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ABSTRACT

Robot manipulation policies, while central to the promise of physical AI, are
highly vulnerable in the presence of external variations in the real-world. Diag-
nosing these vulnerabilities is hindered by two key challenges: (i) the relevant
variations to test against are often unknown, and (ii) direct testing in the real
world is costly and unsafe. We introduce a framework that tackles both issues
by learning a separate deep reinforcement learning (deep RL) policy for vulnera-
bility prediction through virtual runs on a continuous vision–language embedding
trained with limited success-failure data. By treating this embedding space, which
is rich in semantic and visual variations, as a potential field, the policy learns to
move toward vulnerable regions while being repelled from success regions. This
vulnerability prediction policy, trained on virtual rollouts, enables scalable and
safe vulnerability analysis without expensive physical trials. By querying this
policy, our framework builds a probabilistic vulnerability-likelihood map. Ex-
periments across simulation benchmarks and a physical robot arm show that our
framework uncovers up to 23% more unique vulnerabilities than state-of-the-art
vision–language baselines, revealing subtle vulnerabilities overlooked by heuristic
testing. Additionally, we show that fine-tuning the manipulation policy with vul-
nerabilities discovered by our framework improves performance with much less
data. Anonymous GitHub: https://anonymous.4open.science/r/RoboMD-14C8.

1 INTRODUCTION

Learning robust robot manipulation policies is widely regarded as the foundational problem in phys-
ical AI. A robust solution would unlock capabilities ranging from reliable industrial automation in
cluttered factory environments to assistive humanoid arms that seamlessly interact with people in
everyday settings. In perception and language tasks, vulnerabilities can often be quickly identified
by querying large datasets or benchmarks, with little cost beyond computation. In manipulation,
however, discovering vulnerabilities is far more difficult: it requires physical trials that are slow,
expensive, and potentially unsafe, posing risks not only to the robot but also to the environment
and even people. This makes naive heuristic testing or trial-and-error both impractical and costly,
motivating the need for scalable, active vulnerability exploration methods pre-deployment. In this
paper, we pursue this by training a separate vulnerability prediction model, formulated as a deep
reinforcement learning (deep RL) policy that actively searches for failures.

Yet, even with a scalable search framework, a second obstacle remains: what exactly should we
test for? Manipulation policies must withstand diverse and unpredictable variations. For instance,
referring to Fig. 1, a robot designed to grasp a bottle should generalize across various colors, shapes,
sizes, and materials, and remain effective under changes in lighting, background, and physical lay-
outs Pumacay et al. (2024); Xie et al. (2024). Naively applying deep RL to a handful of known
variations to search for failures risks overlooking critical failure modes that emerge under novel
conditions; Lin et al. (2024).

We overcome these limitations by reformulating deep RL exploration over a learned, continuous
vision-language embedding space rather than discrete, hand-specified variations. Constructed from
limited success-failure data, we ensure that this embedding space is rich in semantic and visual
structure. We cast the learned space as a potential field that guides exploration toward failures and
away from successes. This, in turn, allows us to train the deep RL-based vulnerability search policy
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Figure 1: The vulnerability diagnostic pipeline. We train RoboMD (πMD), a deep reinforcement
learning (RL) policy, by probing a pre-trained manipulation policy (πR) while systematically apply-
ing environmental variations (e.g., background colors, object shapes, darkness levels, etc.) as RL
actions, examples of which are shown in the “Action Samples” panel (bottom left). Note that these
examples are for intuitive understanding only; the user does not need to specify all variations. By
observing the success or failure on each trial of πR, RoboMD learns to identify vulnerabilities even
in unseen variations (e.g., a red cube, in this example). The final output is a diagnosis report that
can either provide a ranked list of failure likelihoods, including for previously unseen variations (top
right), or quantify the failure probabilities for previously seen variations (bottom right).

that organically uncovers relationships and adapts to diverse variations. This policy can be queried at
any time to predict whether a scenario will lead to failure, enabling scalable and systematic diagnosis
of manipulation policies. The main contributions of the paper can be summarized as:

1. Proposing a deep RL-based framework that operates in a semantically rich embedding
space, for diagnosing failures in pre-trained manipulation policies.

2. Providing extensive experimental evidence on simulated and real-world setups, backed by
theoretical guarantees.

3. Systematically improving robot policies using the failures diagnosed by our framework.

2 RELATED WORK

Failures in large models can be characterized by querying vision-language foundation models Agia
et al. (2024); Duan et al. (2024); Klein et al. (2024); Subramanyam et al. (2025); Liu et al. (2023)
or searching for failures Sagar et al. (2024). As we further verify in experiments, the former does
not show strong performance in deciphering failures as they do not iteratively interact with the robot
policy. Furthermore, VLM models alone are not yet capable of making highly accurate quantitative
predictions such as probabilities, making them difficult to use in high-stakes tasks. In the latter
approach, outside of robotics, deep RL has recently been employed in machine learning to identify
errors in classification and generation Sagar et al. (2024). Similarly, Delecki et al. (2022); Hong
et al. (2024) utilized Markov decision processes to explore challenging rainy conditions, which
is backed by the work of Corso et al. (2021), highlighting the role of sequential decision-making
models to ensure the safety of black-box systems. Note that these approaches have neither been
demonstrated on complex physical systems like manipulation nor can they generalize beyond a
fixed set of known failures, both of which we address.

Out-of-distribution (OOD) detection methods can also be used to identify unseen inputs, for in-
stance, in automotive perception Nitsch et al. (2021), runtime policy monitoring Agia et al. (2024),
and regression Thiagarajan et al. (2023). However, failure detection constitutes a different prob-
lem than OOD detection, as not all OOD samples lead to failure, and failures can also occur in-
distribution. We aim to characterize failures both within and beyond the training distribution, not
merely flag OOD instances. A related area of research is uncertainty quantification, which underpins
many OOD detection methods. While many attempts have been made to characterize the epistemic
uncertainty Senanayake (2024), the unknown unknowns, in robot perception systems O’Callaghan
& Ramos (2012); Kendall & Gal (2017), only a few attempts have been made to address this chal-
lenge in deep RL Jiang et al. (2024) and imitation learning Jeon et al. (2018); Brown et al. (2020);
Ramachandran & Amir (2007). As robot policy models grow increasingly complex, formally char-
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Figure 2: Our framework operates in three stages: (1) a PPO-based deep RL agent (πMD) perturbs
the environment to reveal configurations that cause failures in the pre-trained manipulation policy
(πR); (2) its learned action distribution conditioned on the input observation is converted into failure-
mode probabilities, either over a continuous embedding for novel changes or via discrete candidates;
and (3) those probabilities are used to fine-tune πR for improved performance.

acterizing epistemic uncertainty becomes extremely challenging. Even if we can, such techniques
do not inform engineers where the models fail, making it harder to further improve the policies.

Generalized policies are less prone to failures. Toward achieving this goal, generalization in
robotics has been extensively studied to enable robots to adapt to diverse scenarios. Large-scale sim-
ulation frameworks have been developed to evaluate the robustness of robotic policies across varied
tasks and environmental conditions Pumacay et al. (2024); Fang et al. (2025). Vision-language-
action models trained on multimodal datasets have demonstrated significant advancements in im-
proving adaptability to real-world scenarios Brohan et al. (2022; 2023). Additionally, approaches
such as curriculum learning and domain randomization have proven effective in enhancing gener-
alization by exposing models to progressively complex or randomized environments Andrychowicz
et al. (2020). These methodologies collectively address the challenges of policy robustness. In con-
trast to these training focused methods, our framework acts as a diagnostic tool that is complemen-
tary to them as it can systematically identify failures in policies trained using any such approaches.
Ultimately, no matter how general the model is, unforeseen conditions and subtle variations will
always rise, making systematic diagnostic tools indispensable for real-world deployments.

