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ABSTRACT

Recent advances in diffusion models have led to great progress in generating high-
quality 3D shape with textual guidance, especially for 3D head avatars. In spite of
the current achievements, the Score Distillation Sampling (SDS) training strategy
is too time-consuming for real-time applications. Besides, the implicit representa-
tions make these methods generally unavailable in animation. To solve these prob-
lems, we present an efficient generalized framework called AniHead, which con-
tains shape and texture modelling respectively for generating animatable 3D head
avatars. We propose a novel one-stage shape predicting module driven by para-
metric FLAME model. As for texture modelling, a conditional diffusion model
is finetuned based on the proposed mean texture token. We further introduce a
data-free strategy to train our model without collecting large-scale training set.
Extensive experiments are conducted to show that our proposed method is not
only more efficient than trivial SDS-based methods, but also able to produce high-
fidelity and animatable 3D head avatars. The generated assets can be smoothly
applied to various downstream tasks such as video and audio based head anima-
tion.

1 INTRODUCTION

Generating 3D content under specific conditions, such as incorporating text, holds significant im-
portance in our 3D world, where we are surrounded by a plethora of 3D objects. The creation of
high-quality 3D data through generative models serves as a pivotal enabler for various real-world
applications, including virtual reality and cinematic editing. It is worth noting that the generation
of 3D data poses unique challenges compared to its 2D counterpart, given the need for intricate
and detailed representations. Fortunately, the advent of the Score Distillation Sampling (SDS) tech-
nique has emerged as a bridge between 2D and 3D data generation, paving the way for a series of
influential works (Poole et al., 2022; Wang et al., 2023b;a) in the domain of text-conditioned 3D
generation.

Inspired by the remarkable strides achieved in diffusion-based text-to-3D models (Poole et al., 2022;
Wang et al., 2023b), there has been a resurgence of research interest in the generation of 3D head
avatars. This endeavor revolves around the creation of highly realistic head avatars, guided by tex-
tual descriptions that capture the essence of human characteristics. Existing methodologies (Chen
et al., 2023b; Han et al., 2023) typically leverage SDS to independently optimize shape and texture
information, building upon pretrained diffusion models. While these SDS-based approaches (Han
et al., 2023; Zhang et al., 2023) yield static head avatars of satisfactory quality, they are beset by
two inherent limitations that curtail their practical utility: (1) Excessive Time Consumption: SDS-
based strategies, originally designed for sample-specific optimization, demand the optimization of
corresponding objectives for each text prompt through a substantial number of iterations. However,
real-world applications often necessitate swift generation to ensure an optimal user experience. Con-
sequently, there is a compelling need for a more generalized generative model that circumvents the
need for test-time optimization in 3D head avatar generation. (2) Challenges in Animation: Current
methodologies predominantly rely on implicit representations, such as DMTet (Shen et al., 2021),
for both coarse and refined shape modeling. Regrettably, compared with directly modelling shape
through 3D morphable models such as FLAME, implicit representations lack the requisite control
over elements like skeletal structure and facial expressions, rendering them ill-suited for animation
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purposes. Hence, the realm of 3D head avatar generation stands poised for innovation in the realm
of shape modeling, with a pressing demand for alternative strategies to address this shortcoming.

To this end, this paper presents an innovative, efficient and generalizable 3D head generation
pipeline, aptly named AniHead, that stands as a significant contribution to the field. This pipeline
excels in producing high-fidelity, animatable 3D head avatars, and its uniqueness lies in its approach.
Our method comprises two distinct conditional generators, each dedicated to modeling shape and
texture information with remarkable precision.

