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Abstract

Current approaches to interpreting complex001
ranking models are based on local approxi-002
mations of the ranking model using a simple003
ranker in the locality of the query. Since rank-004
ings have multiple relevance factors and are ag-005
gregations of predictions, existing approaches006
that use a single ranker might not be sufficient007
to approximate a complex model resulting in008
low local fidelity. In this paper, we overcome009
this problem by considering multiple simple010
rankers for better approximating the black box011
ranking model. We pose the problem of local012
approximation as a GENERALIZED PREFER-013
ENCE COVERAGE (GPC) problem that incorpo-014
rates multiple simple rankers towards the post-015
hoc interpretability of ranking models. Our016
approach MULTIPLEX uses a linear program-017
ming approach to judiciously extract the ex-018
planation terms. We conduct extensive experi-019
ments on a variety of ranking models and report020
fidelity improvements of 37%− 54% over ex-021
isting baselines and competitors. We finally022
qualitatively compare modern neural ranking023
models in terms of their explanations to bet-024
ter understand the differences between them,025
showcasing our explainers’ practical utility.026

1 Introduction027

Ad-hoc document ranking is a central task in Web028

search and information retrieval, where the objec-029

tive is to rank text documents or passages rele-030

vant to a user-specified keyword query. Recent ap-031

proaches for ranking text documents have focused032

heavily on neural models (McDonald et al., 2018;033

Karpukhin et al., 2020; Nogueira and Cho, 2019).034

Neural rankers manage to learn the complex and035

often non-linear relationships between the query036

and document terms that are difficult to encode us-037

ing closed-form analytical ranking functions like038

BM25 or query likelihood models. However, the039

superior ranking performance of such text rankers040

comes at the expense of reduced interpretability,041

increasing the risk for models encoding undesir- 042

able correlations and biases. In parallel to devel- 043

oping better ranking models, there has been an 044

increased focus on interpretability approaches for 045

neural ranking models (Singh and Anand, 2019, 046

2018; Fernando et al., 2019) that specifically aim 047

at explaining the rationale behind the ranking deci- 048

sions. 049

This paper aims to propose post-hoc inter- 050

pretability algorithms for neural rankers – that is, 051

we intend to explain an already-trained text rank- 052

ing model. Since post-hoc methods do not com- 053

promise the accuracy of the learned model, they 054

have become popular in the emerging landscape 055

of interpretable machine learning. The key idea in 056

post-hoc interpretability is to locally approximate 057

a trained model with a simple and interpretable 058

proxy model where the degree of approximation 059

is called fidelity. In this framework, the objective 060

is to maximize the fidelity, where the choice of 061

the proxy model and the notion of fidelity is typ- 062

ically domain-dependent. Adapting this general 063

framework of post-hoc interpretability to ranking 064

models has two specific challenges – how do we 065

aggregate multiple decisions inherent in a single 066

ranking? and how do we explain ranking decisions 067

regarding different relevance factors? 068

Rankings as aggregations. Ranking models out- 069

put a ranked list of documents for a given query. 070

Unlike other learning tasks like regression and 071

classification that deal with a single decision, the 072

ranking task can be viewed as an aggregation of 073

decisions – pairwise document preferences com- 074

bined using approaches such as (Ailon et al., 2008). 075

Any interpretability approach or explainer should 076

therefore explain the reasoning behind multiple- 077

preference pair predictions. For example, for the 078

top-ranked document di, the explainer should ex- 079

plain why di is more relevant than other docu- 080

ments in the ranked list where each preference pair 081

di ≻ dj is a decision to be explained. Therefore 082
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Explainers Explanation Terms

TERM MATCHING charlotte, north, sales, 2008
POSITION AWARE basketball, north, states, learn
SEMANTIC SIMILARITY felidae, carnivorous, boko

extinction, deserts, iucn
MULTIPLEX felidae, carnivorous, boko
(Multiple Explainers) extinction, deserts, gvwr, north

Table 1: Explaining the query bobcatwith multiple as-
pects – (i) “charlotte-bobcat basketball club”; (ii) “learn
to hunt bobcat”; (iii) “animal bobcat” and (iv) “bobcat
mechanical retailer”. MULTIPLEX carefully chooses
from multiple aspects to explain a ranking. See Table 3
for more examples.

