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Abstract

Current approaches to interpreting complex
ranking models are based on local approxi-
mations of the ranking model using a simple
ranker in the locality of the query. Since rank-
ings have multiple relevance factors and are ag-
gregations of predictions, existing approaches
that use a single ranker might not be sufficient
to approximate a complex model resulting in
low local fidelity. In this paper, we overcome
this problem by considering multiple simple
rankers for better approximating the black box
ranking model. We pose the problem of local
approximation as a GENERALIZED PREFER-
ENCE COVERAGE (GPC) problem that incorpo-
rates multiple simple rankers towards the post-
hoc interpretability of ranking models. Our
approach MULTIPLEX uses a linear program-
ming approach to judiciously extract the ex-
planation terms. We conduct extensive experi-
ments on a variety of ranking models and report
fidelity improvements of 37% — 54% over ex-
isting baselines and competitors. We finally
qualitatively compare modern neural ranking
models in terms of their explanations to bet-
ter understand the differences between them,
showcasing our explainers’ practical utility.

1 Introduction

Ad-hoc document ranking is a central task in Web
search and information retrieval, where the objec-
tive is to rank text documents or passages rele-
vant to a user-specified keyword query. Recent ap-
proaches for ranking text documents have focused
heavily on neural models (McDonald et al., 2018;
Karpukhin et al., 2020; Nogueira and Cho, 2019).
Neural rankers manage to learn the complex and
often non-linear relationships between the query
and document terms that are difficult to encode us-
ing closed-form analytical ranking functions like
BM2S5 or query likelihood models. However, the
superior ranking performance of such text rankers
comes at the expense of reduced interpretability,

increasing the risk for models encoding undesir-
able correlations and biases. In parallel to devel-
oping better ranking models, there has been an
increased focus on interpretability approaches for
neural ranking models (Singh and Anand, 2019,
2018; Fernando et al., 2019) that specifically aim
at explaining the rationale behind the ranking deci-
sions.

This paper aims to propose post-hoc inter-
pretability algorithms for neural rankers — that is,
we intend to explain an already-trained text rank-
ing model. Since post-hoc methods do not com-
promise the accuracy of the learned model, they
have become popular in the emerging landscape
of interpretable machine learning. The key idea in
post-hoc interpretability is to locally approximate
a trained model with a simple and interpretable
proxy model where the degree of approximation
is called fidelity. In this framework, the objective
is to maximize the fidelity, where the choice of
the proxy model and the notion of fidelity is typ-
ically domain-dependent. Adapting this general
framework of post-hoc interpretability to ranking
models has two specific challenges — how do we
aggregate multiple decisions inherent in a single
ranking? and how do we explain ranking decisions
regarding different relevance factors?

Rankings as aggregations. Ranking models out-
put a ranked list of documents for a given query.
Unlike other learning tasks like regression and
classification that deal with a single decision, the
ranking task can be viewed as an aggregation of
decisions — pairwise document preferences com-
bined using approaches such as (Ailon et al., 2008).
Any interpretability approach or explainer should
therefore explain the reasoning behind multiple-
preference pair predictions. For example, for the
top-ranked document d;, the explainer should ex-
plain why d; is more relevant than other docu-
ments in the ranked list where each preference pair
d; = d; is a decision to be explained. Therefore



Explainers Explanation Terms

TERM MATCHING
POSITION AWARE
SEMANTIC SIMILARITY

charlotte, north, sales, 2008
basketball, north, states, learn
felidae, carnivorous, boko
extinction, deserts, iucn
felidae, carnivorous, boko
extinction, deserts, gvwr, north

MULTIPLEX
(Multiple Explainers)

Table 1: Explaining the query bobcat with multiple as-
pects — (i) “charlotte-bobcat basketball club”; (ii) “learn
to hunt bobcat™; (iii) “animal bobcat” and (iv) (‘bobcat
mechanical retailer’”. MULTIPLEX carefully chooses
from multiple aspects to explain a ranking. See Table 3
for more examples.

the first challenge of explaining rankings is that
existing explanation methods like (Shrikumar et al.,
2017; Choi et al., 2020; Sundararajan et al., 2017;
Simonyan et al., 2013) that explain a single deci-
sion cannot be seamlessly used for rankings.

