPT18

methods. Furthermore, our framework can incorporate human-designed prompts19

and achieves state-of-the-art performance compared to recent VLM adaptation20

methods that use hand-crafted or LLM-generated prompts.21

1 Introduction22

Pre-trained vision-language models (VLMs) have demonstrated powerful representational capabil-23

ities, making them valuable for a wide range of computer vision tasks [35, 16, 23, 24, 25]. To24

efficiently adapt VLMs to downstream tasks and new domains, the prompt-tuning paradigm has been25

explored—where only the input text context is optimized using limited test data, while the model26

backbone remains frozen [48, 47]. More practically, recent research has developed test-time prompt27

tuning (TPT), which directly optimizes prompts using unlabeled test data streams [38].28

Aside from prompt-tuning-based methods, a line of prompt-engineering-based methods have designed29

hand-crafted and LLM-generated prompts tailored for each dataset to adapt VLMs to target tasks [34,30

18, 46, 50]. Recently these methods have significantly outperformed prompt-tuning approaches on31

image classification benchmarks, as illustrated in Fig. 1a. Human-designed prompts introduce prior32

dataset knowledge and rich class-specific information, making them more effective than prompts33

learned from a generic “a photo of a [CLASS]” initialization during test time. The red dashed34

lines show the performance of these methods when using a generic prompt, highlighting that the35

performance gap mainly lies between the learned prompt and the human-designed prompts. However,36
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Figure 1: (a) Performance comparison on 10 downstream image classification datasets. Existing
test-time prompt tuning (TPT) methods exhibit a performance gap compared to adaptation methods
that use hand-crafted or LLM-generated prompts, as illustrated by the blue and green dashed lines. The
red dashed lines show the performance of these methods when using a generic prompt, highlighting
that the performance gap primarily lies between the TPT-learned prompt and the human-designed
prompts. (b) TPT [38]. Previous TPT methods typically optimize a learnable prompt using only
the visual information from the current test image and its augmentations. (c) Our method enhances
test-time prompt learning with memorized past visual descriptions for each class and introduces a
mutual promotion framework between the learnable prompt and the evolving visual memory.

prompt-engineering-based methods require prior knowledge of the test datasets and additional time37

or effort to design or generate effective prompts. In contrast, TPT methods can adapt to unlabeled38

test streams on the fly without relying on human intervention. Has the potential of TPT methods truly39

been exhausted?40

As shown in Fig. 1b, prior TPT methods typically optimize a trainable prompt using only the current41

test image and its augmentations, relying on unsupervised losses such as entropy minimization [38]42

and distribution alignment [1]. We argue that such methods fail to learn prompts from sufficient class-43

specific visual knowledge due to their reliance on limited visual information from a current test image,44

which limits their competitiveness compared to human-designed prompts enriched with diverse and45

explicit class- and dataset-level knowledge. To address this limitation, we propose test-time prompt46

tuning enhanced by a past visual memory containing class-specific visual descriptions.47

In our approach, as depicted in Fig. 1c, we construct a multi-scale visual memory by accumulating48

visual patches that are highly relevant to each class at every time step during the test stream. Before49

prompt tuning, the current test image is used as a query to retrieve semantically related visual patches50

from this memory. The textual prompt is then optimized using both the test image and the retrieved,51

diverse, class-relevant visual information from the same test distribution, enabling the prompt tuning52

process to more effectively capture class-specific knowledge. Reciprocally, the visual memory also53

benefits from the learned prompt, as it is updated based on the optimized prompt. The three sequential54

steps—memory retrieval, prompt tuning, and memory update—achieve a round of mutual promotion55

between the tunable textual prompt and the evolving visual memory for each test image.56

In addition to object recognition, downstream tasks may require holistic visual understanding, such57

as scene understanding [41] and land cover classification [13], which demand comprehensive image-58

level context that may be lost when focusing solely on patches. To this end, we further construct59

a holistic visual memory that retains class-relevant full-view images and functions in coordination60

with the multi-scale memory. Moreover, because memory update and retrieval operate without61

ground-truth supervision at test time, the visual memory can inevitably be noisy. To mitigate adverse62

effects, we introduce an irrelevance suppression strategy: we filter out low-relevance memory entries63

from the retrieved class-specific memory during retrieval, and we maintain a class-irrelevant memory64

that stores previously seen misleading patches from the test domain. This irrelevant memory is used65

to penalize high-confidence but incorrect cues during prompt tuning, thereby suppressing distracting66

and misleading information.67

We evaluate our test-time prompt tuning method on 15 datasets, including commonly used downstream68

image classification benchmarks and out-of-distribution datasets. Our method outperforms existing69

test-time prompt tuning methods without prompt engineering. Furthermore, our framework can also70
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benefit from human-designed prompts, enabling it to achieve state-of-the-art performance compared71

to recent VLM adaptation methods that rely on hand-crafted or LLM-generated prompts.72