3 METHODOLOGY

We analyze vulnerabilities of a pre-trained manipulation policy, πR, by training a separate vul-
nerability prediction policy, named RoboMD, πMD. RoboMD is designed to be agnostic to the
architecture or underlying training method of πR. Whether πR is trained via behavioral cloning,
reinforcement learning, foundation models, or any future methods, πMD only requires rollouts of πR,
making πMD adaptable to a wide range of manipulation policies and tasks. In Section 3.1, we first
formalize the failure diagnosis problem as a sequential search problem. Building on this formula-
tion, in Sections 3.2 and 3.3, we show how πMD can search for vulnerabilities in space of variations
that is not known. We also show a special case of it, where we can systematically test over a dis-
crete set of known variations. After describing how vulnerabilities can be queried at runtime in
Section 3.4, we theoretically ground each step in our framework in Section 3.5.

3.1 FORMALIZING FAILURE DIAGNOSIS AS A SEARCH PROBLEM IN A SEMANTIC SPACE

Overview. As rationalized in Section 1, we first learn a continuous vision-language embedding
to project raw manipulation data into a semantically meaningful representation of the success or
failure of πR (Fig. 3). We then learn πMD by exploring this space using proximal policy optimiza-
tion (Fig. 4). Once trained, πMD can be queried to predict a ranked map of vulnerable conditions
for the manipulation task. An overview of how to train and query πMD, along with how to use
πMD to improve πR is shown in Fig. 2.

We consider a continuous semantic embedding space, E , that represents some limited notions of suc-
cess and failure of πR (details on training this embedding is provided in Section 3.2). We train πMD
to traverse this space and learn how to predict failures. Treating the manipulation policy πR(at|st)
and the robot’s environment as a black box, we formulate this traversal of πMD as a Markov Decision
Process (MDP), defined by the tuple ⟨S,A,P, R, γ⟩:
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Figure 3: The pipeline shows how rollouts with variations (e.g., object or lighting changes) are
processed to learn meaningful embeddings. Visual data and text from the rollouts are embedded
using ViT and CLIP, and then projected to an MLP, followed by failure-success classification.

• State Space (S): The state st ∈ S ≡ E is a realization of the continuous semantic embed-
ding, represented as a vector st ∈ R512. While every physically instantiated environment
variation corresponds to a state in S, not all realizations of S necessarily translate to a
physically plausible environment variation. Thus, all S can be viewed as the set of hypoth-
esized environment variations, accessible through the embedding, which may include both
physically viable and unviable variations. See Fig. 1 for intuition on variations.

• Action Space (A): An action at ∈ A ≡ E introduces a variation to st. By taking different
actions, πMD can jump from one hypothesized environment variation (a state) to another.
While actions can have a physical meaning (e.g., making the environment darker), we do
not explicitly define them because an action can be any vector value, at ∈ R512.

• Transition (P): The transition function P(st+1|st, at) is determined by applying the vari-
ation at to the state st, which results in st+1.

• Reward (R): πMD is rewarded for finding failures quickly.
• Discount Factor (γ): We use a standard discount factor of γ = 0.99.

The goal of learning πMD is to find a sequence of actions (environment variations), which maximizes
the probability of πR to fail at its task. The next sections provide exact details of the procedure.

3.2 BUILDING THE SEMANTIC EMBEDDING AS A POTENTIAL FIELD OF SUCCESS-FAILURES

Unknown Region
Success Region
Failure Region
Known Embeddings

Action Region
RL Action 

a1

a2 a3

a4
a5

“Bread”

“Milk Carton”

“Sprite Bottle”

“Red Cube”

“Fanta Bottle”

Figure 4: RL exploration in continuous embed-
ding space E . Stars (✩) denote known embed-
dings (Eknown) obtained from the dataset D. This
induces regions of failure and success. The rest
are unknown regions. Dashed boundaries group
similar environment variations sharing a common
physical meaning. The orange circles and arrows
show the RL agent’s transition sequence, attract-
ing towards failures and repelling from successes.
Since each step is obtained without robot rollouts,
each one is a hypothesized environment variation.
Since the transitions are biased toward failures,
πMD learns to encode the failure distribution.

To predict vulnerabilities of unseen environ-
ments, we need at least two pieces of infor-
mation: 1) some prior belief of where vul-
nerabilities might occur and 2) a way to gen-
eralize that belief to unseen conditions. We
construct the belief from a limited set of la-
beled rollouts, which are then used to train a vi-
sion–language embedding that captures seman-
tic similarity between vulnerabilities. By oper-
ating directly in this embedding, πMD extends
its search to a continuous action space.

Our approach hinges on creating this embed-
ding space E such that the relationship between
implicit environment variations and policy fail-
ures is locally smooth. More formally, we learn
an embedding that acts as a potential func-
tion, Φ, over the space of environmental vari-
ations. Later, in Section 3.5, we show that re-
ward shaping based on a potential difference,
F (st, a, st+1) = γΦ(st+1)−Φ(st), guarantees
that the optimal policy is preserved and pro-
vides a dense learning signal for convergence.

To construct this potential field of success-failures, we train a multimodal embedding that organizes
environmental variations based on a set of labeled success-failure rollouts. To this end, we collect
M rollouts from πR for a given task withD = {(xvision

i , xlang
i ), yi}Mi=1, where xvision is the raw image

input that we typically provide to manipulation policies, xlang is a short textual description of the task,
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and y ∈ {failure, success}. Since we know the action (environment variation) we apply, the textual
description can be automatically constructed (see Appendix F). Note that this dataset is created
by collecting environmental variations (e.g., object color, lighting changes) chosen based on prior
observations, assumptions and knowledge of conditions that often expose policy vulnerabilities.
Using this data, as shown in Fig. 3,we train a dual backbone architecture that consists of:

1. A Vision Transformer (ViT) backbone Dosovitskiy et al. (2020) to convert xvision
i to visual

features. Vision transformers capture the contextual relationships within the visual input.
Since the original ViT is trained on millions of images from ImageNet with thousands of
object categories, this backbone helps to build semantic relationships of everyday environ-
ments, so that πMD can infer about an unseen environment from similar environments.

2. A CLIP encoder Radford et al. (2021) to process semantic descriptions. Since robots op-
erate in complex environments, we empirically found (Section 4.2) that providing a task
description in natural language helps to focus on the necessary features of the vision input.

The dual backbone combines complementary strengths, resulting in a multimodal embedding that
enables better generalization across different environmental variations. The outputs are projected
and concatenated, which is passed through a 512-unit MLP layer followed by a classification head.
We define the output of the 512 embedding vector as ei for an arbitrary input (xvision

i , xlang
i ).

The architecture is trained with backpropagation using a joint objective of binary cross-entropy with
the classification output y and a contrastive loss objective L at the MLP layer, which, as we later
show in Section 3.5, structures E as a potential field to enforce smoothness within E . It minimizes
the potential difference between embeddings of rollouts with similar outcomes while maximizing it
for rollouts with different outcomes. L is defined as:

L =
∑
i,j∈D

[
1

yi=yj

dij + 1
yi ̸=yj

max(0,m− dij)

]
, (1)

where, dij = ∥ei − ej∥2 is the Euclidean distance between two randomly sampled points in D,
with m hyperparameter margin. The MLP layer projects raw vision-language data to an embedding
space, E . The inputs in D are now assigned to an environmental variation in the semantic space.
Because the space is structured such that proximity corresponds to outcome similarity, πMD can now
be trained with virtual rollouts to efficiently map the entire landscape of potential failures in E .