Taylor Swift

Mr. Bean

Mark Zuckerberg

Morgan Freeman

Figure 1: General results of our method with 4K texture. The human head avatars generated by our
proposed AniHead can be better adapted in animation, showing mimic expressions. The last row
shows the effect of jointly using a downstream CG pipeline as a post-processing step, where selected
hair is added to the generated avatar.
Specifically, we enhance the capabilities of the pretrained CLIP text encoder by incorporating an
additional MLP module, allowing it to predict control parameters based on textual input. These
parameters are subsequently translated to intricate 3D shapes through the use of FLAME, eliminat-
ing the need for a cumbersome two-stage generation process as in DreamFace (Zhang et al., 2023)
where a coarse geometry is first picked from pre-defined shape candidates according the text prompt
and then carved for 300 steps. For the purpose of generalized texture generation, our approach draws
inspiration from DreamBooth (Ruiz et al., 2023). Here, we introduce a novel concept of infusing
each text prompt with a mean texture token T ∗ by prepending it to the original prompts. This mean
texture token is meticulously crafted to encapsulate essential human head texture information. It
can effectively convey the common texture-wise features shared by human beings and UV mapping
relation through the finetuning of diffusion model. These enriched prompts serve as the foundation
for fine-tuning a pretrained Latent Diffusion Model (LDM), guiding it to acquire high-quality UV
maps that seamlessly align with the shape data.

What sets our model apart is its reliance on a data-free training strategy, a stark departure from the
resource-intensive data scanning process employed by DreamFace. Leveraging readily available
off-the-shelf models (Rombach et al., 2022a; Cherti et al., 2023), we construct a compact training
dataset for both shape and texture data through the SDS optimization technique. Once these two
generators are trained, our pipeline offers the unique advantage of swiftly generating head avatars
tailored to users’ requirements, all without the need for additional time-consuming optimization
steps. In essence, our contribution revolutionizes the landscape of 3D head avatar generation, offer-
ing efficiency, precision, and accessibility in equal measure.

In summary, our paper makes significant contributions to the field of 3D head avatar generation:
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1. We introduce an innovative framework, AniHead, for 3D head avatar generation. This
novel approach not only produces high-fidelity, animatable 3D head avatars but also ex-
cels in terms of inference speed. It achieves this speed advantage by eliminating the need
for test-time optimization, ensuring swift and efficient avatar creation tailored to users’
requirements.

2. We pioneer a data-free training strategy to empower our generalized generators. This strat-
egy, in stark contrast to labor-intensive manual data creation, leverages readily available
off-the-shelf models Rombach et al. (2022a); Cherti et al. (2023) to generate training data
efficiently. Our approach not only streamlines the training process but also reduces resource
requirements, marking a significant advancement in the field of 3D head avatar generation.

2 RELATED WORKS

Text-to-3D generation Text-to-3D models are of great value due to the important visualization
and comprehension property of 3D content. However such models were known to be hard to design
due to the complexity of 3D data and the correspondence between it and textual input. Fortunately,
the recent progress in diffusion-based text-to-image models has inspired various works in the text-
to-3D task. Poole et. al. first proposed DreamFusion (Poole et al., 2022), which adapts 2D diffusion
models to 3D data. The model is driven by a Score Distillation Sampling (SDS) approach, which
can effectively compute gradient through a pretrained diffusion model. Following this method, other
works mainly focused on improving performance and efficiency via different designs. For example,
Magic3d (Lin et al., 2023) utilizes a two-stage coarse-to-fine strategy to improve the quality. Metzer
et al. (2023) proposed to apply SDS to the latent space in order to better facilitate shape guidance.
Fantasia3d (Chen et al., 2023b) decouples the original generation into geometry and appearance
modelling individually. While our proposed method takes inspiration from DreamFusion to adopt
SDS to optimize the shape-related parameters, we design a data-free strategy in which we treat
the small scale dataset generated from SDS optimization as ground truth. We then use this dataset
to fine-tune the Stable Diffusion model with LoRA strategy. Such a strategy can help our model
generate high-quality animatable 3D head avatars within a minute, which can hardly be done by
traditional text-to-3d models.