2 Related work73

Prompt learning. As vision-language models (VLMs) have demonstrated strong performance74

across various computer vision tasks, recent research has explored prompt learning as a parameter-75

efficient approach to adapt VLMs to real-world downstream scenarios [27, 12, 5, 22, 17, 20].76

CoOp [48] proposes learning a contextual prompt in the input space of the text encoder using77

few-shot data, while keeping the model backbone frozen. CoCoOp [47] improves upon CoOp by78

introducing condition tokens derived from input images into the textual prompt learning process,79

enabling better generalization. In contrast, Bahng et al. [3] introduce visual prompt learning, which80

operates on the image encoder of VLMs. MaPLe [19] further advances this line of work by jointly81

learning prompts on both the image and text encoders to enhance transfer learning performance.82

Test-time prompt tuning. To improve the generalization ability of VLMs without requiring labeled83

test data, TPT [38] proposes test-time prompt tuning (TPT). This pioneering method learns adaptive84

textual prompts from the current test image and its augmentations using an entropy minimization85

objective, while keeping the model backbone frozen. PromptAlign [1] explicitly addresses distribution86

shift by introducing a distribution statistics alignment loss to guide test-time prompt optimization.87

C-TPT [43] considers the calibration of VLMs for prompt tuning at test time. More recently,88

HisTPT [44] and DynaPrompt [42] propose online test-time prompt tuning methods to leverage past89

information during inference. HisTPT [44] constructs long-term and short-term knowledge banks that90

store output text features generated from prompts, providing self-regularization to stabilize online91

prompt learning. DynaPrompt [42] maintains a prompt pool containing multiple prompts and selects92

among them for stable online optimization. In our method, we do not follow this continuous test-time93

prompt tuning paradigm, but instead adopt the original setting introduced by TPT [38], in which an94

adaptive prompt is learned from scratch for each test sample independently.95

VLM adaptation with prompt engineering. Apart from prompt-tuning-based methods, another96

line of research explores prompt-engineering-based VLM adaptation [29, 37, 34, 32, 11]. CuPL [34]97

leverages large language models (LLMs) [2] to generate textual descriptions for each class in the98

test dataset, replacing the generic prompt with these customized ones to improve prediction accuracy.99

TDA [18] and DMN [46] adopt hand-crafted prompts and LLM-generated prompts, respectively,100

on the text branch. On the vision branch, they design memory-based methods that perform non-101

parametric learning with visual features in a manner similar to the k-nearest neighbors (KNN)102

algorithm [30], to improve zero-shot classification. More recently, AWT [50] uses LLMs to generate103

class-specific prompt candidates and transforms the test image into multiple views, then formulates104

image–text matching as an optimal transport problem for zero-shot classification. While prompt-105

engineering-based methods have demonstrated effectiveness, they require prior knowledge of the106

test dataset and additional effort to craft or generate prompts. In contrast, TPT methods aim to adapt107

VLMs on the fly, focusing on test-time prompt learning without relying on human supervision.108

3 Method109

In this section, we first introduce the preliminaries of CLIP and test-time prompt tuning in Sec. 3.1.110

Then, Sec. 3.2 describes the overall framework of our method and its main component, the multi-scale111

visual memory. Secs. 3.3 and 3.4 present the remaining two components of our method.112

3.1 Preliminaries113

CLIP. The Contrastive Language–Image Pre-training (CLIP) model [35] comprises an image114

encoder f(·) and a text encoder g(·), which are pre-trained on large-scale image–text pairs using115

contrastive learning. Once pre-trained, CLIP can perform zero-shot image classification on a variety116

of downstream datasets. For a dataset with C classes, CLIP first encodes each class using a generic117

prompt p, such as “a photo of [CLASS c].”, producing class-specific text embeddings {pc}Cc=1.118

Given a test image X, CLIP compares its encoded feature f(X) with the text embeddings of all119
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Figure 2: Overview of our method. Each test image undergoes three sequential steps: memory
retrieval, prompt tuning, and memory update. In the memory retrieval step, the test image is used to
query both the multi-scale memory and the holistic memory. The predicted label is then used to fetch
class-relevant patches or images, as well as misleading patches from the class-irrelevant memory.
During prompt tuning, the textual prompt is optimized using the test image and the retrieved visual
memory. Finally, in the memory update step, the adapted prompt is used to update the class-relevant
patches and the test image in the multi-scale and holistic memories, while high-confidence but
irrelevant patches are added to the class-irrelevant memory.

classes and computes the probability of class membership as follows:120

p(y = c | X,p) =
exp(cos(f(X), g(pc))/τ)∑C
j=1 exp(cos(f(X), g(pj))/τ)

, (1)

where cos(·, ·) denotes cosine similarity, and τ is a learned temperature parameter. For clarity, we121

assume that the outputs of the encoders are normalized by default throughout the rest of the paper.122