the first challenge of explaining rankings is that083

existing explanation methods like (Shrikumar et al.,084

2017; Choi et al., 2020; Sundararajan et al., 2017;085

Simonyan et al., 2013) that explain a single deci-086

sion cannot be seamlessly used for rankings.087

Different explanations for different decisions.088

Secondly, it is well-known that when ranking text,089

multiple factors determine the relevance of a doc-090

ument to a query, e.g., lexical matching, semantic091

similarity, query term position in the document, etc.092

Unlike traditional models that used to model each093

of these relevance factors, neural rankers automati-094

cally learn these from data. The next challenge in095

explaining rankings is ascertaining the relevance096

factor that best explains a given decision. Infor-097

mally, there might not exist a single factor that098

explains or satisfies all or most of the preferences099

di ≻ dj .100

Previous approaches for ranking explanations in101

the literature fail to address at least one of these102

limitations. Gradient-based approaches either use103

simple heuristic aggregation approaches or alto-104

gether avoid aggregations. Approaches like Singh105

and Anand (2020) that consider aggregations try106

to explain multiple preferences using a single sim-107

ple explainer that captures only one aspect of rele-108

vance, i.e., term matching. Both these limitations109

in existing systems have resulted in low-fidelity110

explanations.111

In this paper, we propose a more principled ap-112

proach MULTIPLEX, by considering multiple sim-113

ple rankers, or explainers, that rely on different114

notions of relevance and are interpretable by them-115

selves. The output of MULTIPLEX is a set of ex-116

planation terms. Table 1 shows an example of ex-117

planation terms extracted by different explainers118

(formally defined in Section 4.3), and our MULTI-119

PLEX is shown to be able to combine terms from 120

multiple explainers, implicitly covering multiple 121

topics for an ambiguous query. 122

Specifically, we define the GENERALIZED PREF- 123

ERENCE COVERAGE (GPC) using multiple explain- 124

ers that intend to maximize our explanation’s ap- 125

proximation ability. Unlike previous approaches 126

that rely on greedy heuristic to maximize fidelity, 127

MULTIPLEX is based on convex optimization us- 128

ing the augmented lagrangian algorithm to solve 129

the GPC problem. In coming up with the explana- 130

tion, we hypothesize that an expanded query (the 131

original query along with the explanation terms) 132

combined with a simple and interpretable explainer 133

is an accurate interpretation of the underlying rank- 134

ing model if it produces a similar ranking. 135

Experimental Evaluation. We conduct extensive 136

experiments using datasets from the TREC test col- 137

lections – Trec-DL and Clueweb09 with 3 neural 138

rankers to evaluate MULTIPLEX. We report fidelity 139

improvements of 37% − 54% over existing com- 140

petitors. We also present anecdotal case studies 141

that showcase the practical utility of MULTIPLEX 142

in understanding neural rankers. 143

2 Related Work 144

Interpretability, in general, of complex learning 145

models is a well researched area (Guidotti et al., 146

2018). We are interested however in the inter- 147

pretability of models for text tasks and specifically 148

text ranking . In the following we try to contextual- 149

ize our contribution in terms of (i) general method- 150

ology of post-hoc interpretability (in Section 2.1), 151

and (ii) specific approaches to interpretability for 152

ranking models (in Section 2.2). 153

2.1 Post-hoc interpretability 154

Post-hoc methods for interpretability approaches 155

operate on already trained models. Such methods 156

can be categorized into two broad classes: model 157

introspective and model agnostic. Model introspec- 158

tion refers to approaches that access all the model 159

parameters like gradient-based methods (Shriku- 160

mar et al., 2017; Choi et al., 2020; Sundararajan 161

et al., 2017; Simonyan et al., 2013). We operate 162

in the model agnostic regime where we do not as- 163

sume any access to the ranking model’s parameters. 164

Example of such an approach is LIME (Ribeiro 165

et al., 2016) that uses a simple interpretable sur- 166

rogate model to locally approximate an already 167

trained black-box model. For other notions of inter- 168

2



pretability and a more comprehensive description169

of the approaches, we point the readers to Guidotti170

et al. (2018).171

2.2 Interpreting Ranking Models172

In information retrieval (IR) there has been lim-173

ited work on interpreting rankings. The earliest for174

explaining rankings was in the context of learning-175

to-rank (LTR) where Singh and Anand (2018) tried176

to approximate an already trained LTR model by177

a subset of (the original) interpretable features us-178

ing secondary training data from the output of the179

original model. Singh et al. (2021) also operate on180

LTR to find a minimal set of relevant features that181

faithfully explain the ranking. This paper doesn’t182

deal with LTR task but instead focuses on ranking183

text data.184

Gradient-based approaches like Fernando et al.185

(2019); Choi et al. (2020) have been applied to186

neural rankers for interpreting the relevance score187

of a single query document pair. These works do188