Different explanations for different decisions.
Secondly, it is well-known that when ranking text,
multiple factors determine the relevance of a doc-
ument to a query, e.g., lexical matching, semantic
similarity, query term position in the document, etc.
Unlike traditional models that used to model each
of these relevance factors, neural rankers automati-
cally learn these from data. The next challenge in
explaining rankings is ascertaining the relevance
factor that best explains a given decision. Infor-
mally, there might not exist a single factor that
explains or satisfies all or most of the preferences
d; >~ Clj.

Previous approaches for ranking explanations in
the literature fail to address at least one of these
limitations. Gradient-based approaches either use
simple heuristic aggregation approaches or alto-
gether avoid aggregations. Approaches like Singh
and Anand (2020) that consider aggregations try
to explain multiple preferences using a single sim-
ple explainer that captures only one aspect of rele-
vance, i.e., term matching. Both these limitations
in existing systems have resulted in low-fidelity
explanations.

In this paper, we propose a more principled ap-
proach MULTIPLEX, by considering multiple sim-
ple rankers, or explainers, that rely on different
notions of relevance and are interpretable by them-
selves. The output of MULTIPLEX is a set of ex-
planation terms. Table 1 shows an example of ex-
planation terms extracted by different explainers
(formally defined in Section 4.3), and our MULTI-

PLEX is shown to be able to combine terms from
multiple explainers, implicitly covering multiple
topics for an ambiguous query.

Specifically, we define the GENERALIZED PREF-
ERENCE COVERAGE (GPC) using multiple explain-
ers that intend to maximize our explanation’s ap-
proximation ability. Unlike previous approaches
that rely on greedy heuristic to maximize fidelity,
MULTIPLEX is based on convex optimization us-
ing the augmented lagrangian algorithm to solve
the GPC problem. In coming up with the explana-
tion, we hypothesize that an expanded query (the
original query along with the explanation terms)
combined with a simple and interpretable explainer
is an accurate interpretation of the underlying rank-
ing model if it produces a similar ranking.

Experimental Evaluation. We conduct extensive
experiments using datasets from the TREC test col-
lections — Trec-DL and Clueweb09 with 3 neural
rankers to evaluate MULTIPLEX. We report fidelity
improvements of 37% — 54% over existing com-
petitors. We also present anecdotal case studies
that showcase the practical utility of MULTIPLEX
in understanding neural rankers.

2 Related Work

Interpretability, in general, of complex learning
models is a well researched area (Guidotti et al.,
2018). We are interested however in the inter-
pretability of models for text tasks and specifically
text ranking . In the following we try to contextual-
ize our contribution in terms of (i) general method-
ology of post-hoc interpretability (in Section 2.1),
and (ii) specific approaches to interpretability for
ranking models (in Section 2.2).

2.1 Post-hoc interpretability

Post-hoc methods for interpretability approaches
operate on already trained models. Such methods
can be categorized into two broad classes: model
introspective and model agnostic. Model introspec-
tion refers to approaches that access all the model
parameters like gradient-based methods (Shriku-
mar et al., 2017; Choi et al., 2020; Sundararajan
et al., 2017; Simonyan et al., 2013). We operate
in the model agnostic regime where we do not as-
sume any access to the ranking model’s parameters.
Example of such an approach is LIME (Ribeiro
et al., 2016) that uses a simple interpretable sur-
rogate model to locally approximate an already
trained black-box model. For other notions of inter-



pretability and a more comprehensive description
of the approaches, we point the readers to Guidotti
et al. (2018).

2.2 Interpreting Ranking Models

In information retrieval (IR) there has been lim-
ited work on interpreting rankings. The earliest for
explaining rankings was in the context of learning-
to-rank (LTR) where Singh and Anand (2018) tried
to approximate an already trained LTR model by
a subset of (the original) interpretable features us-
ing secondary training data from the output of the
original model. Singh et al. (2021) also operate on
LTR to find a minimal set of relevant features that
faithfully explain the ranking. This paper doesn’t
deal with LTR task but instead focuses on ranking
text data.