Test-time prompt tuning. Directly applying CLIP to downstream tasks may suffer from perfor-123

mance degradation due to distribution shifts. Test-time prompt tuning (TPT) aims to adapt CLIP124

to the test data by optimizing a learnable prompt at test time. For instance, the pioneering TPT125

method [38] augments the test image X into N views X[N ], and then optimizes a learnable prompt p126

using n selected augmentations X[n] with low entropy, based on an entropy minimization loss:127

L = −
C∑

c=1

p̄(y = c | X[n],p) · log p̄(y = c | X[n],p), (2)

where p̄(y = c | X[n],p) denotes the average prediction probability across the selected augmentations128

X[n].129

3.2 Multi-scale visual memory130

Previous TPT methods typically use only the current test image or its augmentations to learn a131

tunable prompt. However, the visual class information available from a single test image is limited132

for prompt learning. As a result, TPT methods significantly underperform recent human-designed133

prompt methods, as shown in Fig. 1a. To address this limitation, we propose TPT enhanced by134

multi-scale visual memory, which provides diverse visual class information from past data to guide135

prompt learning. Specifically, our method integrates visual memory into the test-time prompt tuning136

workflow and introduces a prompt-memory mutual promotion framework. As illustrated in Fig. 2,137

for each test sample, the method involves three sequential steps: Memory retrieval, Prompt tuning,138

and Memory update.139

Memory retrieval. Let the multi-scale visual memory be denoted as M ∈ RC×S×D, where C is140

the number of classes, S is the memory size per class, and D is the dimension of image patches. For141
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a given test image X ∈ R3×H×W , we compute the similarity between the memory patches and the142

image in the feature space encoded by the CLIP image encoder. Specifically, we denote the encoded143

test image as f(X) = v ∈ Rd, and the encoded memory as f(M) = M ∈ RC×S×d. We define the144

(c,m)-th memory vector as mc,m := M[c,m] ∈ Rd. The similarity is computed as:145

Sc,m = ϕ
(
v⊤mc,m

)
, for c = 1, . . . , C, m = 1, . . . , S, (3)

where ϕ is an exponential scaling function defined as ϕ(x) = exp(−β(1 − x)), as in [45]. We146

then identify the most similar class in the visual memory to the current test sample based on cosine147

similarity:148

ỹ = arg max
c∈{1,...,C}

(
Mada

c
⊤v
)
, Mada

c = Norm

(
S∑

m=1

Sc,m ·mc,m

)
, (4)

where the visual memory is weighted by S before the cosine similarity computation, following [49,149

46], and Norm denotes ℓ2 normalization. Finally, we use the pseudo label ỹ to get the corresponding150

class-specific visual memory Mỹ as the retrieved class-relevant memory for the current test image.151

Prompt tuning. In this step, we use the current test image X and the retrieved relevant visual memory152

Mŷ to learn the textual prompt pinit. For the test image, we apply an entropy minimization loss, as153

in TPT [38], shown in Eq. 2, where we adopt random cropping as the data augmentation strategy.154

Concurrently, we incorporate a cross-entropy loss between the retrieved memory and the pseudo label155

to enhance the prompt learning. Starting from pinit, we optimize the prompt to obtain pada:156

pada = pinit − η · ∇pLpt = pinit − η · ∇p

[
H
(
p̄(X[n],p)

)
− log p̄(y = ỹ | Mỹ,p)

]
(5)

where η denotes the learning rate. X[n] denotes n cropped patches of X selected from the full set of157

N patches X[N ] based on low prediction entropy. p̄(·) denotes the average predicted probability over158

patches of the test image or memorized patches. H(·) denotes the entropy of a predicted probability159

distribution p(·) over C classes, defined as H(p) = −
∑C

c=1 p(y = c) · log p(y = c).160

Memory update. This step aims to update the multi-scale visual memory M with the most relevant161

patch from the current test image, based on the adapted textual prompt pada. Specifically, we select a162

patch from the N randomly cropped views X[N ] according to vision-text similarity:163

ŷ = argmax
c

p̄(y = c | X[n],pada), i∗ = argmin
i∈I

H(p({X[N ]}i,pada)), (6)

where I =
{
j : argmax

c
p(y = c | {X[N ]}j ,pada) = ŷ

}
. (7)

We first obtain a confident prediction ŷ by aggregating predictions over the selected subset X[n]164

using the adapted prompt pada. Then, from the subset I of patches whose predicted label matches165