not consider aggregations of decisions for a given189

query, i.e., preference pairs of documents. We use190

a gradient-based approach as a competitor in our191

experiments, showing that aggregation is crucial to192

explaining ranking models. Rennings et al. (2019);193

Câmara and Hauff (2020); Völske et al. (2021) ex-194

plain adhoc ranking models in terms of IR axioms.195

They argue that neural rankers do not follow IR196

axioms such as term frequency and semantic simi-197

larity. This is also in line with our results based on198

query terms and a single explainer. With additional199

explanation terms, we show higher agreements be-200

tween neural rankers and axioms. Like us, Völske201

et al. (2021) also focus on optimizing coverage of202

preference pairs but unlike us using learning ap-203

proaches. However, they also report lower fidelity204

values showing the difficulty of the task at hand.205

More related to our setup, Verma and Ganguly206

(2019) modifies LIME to output intent terms by207

measuring the distance of the explanation terms to208

the human-created intent description terms. How-209

ever, their approach does not consider preference210

pairs induced by rankings. Singh and Anand211

(2019) propose simplistic aggregations over sam-212

pled terms from top-k results, an improved adapt-213

able LIME for rankers. The most related to our214

work is from Singh and Anand (2020), which pro-215

poses a heuristic greedy approach to maximize the216

coverage of preference pairs.217

Unlike above methods (Verma and Ganguly,218

2019; Singh and Anand, 2019, 2020), we use mul- 219

tiple explainers and a more principled aggregation 220

approach to maximize fidelity. We also use Singh 221

and Anand (2020) as a baseline to measure the 222

merits of our aggregation techniques with multiple 223

explainers. 224

3 Background and Preliminaries 225

We start with the notion of a ranker Φ that takes as 226

input a keyword query Q to output an ordering π 227

over a set of documents π = (d1 ≻ d2 ≻ . . . ≻ dn) 228

based on the relevance of the documents to the 229

query, i.e., Φ(Q) → π. We aim to interpret the 230

ranking function Φ in a model-agnostic manner. 231

Note that the output of a ranking function can be 232

viewed as a set of preferences over the documents, 233

or w.l.o.g π = {(di ≻ dj)}. Therefore explaining 234

a ranking π is akin to explaining all or most of 235

the preference pair decisions in π. An example 236

of a single decision is whether the preference pair 237

(di ≻ dj) is true/false. 238

3.1 Explanations and Fidelity 239

The output of an interpretability procedure is 240

an explanation, which should be simple, human- 241

understandable, and faithful to the behavior of 242

Φ. A natural explanation for keyword-query based 243

ranking tasks are a set of terms (words or phrases). 244

Simplicity is ensured by enforcing only a small 245

set of output terms. We adapt the query expansion 246

concept in our setting. Namely, if adding a set 247

of explanation terms E to the original query, i.e., 248

Q ∪ E, the explainer should result in high agree- 249

ment with the original ranking preferences. The 250

degree of such agreement is used to evaluate the 251

goodness or fidelity of the explanation. 252

3.2 Problem Statement 253

Formally, given a query Q, a complex ranking 254

model Φ and a set of simple ranking models which 255

we call explainers {Ψ}, we aim to select a small 256

set of terms E ∈ V (where V is the vocabulary), to 257

explain most of preference pairs (di ≻ dj) from 258

the original ranking π. 259

4 Generalized Preference Coverage 260

As mentioned earlier, a ranking can be considered 261

a set of preference pairs. Therefore, choosing ex- 262

planation terms to maximize the fidelity can be for- 263

mulated as a coverage problem of the preference 264

pairs. We briefly describe the preference coverage 265
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Figure 1: Approach overview of MULTIPLEX using multiple explainers.

(PC) framework as introduced in Singh and Anand266

(2020), using a single explainer as a precursor to267

introducing the generalized PC problem.268

4.1 The Preference Coverage Framework269

Singh and Anand (2020) introduced the PC frame-270

work where explaining a ranking is equivalent to271

maintaining most of the preferences derived from272

the ranking using a single explainer Ψ. First, a273

set of n candidate terms X (X ⊆ V, |X |= n) and274

m preference pairs are sampled (please refer to275

the original paper for more details) from the orig-276

inal ranking π towards creating a preference ma-277

trix M ∈ Rn×m. Each cell in M represents the278

utility of the term t in explaining the preference279

dπ(i) ≻ dπ(j), by computing a preference score280

f t
ij = Ψ(t, dπ(i))−Ψ(t, dπ(j)). A positive f score281

means with t, the Ψ can explain or cover this pair,282

otherwise not. Each t can now be viewed as an283

m-dimensional vector f or |f |= m, where each el-284

ement represents how well it explains a certain pair.285

The PC framework using a single Ψ aims to choose286

a subset of rows E ⊆ X (equivalent to selecting287

terms) from M so as to maximize the number of288

non-zero values in the aggregated vector. Since289

choosing or not choosing the row/term is a boolean290

decision, we can formulate the PC objective as an291

Integer Linear Program (ILP):292

maximize

m∑
i=1

(
sign(x⊤M)