3D head avatars The field of 3D head avatar modelling has garnered increasing attention due to
its challenging yet significant nature. Typically previous efforts have been dedicated in generating
3D head avatar from different data sources such as monocular video (Alldieck et al., 2018; Grassal
et al., 2022) and text guidance (Han et al., 2023; Zhang et al., 2023). Inspired by text-to-3D diffusion
models such as DreamFusion (Poole et al., 2022), several text-based 3D head avatar generation
models have been proposed. Concretely, DreamFace (Zhang et al., 2023) proposes to select coarse
shape model from ICT-FaceKit through CLIP score matching, which is then refined by optimizing
detailed replacement and normal maps in the tanget space. HeadSculpt (Han et al., 2023), on the
other hand, adopt FLAME-based NeRF in the coarse stage, and proposes an identity-aware editing
score distillation process for refinement. Articulated Diffusion (Bergman et al., 2023) introduces
a segmentation loss to enhance the alignment between geometry and texture. Different from these
existing methods, we integrate the parametric FLAME model for smoothly animating the generated
head avatars. Moreover, we utilize a generalized texture model instead of identity-specified one,
thus resulting in more efficiency.

Personalized control for diffusion models While the pretrained diffusion models can learn large
amount of prior knowledge from training data to construct high-quality data, it has been a problem to
drive these models with some personalized requirement, e.g. generating images of a specific species.
Textual Inversion (Gal et al., 2022) and DreamBooth (Ruiz et al., 2023) provides two different so-
lutions. Concretely, Textual Inversion proposes to optimize an additional word, while DreamBooth
chooses to finetune the pretrained diffusion models with pre-defined identity token. Other works try
to apply these methods to different tasks. For example, DreamBooth3D (Raj et al., 2023) extends
DreamBooth to 3D generation; AnimateDiff (Guo et al., 2023) attaches motion-related parameters
to subject-driven image generation model for animation; DisenBooth (Chen et al., 2023a) introduces
contrastive objectives to improve the information represented by the identity token. Our proposed
method also utilizes a similar technique to replenish our text prompts. The difference between the
existing methods and ours lies in the specific application domain. While the identifier in previous
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Figure 2: Schematic illustration of our proposed pipeline. We first adopt SDS technique to create
training data. Then the generated training set is used to train both the shape and texture generators.
The text prompts are projected to FLAME parameters by the shape generator and UV maps by the
texture generator with the assistance of mean texture token. During inference, our model can directly
generate high-quality human head avatars without test-time optimization.

methods mainly stands for subject-specific characteristics, we adopt such a method to guide the
diffusion model with mean facial features among human beings.

3 METHODOLOGY

In this section, we present our novel method for generating head avatars as shown in Fig. 2. We
build our model based on the observation that 2D priors embedded in the foundation models can
be effectively elevated to 3D representations. We propose to generate head avatars through a two-
branch network (Sec. 3.2) consisting of shape generator and texture generator. Specifically, these
two modules predicts shape and texture data respectively corresponding to the text prompts, by
adapting representative pretrained models such as CLIP and LDM to the new data domain. By
fusing these two components, we obtain a unified model capable of generating high-quality head
avatars with remarkable efficiency. We further employ the SDS loss to extract shapes and textures
aligned with given source prompts (Sec. 3.3), which are then used as training data for our model.

3.1 PRELIMINARY

Score Distillation Sampling The Score Distillation Sampling (SDS) technique proposed in
DreamFusion (Poole et al., 2022) has largely facilitated the design of text-to-3D models. This
method utilizes a pretrained text-to-image model ϕ such as Imagen (Saharia et al., 2022) and Stable
Diffusion (Rombach et al., 2022b) to optimize a neural radiance field (NeRF) parameterized by θ
through enhancing its consistency with textual information. The key insight of SDS is to generate
3D models that produce visually good images when rendered from various random viewpoints. In
other words, SDS elevates 2D representations to 3D by ensuring that the differentiable rendering
results of 3D objects closely match the powerful text-to-image model, such as Stable Diffusion, to
obtain the shape and color of 3D objects.