ŷ, we select the patch Xi∗ with the lowest prediction entropy. This avoids directly selecting the166

lowest-entropy patch from the entire set X[N ], which may include highly confident but irrelevant167

patches. Finally, we insert the selected patch into the corresponding memory slot Mŷ . If the memory168

is at full capacity, we remove the patch with the highest entropy among the existing entries and the169

current candidate.170

These three steps for each test image constitute a round of mutual promotion between the tunable171

textual prompt and the evolving visual memory. Afterward, we obtain two predictions for the current172

test image: one from the optimized prompt and one from the updated memory M′. We combine173

them to produce the final prediction:174

Pfinal = Ppt + Pmemo = p(y | v,pada) + Softmax(M′ada⊤v), (8)

where Ppt, Pmemo ∈ RC . The prediction Pmemo is obtained via similarity-based classification, as in175

the memory retrieval step, and M′ada is computed from the updated memory following Eqs. 3 and 4.176

It is worth noting that we perform only a single forward pass of the CLIP image encoder for each test177

image and its patches, as the image encoder is frozen during the test-time prompt tuning process. The178

encoded visual features are reused across all three steps, such as in Eqs. 4, 5, and 6. Therefore, we179

directly store the encoded features in the multi-scale visual memory, i.e., M ∈ RC×S×d, in practice.180
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3.3 Holistic visual memory181

In downstream tasks, there are not only object recognition tasks but also holistic visual recognition182

tasks, such as land cover classification [41] and scene understanding [13]. These tasks require183

holistic, image-level information, which may be lost when using only image patches. Accordingly,184

we introduce a holistic visual memory that works in coordination with the aforementioned multi-scale185

visual memory.186

During memory retrieval, we use the current test image as a query to retrieve relevant visual memory187

from both the multi-scale memory and the holistic memory, i.e., {M,Mhol}. Specifically, we188

compute the similarity-based probability distribution Softmax(Mada⊤v) using both types of memory189

and select the one with lower entropy to fetch the class-relevant visual memory. The prompt tuning190

step remains unchanged, except that the retrieved memory used in Eq. 5 is selected from either the191

multi-scale or holistic memory. During memory update, both types of memory update the same192

memory slot, Mŷ and Mhol
ŷ , as determined by the mechanisms in Eqs. 6 and 7. In addition, the193

holistic visual memory also contributes to the memory-based prediction Pmemo, producing a prediction194

in the same way as the multi-scale memory. We then select the one with lower entropy as the final195

Pmemo in Eq. 8.196

3.4 Irrelevance suppression197

The memory retrieval and memory update processes operate without ground truth supervision at test198

time, making the memory inevitably noisy. To mitigate the adverse impact, we design an irrelevance199

suppression strategy: selectively retrieving and using class-relevant memory, while proactively200

penalizing class-irrelevant memory. Specifically, during memory retrieval, we filter out relatively201

irrelevant memory based on the similarity matrix S:202

Mtop
ỹ = Mỹ [TopK (Sỹ, ⌊|Mỹ| · γ⌋)] , (9)

where TopK(·, k) returns the indices of the top k elements with the highest similarity scores. |Mỹ|203

denotes the number of stored features in memory for class ỹ, and γ ∈ (0, 1] is the selection ratio. The204

filtered memory Mtop
ỹ is then used in the prompt tuning stage (see Eq. 5).205

In addition, we construct a class-irrelevant memory Mirr to store previously seen, misleading visual206

cues from the test domain. Technically, we update this memory with high-confidence patches that are207

estimated to be irrelevant. Specifically, after the multi-scale memory update, given the memory pre-208

diction for the test image ŷmemo = argmaxc Pmemo, and the optimized-prompt-based predictions of209

patches ŷN = argmaxc p(y = c | X[N ],pada), ŷn = argmaxc p(y = c | X[n],pada), if the mem-210

ory prediction and the predictions of selected patches are consistent, i.e.,
∑n

j=1 1
[
ŷn
j = ŷmemo

]
= n,211

we regard ŷmemo as a confident prediction. Then, the irrelevant memory is updated as:212

i∗ = argmin
i∈I

H(p({X[N ]}i,pada)), where I =
{
i : ŷN

i ̸= ŷmemo
}
. (10)

Here, we select the highest-confidence patch {X[N ]}i∗ among those that disagree with the confident213

prediction and store it in the memory slot Mirr
ŷN
i∗

.214

The class-irrelevant memory stores patches with pseudo “wrong” labels—i.e., patches that are215

confidently predicted to belong to a different class. This contradicts the task assumption. For example,216

in a label space of “cat” and “bird”, an image labeled “cat” is not expected to contain a bird. To217

suppress these confident but irrelevant cues, we apply a flat-label KL loss:218

Lirr = min
(α
C
, β
)
KL

(
1

C
1

∥∥∥∥ p(y = ỹ | Mirr
ỹ ,p)

)
, (11)

where α and β are hyperparameters, and C is the number of classes. This loss Lirr is incorporated219

into the prompt tuning objective Lpt.220

4 Experiments221

4.1 Experimental setup222

Datasets. Following prior test-time prompt tuning methods [38, 42], we evaluate our method on 15223

datasets, including downstream image classification tasks and out-of-distribution benchmark datasets.224
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Table 1: Results on 10 downstream image classification datasets. The reported numbers are top-1
accuracy (%). Methods marked with * include training with labeled data from ImageNet. M2TPT†

represents the version that incorporates hand-crafted and LLM-generated prompts.

