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Reproducibility Summary1

Scope of Reproducibility2

The investigated paper claims RBF network when trained with BCE loss along with two-sided gradient penalty3

outperforms deep ensemble in the task of out of distribution(OoD) detection along with competitive accuracy to softmax4

based models. The Paper claims to outperform AUROC on Fashion-MNIST vs MNIST and CIFAR-10 vs SVHN. The5

proposed algorithm is reported to detect both aleatoric and epistemic uncertainty as OoD. Authors mention the need for6

a formal way to distinguish between the two kinds of uncertainty and pose it as an interesting future research avenue.7

8

The scope of this report is to reproduce the results related to OoD detection presented in the paper. Along9

with the reproduction of results, we propose an extension for explicit detection of aleatoric and epistemic uncertainty as10

intended by the authors.11

Methodology12

The author’s training code is available on GitHub. Additionally, we have made available all the experimentation codes13

in the form of notebooks. We provide all the results and analysis on the models described in the paper and trained on14

NVIDIA Tesla T4 GPU.15

Results16

Overall our reproduction supports the claims of the paper, we can replicate trends and plots as described in the paper.17

Most of the results are within 1% of the value reported. Notably, AUROC(M) of DUQ in OoD detection of Fashion-18

MNIST vs MNIST is off by 1.5% and we got a different optimal value for gradient penalty weight (λ) in it.19

Also, the results of our proposed extension and its analysis are encouraging. Our proposed extension provided an20

increase of 1.8% in AUROC(M) in Fashion-MNIST vs MNIST and provided explicit control over the aleatoric and21

epistemic uncertainty.22

What was easy23

The proposed approach is quite simple and elegant. The availability of the author’s code made the implementation of24

various experiments easy.25

What was difficult26

Understanding of proposed approach requires advanced knowledge of calculus related to the Lipschitz constant and its27

role to quantify the upper bound of the sensitivity of any function.28

Communication with original authors29

We discussed our report with the authors, they find our analysis on aleatoric uncertainty interesting and appreciate our30

proposed extension and its encouraging results.31
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1 Introduction32

Reliable uncertainty quantification has been a challenge in deep learning, models giving overconfident wrong33

predictions can not be deployed for practical purposes and if deployed can even be fatal. The investigated paper34

Uncertainty Estimation Using a Single Deep Deterministic Neural Network [1] presents a method of training deep35

neural networks to detect out of distribution(OoD) points in a single forward pass along with classification.36

37

Authors define a set of feature vectors called centroids each corresponding to a certain class. Distance between feature38

vectors predicted by model and centroids are used for class prediction. This architecture along with BCE loss employs39

a two-sided-gradient penalty to make the model sensitive to input and hence providing OoD detection ability, this40

approach is called deterministic uncertainty quantification, DUQ.41

2 Scope of reproducibility42

The proposed algorithm outperforms the state-of-the-art techniques for OoD detection on Fashion-MNIST vs MNIST,43

CIFAR-10 vs SVHN in terms of AUROC as well as computational time. DUQ, an RBF network-based algorithm44

provides competitive accuracy to softmax models along with strong OoD detection ability. The scope of this report is as45

follows.46

2.1 Addressed claims from the original paper47

• OoD detection ability on various datasets as reported in paper.48

• Role of different hyperparameters (Ablation Study).49

2.2 Other experiments50

• Noise sensitivity of proposed algorithm.51

• Propose extension E-DUQ for explicit detection of aleatoric and epistemic uncertainty .52

3 Methodology53

3.1 Model descriptions54

Figure 1 represents the complete algorithm, first, the features are computed through a standard feature extractor (fθ)55

after this extracted features are passed through class-specific layers (Wc) to calculate the feature vector for each class.56