Specifically, given an input sample x, corresponding latent feature map z and its noisy version zt,
where t denotes the time step, and the corresponding textual information y, SDS first estimates
the noise added to zt as ϵϕ(zt; y, t). This estimation is then transformed into the loss function of
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difference between predicted and added noise, as following:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(zt; y, t)− ϵ)

∂z

∂x

∂x

∂θ

]
, (1)

where ϵ is the added random noise, w(t) controls the weight of loss based on t, x being the differ-
entiable rendered image of the 3D object. In the SDS method, Classifier-Free Guidance (CFG) (Ho
& Salimans, 2022) introduces a guidance scale parameter we is introduced to improve the sample
fidelity while balancing the diversity of the generated samples. Denote the guided version of the
noise prediction as (ϵ̂ϕ). The guidance scale parameter we is incorporated as follows:

ϵ̂ϕ(zt; y, t) = (1 + we)ϵϕ(zt; y, t)− weϵϕ(zt; t). (2)

where ϵϕ is the pre-trained denoising function. The guidance scale parameter we adjusts the score
function to favor regions where the ratio of the conditional density to the unconditional density
is high. In previous works such as DreamFusion, Fantasia3D, and HeadSculpt, they tend to set the
guidance scale parameter we to a higher value to enhance text control capabilities, enhancing sample
fidelity at the expense of diversity. However, since we employ the strong prior knowledge provided
by the FLAME model, we set this parameter to a relatively low value and obtain more realistic,
real-life outcomes. In this paper, we mainly utilize this technique to generate training data for our
propose generalized shape and texture generators.

Parametric FLAME model FLAME (Li et al., 2017) is a 3D morphable model (3DMM) for hu-
man faces that combines shape, expression, and pose variations. As a parametric human head model
capable of processing corresponding parameters into human head meshes, FLAME employs Prin-
cipal Component Analysis (PCA) to derive compact representations for various facial components,
including shape and expression variations. Specifically, the model is defined as

TP (β,θ,ψ) = T +BS(β;S) +BP (θ;P) +BE(ψ; E) (3)
M(β,θ,ψ) = W (TP (β,θ,ψ), J(β),θ,W), (4)

where β denotes shape components, θ denotes pose with regard to neck, jaw and eyeballs, ψ de-
notes expression, S,P, E denote space for previous three attributes, W is a blend skinning function.
Compared with the implicit representations such as DMTet, FLAME model can better control the
detail of head shape, thus being more appropriate for animation. In addition to shape and pose
components, the FLAME model also predefines a skeletal structure, which all facilitate driving and
customizing expressions and actions within computer graphics (CG) pipelines.

3.2 MODEL STRUCTURE

Shape Model While SDS primarily employs implicit representations, such as DMTet and NeRF, to
generate a wide range of objects, the task of generating human head avatars has a relatively narrower
scope but demands a higher level of detail. Therefore, it requires a more constrained yet fine-grained
approach. Furthermore, the generation of avatars is intended for downstream applications, such as
talking head animations. It is thus crucial to use parametric models that can adapt to computer
graphics pipelines, rather than relying on implicit shape representations. To this end, we utilize the
FLAME parametric model as our shape representation, which possesses fundamental 3D human
head structures and can easily control the head shape.

Formally, the shape data is parameterized based on FLAME, denoted as Si ∈ Rm, where m is
the dimension of PCA shape parameter. We propose to learn a generalized shape generator FS

that predicts Si conditioned on arbitrary text prompt T . In particular, we leverage the pretrained
CLIP text encoder to extract the text embedding t = CLIP(T ). t is then projected to the same
parameter space as S via an additional MLP module fθ to produce the predicted shape parameter
Ŝ = fθ(CLIP(T )). With post-processing steps that include the addition of accessories such as hats
and hair, the generated avatars can be readily employed in downstream tasks. Note that there are
actually lots of pretrained text encoders, such as T5. And it has been found that using such powerful
models can significantly improve the quality of generation in diffusion models (Balaji et al., 2022).
Different from most text-to-image and text-to-3D models that utilize fixed text encoders, we try to
help the model learn shape-aware knowledge through finetuning. Therefore the CLIP text encoder
is chosen for simplicity.
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Texture Model For texture modelling, we seek a straightforward way to finetune a pretrained La-
tent Diffusion Model (LDM) so that we can make use of the generalizable prior knowledge in such a
model. Formally, the LDM is further trained to generate UV maps based on textual guidance. How-
ever, UV maps generally have remarkable domain gap with normal images. Besides, text prompts
can only provide those significant characteristics of a person, e.g. gender, age, etc. In contrast, the
most basic prior knowledge of human head texture, such as the topology of human face, UV map-
ping relation, common facial features, etc., is often missed in the prompts. To overcome this issue,
we propose to complement each the prompts with a pre-defined mean-texture token T ∗. Specifically,
we generate a modified version T̃i for each text prompt Ti by prepending T ∗ to it. The mean-texture
token is aimed to represent prior knowledge of human face textures. By this means, the renewed
text prompts can have sufficient content so as to denote the general human facial features, other
than the original prompts that often point to specific features of each human face. By finetuning the
LDM with T̃i, the model can gradually learn the expected information contained in the mean texture
token, thus improving the generaion quality. It is noteworthy that while the proposed mean-texture
token is similar to the unique subject identifier utilized in DreamBooth, the actual effect is indeed
different. The identifier in DreamBooth is aimed to represent a specific subject. In contrast, our
mean-texture token helps complement text prompts by representing common texture-wise features
shared by human beings.