Gradient-based approaches like Fernando et al.
(2019); Choi et al. (2020) have been applied to
neural rankers for interpreting the relevance score
of a single query document pair. These works do
not consider aggregations of decisions for a given
query, i.e., preference pairs of documents. We use
a gradient-based approach as a competitor in our
experiments, showing that aggregation is crucial to
explaining ranking models. Rennings et al. (2019);
Camara and Hauff (2020); Volske et al. (2021) ex-
plain adhoc ranking models in terms of IR axioms.
They argue that neural rankers do not follow IR
axioms such as term frequency and semantic simi-
larity. This is also in line with our results based on
query terms and a single explainer. With additional
explanation terms, we show higher agreements be-
tween neural rankers and axioms. Like us, Volske
et al. (2021) also focus on optimizing coverage of
preference pairs but unlike us using learning ap-
proaches. However, they also report lower fidelity
values showing the difficulty of the task at hand.

More related to our setup, Verma and Ganguly
(2019) modifies LIME to output intent terms by
measuring the distance of the explanation terms to
the human-created intent description terms. How-
ever, their approach does not consider preference
pairs induced by rankings. Singh and Anand
(2019) propose simplistic aggregations over sam-
pled terms from top-k results, an improved adapt-
able LIME for rankers. The most related to our
work is from Singh and Anand (2020), which pro-
poses a heuristic greedy approach to maximize the
coverage of preference pairs.

Unlike above methods (Verma and Ganguly,

2019; Singh and Anand, 2019, 2020), we use mul-
tiple explainers and a more principled aggregation
approach to maximize fidelity. We also use Singh
and Anand (2020) as a baseline to measure the
merits of our aggregation techniques with multiple
explainers.

3 Background and Preliminaries

We start with the notion of a ranker ® that takes as
input a keyword query Q to output an ordering 7
over a set of documents 7 = (dy > dg = ... > dy)
based on the relevance of the documents to the
query, i.e., ®(Q) — w. We aim to interpret the
ranking function ® in a model-agnostic manner.
Note that the output of a ranking function can be
viewed as a set of preferences over the documents,
or wlo.g m = {(d; > d;)}. Therefore explaining
a ranking 7 is akin to explaining all or most of
the preference pair decisions in 7. An example
of a single decision is whether the preference pair
(d; = d;) is true/false.

3.1 Explanations and Fidelity

The output of an interpretability procedure is
an explanation, which should be simple, human-
understandable, and faithful to the behavior of
®. A natural explanation for keyword-query based
ranking tasks are a set of terms (words or phrases).
Simplicity is ensured by enforcing only a small
set of output terms. We adapt the query expansion
concept in our setting. Namely, if adding a set
of explanation terms [E to the original query, i.e.,
Q U E, the explainer should result in high agree-
ment with the original ranking preferences. The
degree of such agreement is used to evaluate the
goodness or fidelity of the explanation.

3.2 Problem Statement

Formally, given a query Q, a complex ranking
model ® and a set of simple ranking models which
we call explainers {U}, we aim to select a small
set of terms E € V (where V is the vocabulary), to
explain most of preference pairs (d; > d;) from
the original ranking 7.

4 Generalized Preference Coverage

As mentioned earlier, a ranking can be considered
a set of preference pairs. Therefore, choosing ex-
planation terms to maximize the fidelity can be for-
mulated as a coverage problem of the preference
pairs. We briefly describe the preference coverage
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Figure 1: Approach overview of MULTIPLEX using multiple explainers.

(PC) framework as introduced in Singh and Anand
(2020), using a single explainer as a precursor to
introducing the generalized PC problem.

4.1 The Preference Coverage Framework

Singh and Anand (2020) introduced the PC frame-
work where explaining a ranking is equivalent to
maintaining most of the preferences derived from
the ranking using a single explainer W. First, a
set of n candidate terms X'(X C V,|X|= n) and
m preference pairs are sampled (please refer to
the original paper for more details) from the orig-
inal ranking 7 towards creating a preference ma-
trix M € R™"*™. Each cell in M represents the
utility of the term ¢ in explaining the preference
dr@i) » dx(;), by computing a preference score
fl; = W(t,drii))—W(t, drj)). A positive f score
means with ¢, the ¥ can explain or cover this pair,
otherwise not. Each ¢ can now be viewed as an
m-dimensional vector f or |f|= m, where each el-
ement represents how well it explains a certain pair.
The PC framework using a single ¥ aims to choose
a subset of rows E C X (equivalent to selecting
terms) from M so as to maximize the number of
non-zero values in the aggregated vector. Since
choosing or not choosing the row/term is a boolean
decision, we can formulate the PC objective as an
Integer Linear Program (ILP):

m

mazximize Z(sign(xTM)>
i=1

st. x =[z1, -, xn]; x; €{0,1}

(PC)