Distance (Kc) of this vector from the centroid in a kernel space represents uncertainty in prediction. The centroid is57

calculated for each batch as described in the equations below.58

nc,t = γ×nc,t−1 + (1-γ)×nc,t59

60

mc,t = γ×mc,t−1 + (1-γ)×
∑

Wcfθ(xc,t,i)

ec,t = mc,t / nc,t61

62

Where nc,t is number of images of class c in a particular batch at time t, mc,t is weighted sum of feature vectors63

through different mini batches and γ is the momentum for updating centroids. xc,t,i is the element i of minibatch at64

time t of class c.65

66

Total cost comprises of two-loss functions, one is the BCE loss which is the sum of cross-entropy of a binary one-hot67

vector with the actual label of that class as described in the equation below.68

69

L1(x, y)=
∑
cyc log(Kc) + (1 -yc) log(1-Kc)70

71

Usually, deep learning models suffer from feature collapse where the presence of some non-robust discriminative72

features in input space will map inputs to same outputs, the degree to which a model prevents this feature collapse is its73
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sensitivity, a two-sided gradient penalty loss is used to enforce sensitivity to our model which is defined as:74

75

Two-sided GP loss = λ·
[
‖∇x

∑
cKc ‖22 - 1

]
276

77

Which essentially keeps the norm of Jacobian above a threshold and prevents feature extractor from collaps-78

ing to a constant function.79

Another version of gradient penalty can be a single-sided loss as:80

81

Single-sided GP loss = λ ·max(0, ‖∇x
∑
cKc ‖2F - 1)82

83

The investigated paper claims two-sided gradient penalty can enforce sensitivity in the model while a single-sided84

penalty is not able to do so. We will verify these claims empirically in sections to go.85

Figure 1: Figure describing complete algorithm, for each class it computes RBF score (Kc) which is the measure of
OoD detection

3.2 Datasets86

3.2.1 Two-moons dataset87

It is a two-dimensional dataset. As the name suggests, it has two intertwined classes on the shape of the crescent. We88

obtain it using Sciket-learn implementation as described by the authors.89

3.2.2 Fashion-MNIST and MNIST90

Fashion-MNIST is a dataset of 28x28 grayscale images consisting of a training set of 60,000 images and a test set of91

10,000 images each belonging to either of 10 classes. MNIST is a database of 28x28 grayscale handwritten digit images92

having a training set of 60,000 and a test set of 10,000 images. We obtain both datasets using Pytorch’s dataset module.93

As we are testing the proposed algorithm on out-of-distribution detection Fashion-MNIST, MNIST has been a notably94

difficult pair for this task [2].95

3.2.3 CIFAR-10 and SVHN96

CIFAR-10 is a dataset of 60,000 32x32 colour images in 10 classes, having 50,000 training images and 10,000 test97

images. SVHN is a real-world image dataset similar in flavor to MNIST but incorporates an order of magnitude more98

labeled data with 604,388 training set images and 26,032 images for testing.99

Similarly we will evaluate algorithm on CIFAR-10 vs SVHN OoD detection [2].100
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3.3 Experimental setup101

The author’s training code is available on GitHub which was quite useful for us. We have added102

our codes for all analysis and experimentation on https://drive.google.com/drive/folders/103

1bBrn2jRnRTIhxrAi7BXLOPkzCuUKlizF?usp=sharing. We trained all models on NVIDIA Tesla T4 GPU.104

105

Execution of the code is not computationally extensive. In the described experimental settings training on MNIST takes106

15 minutes while training on CIFAR-10 takes 4 hours. Maximum 3 GB of GPU and 4 GB of RAM is sufficient to run107

the code.108

We followed the Appendix of the reported paper for architecture, optimization, the number of epochs, batch size and109

generating data in the case of two-moons.110

Additionally, we also find and recommend applying early stopping in training on CIFAR10 at around 60 epochs to111

avoid over-training.112

4 Results113

In this section, we provide our empirical analysis on claims in Section 2, first on toy dataset, two-moons, and then114

extend the analysis for Fashion-MNIST and CIFAR-10. Our experiments verify the claims of paper with similar results115

on these datasets.116

4.1 Two-moon117

Our implementation on two-moons for the deep ensemble, DUQ without gradient penalty, with single and with a118