3.3 TRAINING STRATEGY

Shape Model Given the promising capabilities of SDS-based text-to-3D methods, we propose
to build the training pipeline based on such methods. We first prepare a few candidate prompts
T = {Ti}ni=1 ranging from descriptions of celebrities to specific portrayals of individuals. This
endows our shape model with the generalization ability to generate shapes that both reflect identity
and conform to descriptions. Then by applying the SDS loss as in Eq. 1, we optimize the shape
parameters Si corresponding to each prompt Ti, which results in the pairwise text and shape data.
Afterwards these data is utilized to train our proposed shape generator, in which the parameters of
MLP fθ are optimized along with those of the CLIP text encoder. To keep the efficiency, the text
encoder is finetuned in the LoRA style, i.e. learning newly-introduced parameters, that are low-rank
decomposed, for each layer.

Texture Model We adopt the same training strategy as for the shape model, i.e. generating train-
ing UV maps via SDS optimization based on texture pool T and finetuning the pretrained LDM.
As introduced in Sec. 3.1, the FLAME parametric model is implemented using PCA. However,
the texture component is subject to dimensionality constraints after PCA, leading to an inability to
express high-frequency details and causing the model to suffer from limited texture representation
capabilities. Therefore, we only utilize the texture map UV relationships from the FLAME model
and apply the texture UV map Ψ ∈ RH×W×3 to the head shape obtained in Sec. 3.2. Specifi-
cally, we represent the texture as Ψ = Ψ̄ + ∆Ψ, where Ψ̄ denotes the mean texture provided by
the FLAME model and ∆Ψ denotes human-specific texture details. ∆Ψ enables more refined op-
timization results, i.e. personalizing each texture given the corresponding text prompt. Therefore,
we optimize the 0-initialized ∆Ψ using SDS loss to produce high-fidelity textures with strong iden-
tity. As for general model, to achieve both training efficiency and generalization capabilities, we
fine-tuned Stable Diffusion using the LoRA style, which is consistent with the approach used for the
Shape Model.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Generally, the FLAME parametric model has a total of 300 shape parameters processed with PCA.
We choose to optimize the first 100 dimensions, which are sufficient to express facial shapes, to
avoid artifacts such as excessively angular facial shapes. The parameters are clamped within the
range [-2, 2] for better results. The size of UV maps are set as the 256 × 256 and the resolution is
increased to 4K during inference using off-the-shelf methods. Specifically, our 256 × 256 textures
are first restored to 1024 × 1024 using RestoreFormer++ (Wang et al., 2023c), then to 4K using
superresolution model Real-ESRGAN (Wang et al., 2021).
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DreamFusion LatentNerf Fantasia3dProlificDreamer DreamFace Ours

A portrait of Taylor Swift

A portrait of Barack Obama

A portrait of Donald Trump

Face of a young, beautiful girl, big eyes, straight nose, smooth skin, golden ratio

Figure 3: Comparison with existing text-to-3D methods. While other methods may fail to generate
reasonable outcomes, our approach stably produces high-quality shape and texture, leading to supe-
rior results within less time.