7

x is a selection vector with boolean values where
x; = 1 indicates selecting term A, and x; = 0
otherwise. Namely, E = {i|z; == 1}. This equa-
tion however is NP-hard and not solvable by the
prevalent convex programming solvers supported
by CVXPY (Diamond and Boyd, 2016), due to the
non-convex sign function.

In the next we present an improved formulation
of the PC problem followed by a generalization to
accommodate multiple explainers called the GEN-
ERALIZED PREFERENCE COVERAGE problem.

4.2 Optimizing PC for Multiple Explainers

Compared to PC, our proposal should be (i) practi-
cally solvable, (ii) ensuring sparse output x so that
the explanation is more human-understandable, and
(iii) flexible to combine multiple explainers or M.

Correspondingly, the first change we introduce
is using tanh to approximate the non-convex sign
operator. Secondly, we add a ¢; -regularization ||x||
to enforce sparsity constraints on the number of
terms to be selected. A straightforward way to
combine all explainers is to sum up their scores,
ie., Youu(t,d) = > ¥(t,d). However, differ-
ent explainers can have different output range and
exhibit high variance. For instance, the term match-
ing score usually lies in [0, 1], whereas the position
aware score typically operates in a much larger
range. Taking normalization of such scores into the
optimization procedure is crucial to flexibly adding
multiple explainers.

We therefore formulate the GENERALIZED
PREFERENCE COVERAGE problem that intends
to optimize multiple matrices simultaneously as:

m

— > (tanh(v)), + |x|

=1

minimaize (GPC)

P
s.t. v = Ztanh(xTMj),
j=1

m
0<x <1, aSZmi<b
=1

Like in PC, this equation also maximizes the
number of positive elements in the aggregated vec-
tor v, computed by summing up multiple vectors



transposed from multiple M. M; denotes the ma-
trix constructed by the j** explainer and p denotes
the number of explainers. The current formulation
can now be solved efficiently by modern quasi-
Newton solvers that handle constraints with the
augmented lagrangian algorithm like GENO (Laue
etal., 2019).

Picking the i*" term will choose all i*" row vec-
tors simultaneously. Before summing them up,
each vector element is already transformed to the
same range by tanh activation. This accounts for
the variable range problem. Figure 1 briefly shows
the computing process during optimization.

4.3 Choice of Explainers

In choosing multiple explainers we ensure that each
explainer is simple and human-understandable.
A widely used explainer is the term-matching-
based BM25 model (Singh and Anand, 2019, 2020;
Verma and Ganguly, 2019). Another critical as-
pect in retrieval is term positions in the document.
Specifically, in news articles the title and the intro-
ductory paragraphs are regarded to be more rele-
vant. Finally, semantic similarity is known to be
crucial to address the vocabulary mismatch prob-
lem. This is particularly true in neural network
models with embedding vectors as input. In sum-
mary, we name the combined explainer as ¥ ,,,1;;
which employs the following three explainers while
adding more is also allowed:

TERM MATCHING or Vy,,: the BM25 score of
a term ¢ in document d, sim = BM25(t, d).

POSITION AWARE or V,,: a position-aware
model (Fetahu et al., 2015) to measure the posi-
tion importance of a term ¢ in document d, sim =

1
ﬁ zped tf(t,p)», where p denotes the py, para-
graph in d, t£(¢, p) denotes the term frequency of
t in paragraph p.

SEMANTIC SIMILARITY or V¥,,;: a model
to measure the semantic similarity between t
and d. We use the pre-trained GloVe embed-
ding (Pennington et al., 2014). Formally, sim =

ﬁ > weq cosine(t, w).
S Experimental Setup

We choose two datasets: 1) Clueweb09 collec-
tion (category B), for all ranking models, we use
120/40/40 splits for train/dev/test and the explana-
tion experiments are conducted on the test queries.