3.3 DEEP REINFORCEMENT LEARNING IN THE CONTINUOUS SEMANTIC SPACE

Algorithm 1 Learning πMD policy

1: Inputs: D = {(xvision
i , xlang

i ), yi}Mi=1
2: Precompute: Eknown from D
3: Init: steps N , reward r = 0, πMD = rand
4: for t = 0 to N do
5: Sample at+1 ∼ πMD(st)
6: a∗t+1 ← argmine∈Eknown ∥at+1 − e∥2
7: st+1 ← πMD(st|a∗t+1)
8: r ← r +R(st+1)
9: if failure detected then

10: Reset; r ← 0
11: end if
12: end for
13: Outputs: RoboMD policy πMD

The agent πMD can now navigate through E
guided by some of its known realizations,
Eknown = {ei; i ∈ D}, a set of pre-
computed embeddings derived from D. Note
that Eknown ⊂ E and ei ∈ R512. These em-
beddings serve as reference points in the action
space, representing well-understood regions
where failure/success is already observed. As
shown in Algorithm 1, the πMD samples an ac-
tion a∗t+1 from the embeddings space and finds
the closest embedding in Eknown to obtain its
corresponding action a, thus performing an ac-
tion implicitly applies a variation to the envi-
ronment, although we are not explicitly chang-
ing the physical environment. Therefore, these
actions are extremely cheap compared to ex-
plicitly changing the environment and running rollouts. To optimize πMD we use PPO Schulman
et al. (2017), which provides stable training while maintaining sufficient exploration. In a con-
tinuous space, PPO’s entropy regularization is especially important, as it prevents the agent from
collapsing to a few modes and instead encourages coverage of the broader space. We define the
reward function to encourage discovering failure regions while discouraging both large deviations
from Eknown and repetitive actions since large deviations lead to uncertain regions, while repetitive
actions can indicate a stalled search. This reward mechanism is captured by:
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R(s, a) =

{
Kfailure

penalty+1 − k · N (a), if failure,
− Ksuccess

horizon×(penalty+1) , if success.
(2)

Here, failure-success is inferred from the closest point in D and the distance penalty in the denomi-
nator, scales with ∥a− e∥, ∀e ∈ Eknown. The penalty can be related to the potential field in terms of
∥a−e∥2 = ∥Φ(sa)−Φ(se)∥2, where sa and se are the states reached by applying actions a and e, re-
spectively. The frequency penalty,N (a), counts consecutive repeats of a, and we set the coefficient
k = 5. The frequency penalty serves as a practical mechanism to promote exploration, preventing
the agent from repeatedly sampling the same point and pushing it toward uncertain regions. This
approach aligns with the principles of Theorem 2, which states that concentrating exploration near
the decision boundary between success and failure leads to more efficient identification of vulnera-
bilities. Fig. 4 illustrates this process, where RL samples the continuous embedding to steer toward
failure-prone regions without requiring full policy rollouts.

Special case: when the candidate variations are known. If the set of candidate variations in
Eknown is explicitly given (e.g., constructed from historical failures or expert knowledge), then πMD
merely has to search over A ≡ Eknown. In this setting, πMD gradually modifies the environment
by applying a finite sequence of predefined actions (a1, a2, . . . , an) until a failure is induced. For
instance, the sequence change table color to black→ adjust light level to 50%→ set table size to X
yields an environment with a black table of size X, and 50% lighting. The reward function assigns a
positive scalar when the outcome is a success, and a negative scalar when the outcome is a failure.

3.4 FROM PREDICTING VULNERABILITIES TO IMPROVING ROBOT POLICY PERFORMANCE

The agent πMD outputs a probability distribution over variations (actions), which can directly be
interpreted as a map of failure likelihoods. This allows us to both identify highly vulnerable condi-
tions and use them to guide manipulation policy improvement. In the embedding space constructed
in Section 3.2, πMD(a | s) is modeled as a Gaussian density p(a | s) on R512. Although p(at) = 0

for any exact action, likelihood ratios are well defined: pMD(at1|s)
pMD(at2|s) , indicating which variation is more

failure-prone, analogous to PPO’s probability-ratio objective. The confidence of these likelihood es-
timates can be found using the proximity of the current state embedding es to the nearest e ∈ E ,
measured by mine∈E ∥e − es∥. When restricted to a finite candidate set Eknown, as in the special
case described in Section 3.2, the same mechanism reduces to a categorical distribution over Eknown,
where mass gradually concentrates on failure-inducing variations. In such cases, likelihoods are
given by πMD(a | s) = exp(fa(s))∑

a′ exp(fa′ (s))
, which is a probability mass function (PMF) over the discrete

action set A, where fa(s) is the logit for action a.

Improving πR with findings from πMD. The likelihood of actions yields a prioritized list of
failure modes, which allows practitioners to move beyond collecting broad, unfocused rollouts.
Instead, we can target data collection on the highest likelihood failures (e.g., specific lighting or
object variations), and fine-tune πR on this compact dataset to systematically patch vulnerabilities,
as we will demonstrate in Section 4.3.

3.5 THEORETICAL UNDERPINNINGS AND GUARANTEES

We establish that the potential field we build in embedding space does not negatively affect the
overall reward but makes the convergence faster.
Theorem 1 (Advantage Invariance in a Semantic Potential Field). Let πMD be the policy for the
MDP defined in Sec 3. Let the continuous action space be structured by the embedding e, which
is trained via the contrastive loss L (Eq 1) to function as a potential function, Φ(s) = es. The
search performed by πMD in this space is equivalent to learning in a shaped MDP where the implicit
shaping function is F (s, a, s′) = γΦ(s′) − Φ(s), for which the following hold: (i) Optimality: any
optimal policy in the shaped MDP is also optimal in the original MDP. (ii) Advantage invariance:
A∗(s, a)shaped = A∗(s, a)original, indicating that the relative advantage is invariant.

Proof Sketch. From potential-based shaping theory Ng et al. (1999), Q∗
shaped(s, a) = Q∗

orig(s, a) −
Φ(s) and V ∗

shaped(s) = V ∗
orig(s) − Φ(s), where Q and V are Q and value functions, respectively.

Subtracting shows the Φ(s) terms cancel, proving advantage invariance. (Full proof in Appendix A)
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Having established the correctness of the reward, we now demonstrate that it facilitates efficient
exploration of the failure–success boundary while enabling faster convergence.
Theorem 2 (Sample-Efficient Boundary Exploration). Let actions a ∈ A be mapped by an L-
Lipschitz embedding e(a). If πMD is trained with reward R(a) = Rtask(a) + βH(a) for β > 0,
where H(a) is predictive uncertainty, then: (i) R(a) is Lipschitz, yielding stable gradients for PPO.
(ii) Exploration concentrates near the success/failure boundary, identifying it to precision ϵ with
rollouts polynomial in 1/ϵ.
Proof Sketch. The semantic potential induced by the multimodal embedding e(s), trained with BCE
and contrastive loss is Lipschitz continuous (proof in Lemma 1 in Appendix A), which ensures
smooth rewards and stable gradients. The information-gain drives exploration toward uncertain
boundary regions, yielding sample-efficient discovery. (Full proof in Appendix A)

Theorem 3 (Convergence Acceleration Due to Potential Field). Let PPO train a critic with Bell-
man updates of the form ∥ξt+1∥∞ ≤ γ∥ξt∥∞ + ϵ with critic error e and approximation error ϵ. If
potential shaping induces a transformed critic with smaller initialization error ξ′0 < ξ0 and smaller
approximation error ϵ′ < ϵ, then for any ε > ϵ′/(1 − γ) with discount factor γ, the shaped critic
reaches ∥ξ′T ∥∞ ≤ ε in fewer iterations than the unshaped critic.

