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ABSTRACT

Multimodal data encountered in real-world scenarios are typically of low quality,
with noisy modalities and missing modalities being typical forms that severely
hinder model performance and robustness. However, prior works often handle
noisy and missing modalities separately. In contrast, we jointly address missing
and noisy modalities to enhance model robustness in low-quality data scenarios.
We regard both noisy and missing modalities as a unified low-quality modality
problem, and propose a unified modality-quality (UMQ) framework to enhance
low-quality representations for multimodal affective computing. Firstly, we train a
quality estimator with explicit supervised signals via a rank-guided training strat-
egy that compares the relative quality of different representations by adding a
ranking constraint, avoiding training noise caused by inaccurate absolute quality
labels. Then, a quality enhancer for each modality is constructed, which uses
the sample-specific information provided by other modalities and the modality-
specific information provided by the defined modality baseline representation to
enhance the quality of unimodal representations. Finally, we propose a quality-
aware mixture-of-experts module with particular routing mechanism to enable
multiple modality-quality problems to be addressed more specifically. UMQ con-
sistently outperforms state-of-the-art baselines on multiple datasets under the set-
tings of complete, missing, and noisy modalities.

1 INTRODUCTION

Real-world entities and events are inherently described through heterogeneous modalities, and hu-
mans perceive the environment via multiple sensory channels (e.g., visual and auditory). This ob-
servation highlights the critical necessity of fusing information from disparate sources (Baltrušaitis
et al., 2019). Multimodal affective computing (MAC) (Poria et al., 2017; Guo et al., 2025), which
systematically integrates linguistic, acoustic, and visual signals emitted by speakers to jointly model
and predict human sentiment, opinion, mental state, and intent, thus constitutes a pivotal and rapidly
evolving direction in multimodal learning with substantial translational potential.

Figure 1: An example of missing and noisy modalities.

Nevertheless, in real-world scenarios,
multimodal data frequently exhibit de-
graded quality, manifesting primarily as
modality-specific noise and incomplete-
ness. Such impairments substantially de-
grade model performance, compromise
robustness, and constrain practical appli-
cability (Zhang et al., 2024). As shown in
Figure 1, missing modality typically arises
from unavailable acquisition equipment or
sensor failures, whereas noisy modality originates from background interference, inherent sensor
inaccuracies, data transmission artifacts, etc. Current works address missing and noisy modalities
separately (Guo et al., 2024; Wang et al., 2023). However, since both issues are common and often
occur simultaneously, separate handling limits the application scope and robustness of the model.
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Consequently, we propose a framework to jointly handle missing and noisy modalities, aiming
to enhance model robustness in low-quality data scenarios. We regard missing modality as a spe-
cial type of noisy modality, where the noise generation pattern and affected modality are known.
Then, we propose a unified modality-quality (UMQ) framework to simultaneously handle multiple
low-quality data problems. UMQ reframes both noisy and missing modalities as a unified low-
quality modality problem, systematically enhancing modality representations through three syner-
gistic components: (i) a quality estimator that quantifies representation fidelity, (ii) a quality en-
hancer that leverages modality-specific and sample-specific priors to recover informative features,
and (iii) a modality-quality-aware mixture-of-experts (MQ-MOE) architecture that adaptively
handles enhanced representations under varying quality conditions.

Specifically, compared to previous works that do not define explicit labels for the learning of uni-
modal weights or confidences (Li et al., 2024b), we train a quality estimator for each modality in
an explicit supervised manner to more accurately identify the quality of the modality. As absolute
labels for modality quality are hard to determine, we propose a rank-guided training strategy and
define multiple types of relative labels for quality learning. The proposed training strategy compares
the relative quality of different modality representations by adding a ranking constraint, avoiding
training noise caused by inaccurate absolute labels. It enables more flexible and accurate learning
of modality quality, as it does not enforce the estimated quality scores to fit an absolute value.