2) Trec-DL 2019 passage ranking testset, from
which we randomly select 40 queries. The rank-
ing models are trained on the MsMarco passage
ranking dataset.

5.1 Ranking Models

We focus on neural network models, which are
inherently hard to interpret due to a large set of
parameters. All neural models are trained and eval-
uated on the top 100 retrieved documents or pas-
sages. In detail, we explain three ranking models:

DRMM (Guo et al., 2016) computes the term-
document similarity histograms beforehand and
then jointly learns a matching and a term gate layer
from the query and matching histograms. We take
the implementation from MatchZoo'.

BERT (Devlin et al., 2018) model has achieved
the SOTA performances in many language tasks,
including text ranking. We fine-tune the pretrained
bert-base-uncased model on our datasets.

DPR (Karpukhin et al., 2020) or two-tower bert
model encodes the query and document separately.
The relevance score is simply the cosine similar-
ity of the pooled representations. We use the pre-
trained models directly without fine-tuning. All
details about data splitting and model training can
be found in Appendix A.

5.2 Baseline and Competitors

We compare our approach named MULTIPLEX with
the following baseline methods:

QUERY-TERMS serves as the baseline by feeding
only the query terms to our explainers. By com-
paring this baseline, we argue that only the origi-
nal query is insufficient to discover the underlying
ranking logic.

DEEPLIFT (Shrikumar et al., 2017) is a popular
feature importance method. We compute the im-
portance of a word in a document as s(w, dr(;)) =
DL(w, dr(;)) - log (i + 2). DL is the feature impor-
tance function. Then we take the average across all
documents to extract important terms as explana-
tion for a query. Note that we omit this baseline
for DRMM since its input is a histogram, thus the
importance cannot be attributed to the token level.

GREEDY-LM (Singh and Anand, 2020) uses a
language model explainer to approximate neural

"https://github.com/NTMC-Community/
MatchZoo
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Clueweb(09 Trec-DL

Model Method Fidelity ~ Fidelity'  Fidelity* | Fidelity — Fidelity!  Fidelity*
QUERY-TERMS 0.81 0.88 0.76 0.81 0.82 0.63
BERT DEEPLIFT (Shrikumar et al., 2017) 0.77 0.81 0.67 0.70 0.75 0.62
GREEDY-LM (Singh and Anand, 2020) 0.63 0.77 0.69 0.59 0.69 0.84
MULTIPLEX 0.88 0.97 0.93 0.86 0.93 0.97
QUERY-TERMS 0.81 0.86 0.71 0.82 0.84 0.64
DPR DEEPLIFT (Shrikumar et al., 2017) 0.68 0.71 0.57 0.60 0.63 0.58
GREEDY-LM (Singh and Anand, 2020) 0.61 0.68 0.88 0.63 0.70 0.75
MULTIPLEX 0.87 0.93 0.87 0.87 0.92 0.96
QUERY-TERMS 0.82 0.85 0.72 0.80 0.81 0.59

DRMM DEEPLIFT (Shrikumar et al., 2017) - - - - - -

GREEDY-LM (Singh and Anand, 2020) 0.57 0.60 0.72 0.53 0.54 0.34
MULTIPLEX 0.88 0.92 0.84 0.85 0.88 0.95

Table 2: Fidelity values of all models on both Clueweb09 and Trec-DL datasets. Fidelity' refers to fidelity where
preference pairs have at least a rank difference > g. Fidelity* only considers the preference pairs in the sampled set
(500 pairs in our experiments ). The best results are in bold.

rankers. It optimizes the preference coverage greed-
ily. Our approach shares a similar pipeline of gen-
erating candidate terms and preference matrix. By
comparing this baseline, we show the improve-
ments of combining multiple explainers and ap-
proximated linear programming optimization.

5.3 Metrics

Similar to Rennings et al. (2019), we measure fi-
delity by computing the fraction of the satisfied
preference pairs when the explanation terms are
used in addition to the query terms by the explain-
ers. In other words, the fidelity measures the cover-
age over the feasible preference pairs.