Proof Sketch. Due to Theorem 1, the error recursion solves to ∥ξT ∥∞ ≤ γKe0 + 1−γT

1−γ ϵ. Since
both ξ′0 and ϵ′ are strictly smaller, the shaped process crosses any target ε earlier, implying faster
convergence of PPO. (Full proof in Appendix A)

4 EXPERIMENTAL RESULTS

In this section, we present a series of experiments designed to validate RoboMD. Our evaluation is
structured around three central research questions:

1. How does RoboMD’s failure diagnosis compare to alternative approaches, including other
RL algorithms and VLMs?

2. How effectively does RoboMD generalize its diagnostic capabilities from a known set of
perturbations to entirely unseen environmental variations?

3. Do the failure modes identified by RoboMD provide actionable insights that lead to mea-
surable improvements in the robustness of a pre-trained policy?

4.1 BENCHMARK COMPARISONS

Experimental setup: Our simulated experiments are conducted in RoboSuite Zhu et al. (2020) using
datasets from RoboMimic Mandlekar et al. (2021) and MimicGen Mandlekar et al. (2023) (Fig. 6).
We evaluate across four standard tasks: lift, stack, threading, and pick & place, which represent a
range of manipulation challenges with varying levels of difficulty. These tasks are tested against a
diverse set of standard manipulation policies, including Behavior Cloning (BC), Hierarchical BC
(HBC), BC-Transformer, Batch Constrained Q-Learning (BCQ), and Diffusion policies.

We first benchmark πMD against a suite of baselines to answer our first research question regard-
ing comparative performance. To this end, we construct a dataset of 500 success-failure pairs,

Reinforcement Learning Models

Model Lift Square Pick Place Avg. Score

A2C 74.2% 79.0% 72.0% 75.0
PPO 82.3% 84.0% 76.0% 80.7
SAC 51.2% 54.6% 50.8% 52.2

Vision–Language Models

Qwen2-VL 32.0% 24.6% 57.4% 38.0
Gemini 1.5 Pro 59.0% 36.4% 37.4% 44.3
GPT-4o 57.0% 44.0% 32.0% 33.3
GPT-4o-ICL (5 Shot) 57.4% 48.6% 57.0% 54.3

Small Models (Appendix B)

CNN 46.0% 57.0% 49.0% 50.6
ResNet 49.0% 52.0% 44.0% 48.3

Table 1: Benchmark results (Accuracy) compar-
ing RL controllers, VLM’s, and lightweight mod-
els each paired with a BC-MLP low-level policy.
πMD consistently outperforms other baselines.

Algorithm Lift Pick Place Threading Stack
BC 82.5% 76.0% 68.0% 88.0%
BCQ 61.5% 72.5% 62.0% 72.0%
HBC 83.5% 79.0% 73.0% 81.0%
BC Transformer 74.5% 72.0% 82.0% 70.5%
Diffusion 85.0% 71.0% 71.0% 62.0%

Table 2: RoboMD failure detection accuracy
across different tasks.

350

Figure 5: Action diversity across algorithms.
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Table 3: In real (ar: {Bread [unseen], Red Cube, Milk Carton, Sprite}) vs. simulated (as: {Red
Table, Black Table [unseen], Green Lighting}) environments, rank consistency measures ordering
agreement, and accuracy is computed over 21 unseen variations.

Task ID Algorithm Continuous Rank Ground Truth Rank Consistency Accuracy
Real Robot (UR5e) ModAttn Zhou et al. (2022) ar1 > ar2 > ar3 > ar4 ar1 > ar2 > ar3 > ar4 ✓ -
Sim. Can HBC Mandlekar et al. (2020) as1 > as2 > as3 as1 = as2 > as3 ✓ 61%
Sim. Square Diffusion Chi et al. (2023) as1 > as2 > as3 as1 = as2 > as3 ✓ 68%
Sim. Stack BCQ Fujimoto et al. (2019) as1 > as2 > as3 as1 = as2 > as3 ✓ 80%
Sim. Threading BC Transformer as1 > as2 > as3 as1 = as2 > as3 ✓ 74%

Table 4: Failure characteristics for known action
spaces. FSI indicate robustness.

Model Entropy (↓) NFM (↓) FSI (↓)
IQL Kostrikov et al. (2021) 2.49 4 0.72
BCQ Fujimoto et al. (2019) 2.79 6 1.15
BC Transformer 2.47 5 0.98
HBC Mandlekar et al. (2020) 2.11 4 0.68
BC (Two-Image Input) 2.14 3 0.63
BC (Proprioceptive + Image) 2.58 3 0.75

Table 5: πR fine-tuning strategies. Errors are
w.r.t. an ideal policy. Refer Fig. 9.

Fine-tuning (FT) Accuracy Mean Square Chi-Square
Strategies % (↑) Error (↓) Error (↓)
Pre-trained 67.91 0.377 0.016
FT with RoboMD 92.83 0.033 0.001
FT with 2 failures 75.83 0.140 0.006
FT with 4 failures 80.00 0.128 0.005
FT with all failures 85.48 0.069 0.003

Figure 6: (Top) real world,
(Bottom) simulation. Refer
Appendix C for all variations.

where each pair consists of a randomly selected success and failure
case. Since a successful action will rank higher than a failure, this
provides ground truth to evaluate πMD’s ranking consistency. The
results, summarized in Table 1, demonstrate that πMD outperforms
all other methods in ranking accuracy across all tasks. We also con-
ducted evaluations with state-of-the-art proprietary models (GPT-
4o and Gemini 1.5 Pro) and an open-source model (Qwen2-VL).
Additionally, we extended the evaluation of GPT-4o by employ-
ing in-context learning (ICL) with 5-shot demonstrations to gauge
its adaptability, ICL improves the performance of GPT-4o, partic-
ularly in the Square task. However, overall VLM performance re-
mains below 60%, indicating that these models struggle with re-
liably predicting environment configurations. To compare explo-
ration across RL algorithms (i.e., why PPO?), we analyze the action distributions of A2C Mnih
(2016), SAC Haarnoja et al. (2018), and PPO over 21 environment variations (See Appendix F.2).
As shown in Fig. 5 and Table 4, PPO achieves the highest entropy (2.8839), indicating its suitability
for broader exploration needed for failure discovery. We further evaluate πMD’s failure detection
performance in a variety of standard policies trained using different training methods. The results in
Table 2 demonstrate that πMD generalizes well across different tasks and policy architectures.

4.2 ANALYZING DIAGNOSTIC CAPABILITIES

We now evaluate πMD’s ability to diagnose unseen and seen environments, addressing our second
research question.

Unseen Environments: The primary strength of πMD is its ability to generalize. We test this by
asking πMD to rank the failure likelihood of variations it has never seen during training. The results
in Table 3 shows in both simulation and the real world, πMD correctly ranks the failure likelihood of
unseen items (e.g., the “Bread” for the UR5e, “Black Table” in simulation) relative to known items.
The consistency of these rankings validates that E successfully captures the semantic relationships
that govern policy failure. As ablations, we also test the quality of the Eknown by comparing three
configurations: using only BCE loss, using BCE with and our contrastive loss, and an image-only
backbone model. The results are shown in Fig. 8 and Table 7. The confusion matrix for the full
model (Image+Text with BCE+Contrastive loss) shows a strong diagonal structure, indicating high
separability between different actions. Quantitatively, this model achieves the lowest MSE (0.1801)
and Frobenius distance (7.6387) from an ideal identity matrix. This confirms that multimodal inputs
and a contrastive loss is crucial for creating a locally consistent embedding space.