two-sided penalty are shown in Figs 2-5. The yellow colour represents the region of certainty while the blue region119

shows uncertainty.120

It can be seen DUQ with a two-sided penalty is certain only near the training data and uncertain elsewhere, hence121

showing the best uncertainty estimation over the region as compared to other methods. These figures validate the122

importance of the two-sided penalty in enforcing sensitivity.123

Figure 2: Uncertainty estimation using Deep Ensem-
ble

Figure 3: Uncertainty estimation using DUQ with
λ=0

Figure 4: Uncertainty estimation using DUQ with
single sided gradient penalty

Figure 5: Uncertainty estimation using DUQ with
two-sided penalty

4.2 Fashion-MNIST124

DUQ is trained on Fashion-MNIST and its ability to detect MNIST datapoints as OoD is measured by AUROC, larger125

being the better. In this section, we provide our results and analysis for DUQ on Fashion MNIST claimed by the126

authors.127

128
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Method Accuracy(FM) AUROC(M) Train time(in sec) Inference time
Deep Ensemble 93.30 ±0.32 0.889 ±0.005 45 2.3

DUQ (λ = 0.05) 92.13 ±0.29 0.947 ±0.005 23 1
E-DUQ 92.35 ±0.15 0.964 ±0.005 23 1

Table 1: Result comparison of models trained on Fashion MNIST by different methods(mean over 3 runs), AUROC(M)
is for separating Fashion-MNIST from MNIST. EDUQ is described in section 4.2.2.

In Table 1, we compare DUQ with deep ensemble, DUQ outperforms deep ensemble in AUROC as well as on training129

and inference time. We observe a difference of 1.5% in AUROC of DUQ from the original paper.130

In an algorithm that can detect OoD points, another measure of performance could be rejection classification, in which131

we mix two-datasets and reject points based on uncertainty predicted by the model and expect an increase in accuracy.132

In Fig 8 we find that rejection classification performance on Fashion-MNIST vs MNIST for DUQ in comparison with133

deep ensemble gives more accuracy increase per rejection as the area below DUQ curve is more that area below DE.134

These experiments broadly support the claims made by the authors.135

136

4.2.1 Aleatoric sensitivity137

Authors provide OoD detection analysis on Fashion-MNIST vs MNIST datapoints which are fundamentally different138

datasets. The paper mentions that DUQ captures both aleatoric and epistemic uncertainty but doesn’t provide any139

analysis on these datasets.140

141

To evaluate the noise detection sensitivity of DUQ, we plot the rejection classification performance of DUQ on142

Fashion-MNIST vs Noisy Fashion-MNIST as shown in Fig 6. Noisy Fashion-MNIST is Fashion MNIST added with a143

zero-centered gaussian noise with an std of 0.05 which is imperceptible to the human eye. We have used full test-dataset144

(1:1 proportion) for the mix.145

It can be seen that DUQ can even detect Noisy Fashion-MNIST datapoints with this low noise whereas deep ensemble146

is unable to do so. This clearly states that DUQ is very sensitive to noise and deems even very low noise data147

points as OoD which can even be undesirable for practical purposes, as extreme sensitivity will harm the model’s148

decision-making ability. This observation is due to the imposed sensitivity to the model by gradient penalty loss. We149

address this issue in the next subsection and propose an extension.150

151

Figure 6: Rejection classification performance by different methods for Fashion-MNIST vs Noisy Fashion-MNIST.
(X-axis is the % of data rejected using uncertainty estimates, Y-axis is the corresponding accuracy)