We consider three variants of fidelity — Fidelity,
Fidelity' and Fidelity* — depending on what pairs
we consider feasible. Fidelity considers the cover-
age over all (¥) pairs induced by a k-length rank-
ing. For Fidelity', we disregard pairs with a rel-
evance score difference < g, to adjust for rank
variations due to small noise. Finally Fidelity* con-
siders the coverage over the sampled pairs from the
matrix construction. Note that we do not consider
all pairs from ranking in constructing preference
matrix due to the quadratic time complexity. In
experiments, we fix 200 candidate terms and sam-
ple 500 preference pairs for preference matrix. Fi-
delity* is computed on exactly the same 500 pairs
for all methods for fair comparison. Since we apply
multiple explainers we adopt disjunctive semantics
to preference satisfaction for all methods except
GREEDY-LM, i.e., a preference pair is explained
if any of the explainers explains it. We also fix a
maximum of 10 explanation terms for all methods

except QUERY-TERMS.

6 Evaluation Results

To show the effectiveness of our approach, we first
present the quality of our approach in terms of fi-
delity on all datasets and models compared to other
competitors. Then we show the improvements of
adding multiple explainers by an ablation study.
Finally, we discuss how our explanations can be
used to explain specific preference pairs.

6.1 Effectiveness of Explanations

We present the overall fidelity scores of all meth-
ods in Table 2. We observe that MULTIPLEX con-
sistently outperforms all other baselines over all
models and datasets. The GREEDY-LM relies on
text matching and cannot extract terms that en-
code semantic similarity, on which the BERT and
DPR models heavily rely. This is further justi-
fied by the performance of QUERY-TERMS that has
access to multiple explainers. It already reaches
81% with only the query terms as an explanation.
Interestingly, a feature-attribution-based baseline
DEEPLIFT cannot compete with simple QUERY-
TERMS. This is mainly because its heuristic ag-
gregation policy results in noisy terms. Therefore,
we conclude that focusing on a single document
followed by heuristic aggregations is detrimental
in explaining ranking models, further advocating a
more principled modeling technique like GPC.
We also notice unsurprisingly that Fidelity' al-
ways has higher scores than Fidelity since it’s eas-
ier to differentiate a pair of prominently different
documents. Especially in Clueweb09, there are



0.770.77

Fidelity

Semantic Similarity
Multiple Explainers

e
g
z
c
S
2
&

Position Aware
Position Aware
IiEIIIIIIHIII

o ¢
Semantic Similarity

BERT

ClueWeb TrecDL

Figure 2: How well can each explainer approximate $?
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many duplicates for which the models generate
very close relevance scores, indicating the lower
Fidelity might be due to noise. From now on we
present Fidelity' to avoid such noise. Finally, we
observe that the explainers on Clueweb(9 disagree
with each other more often than those on Trec-DL.
We attribute this to the fact that documents from
Clueweb09 are much lengthier and structurally
more complex than passages from Trec-DL.

6.2 The Benefits of Combining Explainers

We also experimented with every single ¥ to ex-
tract explanation terms and evaluate the fidelity
with each U respectively, to show the benefits of
multiple explainers. Figure 2 presents the Fidelity'
for all models and datasets. We first note that
our adapted objective improved the fidelity even
when a single explainer was used. Especially when
comparing the TERM MATCHING explainer to the
greedy baseline across all models and datasets.
This proves the effectiveness of our optimization
strategy over the greedy algorithm. Besides, W5
in general generated very similar terms as the com-
bined W ,,,;1;. This suggests that all models pick
up the semantic feature over the statistic features.
Howeyver, there are also occasions when the other
two explainers are superior. This is because we use
the pre-trained GloVe embeddings as term represen-
tation and the case of OOV terms cannot influence
Wb We show some anecdotal examples explain-
ing the BERT model in Table 3 to compare the
explanation terms selected by each explainer.

6.3 Explaining Document Preferences

Using MULTIPLEX we can also explain a single
preference pair, i.e., why does a model prefer d;
over d;? We exemplify the explanation terms of
query keyboard reviews in Figure 3 for all
three explainers. Starting from constructing pref-
erence scores for each candidate term as described
in Section 4.1, and then we present the important
terms with significant scores. It suggests the BERT

model generally prefers musical keyboards, the
DPR model has a much stronger preference for
the computer keyboards.