Seen Environments: Fig. 7 visualizes the failure likelihoods that πMD generates for different ma-
nipulation policies. HBC policy shows high robustness, which is quantitatively confirmed by its low
Failure Severity Index (FSI) and small number of failure modes (NFM) in Table 4. FSI quantifies the
weighted impact defined by

∑N
i=1 Pfailure(ai) ·Wi where Pfailure represents the probability of failure

for action ai, and Wi is the normalized weight such that the failure with the highest probability is

8
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Figure 7: Diagnosis of manipulation policies. Each plot shows failure likelihood (∝ radius) for
different actions across environments (real-world in left, and simulation middle and right).
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Figure 8: Similarity matrix of embeddings trained using
a) BCE, b) BCE+Contrastive loss, and c) no text encoder.

Table 7: Measuring embedding quality across different
loss functions. Lower MSE and Frobenius-norm dis-
tances (to the identity) indicate embeddings closer to the
ideal diagonal (better separation).

Eval Image Image Image+Text Image+Text
Loss BCE BCE+Contr. BCE BCE+Contr.
MSE (↓) 0.6495 0.6179 0.8426 0.1801
Fro dist. (↓) 14.5060 14.1497 16.5227 7.6387

Pre-trained

Fine-tuned (all failures)

Fine-tuned (RoboMD failures) Failures

Best possible

1.3GB
9.0GB

Figure 9: Failure distribution before
and after fine-tuning with two strategies.
Observe reduction in error modes. The
ideal distribution (dashed black) repre-
sents no failure. Refer Table 5.

assigned a weight of 1. The significant variation in failure patterns across different policies (e.g.,
BC Transformer vs. HBC) is expected, as different architectures have unique inductive biases and
thus different weaknesses, all of which are effectively captured by πMD.

4.3 ACTIONABLE INSIGHTS: FAILURE-GUIDED πR POLICY IMPROVEMENT

Finally, we answer our third research question: whether πMD’s diagnosis can be used to improve
policy robustness. We use the top-ranked failures identified by πMD to generate a targeted dataset
for fine-tuning a pre-trained BC-lift policy. Our findings in Fig. 9 show that the vulnerabilities
found in the pretrained policy are significantly reduced after RoboMD-guided fine-tuning. Further,
as shown in Table 5, fine-tuning with this targeted dataset outperforms (92.83%) fine-tuning with
randomly selected failures (best was 85.48%) cases. This amounts to collecting 1.3 GB of targeted
data instead of 9 GB of random data. This demonstrates that πMD’s diagnostics are not merely
analytical; they are directly applicable for efficient, targeted policy improvement.

5 CONCLUSION
This paper introduced RoboMD, a framework that recasts the diagnosis of robot manipulation fail-
ures from a process of manual heuristics into an active, sequential search problem solved by deep
reinforcement learning. By training a diagnostic agent to systematically seek out failure-inducing
conditions, RoboMD provides a principled approach to uncovering policy weaknesses. Our key con-
tribution, lifting this search into a continuous vision-language embedding space enables the RL agent
to generalize its diagnosis, successfully identifying and ranking subtle failure modes in both seen
and previously unseen environmental conditions. Our extensive experiments validate this methodol-
ogy, demonstrating that RoboMD significantly outperforms static VLM baselines, small models and
alternative RL methods in diagnostic accuracy. We also showed that the identified failures provide
an actionable path to enhancing policy robustness, allowing for targeted fine-tuning that measurably
improves performance in high-risk scenarios at a fraction of data cost.
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personally identifiable data, or sensitive information. All datasets used are publicly available and
licensed for research purposes. We have made sure that our methods and results are reported hon-
estly, transparently, and reproducibly. The potential societal impacts of this work were considered,
and our contributions align very well with responsible and beneficial use of safe machine learning
model deployment.

7 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. An anonymous GitHub
repository is provided that contains all the necessary scripts to reproduce the experiments and re-
sults. The simulation data used in this study is publicly available. For real-world experiments, we
employ a commonly used UR5 robotic arm setup, whose specifications and control interface are well
documented. Detailed experimental setup is provided in the Appendix C. Together, these resources
allow independent researchers to fully replicate our results.
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APPENDIX

A PROOFS OF THEORETICAL GUARANTEES

Theorem 1 (Advantage Invariance in a Semantic Potential Field). Let πMD be the policy for the
MDP defined in Section 3. Let the continuous action space be structured by the embedding e, which
is trained via the contrastive loss L (Eq. 2) to function as a potential function, Φ(s) = es. The
search performed by πMD in this space is equivalent to learning in a shaped MDP where the implicit
shaping function is F (s, a, s′) = γΦ(s′)− Φ(s). For this process, the following hold:

(i) Optimality: Any optimal policy in the shaped MDP is also optimal in the original MDP.

(ii) Advantage Invariance: A∗(s, a)shaped = A∗(s, a)original.

Proof. The proof relies on the established theory of potential-based reward shaping Ng et al. (1999).
Let the original MDP be M with reward function R(s, a, s′) and the shaped MDP be M ′ with reward
function R′(s, a, s′) = R(s, a, s′)+F (s, a, s′), where F (s, a, s′) = γΦ(s′)−Φ(s) is the potential-
based shaping reward.

The optimal Q-function in the original MDP, Q∗
M , satisfies the Bellman optimality equation:

Q∗
M (s, a) = Es′∼Psa(·)[R(s, a, s′) + γmax

a′
Q∗

M (s′, a′)]

Now, consider a transformed Q-function, Q̂(s, a) = Q∗
M (s, a)−Φ(s). We can show that it satisfies

the Bellman equation for the shaped MDP, M ′:

Q̂(s, a) + Φ(s) = Es′∼Psa(·)[R(s, a, s′) + γmax
a′

(Q̂(s′, a′) + Φ(s′))]

Q̂(s, a) = Es′∼Psa(·)[R(s, a, s′)− Φ(s) + γΦ(s′) + γmax
a′

Q̂(s′, a′)]

= Es′∼Psa(·)[R(s, a, s′) + F (s, a, s′) + γmax
a′

Q̂(s′, a′)]

= Es′∼Psa(·)[R
′(s, a, s′) + γmax

a′
Q̂(s′, a′)]

This is precisely the Bellman optimality equation for M ′. By the uniqueness of the optimal Q-
function, it must be that Q∗

M ′(s, a) = Q̂(s, a) = Q∗
M (s, a)− Φ(s).

(i) Proof of Optimality: An optimal policy π∗ is one that acts greedily with respect to the optimal
Q-function. For the shaped MDP, the optimal policy is:

π∗
M ′(s) = argmax

a
Q∗

M ′(s, a)

= argmax
a

(Q∗
M (s, a)− Φ(s))

Since Φ(s) does not depend on the action a, it does not change the argmax. Therefore:

π∗
M ′(s) = argmax

a
Q∗

M (s, a) = π∗
M (s)

Thus, any optimal policy for the shaped MDP is also optimal for the original MDP.