Afterwards, unlike prior approaches that directly reconstruct missing modalities using available
modalities (Lian et al., 2023; Shi et al., 2025), we train a quality enhancer for each modality
that uses the ‘sample-specific information’ provided by other modalities and ‘modality-specific
information’ provided by the defined modality baseline representation to enhance the quality of
unimodal representations, avoiding the problem that the generated representations do not contain
modality-specific information. The established modality baseline representation captures global
distribution and inherent properties of the corresponding modality, supplying modality-specific in-
formation for low-quality representations and enhancing their fidelity. Leveraging (1) the modality-
specific baseline representation (i.e., modality-level characteristics independent of samples) and (2)
sample-specific information from other modalities, quality enhancer augments representations while
ensuring modality-specific details are learned. By integrating modality-level and sample-level cues,
quality enhancer can generate richer, higher-quality modality representations.

Finally, we propose the MQ-MoE architecture that enables a unified framework to handle di-
verse modality-missing and modality-noise configurations more specifically. For |M| input
modalities, each can be either high- or low-quality, yielding 2|M| distinct quality combinations. A
single shared predictor becomes impractical for such combinatorial explosion, especially as |M|
increases. To address this, MQ-MoE employs specialized expert modules that separately process
each modality-quality combination, ensuring dedicated handling of every possible configuration.
Moreover, we enforce several constraints on expert selection to ensure that samples sharing the
same modality-quality configuration (i.e., identical language, acoustic, and visual quality levels) are
routed to similar experts, whereas samples with different configurations activate distinct experts.

The main contributions of this paper are listed as below:

• We innovatively address noisy modality and missing modality issues in a unified frame-
work, enhancing model robustness in real-world scenarios. UMQ consistently outperforms
state-of-the-art methods on multiple MAC datasets under the settings of complete modali-
ties, missing modalities, and noisy modalities.

• We devise the quality estimator that quantifies representation quality of each modality,
and propose a rank-guided optimization strategy to compare the relative quality between
different representations to more accurately train the quality estimator in a supervised way,
avoiding training noise caused by inaccurate absolute labels.

• We propose the quality enhancer that use ‘sample-specific information’ provided by other
modalities and ‘modality-specific information’ provided by the proposed modality base-
line representation to enhance the quality of unimodal representations, ensuring that the
generated representations can contain modality-specific information.

• We introduce MQ-MOE that enables a unified framework to handle diverse modality-
missing and modality-noise configurations, and enforce several constraints to ensure that
samples sharing the same modality-quality configuration are routed to similar experts.
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2 RELATED WORK

2.1 MISSING MODALITY

The works that handle missing modality problem can be roughly categorized into four categories:
(1) Data augmentation methods simulate the absence of modality during training to improve gen-
eralizability via modality drop, noise inference, etc (Lin & Hu, 2024; Hazarika et al., 2022). How-
ever, they usually lead to a decrease in the performance under complete modalities; (2) Alignment-
based methods align the features of incomplete and complete modalities through contrastive learn-
ing (Poklukar et al., 2022), canonical correlation analysis (Andrew et al., 2013; Sun et al., 2020),
or knowledge distillation (Li et al., 2024c; Zhong et al., 2025), etc. But they typically fail to
maintain the performance of trained models due to the lack of modality recovery mechanisms; (3)
Reconstruction-based methods recover missing modality features using generative models, such
as autoencoders (Tran et al., 2017; Zeng et al., 2022), graph networks (Lian et al., 2023), diffusion
models (Wang et al., 2023), and prompt-tuning strategies (Guo et al., 2024). They usually directly
use existed modalities to reconstruct missing modalities, and the generated features often fail to
convey modality-specific information. In contrast, we comprehensively leverage modality-level and
sample-level cues to enable the enhanced representations to contain modality-specific information;
(4) Architecture-based methods leverage architectures that can naturally handle any number of
modalities (attention networks, ensemble frameworks, etc) to address missing modalities (Deng
et al., 2025; Xue & Marculescu, 2023). For example, Xu et al. (2024a) apply MOE for unimodal
expert training and experts mixing training, aiming to learn discriminative unimodal and joint rep-
resentations. But they overlook handling various modality-missing/-noise scenarios. Differently,
UMQ leverages the power of MOE to jointly handle multiple modality-missing/-noise situations,
and designs quality-aware routing mechanisms to address each situation specifically.