Method Venue Fl
ow

er

D
TD

Pe
ts

C
ar

s

U
C

F

C
al

te
ch

Fo
od

SU
N

A
irc

ra
ft

Eu
ro

SA
T

Average

CLIP [35] - 67.44 44.27 88.25 65.48 65.13 93.35 83.65 62.59 23.37 42.01 63.55

Prompt-Tuning-Based Methods
CoOp * [48] IJCV22 68.71 41.92 89.14 64.51 66.55 93.70 85.30 64.15 18.47 46.39 63.88
CoCoOp * [47] CVPR22 71.88 45.73 90.14 65.32 68.21 94.43 86.06 67.36 22.94 45.37 65.74
MaPLe * [19] CVPR23 72.23 46.49 90.49 65.57 68.69 93.53 86.20 67.01 24.74 48.06 66.20
TPT [38] NeurIPS22 68.98 47.75 87.79 66.87 68.04 94.16 84.67 65.50 24.78 42.44 65.20
DiffTPT [10] ICCV23 70.10 47.00 88.20 67.01 68.22 92.49 87.23 65.74 25.60 43.13 65.47
C-TPT [43] ICLR24 69.80 46.00 88.20 65.80 65.70 93.60 83.70 64.80 24.00 43.20 64.80
DynaPrompt [42] ICLR25 69.95 47.96 88.28 67.65 68.72 94.32 85.42 66.32 24.33 42.28 65.52
M2TPT - 73.65 50.24 89.48 68.91 71.42 93.35 86.63 68.12 23.46 59.14 68.44

Methods Using Hand-Crafted and LLM-Generated Prompts
VisDesc [29] ICLR23 70.85 44.98 88.85 64.08 67.12 94.60 85.05 67.99 24.30 54.84 66.27
WaffleCLIP [37] ICCV23 72.35 45.21 89.95 63.57 67.19 94.02 86.68 67.23 25.39 55.07 66.67
CuPL [34] ICCV23 71.30 44.56 89.13 65.29 66.83 92.98 86.11 62.59 24.90 47.84 65.15
TDA [18] CVPR24 71.42 47.40 88.63 67.28 70.66 94.24 86.14 67.62 23.91 58.00 67.53
DMN [46] CVPR24 74.49 55.85 92.04 67.96 72.51 95.38 85.08 70.18 30.03 59.43 70.40
AWT [50] NeurIPS24 75.07 55.56 92.53 69.93 72.51 95.54 85.54 70.58 29.22 58.61 70.51
M2TPT† - 76.90 55.32 92.31 69.32 74.25 94.24 86.42 70.65 30.48 62.32 71.34

Table 2: Results on out-of-distribution benchmark datasets. The marked M2TPT† represents the
version that incorporates hand-crafted and LLM-generated prompts.

Method Venue ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S OOD Average Average

CLIP [35] - 66.73 47.87 60.86 73.98 46.09 57.20 59.11

Prompt-Tuning-Based Methods
TPT [38] NeurIPS22 68.98 54.77 63.45 77.06 47.94 60.80 62.44

DiffTPT [10] ICCV23 70.30 55.68 65.10 75.00 46.80 60.64 62.58
C-TPT [43] ICLR24 69.30 52.90 63.40 78.00 48.50 60.70 62.42

DynaPrompt [42] ICLR25 69.61 56.17 64.67 78.17 48.22 61.81 63.37
M2TPT - 71.49 60.11 64.82 76.79 50.79 63.13 64.80

Methods Using Hand-Crafted and LLM-Generated Prompts
VisDesc [29] ICLR23 68.55 49.07 61.80 75.13 47.97 58.49 60.50

WaffleCLIP [37] ICCV23 68.81 50.78 62.54 77.49 49.10 59.98 61.74
CuPL [34] ICCV23 - 50.72 63.27 77.05 49.02 60.02 -
TDA [18] CVPR24 69.51 60.11 64.67 80.24 50.54 63.89 65.01
DMN [46] CVPR24 72.25 58.28 65.17 78.55 53.20 63.80 65.49
AWT [50] NeurIPS24 71.32 60.33 65.15 80.64 51.60 64.43 65.81
M2TPT† - 73.01 62.55 65.86 77.48 53.03 64.73 66.39

The downstream image classification datasets include Flowers102 [31], DTD [6], OxfordPets [33],225

StanfordCars [21], UCF101 [39], Caltech101 [9], Food101 [4], SUN397 [41], FGVC-Aircraft [28],226

and EuroSAT [13]. For the out-of-distribution benchmark, we include ImageNet [7] and its four227

variants exhibiting domain shifts: ImageNet-A [15], ImageNet-V2 [36], ImageNet-R [14], and228