(ii) Proof of Advantage Invariance: The advantage function is defined as A(s, a) = Q(s, a) −
V (s), where V (s) = maxa Q(s, a). Using the relationship derived above:

V ∗
M ′(s) = max

a
Q∗

M ′(s, a) = max
a

(Q∗
M (s, a)−Φ(s)) = (max

a
Q∗

M (s, a))−Φ(s) = V ∗
M (s)−Φ(s)

Now, we can write the advantage function for the shaped MDP:

A∗
M ′(s, a) = Q∗

M ′(s, a)− V ∗
M ′(s)

= (Q∗
M (s, a)− Φ(s))− (V ∗

M (s)− Φ(s))

= Q∗
M (s, a)− V ∗

M (s) = A∗
M (s, a)

This proves that the advantage function is invariant under potential-based reward shaping.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Theorem 2 (Sample-Efficient Boundary Exploration). Let actions a ∈ A be mapped by an L-
Lipschitz embedding e(a). If πMD is trained with reward R(a) = Rtask(a)+βH(a) for β > 0, where
H(a) is predictive uncertainty, then: (i) R(a) is Lipschitz, yielding stable gradients for PPO; (ii)
exploration concentrates near the success/failure boundary, identifying it to precision ϵ with rollouts
polynomial in 1/ϵ.
Lemma 1 (Lipschitzness of the shaped reward). Let e : A → E be Le-Lipschitz. Assume Rtask :
E → R and H : E → R are LRtask - and LH -Lipschitz, respectively. For β > 0, define R(a) =
Rtask(e(a)) + β H(e(a)). Then R is Lipschitz on A with constant

LR ≤ Le

(
LRtask + βLH

)
.

Proof. For any a1, a2 ∈ A,
|R(a1)−R(a2)| =

∣∣Rtask(e(a1))−Rtask(e(a2)) + β
(
H(e(a1))−H(e(a2))

)∣∣
≤ |Rtask(e(a1))−Rtask(e(a2))|+ β |H(e(a1))−H(e(a2))|
≤ LRtask ∥e(a1)− e(a2)∥+ βLH ∥e(a1)− e(a2)∥
≤

(
LRtask + βLH

)
Le ∥a1 − a2∥.

Thus R is Lipschitz with the stated constant.

Standing assumptions. Let p(a) = Pr[failure | a] denote the classifier’s predicted probability.
Assume:

A1 (Calibration + smoothness) p is calibrated and Lp-Lipschitz in e(a).
A2 (Regular boundary) There exist r0 > 0 and κ > 0 such that for all a with dist(a, ∂S) ≤ r0,∣∣p(a)− 1

2

∣∣ ≥ κdist(a, ∂S), where ∂S = {a : p(a) = 1
2}.

Lemma 2 (Uncertainty maximization at/near the boundary). Let H(a) = −p(a) log p(a) − (1 −
p(a)) log(1 − p(a)) be the predictive entropy. Under (A1)–(A2), there exist constants cH > 0 and
r0 > 0 such that for all a with dist(a, ∂S) ≤ r0,

H(a) ≤ log 2 − cH
(
p(a)− 1

2

)2 ≤ log 2 − cH κ2 dist(a, ∂S)2,
and consequently H achieves its maxima on ∂S and decays quadratically away from it in distance.

Proof. The binary entropy h(p) = −p log p − (1 − p) log(1 − p) is strictly concave. It attains its
maximum at p = 1

2 with value h(1/2) = log 2, and satisfies h′(1/2) = 0 and h′′(1/2) = −4. By
Taylor’s theorem, for p in a neighborhood of 1

2 there exists a constant cH ∈ (0, 2] such that

h(p) ≤ log 2− cH (p− 1
2 )

2.

Applying this with p = p(a) gives

H(a) ≤ log 2− cH (p(a)− 1
2 )

2.

Moreover, Assumption (A2) states that whenever dist(a, ∂S) ≤ r0,
|p(a)− 1

2 | ≥ κdist(a, ∂S).

Combining the two inequalities yields
H(a) ≤ log 2− cHκ2 dist(a, ∂S)2.

Thus H(a) is maximized on the boundary ∂S and decays quadratically with distance away from
it.

Lemma 3 (Sample complexity of boundary identification). Suppose f(a) := p(a) − 1
2 admits a

Gaussian process (GP) surrogate with kernel k, and let γT denote the maximal information gain
after T queries for k. Consider active sampling driven by the shaped reward R = Rtask + βH
with β > 0. Then there exists a constant C > 0 such that, with high probability, the zero level set
{a : f(a) = 0} (i.e., the boundary) is identified to Hausdorff precision ϵ after at most

T ≤ C
γT log T

ϵ2

queries.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof sketch. Under (A1)–(A2), Lemma 2 shows that, in a neighborhood of the boundary, entropy
H is a smooth, strictly decreasing function of |f(a)| and is maximized where f(a) = 0. Hence
maximizing βH is equivalent (up to smooth monotone reparameterization) to prioritizing high pos-
terior uncertainty on the sign of f near its zero level set, as in standard level-set acquisitions (e.g.,
straddle/variance/ambiguity criteria).

For a GP posterior, uniform confidence bands |f(a) − µT−1(a)| ≤ α
1/2
T σT−1(a) hold with high

probability. Sampling high-variance points in the ambiguous band around f = 0 shrinks that band
until its thickness is O(ϵ). The cumulative posterior variance is controlled by the information gain
γT , which yields

T = O
(γT log T

ϵ2

)
for ϵ-accurate recovery of the zero level set; see, e.g., Theorem 1 of Gotovos et al. (2013). Finally,
since H and these ambiguity/variance scores agree up to a smooth monotone transform near the
boundary (Lemma 2), the same rate applies to the βH-driven policy.

Proof of Theorem 2. Part (i): By Lemma 1, R is Lipschitz with constant LR ≤ Le(LRtask + βLH),
which yields bounded PPO gradients.

Part (ii): By Lemma 2, H is maximized on (and decays away from) the decision boundary, so the βH
term concentrates exploration in an O(ϵ) tube around it. Lemma 3 then gives the T = O

(
γT log T

ϵ2

)
rollout bound to achieve precision ϵ.

Theorem 3 (Convergence Acceleration Due to Potential Field). Let PPO train a critic with Bell-
man updates of the form ∥ξt+1∥∞ ≤ γ∥ξt∥∞ + ϵ with critic error e and approximation error ϵ. If
potential shaping induces a transformed critic with smaller initialization error ξ′0 < ξ0 and smaller
approximation error ϵ′ < ϵ, then for any ε > ϵ′/(1 − γ) with discount factor γ, the shaped critic
reaches ∥ξ′T ∥∞ ≤ ε in fewer iterations than the unshaped critic.

Proof. Unroll the linear recursions. For any t ≥ 0,

∥ξt∥∞ ≤ γtξ0 +
1− γt

1− γ
ϵ =

ϵ

1− γ
+ γt

(
ξ0 −

ϵ

1− γ

)
, (1)

and similarly

∥ξ′t∥∞ ≤ γtξ′0 +
1− γt

1− γ
ϵ′ =

ϵ′

1− γ
+ γK

(
ξ′0 −

ϵ′

1− γ

)
. (2)

Define the minimal hitting times for a target tolerance ε > 0:

τ := min{t ∈ N : ∥ξt∥∞ ≤ ε}, τ ′ := min{t ∈ N : ∥ξ′t∥∞ ≤ ε}.

From e′0 < e0 and ϵ′ < ϵ and the positivity of the coefficients γt and 1−γt

1−γ for t ≥ 0, we have the
pointwise strict inequality

γtξ′0 +
1− γt

1− γ
ϵ′ < γtξ0 +

1− γt

1− γ
ϵ for all t ≥ 0, (3)

i.e., the shaped upper bound is strictly below the unshaped one at every t.

Now fix any ε > ϵ′/(1 − γ). By (2), there exists a finite t with ∥ξ′t∥∞ ≤ ε, so τ ′ is finite. If the
unshaped process is also able to reach ε (i.e., τ <∞), then from (1)–(3) we get

∥ξ′τ∥∞ ≤ γτξ′0 +
1− γτ

1− γ
ϵ′ < γτξ0 +

1− γτ

1− γ
ϵ ≤ ε,

which implies τ ′ ≤ τ .