6.4 Rank promotion

We devise an experiment to see if the explanation
terms produced by our approach contains any pre-
dictive power. This is different from the earlier
experiments that measure the fidelity metric that
we in some sense implicitly optimize. In this ex-
periment, we simply add the explanation terms to a
potentially non-relevant document (the lowest-rank
document in our case) and measure the rank im-
provement as an degree of explanation importance.
Figure 4 shows the average rank improvements on
addition of the explanation terms using the BERT
ranker on the Clueweb(9 dataset.

We observe that MULTIPLEX results in the max-
imum rank increase when explanation terms are
added to potentially non-relevant documents. On
closer examination we observe that for longer
queries like universal animal cuts reviews, adding
only the query terms can sometimes increase their
ranks by over 90 positions. This suggests that
BERT rankers heavily rely on exact match for
longer queries. However, this is not the case for
shorter and ambiguous queries where other base-
lines show low explanation fidelity and lower rank
improvement. On the other hand, MULTIPLEX is
able to account for short and ambiguous queries
like voyager and titan in addition to longer queries.

6.5 The curious case of the term “Wikipedia”

One of the primary use cases of explanation meth-
ods to find potential problems due to training where
the model learns patterns that might be right for
the wrong reasons. Towards this, we performed an
analysis on the commonly recurring terms in the
explanations of the models under investigation. In-
terestingly, we found the term “wikipedia” appear
in many explanations for the DPR model even for
unrelated queries. If there are Wikipedia pages (par-
tially) related to a query, the DPR usually chooses
them over other types of web pages. We can only
hypothesize that the presence of a low IDF term
like Wikipedia suggests an artifact of pre-training
over a large number of Wikipedia articles. Ad-
ditionally, to understand how much the Wikipedia
keyword contributes to the relevance, we conducted
a rank-promotion experiment (as in the previous
section) by adding the term “Wikipedia” to the
lowest-ranked document for all queries. Unsurpris-
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Figure 3: Comparing explainers for the query: keyboard reviews, document pair: clueweb09-en0008-49-09140
(musical keyboard) vs clueweb09-en0010-56-37788 (technical keyboard). BERT prefers the former whereas DPR

prefers the latter, resulting in opposite intents.

Query Explainer Explanation Fidelity
adobe indian houses TEXT MATCHING pdf, adobe, style, house, first, also 0.85
POSITION AWARE pdf, adobe, style, texas, wikipedia, 2009 0.81
SEMANTIC SIMILARITY  pueblo, amarillo, castroville, outhouse, abourezk, alcove, 0.95
MULTIPLE EXPLAINERS pueblo, amarillo, castroville, outhouse, abourezk, pdf 091
espn sports TEXT MATCHING espn, abc, network, company, award, entertainment, 0.86
POSITION AWARE espn, sportscenter, abc, company, news, espn.com 0.99
SEMANTIC SIMILARITY espn, sportscenter, abc, walt, disney, entertainment, 0.93
MULTIPLE EXPLAINERS espn, sportscenter, abc, walt, disney, news, espn.com 0.99
hp mini 2140 TEXT MATCHING hp, mini, 2140, 2133 0.94
POSITION AWARE hp, mini, 2140, 2133 0.90
SEMANTIC SIMILARITY hp, touchpad, overview, hdd, 0.71
MULTIPLE EXPLAINERS hp, mini, 2140, 2133, touchpad, overview 0.91

Table 3: Anecdotal examples show each explainer selects terms from different aspects. MULTIPLE EXPLAINERS
combines the advantages of all explainers. For ambiguous queries like “adobe Indian houses", TEXT MATCHING
and POSITION AWARE focus on popular but ’shallow’ terms indicating “adobe company“. For certain queries like
“hp mini 2140", the SEMANTIC SIMILARITY suffers from vocabulary limitation. Position Aware can capture the
non-frequent yet important terms based on their position, e.g., the official site for the query “ESPN sports".
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Figure 4: Average rank improvements. Left: on all
test queries; Right: on hand-picked ambiguous queries.
Note that for each query the document size < 100.

ingly, we observe an average rank improvement of
2, ranging from O to 14. On the other hand, when
masking “Wikipedia” in the top-ranked document,
we observe an average rank drop of 10 positions.
We believe that there is a lot of potential for the
use of term-based explanation for exposing similar
data and model biases for text ranking models.