)
i

(PC)293

s.t. x = [x1, · · · , xn] ; xi ∈ {0, 1}294

x is a selection vector with boolean values where295

xi = 1 indicates selecting term Xi, and xi = 0296

otherwise. Namely, E = {i|xi == 1}. This equa-297

tion however is NP-hard and not solvable by the298

prevalent convex programming solvers supported299

by CVXPY (Diamond and Boyd, 2016), due to the300

non-convex sign function.301

In the next we present an improved formulation 302

of the PC problem followed by a generalization to 303

accommodate multiple explainers called the GEN- 304

ERALIZED PREFERENCE COVERAGE problem. 305

4.2 Optimizing PC for Multiple Explainers 306

Compared to PC, our proposal should be (i) practi- 307

cally solvable, (ii) ensuring sparse output x so that 308

the explanation is more human-understandable, and 309

(iii) flexible to combine multiple explainers or M. 310

Correspondingly, the first change we introduce 311

is using tanh to approximate the non-convex sign 312

operator. Secondly, we add a ℓ1-regularization ∥x∥ 313

to enforce sparsity constraints on the number of 314

terms to be selected. A straightforward way to 315

combine all explainers is to sum up their scores, 316

i.e., Ψmulti(t, d) =
∑

Ψ(t, d). However, differ- 317

ent explainers can have different output range and 318

exhibit high variance. For instance, the term match- 319

ing score usually lies in [0, 1], whereas the position 320

aware score typically operates in a much larger 321

range. Taking normalization of such scores into the 322

optimization procedure is crucial to flexibly adding 323

multiple explainers. 324

We therefore formulate the GENERALIZED 325

PREFERENCE COVERAGE problem that intends 326

to optimize multiple matrices simultaneously as: 327

minimize

(
−

m∑
i=1

(tanh(v))i + ∥x∥

)
(GPC) 328

s.t. v =

p∑
j=1

tanh(x⊤Mj), 329

0 ≤ xi ≤ 1, a ≤
m∑
i=1

xi ≤ b 330

Like in PC, this equation also maximizes the 331

number of positive elements in the aggregated vec- 332

tor v, computed by summing up multiple vectors 333
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transposed from multiple M. Mj denotes the ma-334