We obtained a dataset of over 600 samples through SDS optimization. We then picked 50 samples
out of them, ensuring a balance of gender, ethnicity, and age, including both celebrities and descrip-
tive text results. This selection process effectively increased the generalization capabilities of our
AniHead models. For the CLIP text encoder, we apply the LoRA strategy to the Query and Value
(QV) layers of the CLIP text encoder. We use learning rate initialized as 1e − 3, linear decay to
0, batch size being 128 and AdamW optimizer, with attention dimension r 16 and adaptation co-
efficient 16. For Texture Model, we use learning rate initialized as 1e − 4 and cosine decay, with
10 step warmup, AdamW optimizer, attention dimension r 128 and adaptation coefficient 64. The
other details are listed in the appendix.

4.2 QUALITATIVE RESULTS

We present our qualitative results in two main parts, i.e. static human heads and animated ones.
For the static results, we present comparison with other text-to-3D methods including DreamFusion
(Poole et al., 2022), LatentNerf (Metzer et al., 2023), ProlificDreamer (Wang et al., 2023b), Fan-
tasia3d (Chen et al., 2023b) and DreamFace (Zhang et al., 2023). The results are shown in Fig. 3.
DreamFace suffers from limited prior shape information since it requires selecting coarse shape
models from ICT-FaceKit, which only contains 100 identity base models. As a result, this method
struggles to generate shapes that closely match the prompts, leading to final results with weak iden-
tity features while our model is able to generate 3D models bearing distinguish identity. On the
other hand, although the optimization-based approaches such as LatentNeRF and ProlificDreamer
can have better quality than DreamFusion, the results stem from 2-3 times repetition and selection.
This is because they have unstable optimization directions and are prone to producing failure cases.
Besides, We also observed the “Janus problem” in ProlificDreamer and LatentNeRF (as seen in Row
3 and Row 4) even when using the Perp-Neg strategy (Armandpour et al., 2023). In contrast, our
method, which is guaranteed by the FLAME model prior, can stably generate realistic shapes and
textures that accurately reflect identity features.
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Beyond creating head avatars with general prompts, our method can also well handle specific
prompts for tasks such as generating special character and editing. Although we only train our
model on celebrities and real-life people, the shape and texture generators can generalize well to
special characters such as Batman thanks to the strong prior provided by Stable Diffusion. Further-
more, our model enables editing directly through natural language instructions. For example, in
Fig. 4, we achieve age and style variations by simply adding “old”, “as a clown” or “white/brown
skin” to the prompt.

Batman Saul Goodman Saul Goodman, old Saul Goodman as a clown

EditingSpecial Character

Green Goblin Ben Kingsley Ben Kingsley, old
Ben Kingsley, white skin

Elon Musk Elon Musk, brown skinElon Musk, oldThe Joker

Figure 4: Generate special character and editing through natural language. Avatars of 256 × 256
resolution are shown in the left part, with 4K resolution results in the right part. By zooming in, we
can see that details such as eyebrows, beards, spots, and wrinkles are all clearer and more realistic.
As for the animation, thanks to the convenient control of FLAME model, we can drive our generated
avatars using pretrained DECA (Feng et al., 2021) model, of which the results are presented in Fig. 5.
Specifically, we adopt DECA to extract expression and pose parameters, and then merge them into
our generated avatar, thereby enabling the animation of the avatar. As we can see in Fig. 5, by
directly using a simple off-the-shelf FLAME parameter extraction model, we can achieve video-
based driving, with the resulting animation being continuous and natural. It is noteworthy that the
resulted heads suffer from drawbacks like unnatural mouth and eye movements. These problems
can be ascribed to DECA’s lack of specific training for the eyes and insufficient focus on the mouth
region during training. We have the potential to achieve better results with an improved FLAME
parameter extraction model, or by utilizing motion capture data directly to drive the FLAME model
for more accurate and natural animations.