4.2.2 Learnable σ : Modelling noise through input152

We propose to incorporate noise computation by predicting length scale(σ) for each data point rather than keeping it153

constant as done by [3]. Authors of [3] showed how learning length scale can make model learn to attenuate loss from154
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erroneous labels. We name this extended approach Explicit-DUQ or E-DUQ as it gives us explicit control over aleatoric155

and epistemic uncertainty.156

157

If noisy points are predicted with high σ, it will increase RBF score as shown in Fig 1 hence, disabling the model to158

predict noisy points as OoD. Hence E-DUQ should label only fundamentally different data distributions (i.e. epistemic159

uncertainty) as OoD. In E-DUQ, the feature extractor outputs features along with one extra logit for length scale, it will160

be very similar to the model described in Fig 1, but now along with fθ(x) length scale(σ) will also be provided by the161

model to compute Kc.162

163

Fig 7 shows the histogram of the magnitude of σ predicted by E-DUQ on Fashion-MNIST and Noisy Fashion-MNIST164

test set, it can be seen that model predicts higher values of σ for noisy data points.165

Also, Rejection classification plot of E-DUQ (Aleatoric section, Fig 6) lies well below than that of DUQ which validates166

E-DUQ does not label noisy points as OoD and is robust to noise.167

168

Figure 7: Histogram of values of length scale(sigma) predicted by E-DUQ for Fashion-MNIST and Noisy Fashion-
MNIST

Table 1 illustrates E-DUQ outperforms DUQ trained on Fashion-MNIST in AUROC(M), this is because MNIST169

datapoints are OoD with respect to Fashion-MNIST in terms of epistemic uncertainty, which E-DUQ models explicitly.170

With the above empirical analysis, we can say it is possible to predict epistemic and aleatoric uncertainties independently171

using RBF score(Kc) and length scale(σ) respectively.172

4.2.3 Other Hyperparameters and Ablations173

In the following tables, ablations are done over centroid dimension, gradient penalty factor, and gradient penalty174

constant respectively (averaged over 5 runs). All other hyper-parameters are same as given in the original paper.175

Table 2 shows how the performance of the model varies with the dimension of the centroid vector (z), we note AUROC176

first increases with z and then saturates while accuracy remains unaffected. Authors used z = 256 which according to177

us is a descent choice.178

179

In Table 3, we show how the performance of DUQ varies with the value of λ, we observe first increase and then180

decrease in AUROC score which is also claimed by authors. We find a 1.5% deviation in the best AUROC(M) score as181

reported by the authors. They also mentioned best AUROC(NM) coincides with best AUROC(M) but we are not able to182

see this in our reproduction.183

We also experiment how varying the constant number(α) in two-sided gradient penalty
[
‖∆x

∑
cKc ‖22 - α

]2
affect184

training in Table 4. We fix λ=1 and experiment for different values for α, we find its performance to be better than185

model trained with optimal λ (in table 3). Thus, we infer that α can be a crucial hyperparameter.186

187

Overall ablation study supports the claims of the paper with minor deviations, also we show some important hyperpa-188

rameters which are not stressed by the authors.189
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Size Accuracy AUROC(M)
10 92.15 ±0.15 0.887 ±0.015
256 92.13 ±0.29 0.947 ±0.005
500 92.32 ±0.15 0.959 ±0.004

1000 92.11 ±0.32 0.955 ±0.002

Table 2: Accuracy and AUROC(M)
trend with centroid-vector dimen-
sion on Fashion MNIST.

λ Accuracy AUROC(NM) AUROC(M)
0 92.39 ±0.08 0.941 ±0.005 0.941 ±0.011

0.05 92.13 ±0.29 0.962 ±0.007 0.947 ±0.005
0.1 92.11 ±0.08 0.953 ±0.006 0.942 ±0.007
0.2 92.03 ±0.11 0.929 ±0.006 0.954 ±0.005
0.3 92.11 ±0.22 0.941 ±0.016 0.946 ±0.008
0.5 91.94 ±0.16 0.939 ±0.008 0.931 ±0.014
1.0 91.12 ±0.23 0.895 ±0.036 0.901 ±0.029

Table 3: Accuracy and AUROC trend with λ for model
trained on Fashion-MNIST.