trix constructed by the jth explainer and p denotes335

the number of explainers. The current formulation336

can now be solved efficiently by modern quasi-337

Newton solvers that handle constraints with the338

augmented lagrangian algorithm like GENO (Laue339

et al., 2019).340

Picking the ith term will choose all ith row vec-341

tors simultaneously. Before summing them up,342

each vector element is already transformed to the343

same range by tanh activation. This accounts for344

the variable range problem. Figure 1 briefly shows345

the computing process during optimization.346

4.3 Choice of Explainers347

In choosing multiple explainers we ensure that each348

explainer is simple and human-understandable.349

A widely used explainer is the term-matching-350

based BM25 model (Singh and Anand, 2019, 2020;351

Verma and Ganguly, 2019). Another critical as-352

pect in retrieval is term positions in the document.353

Specifically, in news articles the title and the intro-354

ductory paragraphs are regarded to be more rele-355

vant. Finally, semantic similarity is known to be356

crucial to address the vocabulary mismatch prob-357

lem. This is particularly true in neural network358

models with embedding vectors as input. In sum-359

mary, we name the combined explainer as Ψmulti360

which employs the following three explainers while361

adding more is also allowed:362

TERM MATCHING or Ψlm: the BM25 score of363

a term t in document d, sim = BM25(t, d).364

POSITION AWARE or Ψpa: a position-aware365

model (Fetahu et al., 2015) to measure the posi-366

tion importance of a term t in document d, sim =367
1
|d|
∑

p∈d tf(t, p)
1
p , where p denotes the pth para-368

graph in d, tf(t, p) denotes the term frequency of369

t in paragraph p.370

SEMANTIC SIMILARITY or Ψemb: a model371

to measure the semantic similarity between t372

and d. We use the pre-trained GloVe embed-373

ding (Pennington et al., 2014). Formally, sim =374
1
|d|
∑

w∈d cosine(t, w).375

5 Experimental Setup376

We choose two datasets: 1) Clueweb09 collec-377

tion (category B), for all ranking models, we use378

120/40/40 splits for train/dev/test and the explana-379

tion experiments are conducted on the test queries.380

2) Trec-DL 2019 passage ranking testset, from 381

which we randomly select 40 queries. The rank- 382

ing models are trained on the MsMarco passage 383

ranking dataset. 384

5.1 Ranking Models 385

We focus on neural network models, which are 386

inherently hard to interpret due to a large set of 387

parameters. All neural models are trained and eval- 388

uated on the top 100 retrieved documents or pas- 389

sages. In detail, we explain three ranking models: 390

DRMM (Guo et al., 2016) computes the term- 391

document similarity histograms beforehand and 392

then jointly learns a matching and a term gate layer 393

from the query and matching histograms. We take 394

the implementation from MatchZoo1. 395

BERT (Devlin et al., 2018) model has achieved 396

the SOTA performances in many language tasks, 397

including text ranking. We fine-tune the pretrained 398

bert-base-uncased model on our datasets. 399

DPR (Karpukhin et al., 2020) or two-tower bert 400

model encodes the query and document separately. 401

The relevance score is simply the cosine similar- 402

ity of the pooled representations. We use the pre- 403

trained models directly without fine-tuning. All 404

details about data splitting and model training can 405

be found in Appendix A. 406

5.2 Baseline and Competitors 407

We compare our approach named MULTIPLEX with 408

the following baseline methods: 409

QUERY-TERMS serves as the baseline by feeding 410

only the query terms to our explainers. By com- 411

paring this baseline, we argue that only the origi- 412

nal query is insufficient to discover the underlying 413

ranking logic. 414

DEEPLIFT (Shrikumar et al., 2017) is a popular 415

feature importance method. We compute the im- 416

portance of a word in a document as s(w, dπ(i)) = 417

DL(w, dπ(i)) · log (i+ 2). DL is the feature impor- 418

tance function. Then we take the average across all 419

documents to extract important terms as explana- 420

tion for a query. Note that we omit this baseline 421

for DRMM since its input is a histogram, thus the 422

importance cannot be attributed to the token level. 423

GREEDY-LM (Singh and Anand, 2020) uses a 424

language model explainer to approximate neural 425

1https://github.com/NTMC-Community/
MatchZoo
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Clueweb09 Trec-DL

Model Method Fidelity Fidelity† Fidelity‡ Fidelity Fidelity† Fidelity‡

QUERY-TERMS 0.81 0.88 0.76 0.81 0.82 0.63
BERT DEEPLIFT (Shrikumar et al., 2017) 0.77 0.81 0.67 0.70 0.75 0.62

GREEDY-LM (Singh and Anand, 2020) 0.63 0.77 0.69 0.59 0.69 0.84
MULTIPLEX 0.88 0.97 0.93 0.86 0.93 0.97

QUERY-TERMS 0.81 0.86 0.71 0.82 0.84 0.64
DPR DEEPLIFT (Shrikumar et al., 2017) 0.68 0.71 0.57 0.60 0.63 0.58

GREEDY-LM (Singh and Anand, 2020) 0.61 0.68 0.88 0.63 0.70 0.75
MULTIPLEX 0.87 0.93 0.87 0.87 0.92 0.96

QUERY-TERMS 0.82 0.85 0.72 0.80 0.81 0.59
DRMM DEEPLIFT (Shrikumar et al., 2017) - - - - - -

GREEDY-LM (Singh and Anand, 2020) 0.57 0.60 0.72 0.53 0.54 0.34
MULTIPLEX 0.88 0.92 0.84 0.85 0.88 0.95

Table 2: Fidelity values of all models on both Clueweb09 and Trec-DL datasets. Fidelity† refers to fidelity where
preference pairs have at least a rank difference ≥ g. Fidelity‡ only considers the preference pairs in the sampled set
(500 pairs in our experiments ). The best results are in bold.