4.3 QUANTITATIVE RESULTS

For quantitative results, we mainly focus on two important metrics. The first is CLIP score (Radford
et al., 2021), which measures the fidelity of generated results. Higher CLIP score indicates better
quality. We borrow the results from DreamFace and follow its implementation by calculating the
cosine similarity between image features and text features, using the prompt “the realistic face of
NAME/description”. The second is the inference time for each sample, which can sufficiently show
the efficiency of each method. As shown in Tab. 1, our method demonstrates realism, good text
alignment, as well as efficiency, outperforming other methods in terms of both CLIP score and
running time.
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Figure 5: Animation results of our proposed method. We drive the generated avatars using DECA,
with a video of Barack Obama as source video.

Method CLIP score ↑ Inference time ↓
Text2Mesh 0.2109 ∼15 mins
AvatarCLIP 0.2812 ∼5 hours

Stable-DreamFusion 0.2594 ∼ 2.5 hours
DreamFace 0.2934 ∼ 5 mins

Ours 0.3161 ∼ 1min

Table 1: Comparison of CLIP score and inference time for one sample between our proposed
method and the previous ones.

4.4 MODEL ANALYSIS

Effectiveness of mean texture token. To further show the efficacy of the proposed mean texture
token, we conduct an ablation study among models utilizing two variants of mean texture token as
follows: (1) Rare Token: the method proposed as in Sec. 3.2, and (2) Natural Language Descrip-
tion Token: instead of using a special token, we prepend a phrase “Facial UV texture” to the original
prompts. As shown in Fig. 6, using only the mean texture token and gender-specific words such as
“man” and “woman” can yield mean textures, even though the mean texture image was not included
in the training dataset. On the contrary, the Natural Language Description Token cannot generalize
to special cases, such as special characters and stylized editing. This may be because the Natural
Language Description Token contains and reinforces the real-face prior, while the Rare Token can
better learn the UV texture mapping.

‘T*^, man’ ‘T*^, woman’ ‘Facial UV texture of man’‘Facial UV texture of man’

Figure 6: Generated Texture from mean texture tokens. During training, we did not include the
FLAME mean texture image for fine-tuning. However, the model can still learn to associate the
mean texture token with the mean texture map.

5 CONCLUSION

In this paper we discuss the merits and drawbacks of the current SDS-based text-to-human head
models. Based on the discussion we explore a new pipeline which adopts SDS technique to generate
training data for generalized model rather than directly using it in inference. The proposed pipeline
learns a shape generator driven by FLAME-based parameters and a texture generator which utilizes
text prompts complemented by our proposed mean texture token for generations. The extensive
experiment results show both the efficiency and effectiveness of our method, indicating the strength
of such pipeline when generating high-quality animatable human heads in real-life applications.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Camera angle range Unlike other SDS-based methods, since we optimize on a reasonably good
prior human face, we do not require a large camera angle range. In our experiments, we found
that excessively large elevation angles can also introduce artifacts, possibly due to the discrepancy
between non-daily-life camera angle images and the Stable Diffusion prior.
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Shape Optimization Texture Optimization
Elevation Range [−5, 5] [−5, 5]
Azimuth Range [−90, 90] [−90, 90]

CFG 50 7.5
Learning Rate (lr) 0.001 0.0008

Optimizer AdamW AdamW
Weight Decay 0.01 0.1

Table 2: Hyperparameter configuration during SDS optimization.

Shape Model Texture Model
Learning Rate (lr) 0.001 0.0001

Learning Rate Decay Strategy Linear Cosine
Batch Size 128 8
Optimizer AdamW AdamW

Table 3: Hyperparameter configuration during generalized model training.

Initial pose Additionally, the initial pose of FLAME has a slight upward tilt. We observed that,
during experimentation, excessively large camera azimuth angles (such as a 90° side view) could
also yield poor results due to the difference from the Stable Diffusion prior. Therefore, we crawled
100 ID photos from the internet and used DECA (Feng et al., 2021) to detect the average FLAME
pose in these photos. We fixed FLAME model on this pose and then optimized the shape parameters.

SDS Training Details Since we want to generate decoupled shape and texture instead of sin-
gle 3D shape, we have to optimize two sets of parameters controling shape and texture respec-
tively. Specifically, shape paramter S ∈ R1×100 is optimized with SDS. S can be mapped to 3D
head shape by fixing the pose and expression parameters to 0 in the FLAME model. Formally,
T,Mnormal = FLAME(S), where T is mesh shape and Mnormal is the according normal map.
Then, we use a differentiable renderer R with a random camera pose C to obtain the shader image
I = R(T,C,Mnormal). We then encode I into the latent space to obtain zt, and we use the SDS
loss to get the optimized shape S′.