ImageNet-S [40]. For ImageNet, we use the validation set for evaluation, and adopt the same dataset229

splits as in TPT [38] for the remaining 14 datasets.230

Implementation details. We use CLIP [35] with the ViT-B/16 encoder [8] for all experiments. For231

each test image, our method optimizes the textual prompt with a single update step, starting from the232

generic prompt “a photo of a [CLASS].” We use the AdamW optimizer [26] with a learning rate of233

η = 0.003 across all datasets. For random cropping, the scale range and aspect ratio range are set234

to (0.08, 1) and
(
3
4 ,

4
3

)
, respectively. The number of random crops N is set to 32 for downstream235

classification datasets and 64 for out-of-distribution benchmark datasets, with a selection ratio of236

n/N = 0.1. For all datasets, the memory size S is set to 50, and the hyperparameters for irrelevance237

suppression are set to γ = 0.5, α = 5, and β = 0.1.238
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(a) (b) (c)

Figure 3: (a) Ablation on main components. The baseline is test-time prompt tuning using only
low-entropy image patches. We incrementally add the three main components of our method and
illustrate the performance gain contributed by each. (b), (c) Analysis of the mutual promotion
between the learnable prompt and the evolving memory. In (b), we compare the standard test-time
prompt tuning baseline with predictions Ppt obtained from the prompt learned with visual memory.
In (c), the memory-based predictions Pmemo are compared with a baseline where memory is updated
using a static prompt, “a photo of a [CLS].” Improvements over the baselines demonstrate the mutual
promotion between the learnable prompt and the visual memory.

4.2 Comparisons239

We compare our test-time prompt tuning (TPT) method with recent TPT approaches, including240

TPT [38], DiffTPT [10], C-TPT [43], and DynaPrompt [42], and prompt learning methods including241

CoOp [48], CoCoOp [47], and MaPLe [19]. These methods, like ours, do not involve hand-crafted242

or LLM-generated prompts. Moreover, we also compare our method with recent VLM adaptation243

approaches that utilize hand-crafted or LLM-generated prompts, including VisDesc [29], Waffle-244

CLIP [37], CuPL [34], TDA [18], DMN [46], and AWT [50]. For this comparison, we design a245

variant of our method by simply incorporating human-designed prompts used in DMN [46] into246

the memory update step. Specifically, the confident prediction ŷ in Eq. 6 is obtained by combining247

predictions from the adapted prompt and the human-designed prompts.248

Comparisons on downstream classification tasks. Tab. 1 presents results on 10 downstream fine-249

grained classification datasets. The upper part of the table compares prompt-tuning-based methods250

that learn a trainable prompt from a generic initialization. Compared to previous TPT methods, our251

method achieves the highest accuracy on 7 datasets and yields an average improvement of 2.92%.252

Notably, M2TPT outperforms previous TPT methods by 15.94% on the EuroSAT dataset. The lower253

part of the table compares methods that utilize hand-crafted and LLM-generated prompts. First,254

we observe that our method can benefit from incorporating human-designed prompts, achieving an255

average improvement of 2.9%. Compared to these methods, M2TPT performs best on 8 out of 10256

datasets and surpasses the second-best method by an average margin of 0.83%.257

Comparisons on out-of-distribution datasets. Tab. 2 shows results on ImageNet and four out-258

of-distribution datasets that exhibit distribution shifts from ImageNet. In the upper part of the table,259

M2TPT outperforms recent test-time prompt tuning methods with an average improvement of 1.43%260

across the five datasets. As shown in the lower part, M2TPT also achieves state-of-the-art performance261

among VLM adaptation methods that leverage hand-crafted and LLM-generated prompts.262

4.3 Ablation studies263

Ablation on main components. We study the effectiveness of the three components264

in M2TPT—multi-scale visual memory, holistic visual memory, and irrelevance suppres-265

sion—introduced in Secs. 3.2, 3.3, and 3.4, respectively, across 10 downstream classification datasets.266

We begin with a baseline that performs prompt tuning alone using selected low-entropy patches, as267

shown in Fig. 3a. Adding multi-scale visual memory to the baseline establishes the core framework268

of our method and improves the average accuracy to 67.44%, yielding a 2.44% gain. Next, we269

incorporate holistic visual memory, which preserves global visual context for tasks that require270

holistic visual understanding, resulting in a further 0.54% improvement. Finally, we introduce the271
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irrelevance suppression strategy to better exploit the noisy test-time memory, increasing the accuracy272

from 67.98% to 68.44%.273

Analysis of the mutual promotion between the learnable prompt and the evolving memory. In274