rankers. It optimizes the preference coverage greed-426

ily. Our approach shares a similar pipeline of gen-427

erating candidate terms and preference matrix. By428

comparing this baseline, we show the improve-429

ments of combining multiple explainers and ap-430

proximated linear programming optimization.431

5.3 Metrics432

Similar to Rennings et al. (2019), we measure fi-433

delity by computing the fraction of the satisfied434

preference pairs when the explanation terms are435

used in addition to the query terms by the explain-436

ers. In other words, the fidelity measures the cover-437

age over the feasible preference pairs.438

We consider three variants of fidelity – Fidelity,439

Fidelity† and Fidelity‡ – depending on what pairs440

we consider feasible. Fidelity considers the cover-441

age over all
(
k
2

)
pairs induced by a k-length rank-442

ing. For Fidelity†, we disregard pairs with a rel-443

evance score difference < g, to adjust for rank444

variations due to small noise. Finally Fidelity‡ con-445

siders the coverage over the sampled pairs from the446

matrix construction. Note that we do not consider447

all pairs from ranking in constructing preference448

matrix due to the quadratic time complexity. In449

experiments, we fix 200 candidate terms and sam-450

ple 500 preference pairs for preference matrix. Fi-451

delity‡ is computed on exactly the same 500 pairs452

for all methods for fair comparison. Since we apply453

multiple explainers we adopt disjunctive semantics454

to preference satisfaction for all methods except455

GREEDY-LM, i.e., a preference pair is explained456

if any of the explainers explains it. We also fix a457

maximum of 10 explanation terms for all methods458

except QUERY-TERMS. 459

6 Evaluation Results 460

To show the effectiveness of our approach, we first 461

present the quality of our approach in terms of fi- 462

delity on all datasets and models compared to other 463

competitors. Then we show the improvements of 464

adding multiple explainers by an ablation study. 465

Finally, we discuss how our explanations can be 466

used to explain specific preference pairs. 467

6.1 Effectiveness of Explanations 468

We present the overall fidelity scores of all meth- 469

ods in Table 2. We observe that MULTIPLEX con- 470

sistently outperforms all other baselines over all 471

models and datasets. The GREEDY-LM relies on 472

text matching and cannot extract terms that en- 473

code semantic similarity, on which the BERT and 474

DPR models heavily rely. This is further justi- 475

fied by the performance of QUERY-TERMS that has 476

access to multiple explainers. It already reaches 477

81% with only the query terms as an explanation. 478

Interestingly, a feature-attribution-based baseline 479

DEEPLIFT cannot compete with simple QUERY- 480

TERMS. This is mainly because its heuristic ag- 481

gregation policy results in noisy terms. Therefore, 482

we conclude that focusing on a single document 483

followed by heuristic aggregations is detrimental 484

in explaining ranking models, further advocating a 485

more principled modeling technique like GPC. 486

We also notice unsurprisingly that Fidelity† al- 487

ways has higher scores than Fidelity since it’s eas- 488

ier to differentiate a pair of prominently different 489

documents. Especially in Clueweb09, there are 490

6



BERT DPR

ClueWeb

Fi
de

lit
y

M
at

ch
in

g

Po
si

tio
n 

Aw
ar

e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

M
at

ch
in

g

Po
si

tio
n 

Aw
ar

e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

DRMM

M
at

ch
in

g

Po
si

tio
n 

Aw
ar

e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

BERT DPR

TrecDL

M
at

ch
in

g

Po
si

tio
n 

Aw
ar

e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

M
at

ch
in

g

Po
si

tio
n 

Aw
ar

e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

DRMM

M
at

ch
in

g
Po

si
tio

n 
Aw

ar
e

Se
m

an
tic

 S
im

ila
rit

y

M
ul

tip
le

 E
xp

la
in

er
s

Figure 2: How well can each explainer approximate Φ?
fidelity† of each single and combined explainer.