α Accuracy AUROC(M)
0.01 91.89 ±0.03 0.928 ±0.002
0.1 92.23 ±0.08 0.951 ±0.004
0.2 92.36 ±0.13 0.953 ±0.004
0.5 91.15 ±0.19 0.918 ±0.005

Table 4: Accuracy and AUROC(M)
trend with α in GP Loss on Fashion-
MNIST

4.3 CIFAR-10190

Till now, we have validated the central claim of the paper on the Fashion-MNIST dataset, in this subsection we provide191

few experiments to validate the claims made by authors about DUQ on CIFAR-10.192

Method Accuracy AUROC Train time(in sec) Inference time(in sec)
Deep Ensemble 94.44 ±0.42 0.949 ±0.003 300 14
DUQ (λ = 0.5) 93.45 ±0.32 0.931 ±0.003 210 4

Result comparison on model trained on CIFAR-10 by deep ensemble and DUQ, AUROC reported is for separating193

CIFAR-10 from SVHN (averaged over 3 runs)194

In Table 4.3, we compare DUQ with deep ensemble trained on CIFAR-10, the deep ensemble performs slightly195

better(1%) than DUQ in terms of accuracy and AUROC however DUQ is better in terms of computational time. We get196

similar values as in the original paper with a deviation of 0.5% in the values.197

We obtain a similar rejection classification plot for CIFAR-10 vs SVHN as reported in the paper i.e. we see both DUQ198

and deep ensemble capture equal area as shown in Fig 9.199

200

Figure 8: Rejection classification plot for deep ensem-
ble and DUQ for Fashion-MNIST vs MNIST, x-axis
is the % of data rejected using uncertainty estimates.
Y-axis is the corresponding accuracy of prediction.

Figure 9: Rejection classification plot for deep ensem-
ble and DUQ on CIFAR-10 vs SVHN. (X-axis is the
% of data rejected using uncertainty estimates. Y-axis
is the corresponding accuracy)

We provide a prediction histogram of DUQ on CIFAR-10 vs SVHN as shown in Fig 10. As datasets are of different201

sizes, we made the frequencies of histograms in proportion to dataset size as done by authors. We get the same graph as202

in the paper where the plot for CIFAR-10 is skewed towards the right extreme depicting higher certainty whereas a203

uniform plot for SVHN indicates uncertainty. These results support the claims on CIFAR-10 from the paper.204

205
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Figure 10: Uncertainty histogram of CIFAR-10 and SVHN for DUQ (λ = 0.5) trained on CIFAR-10

Additionally, we provide an analysis of the behavior of DUQ on noisy CIFAR-10 data points. In Figure 11, Noisy206

CIFAR-10 is CIFAR-10 added with a zero-centered gaussian noise with an std of 0.1. And all plots are made in propor-207

tion to the dataset size. We run the experiment with both the models and can see that DUQ is unconfident with Noisy208

CIFAR-10 points whereas deep ensemble can classify them with certainty, this finding is in line with that of Section 4.2.1.209

210

Figure 11: Uncertainty histogram of CIFAR-10 , SVHN and Noisy CIFAR-10 for DUQ (λ = 0.5) and deep-ensemble
trained on CIFAR-10

5 Discussion211

A simple approach along with data and models involved being in our computational limits helped us in the reproduction212

of results. We can validate most of the results and trends as reported in the paper.213

Section 4.2 shows the overall behavior of DUQ and validates most of the claims made by authors like the importance214

of two-sided gradient penalty in the loss for enforcing the desired sensitivity which can show the state of the art215

OoD detection performance with a modest RBF network. Our additional experiments for understanding the nature of216

sensitivity of DUQ show how the addition of noise which is imperceptible to human eyes makes DUQ vulnerable for217

practical purposes.218

Paper mentioned work on aleatoric and epistemic uncertainty detection is required, our naive extension of predicting σ219

inspired by [3] can even outperform the author’s results on Fashion-MNIST along with explicit control over uncertainty220

detection which is required for practical purposes. These preliminary results are encouraging for future research to be221

done in this direction.222

Section 4.3 shows the scalability of different analyses for DUQ on larger datasets.223

Overall we conclude that our reproduction results support different claims by authors of DUQ, it is an easy to implement,224

time-efficient algorithm with high sensitivity to input making it a good choice for OoD detection.225
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