M2TPT, the visual memory provides class-relevant visual descriptions to enhance textual prompt275

learning, and reciprocally, the learned prompt helps update the visual memory. To verify this mutual276

promotion effect, we design two baselines: the prompt tuning (PT) baseline and the memory (MM)277

baseline. The PT baseline corresponds to standard prompt tuning with selected low-entropy image278

patches. Its performance on 10 downstream classification datasets is shown in Fig. 3b. In the279

figure, Promoted PT refers to the performance of the learned prompt enhanced by visual memory,280

corresponding to Ppt in Eq. 8. Compared to the PT baseline, Promoted PT consistently demonstrates281

superior performance, highlighting the improvement in prompt tuning enabled by the multi-scale282

visual memory. In Fig. 3c, the MM baseline denotes a memory-based method where the memory is283

updated using a generic prompt “a photo of a [CLASS].” In contrast, Promoted MM refers to the284

prediction generated from the evolving memory updated with the learned prompt, i.e., Pmemo in Eq. 8.285

Promoted MM outperforms the MM baseline on 8 out of 10 datasets, indicating the beneficial effect286

of the learned prompt on memory updates. Finally, M2TPT achieves consistently better performance287

than both Promoted PT and Promoted MM, demonstrating the effectiveness of combining the two288

predictions as defined in Eq. 8.289

Figure 4: Effect of memory size.

Table 3: Computation resources of test-time
prompt tuning methods. The methods are eval-
uated on the DTD dataset using an RTX A4500
GPU.

Method Memory (GB) Runtime (s)

TPT 1.56 0.14
TPT (bs=32) 1.53 0.11
DynaPrompt 9.98 0.41
M2TPT 1.66 0.11

290

Effect of memory size. We study the effect of memory size S on the validation set of the ImageNet291

dataset. As shown in Fig. 4, the Baseline refers to test-time prompt tuning without memory. M2TPT292

shows increasing accuracy as S increases from 10 to 50, consistently outperforming the Baseline.293

When the memory size exceeds 50, the accuracy saturates and slightly decreases.294

Computation resource. We compare GPU memory usage and runtime of M2TPT with recent295

test-time prompt tuning methods, as shown in Tab. 3. All results are measured on the DTD dataset296

using an RTX A4500 GPU. DynaPrompt [42] introduces significantly higher memory usage and297

longer runtime than other methods because it optimizes multiple prompts. Compared to TPT [38]298

under its official setting (with augmentation batch size 64), M2TPT uses only 0.1 GB more GPU299

memory while consuming less runtime per image. When we test TPT with the same batch size300

(bs=32) as M2TPT, the runtime becomes comparable, and the memory usage difference increases to301

0.13 GB. These results suggest that the visual memory module in M2TPT introduces only a small302

memory overhead and minimal impact on runtime.303

5 Conclusion304

In this paper, we identified a core limitation of previous TPT methods: learning prompts from305

limited visual information provided by the current test image, which makes the learned prompts306

less competitive compared to prompt-engineering-based approaches. To address this, we proposed307

test-time prompt tuning with multi-scale visual memory, enabling the model to learn prompts from308

both class-relevant visual descriptions observed in the past and the current test image. Extensive309

experiments demonstrate that our method outperforms existing TPT methods while introducing mini-310

mal additional computational cost. Moreover, our method can benefit from prompt engineering and311

achieves state-of-the-art performance compared to recent prompt-engineering-based VLM adaptation312

methods by incorporating human-designed prompts into our framework.313
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• The paper should provide the amount of compute required for each of the individual605

experimental runs as well as estimate the total compute.606

• The paper should disclose whether the full research project required more compute607

than the experiments reported in the paper (e.g., preliminary or failed experiments that608

didn’t make it into the paper).609

9. Code of ethics610

Question: Does the research conducted in the paper conform, in every respect, with the611

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?612

Answer: [Yes]613

Justification: The research conducted in the paper conform, in every respect, with the614

NeurIPS Code of Ethics.615

Guidelines:616

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.617

• If the authors answer No, they should explain the special circumstances that require a618

deviation from the Code of Ethics.619

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-620

eration due to laws or regulations in their jurisdiction).621

10. Broader impacts622

Question: Does the paper discuss both potential positive societal impacts and negative623

societal impacts of the work performed?624

Answer: [Yes]625

Justification: A discussion of the societal impact is included in the supplemental material.626

Guidelines:627

• The answer NA means that there is no societal impact of the work performed.628

• If the authors answer NA or No, they should explain why their work has no societal629

impact or why the paper does not address societal impact.630

• Examples of negative societal impacts include potential malicious or unintended uses631

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations632

(e.g., deployment of technologies that could make decisions that unfairly impact specific633

groups), privacy considerations, and security considerations.634
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• The conference expects that many papers will be foundational research and not tied635

to particular applications, let alone deployments. However, if there is a direct path to636

any negative applications, the authors should point it out. For example, it is legitimate637

to point out that an improvement in the quality of generative models could be used to638

generate deepfakes for disinformation. On the other hand, it is not needed to point out639

that a generic algorithm for optimizing neural networks could enable people to train640

models that generate Deepfakes faster.641

• The authors should consider possible harms that could arise when the technology is642

being used as intended and functioning correctly, harms that could arise when the643

technology is being used as intended but gives incorrect results, and harms following644

from (intentional or unintentional) misuse of the technology.645

• If there are negative societal impacts, the authors could also discuss possible mitigation646

strategies (e.g., gated release of models, providing defenses in addition to attacks,647