many duplicates for which the models generate491

very close relevance scores, indicating the lower492

Fidelity might be due to noise. From now on we493

present Fidelity† to avoid such noise. Finally, we494

observe that the explainers on Clueweb09 disagree495

with each other more often than those on Trec-DL.496

We attribute this to the fact that documents from497

Clueweb09 are much lengthier and structurally498

more complex than passages from Trec-DL.499

6.2 The Benefits of Combining Explainers500

We also experimented with every single Ψ to ex-501

tract explanation terms and evaluate the fidelity502

with each Ψ respectively, to show the benefits of503

multiple explainers. Figure 2 presents the Fidelity†504

for all models and datasets. We first note that505

our adapted objective improved the fidelity even506

when a single explainer was used. Especially when507

comparing the TERM MATCHING explainer to the508

greedy baseline across all models and datasets.509

This proves the effectiveness of our optimization510

strategy over the greedy algorithm. Besides, Ψemb511

in general generated very similar terms as the com-512

bined Ψmulti. This suggests that all models pick513

up the semantic feature over the statistic features.514

However, there are also occasions when the other515

two explainers are superior. This is because we use516

the pre-trained GloVe embeddings as term represen-517

tation and the case of OOV terms cannot influence518

Ψemb. We show some anecdotal examples explain-519

ing the BERT model in Table 3 to compare the520

explanation terms selected by each explainer.521

6.3 Explaining Document Preferences522

Using MULTIPLEX we can also explain a single523

preference pair, i.e., why does a model prefer di524

over dj? We exemplify the explanation terms of525

query keyboard reviews in Figure 3 for all526

three explainers. Starting from constructing pref-527

erence scores for each candidate term as described528

in Section 4.1, and then we present the important529

terms with significant scores. It suggests the BERT530

model generally prefers musical keyboards, the 531

DPR model has a much stronger preference for 532

the computer keyboards. 533

6.4 Rank promotion 534

We devise an experiment to see if the explanation 535

terms produced by our approach contains any pre- 536

dictive power. This is different from the earlier 537

experiments that measure the fidelity metric that 538

we in some sense implicitly optimize. In this ex- 539

periment, we simply add the explanation terms to a 540

potentially non-relevant document (the lowest-rank 541

document in our case) and measure the rank im- 542

provement as an degree of explanation importance. 543

Figure 4 shows the average rank improvements on 544

addition of the explanation terms using the BERT 545

ranker on the Clueweb09 dataset. 546

We observe that MULTIPLEX results in the max- 547

imum rank increase when explanation terms are 548

added to potentially non-relevant documents. On 549

closer examination we observe that for longer 550

queries like universal animal cuts reviews, adding 551

only the query terms can sometimes increase their 552

ranks by over 90 positions. This suggests that 553

BERT rankers heavily rely on exact match for 554

longer queries. However, this is not the case for 555

shorter and ambiguous queries where other base- 556

lines show low explanation fidelity and lower rank 557

improvement. On the other hand, MULTIPLEX is 558

able to account for short and ambiguous queries 559

like voyager and titan in addition to longer queries. 560

6.5 The curious case of the term “Wikipedia” 561

One of the primary use cases of explanation meth- 562

ods to find potential problems due to training where 563

the model learns patterns that might be right for 564

the wrong reasons. Towards this, we performed an 565

analysis on the commonly recurring terms in the 566

explanations of the models under investigation. In- 567

terestingly, we found the term “wikipedia” appear 568

in many explanations for the DPR model even for 569

unrelated queries. If there are Wikipedia pages (par- 570

tially) related to a query, the DPR usually chooses 571

them over other types of web pages. We can only 572

hypothesize that the presence of a low IDF term 573

like Wikipedia suggests an artifact of pre-training 574

over a large number of Wikipedia articles. Ad- 575

ditionally, to understand how much the Wikipedia 576

keyword contributes to the relevance, we conducted 577

a rank-promotion experiment (as in the previous 578

section) by adding the term “Wikipedia” to the 579

lowest-ranked document for all queries. Unsurpris- 580
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(a) BERT: All explainers identify music-related terms as pos. (b) DPR: All explainers identify music-related terms as neg.

Figure 3: Comparing explainers for the query: keyboard reviews, document pair: clueweb09-en0008-49-09140
(musical keyboard) vs clueweb09-en0010-56-37788 (technical keyboard). BERT prefers the former whereas DPR
prefers the latter, resulting in opposite intents.

Query Explainer Explanation Fidelity†

adobe indian houses TEXT MATCHING pdf, adobe, style, house, first, also 0.85
POSITION AWARE pdf, adobe, style, texas, wikipedia, 2009 0.81

SEMANTIC SIMILARITY pueblo, amarillo, castroville, outhouse, abourezk, alcove, 0.95
MULTIPLE EXPLAINERS pueblo, amarillo, castroville, outhouse, abourezk, pdf 0.91

espn sports TEXT MATCHING espn, abc, network, company, award, entertainment, 0.86
POSITION AWARE espn, sportscenter, abc, company, news, espn.com 0.99

SEMANTIC SIMILARITY espn, sportscenter, abc, walt, disney, entertainment, 0.93
MULTIPLE EXPLAINERS espn, sportscenter, abc, walt, disney, news, espn.com 0.99

hp mini 2140 TEXT MATCHING hp, mini, 2140, 2133 0.94
POSITION AWARE hp, mini, 2140, 2133 0.90

SEMANTIC SIMILARITY hp, touchpad, overview, hdd, 0.71
MULTIPLE EXPLAINERS hp, mini, 2140, 2133, touchpad, overview 0.91

Table 3: Anecdotal examples show each explainer selects terms from different aspects. MULTIPLE EXPLAINERS
combines the advantages of all explainers. For ambiguous queries like “adobe Indian houses", TEXT MATCHING
and POSITION AWARE focus on popular but ’shallow’ terms indicating “adobe company“. For certain queries like
“hp mini 2140", the SEMANTIC SIMILARITY suffers from vocabulary limitation. Position Aware can capture the
non-frequent yet important terms based on their position, e.g., the official site for the query “ESPN sports".