For texture, we fix the shape parameters Ŝ = S′ and set the parameter to be optimized as texture
map Mtex, which is initialized as the mean texture. Similarly, we obtain I = R(T,C,Mtex), which
reflects the effect of mapping the texture map to be optimized onto the 3D shape.

Weight Decay In our experiments, we discovered that, owing to the instability of the SDS loss,
it is necessary to apply a larger weight decay. This is combined with the texture strategy, defined
as texture Ψ = Ψ̄ + ∆Ψ, where Ψ̄ denotes the mean texture provided by the FLAME model and
∆Ψ denotes human-specific texture details, and we optimize only ∆Ψ. Compared to optimizing the
entire texture map, focusing on optimizing ∆Ψ and increasing weight decay leads to more realis-
tic texture maps. In contrast, optimizing the entire texture map may result in the introduction of
unwanted artifacts, such as points and lines.

Classifier-free guidance Furthermore, former SDS-based methods, such as DreamFusion (Poole
et al., 2022), tend to use high classifier-free guidance (CFG) (Ho & Salimans, 2022) to improve
sample fidelity at the cost of introducing artifacts and causing generated colors to be overly smooth
and distorted. Since our method already incorporates a strong prior, we do not need a large CFG to
achieve good optimization results. In fact, we found that with a CFG of 30, the generated results are
not sufficiently realistic, resembling stylized paintings. A CFG below 5 leads to overly blurry results,
indicating insufficient text control. By setting the CFG to 7.5, following the conventional value for
Stable Diffusion, we can generate realistic, high-fidelity results with great identity matching. The
relevant results are shown in Fig. 7.

Discussion about FLAME model Admittedly, FLAME may have limitations in representing cer-
tain accessories such as hair or hats. However, using a parametric model has its advantages:
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CFG value

CFG=30 CFG=15 CFG=7.5

Barack Obama

Taylor Swift

Figure 7: The effect of various CFG values. We finally set the CFG to 7.5 for better fidelity.

(1) The parametric model incorporates a human head prior, providing constraints that enable the gen-
eration of more reasonable results, while implicit representation methods struggle or fail to generate
reasonable results (as shown in Fig.3). Both shape and texture are more controllable and reasonable,
which had also mentioned in our overall response.

(2) Our approach is animatable, allowing for easy integration with off-the-shelf driving methods to
create animations, as demonstrated in the gif in Figure 5. In contrast, implicit methods, although
capable of representing hair, are not animatable and lack downstream applications.

(3) For static 3D head avatars, adding hairs by post-processing, as adopted by us and DreamFace
Zhang et al. (2023), would not lead to significant performance gap with latent-based methods.
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Figure 8: Celebrities generated by our method.
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Figure 9: Celebrities generated by our method.
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Anne HathawayBen Kingsley

Morgan Freeman

The Joker

Jackie Chan

Leonardo Dicaprio

Figure 10: We show part of the SDS optimization results (left of each set) and AniHead generation
results (right of each set). Specifically, we compare the SDS optimization results with the inference
results and show that not only does inference results generates better in skin colors, but also better
in details. We zoom in two sets of results to show improvement in details.
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w/o. 𝑇∗

Prompt = ‘Elon Musk, brown skin’

Prompt = ‘girl’

w. 𝑇∗

w/o. 𝑇∗ w. 𝑇∗

Figure 11: Comparison of generation results with and without the proposed mean texture token. We
can find results without mean texture token T ∗ suffer from low alignment with the text prompts.
Meanwhile, the generated textures have problems of spatial misalignment. We’ve added guides
(orange lines) to illustrate that without T ∗, the the UV geometry of delicate parts may be misaligned,
such as the nose and eye regions. We’ve also zoomed in on these two areas from generated 3D heads
to show the error caused by the texture UV position offset.
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