Moreover, strict inequality of the shaped bound (3) together with minimality of τ implies that either
τ ′ = τ − 1 (or smaller) or, in the degenerate case that ε ≥ ∥ξ0∥∞, both processes already satisfy the
target at t = 0. Hence, whenever the unshaped process requires at least one update to reach ε (i.e.,
τ ≥ 1), we have τ ′ < τ .
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Table 8: CNN Confusion matrix
percentages (%)

Task TP FN TN FP

Square 39 61 74 26
Can 7 93 92 8
Lift 8 92 87 13

Table 9: ResNet-18 Confusion ma-
trix percentages (%)

Task TP FN TN FP

Square 60 40 34 66
Can 10 90 84 16
Lift 47 53 51 49

B DISCUSSION: FAILURES, OOD, AND NEURAL NETWORK BASELINES

Failures arise both in OOD and in-distribution scenarios, so OOD detectors alone cannot serve as
comprehensive failure detectors. While OOD methods can detect novel textures or extreme lighting
they miss subtle perturbations that actually cause policy failures. We evaluated two lightweight
visual detectors a three layer CNN and a halved-channel ResNet-18 on our collected success–failure
frames from the square, can and lift tasks. Table 8 and Table 9 report confusion matrix rates: the
CNN achieves true-positive rates of 39 %, 7 % and 8 % with false-positive rates of 26 %, 8 % and
13 %; ResNet-18 reaches true-positives of 60 %, 10 % and 47 % with false-positives of 66 %, 16 %
and 49 %. These low true-positive and high false-positive rates show that standalone OOD detectors
lack the sensitivity and specificity needed for reliable failure detection in robotic tasks.

As a sanity check on representational capacity, we evaluated the same two models on a balanced set
of nominal versus failure-mode frames exhibiting minor lighting shifts, small object-size changes
and novel cube/table colors (see Table 1). Both models were trained for 200 epochs on 84×84
RGB inputs normalized to [0,1]. Neither exceeded chance accuracy (≈ 50 %) at ranking failures
and success on these fine-grained perturbations. This confirms that low-capacity visual encoders
cannot disentangle subtle failure cues, motivating our policy-centric, multimodal RoboMD frame-
work, which leverages semantic embeddings to rank and generalize failure modes under targeted
perturbations.

Square Pick Place Lift
Task
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)

Failure Mode Detection Accuracy per Task

CNN
ResNet
A2C

PPO
SAC
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GPT 4o
GPT 4o (ICL_5_Shot)

Figure 10: Testing Robustness Under Visual Perturbations: Successful Rollout in Training vs. Fail-
ure Induced by Red Table Distraction

The CNN encoder comprised two convolutional layers (3→32→64 channels, 5×5 kernels, stride
2, ReLU), followed by flattening and a 128-dimensional binary classification head. The ResNet-18
variant retained the original residual block design but halved all channel widths (16→32→64→128),
applied global average pooling, and used a 64-dimensional classification layer.
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C EXPERIMENTAL SETUP

C.1 COMPUTING RESOURCES

All model training was performed on a single NVIDIA H100 GPU (80 GB HBM2), with peak GPU
memory usage of approximately 60 GB. We used mixed-precision (FP16) training under PyTorch
2.0 and CUDA 11.8 to maximize throughput. Full training (one tasks) required roughly 12 hours on
this setup.

For inference, the model’s footprint falls well below 16 GB of GPU memory, so it can be deployed
on a wide range of hardware (e.g., NVIDIA A100 40 GB, RTX 3090) without requiring an H100-
class device. All experiments ran on an Ubuntu 22.04 server with 256 GB of system RAM and dual
Intel Xeon CPUs.

C.2 REAL-WORLD EXPERIMENT SETUP

Real-world experiments were conducted using a UR5e robotic arm equipped with high-resolution
cameras and a standardized workspace. The setup is shown below in Fig 11.

Figure 11: Scenes from experiments on real world robot

C.3 SIMULATION EXPERIMENT SETUP

Simulation experiments were performed using the MuJoCo physics engine integrated with Robo-
suite. The simulated environments included variations in object positions, shapes, and textures. The
simulation allowed extensive testing across diverse scenarios. Below we show a few samples in
Fig 12.

Figure 12: Scenes from experiments on Robosuite

C.4 SEMANTIC SPACE TRAINING

For image encoding, we adopt the Vision Transformer Base (ViT-B/16) architecture from Torchvi-
sion, pretrained on the ImageNet-1k dataset (IMAGENET1K V1 weights). The original classifica-
tion head is replaced with a linear projection to a 512-dimensional latent space.

For text encoding, we employ the CLIP text transformer from OpenAI’s ViT-B/32 model, which
provides contextual embeddings of action descriptions. Unlike the vision branch of CLIP, which is
substituted with our ViT-B/16 encoder, the text branch is fine-tuned jointly with the image encoder
to learn a shared semantic embedding space.
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D BASELINES

To validate the effectiveness of our method, we compared it against two categories of baselines:
Reinforcement Learning (RL) baselines and Vision-Language Model (VLM) baselines. Below, we
detail their implementation, hyperparameters, and specific configurations.

D.1 REINFORCEMENT LEARNING (RL) BASELINES

The RL baselines were implemented using well-established algorithms, each optimized for the task
to ensure a fair comparison. The following RL methods were included:

• Proximal Policy Optimization (PPO): A policy-gradient method known for its stability
and efficiency. Key hyperparameters included:

– Learning rate: 3× 10−4

– Discount factor (γ): 0.99
– Clipping parameter (ϵ): 0.2
– Number of epochs: 10
– Batch size: 64
– Actor-Critic network layers: [128, 256, 128]

• Soft Actor-Critic (SAC): A model-free off-policy algorithm optimized for continuous ac-
tion spaces. The key hyperparameters were:

– Learning rate: 1× 10−3

– Discount factor (γ): 0.99
– Replay buffer size: 1× 106

– Target entropy: −dim(action space)
– Batch size: 128

• Advantage Actor Critic (A2C):
– Learning rate: 2.5× 10−4

– Discount factor (γ): 0.99
– Exploration strategy: Epsilon-greedy (ϵ decayed from 1.0 to 0.1 over 500,000 steps)
– Replay buffer size: 1× 106

– Batch size: 64
– Neural network layers: [128, 256, 128]

Each RL baseline was evaluated using the same metrics, ensuring consistency across comparisons.

D.2 VISION-LANGUAGE MODEL (VLM) BASELINES

The VLM baselines take advantage of the interplay between visual and textual modalities for task
representation. We evaluated 3 state-of-the-art VLMs adapted to our task:

1. GPT-4o
2. Gemini 1.5 Pro
3. Qwen2-VL

Additionally, we leverage GPT-4o with in-context learning, using five demonstrations. First, we
process the output trajectories into videos and compute the appropriate frame rate to generate video
sequences equivalent to 15 frames per trajectory pair. These sequences, representing perturbation
scenarios, are provided to the VLMs along with a system prompt that includes a detailed policy
description, training configuration, and a natural language task description. For evaluation, we
structure the testing dataset using a pairwise comparison framework, where each model is prompted
to assess two input video sequences and rank which is more likely to result in task success. The
results are recorded in a CSV file, and we compute comparison scores by analyzing model rankings
against ground-truth rollouts in the simulated perturbation.
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Figure 13: Testing Robustness Under Visual Perturbations: Successful Rollout in Training vs. Fail-
ure Induced by Red Table Distraction

E RATIONALE FOR USING REINFORCEMENT LEARNING

RL is employed in the RoboMD framework due to its ability to explore high-dimensional, complex
action spaces and optimize sequential decision-making under uncertainty. This section outlines the
key motivations for choosing RL as the core methodology:

Exploration of High-Risk Scenarios: Traditional approaches to analyzing robot policy failures
often rely on deterministic sampling or exhaustive evaluation, which become infeasible in large,
dynamic environments. RL allows targeted exploration by learning an agent that actively seeks out
environmental configurations likely to induce policy failures. This capability is particularly useful
for systematically uncovering vulnerabilities in high-dimensional environments.