Figure 4: Average rank improvements. Left: on all
test queries; Right: on hand-picked ambiguous queries.
Note that for each query the document size ≤ 100.

ingly, we observe an average rank improvement of581

2, ranging from 0 to 14. On the other hand, when582

masking “Wikipedia” in the top-ranked document,583

we observe an average rank drop of 10 positions.584

We believe that there is a lot of potential for the585

use of term-based explanation for exposing similar586

data and model biases for text ranking models.587

7 Conclusion and Outlook 588

This paper proposes a post-hoc model-agnostic 589

framework to explain text ranking models using 590

multiple explainers. MULTIPLEX systematically 591

combines multiple explainers to capture different 592

feature aspects encoded in the ranking decisions. 593

Our solution relies on effectively solving the non- 594

convex generalized preference coverage problem 595

with sparsity constraints. Our extensive experi- 596

ments show that our method can generate high- 597

fidelity explanations for over-parameterized mod- 598

els like BERT, delivering up to 50% fidelity im- 599

provements. We also show anecdotally that the ex- 600

planations generated by MULTIPLEX help us better 601

understand the underlying model preferences and 602

detect potential biases. For future work, we want to 603

extend our framework to account for n-grams and 604

to make our explanation generation procedure effi- 605

cient enough to be used during query processing. 606
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A Appendix714

Ethical Concerns. Our task is to understand over-715

parameterized ranking models. This is crucial to716

the real-world practices, because the complexities717

of both model and datasets make it extremely chal-718

lenging to identify potential bugs or biases. Our719

work does not cause any harm to real-world users.720

Instead, it can help understand the important terms721

out of big texts set that affect the model’s decisions,722

thus in the long-term discovering potential biases723

from the model or datasets.724

Ranking Model Details. Unlike Bert and DPR725

model, we do not truncate documents to meet726

the 512 token size limit for DRMM model. We727

fine-tune bert-base-uncased by stacking a728

feed-forward layer on the pooled representation729

of query and document. For DPR model, we use the730

dpr-question_encoder-multiset-base731

and dpr-ctx_encoder-multiset-base732

to encode the query and document respectively.733

The relevance score is computed by the cosine734

similarity of the pooled representations. All735

three models are trained in pair-wise with five736

negative samples for each positive instance.737

Adam optimizer with 3e-5 learning rate and 1000738

warm-up steps are applied.739

Matrix Building Details. We pre-select 1000 can-740

didate terms by their tf-idf scores. Then for each741

candidate, we mask all it’s appearances in the docu-742

ment and compute the prediction difference by the743

ranking model. The term results in higher predic-744

tion difference is regarded to be more important to745

the query-document relevance. By doing this, we746

finally maintain 200 terms out of the 1000 candi-747

dates. We also experimented with [100, 300, 500]748

terms and without masking, all resulting to lower or749

similar fidelity. For preference pairs, we randomly750

choose 500 pairs (the random seed is 100.) with751

≥ g score difference. For Bert model, we set g to752

[2.0, 4.0] on Clueweb09 and Trec-DL respectively.753

For DRMM and DPR, we choose [0.01, 0.01] and754

[0.05, 0.05]. With this setup, we ensure the sam-755

pled preference pairs have prominent differences.756

Consequently, increasing the size of the pairs does757

not deliver higher fidelity.758

Computation Costs. Our experiments are con-759

ducted on a GTX 1080Ti GPU with 128G memory.760

We do not consider the training costs for ranking761

models. The expenses of our method come from762
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Figure 5: Model correlation: Jaccard similarity of ex-
planation terms and ranking correlation between each 2
models.

matrix construction and matrix optimization. On 763

Clueweb09, the former procedure takes on average 764

around 30 minutes, and the latter takes around 30 765

seconds. 766

Explanation Differences across Models. We also 767

compare the explanation terms for each single 768

query across ranking models. Figure 5 summarizes 769

the Jaccard similarity of explanation terms, along 770

with the ranking correlation measured by Fidelity, 771

between each two models. It shows Bert and DPR 772

generate more relevant rankings, resulting in higher 773

overlaps between explanation terms compared to 774

DRMM model. Table 4 and Table 5 present more 775

explanation examples of DRMM and DPR. 776

Query Explanation Terms

adobe indian
houses

indian, manure, lobby, frenzy,
coyote, strain

espn sports directv, fantasy, nba, brad, golf,
berman, walt

hp mini 2140 amazon, handwriting, mini, 2140,
qvga, 3.5mm

bobcat growl, chalkboard, jona, mover,
oddity, handy, bobcat

Table 4: Explanation Terms of DRMM by MULTIPLEX.

Query Explanation Terms

adobe indian
houses

oregon, adirondack, style, pueblo,
palace, battle

espn sports espn.com, disney, walt, directv,
wikipedia, network, sports

hp mini 2140 nokia, hp, 2140, aircraft, 2133,
coating

bobcat desert, carnivorous, lynx, baffling,
prickly, hooded, manatee

Table 5: Explanation Terms of DPR by MULTIPLEX.
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