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from648

feedback over time, improving the efficiency and accessibility of ML).649

11. Safeguards650

Question: Does the paper describe safeguards that have been put in place for responsible651

release of data or models that have a high risk for misuse (e.g., pretrained language models,652

image generators, or scraped datasets)?653

Answer: [NA]654

Justification: The paper poses no such risks.655

Guidelines:656

• The answer NA means that the paper poses no such risks.657

• Released models that have a high risk for misuse or dual-use should be released with658

necessary safeguards to allow for controlled use of the model, for example by requiring659

that users adhere to usage guidelines or restrictions to access the model or implementing660

safety filters.661

• Datasets that have been scraped from the Internet could pose safety risks. The authors662

should describe how they avoided releasing unsafe images.663

• We recognize that providing effective safeguards is challenging, and many papers do664

not require this, but we encourage authors to take this into account and make a best665

faith effort.666

12. Licenses for existing assets667

Question: Are the creators or original owners of assets (e.g., code, data, models), used in668

the paper, properly credited and are the license and terms of use explicitly mentioned and669

properly respected?670

Answer: [Yes]671

Justification: All external assets used in the paper have been properly cited.672

Guidelines:673

• The answer NA means that the paper does not use existing assets.674

• The authors should cite the original paper that produced the code package or dataset.675

• The authors should state which version of the asset is used and, if possible, include a676

URL.677

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.678

• For scraped data from a particular source (e.g., website), the copyright and terms of679

service of that source should be provided.680

• If assets are released, the license, copyright information, and terms of use in the681

package should be provided. For popular datasets, paperswithcode.com/datasets682

has curated licenses for some datasets. Their licensing guide can help determine the683

license of a dataset.684

• For existing datasets that are re-packaged, both the original license and the license of685

the derived asset (if it has changed) should be provided.686
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• If this information is not available online, the authors are encouraged to reach out to687

the asset’s creators.688

13. New assets689

Question: Are new assets introduced in the paper well documented and is the documentation690

provided alongside the assets?691

Answer: [NA]692

Justification: This paper does not release new assets.693

Guidelines:694

• The answer NA means that the paper does not release new assets.695

• Researchers should communicate the details of the dataset/code/model as part of their696

submissions via structured templates. This includes details about training, license,697

limitations, etc.698

• The paper should discuss whether and how consent was obtained from people whose699

asset is used.700

• At submission time, remember to anonymize your assets (if applicable). You can either701

create an anonymized URL or include an anonymized zip file.702

14. Crowdsourcing and research with human subjects703

Question: For crowdsourcing experiments and research with human subjects, does the paper704

include the full text of instructions given to participants and screenshots, if applicable, as705

well as details about compensation (if any)?706

Answer: [NA]707

Justification: This paper does not involve crowdsourcing nor research with human subjects.708

Guidelines:709

• The answer NA means that the paper does not involve crowdsourcing nor research with710

human subjects.711

• Including this information in the supplemental material is fine, but if the main contribu-712

tion of the paper involves human subjects, then as much detail as possible should be713

included in the main paper.714

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,715

or other labor should be paid at least the minimum wage in the country of the data716

collector.717

15. Institutional review board (IRB) approvals or equivalent for research with human718

subjects719

Question: Does the paper describe potential risks incurred by study participants, whether720

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)721

approvals (or an equivalent approval/review based on the requirements of your country or722

institution) were obtained?723

Answer: [NA]724

Justification: This paper does not involve crowdsourcing nor research with human subjects.725

Guidelines:726

• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Depending on the country in which research is conducted, IRB approval (or equivalent)729

may be required for any human subjects research. If you obtained IRB approval, you730

should clearly state this in the paper.731

• We recognize that the procedures for this may vary significantly between institutions732

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the733

guidelines for their institution.734

• For initial submissions, do not include any information that would break anonymity (if735

applicable), such as the institution conducting the review.736

16. Declaration of LLM usage737
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Question: Does the paper describe the usage of LLMs if it is an important, original, or738

non-standard component of the core methods in this research? Note that if the LLM is used739

only for writing, editing, or formatting purposes and does not impact the core methodology,740

scientific rigorousness, or originality of the research, declaration is not required.741

Answer: [NA]742

Justification: The core method development in this research does not involve LLMs as any743

important, original, or non-standard components.744

Guidelines:745

• The answer NA means that the core method development in this research does not746

involve LLMs as any important, original, or non-standard components.747

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)748

for what should or should not be described.749
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