Optimization of Failure Discovery: The objective of RoboMD is to maximize the occurrence of
failures in pre-trained policies. RL frameworks, such as PPO, are well-suited for this task as they
iteratively refine policies to achieve specific goals, such as identifying high-risk states. The reward
function incentivizes the agent to find configurations where the manipulation policy fails by going
through multiple actions to induce failures. Fig 13 shows several steps of the manipulation policy
rollout.

Comparison with Alternative Methods: While other methods, such as supervised learning or
heuristic-based exploration, can provide valuable insights into specific failure cases, they are limited
in their scope and adaptability. Supervised learning approaches rely heavily on labeled data, which
is challenging to obtain for failure analysis, particularly for rare or unseen failure modes. These
methods also lack the ability to adapt dynamically to changes in the environment, reducing their
effectiveness in exploring novel or complex failure scenarios. Similarly, heuristic-based exploration
methods, such as grid search or predefined sampling strategies, can identify failure cases under con-
trolled conditions but struggle to generalize in high-dimensional environments where the space of
possible failure configurations is vast. These methods are also constrained by their reliance on static,
predefined rules, which often fail to capture the intricate interactions between environmental factors
and failure likelihoods. In contrast, reinforcement learning excels in scenarios where exploration
and generalization are critical.

F CONTINUOUS ACTION SPACE EMBEDDING

Embedding actions in a continuous space is crucial for efficiently capturing the underlying structure
of decision-making processes. Unlike discrete action spaces, where each action is treated as an inde-
pendent category, continuous action space embeddings aim to encode similarities and relationships
between actions in a structured space.
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Table 10: Actions for Can and Box tasks.

Task Action Description

Can

Change the can color to red.
Change the can color to green.
Change the can color to blue.
Change the can color to grey.

Box
Change the box color to green.
Change the box color to blue.
Change the box color to red.

Box Sizes
Resize the box to 0.3× 0.3× 0.02 (L, B, H).
Resize the box to 0.2× 0.2× 0.02 (L, B, H).
Resize the box to 0.1× 0.1× 0.02 (L, B, H).
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Figure 14: The order in which the confusion matrix is a) Image Ecoder + BCE b) Image + Text
Encoder + BCE loss c) Image Encoder + BCE + Contrastive loss d) Image + Text Encoder + BCE +
Contrastive loss

F.1 ACTION DESCRIPTION MAPPING FOR CLIP LANGUAGE INPUT

To generate language inputs for CLIP, we use a mapped dictionary that encodes the action being
applied to the image. The action descriptions for different tasks are detailed in Table 10. This table
represents only a subset of possible actions, and users are free to modify the language as needed. The
descriptions are not strict requirements, as the model learns over time to associate text and images
with failure patterns, allowing for flexibility in phrasing while maintaining the underlying semantic
meaning. The actions used for Lift task is as follows which was also shown as (A1,A2...A21) in
Fig 9.

F.2 EVALUATION

Fig. 9 shows the failure distribution in the Lift environment under 21 independent perturbations.
These include 4 cube colors, 4 table colors, 3 cube sizes, 2 table sizes, 4 robot colors, and 4 lighting
conditions. Fig 14 illustrates the similarity structure of embeddings trained using only Binary Cross-
Entropy (BCE) loss, resulting in highly correlated representations. In contrast, the right matrix,
trained with a combination of BCE and Contrastive Loss, demonstrates improved separation, as
evidenced by the stronger diagonal structure and reduced off-diagonal similarities.

To assess the quality of the learned embeddings, we conduct an evaluation using a k-Nearest Neigh-
bors (kNN) classifier. Specifically, we train kNN on a subset of the embeddings and analyze the
impact of increasing k on test accuracy. The intuition behind this evaluation is that well-separated
embeddings should be locally consistent, meaning that a small k (considering only close neighbors)
should yield high accuracy, while increasing k (incorporating more distant neighbors) may introduce
noise and reduce accuracy as shown in Fig 15.
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Figure 15: kNN Accuracy Drop with Increasing k in Continuous Action Space Embeddings (left).
Training loss for training action representations (right)
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Figure 16: Performance comparison of behavior cloning (BC) and diffusion-based policies on the
Lift task before and after fine-tuning with failure-inducing samples. Each bar represents the success
rate of the policy across different table colors.

F.3 INTEGRATING VISUAL AND TEXTUAL REPRESENTATIONS

Incorporating a textual backbone alongside the image backbone yielded significantly lower loss
values and faster convergence compared to using an image-only backbone.

This improvement can be attributed to several factors:

1. Semantic Guidance: Textual representations carry rich semantic information that can guide
the image backbone. Instead of relying solely on visual cues, the model gains an additional
perspective on the underlying concepts (e.g., object names, attributes, or relations).

2. Improved Discriminative Power: With access to text-based information, the model can
differentiate between visually similar classes by leveraging linguistic differences in their
corresponding textual descriptions.

3. Faster Convergence: Because textual features often come from large, pretrained language
models, they are already highly informative. Injecting these features into the training
pipeline accelerates the learning process, reducing the number of iterations needed to reach
a satisfactory level of performance.

G FINE-TUNING

Once failure modes are identified, we empirically found that the most effective strategy for fine-
tuning the manipulation policy, πR, is to use all selected failure samples together rather than it-
eratively adapting to subsets (Fig. 16). To adapt πR against identified failures, we target specific
environment variations that a user wishes to improve. As shown in Table 11, fine-tuning with the
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Figure 17: BC lift finetuned on a combined dataset of 12 different Table colors

Table 11: Evaluation of Fine-Tuning Approaches on Failure-Targeted Data.

Fine-tuning (FT) Accuracy Mean Square Wasserstein Chi-Square FT Dataset
Strategies %(↑) Distance (↓) Error (↓) Size Size
Pre-trained 67.91 0.377 0.005 0.016 –
FT with RoboMD 92.83 0.033 0.001 0.001 1.29GB
FT with 1 failure 71.25 0.068 0.002 0.003 0.43GB
FT with 2 failure 75.83 0.140 0.003 0.006 0.86GB
FT with 3 failure 75.41 0.050 0.002 0.002 1.29GB
FT with 4 failure 80.00 0.128 0.002 0.005 1.72GB
FT with 5 failure 81.25 0.337 0.004 0.014 2.15GB
FT with 6 failure 64.76 0.201 0.003 0.008 2.58GB
FT with all failure 85.48 0.069 0.002 0.003 9.00GB

high-likelihood samples provided by πMD yields the highest accuracy. We then fine-tune πR on
the combined set of targeted samples, ensuring corrections for critical failures (Fig. 17). Notably,
fine-tuning on a large set of failure modes also leads to accuracy improvements. When computa-
tional resources permit, fine-tuning on all identified failures may be also effective; however, when
resources are constrained, leveraging RoboMD to select the most informative subset provides an
efficient and robust strategy for policy adaptation.

G.1 ADDITIONAL RESULTS

Figure 18: Comparison of model robustness by measuring failure likelihood under controlled small
environmental variations.
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Figure 19: Environmental and Object Perturbations on Manipulation Tasks
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