7 Conclusion and Outlook

This paper proposes a post-hoc model-agnostic
framework to explain text ranking models using
multiple explainers. MULTIPLEX systematically
combines multiple explainers to capture different
feature aspects encoded in the ranking decisions.
Our solution relies on effectively solving the non-
convex generalized preference coverage problem
with sparsity constraints. Our extensive experi-
ments show that our method can generate high-
fidelity explanations for over-parameterized mod-
els like BERT, delivering up to 50% fidelity im-
provements. We also show anecdotally that the ex-
planations generated by MULTIPLEX help us better
understand the underlying model preferences and
detect potential biases. For future work, we want to
extend our framework to account for n-grams and
to make our explanation generation procedure effi-
cient enough to be used during query processing.
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A Appendix

Ethical Concerns. Our task is to understand over-
parameterized ranking models. This is crucial to
the real-world practices, because the complexities
of both model and datasets make it extremely chal-
lenging to identify potential bugs or biases. Our
work does not cause any harm to real-world users.
Instead, it can help understand the important terms
out of big texts set that affect the model’s decisions,
thus in the long-term discovering potential biases
from the model or datasets.

Ranking Model Details. Unlike Bert and DPR

model, we do not truncate documents to meet

the 512 token size limit for DRMM model. We

fine-tune bert-base—uncased by stacking a

feed-forward layer on the pooled representation

of query and document. For DPR model, we use the

dpr—question_encoder-multiset-base
and dpr-ctx_encoder-multiset-base

to encode the query and document respectively.
The relevance score is computed by the cosine

similarity of the pooled representations. All

three models are trained in pair-wise with five

negative samples for each positive instance.
Adam optimizer with 3e-5 learning rate and 1000

warm-up steps are applied.

Matrix Building Details. We pre-select 1000 can-
didate terms by their tf-idf scores. Then for each
candidate, we mask all it’s appearances in the docu-
ment and compute the prediction difference by the
ranking model. The term results in higher predic-
tion difference is regarded to be more important to
the query-document relevance. By doing this, we
finally maintain 200 terms out of the 1000 candi-
dates. We also experimented with [100, 300, 500]
terms and without masking, all resulting to lower or
similar fidelity. For preference pairs, we randomly
choose 500 pairs (the random seed is 100.) with
> g score difference. For Bert model, we set g to
[2.0, 4.0] on Clueweb09 and Trec-DL respectively.
For DRMM and DPR, we choose [0.01, 0.01] and
[0.05, 0.05]. With this setup, we ensure the sam-
pled preference pairs have prominent differences.
Consequently, increasing the size of the pairs does
not deliver higher fidelity.

Computation Costs. Our experiments are con-
ducted on a GTX 1080Ti GPU with 128G memory.
We do not consider the training costs for ranking
models. The expenses of our method come from
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Figure 5: Model correlation: Jaccard similarity of ex-
planation terms and ranking correlation between each 2
models.

matrix construction and matrix optimization. On
Clueweb(9, the former procedure takes on average
around 30 minutes, and the latter takes around 30
seconds.

Explanation Differences across Models. We also
compare the explanation terms for each single
query across ranking models. Figure 5 summarizes
the Jaccard similarity of explanation terms, along
with the ranking correlation measured by Fidelity,
between each two models. It shows Bert and DPR
generate more relevant rankings, resulting in higher
overlaps between explanation terms compared to
DRMM model. Table 4 and Table 5 present more
explanation examples of DRMM and DPR.

Query Explanation Terms

adobe indian indian, manure, lobby, frenzy,

houses coyote, strain

espn sports directv, fantasy, nba, brad, golf,
berman, walt

hp mini 2140 amazon, handwriting, mini, 2140,

qvga, 3.5mm

bobcat growl, chalkboard, jona, mover,

oddity, handy, bobcat

Table 4: Explanation Terms of DRMM by MULTIPLEX.

Query Explanation Terms
adobe indian  oregon, adirondack, style, pueblo,
houses palace, battle

espn.com, disney, walt, directv,
wikipedia, network, sports

espn sports

hp mini 2140 nokia, hp, 2140, aircraft, 2133,
coating
bobcat desert, carnivorous, lynx, baffling,

prickly, hooded, manatee

Table 5: Explanation Terms of DPR by MULTIPLEX.