2.2 NOISY MODALITY

The works that handle modality noise mainly fall into three categories: (1) Noise augmentation
methods simulate real-world noise by adding noise to features or raw inputs and designing defense
mechanisms accordingly (Hazarika et al., 2022; Mao et al., 2023). However, designing defense
mechanisms for each type of noise is complex and has limited generalizability; (2) Representation
regularization methods use techniques such as tensor rank minimization and information bottle-
neck to extract discriminative representations from noisy features (Liang et al., 2019; Mai et al.,
2023b; Federici et al., 2020). However, they rely on assumptions that may not hold in real-world sce-
narios; (3) Noise identification and filtering methods aim to identify and suppress noisy informa-
tion using attention/gating mechanisms (Gong et al., 2025; Xue et al., 2023; Gao et al., 2024). How-
ever, they do not define explicit supervised labels for the learning of attention weights/confidences.
In contrast, we train the quality estimator with explicit labels, and propose the rank-guided training
strategy to leverage relative quality labels for the learning of modality quality.

In addition, the joint handling of noisy and missing modalities remains an open challenge. As
these two forms of data degradation frequently co-occur in the real-world, we jointly resolve them
to broaden the practical applicability of the model.

3 ALGORITHM

The diagram of UMQ and the training objectives of the proposed quality enhancer, modality de-
coupling operation, quality estimator, and the MQ-MoE are shown in Figure 2. UMQ is evaluated
on multiple MAC tasks, including multimodal sentiment analysis (MSA) (Zadeh et al., 2016), mul-
timodal humor detection (MHD) (Hasan et al., 2019), and multimodal sarcasm detection (MSD)
(Castro et al., 2019). The input is a video segment described by acoustic (a), visual (v), and lan-
guage (l) modalities. The input feature sequences are denoted as {Um ∈ RTm×dm |m ∈ {a, v, l}},
where Tm is the sequence length and dm is the feature dimensionality. We apply unimodal networks
to extract unimodal representations xm ∈ R1×d based on Um (the structures of unimodal networks
are introduced in Section B.1). If a modality is absent, we use Gaussian noise as its default features.
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Figure 2: Diagram of UMQ and the training objectives of the proposed components.

3.1 QUALITY ESTIMATION AND ENHANCEMENT

Given unimodal representation xm ∈ R1×d, we establish a Sigmoid-activated quality estimator
Estimatorm to generate the estimated quality score αm ∈ R1 for xm:

αm = Estimatorm(xm; θEm
) (1)

Then, we enhance the quality of unimodal representations using ‘sample-specific information’ and
‘modality-specific information’. We first illustrate how we obtain sample-specific and modality-
specific information via the proposed modality decoupling operation:

xc
m, xs

m = Decouplem(xm; θdecouplem); Lor
m = ||Nor(xs

m)(Nor(xc
m))R||2 (2)

LMI
m =max(||xm−xc

m||2−ϵ,0)+max(||xm−xs
m||2−ϵ,0) (3)

Lc
m=

1

n

n∑
i=1

||(xc
m)i−

1

n

n∑
j=1

(xc
m)j ||2 (4)

ẍm = Couplem(xs
m,xc

m; θcouplem); Lre
m = ||xm − ẍm||2 (5)

where Nor denotes the L2 normalization operation, Decouplem and Couplem denote the decou-
ple and couple networks for modality m, xs

m and xc
m are the sample-specific and sample-shared

(modality-specific) representations for modality m, n is the batch size (i and j are the indices of
samples), ϵ is the maximum distance that ensures xc

m/xs
m and the original representation xm main-

tain a degree of similarity but are not identical, and ẍm is the reconstructed representation. The
orthogonality loss Lor

m in Eq. 2 enforces orthogonality between xs
m and xc

m. The mutual infor-
mation constraint LMI

m in Eq. 3 ensures that xc
m/xs

m maintains relevance to xm, thus preventing
xc
m/xs

m from only containing information unrelated to xm. The modality-specific loss Lc
m in Eq. 4

encourages that xc
m remains the same for all samples. The reconstruction loss Lre

m in Eq. 5 forces
xs
m and xc

m to fully encompass the information in xm, preventing information loss during decom-
position. The total loss for the modality decoupling operation Lde is then defined as:

Lde=
∑
m

Lc
m + LMI

m + Lre
m + Lor

m (6)

After obtaining sample-specific representation xs
m and modality-specific representation xc

m, we use
xc
m to construct modality baseline representation xb

m that reveals the general distributional infor-
mation of modality m, aiming to provide modality-specific information for quality enhancement:

xb
m ←−

1

2
(λ× xb

m + (1− λ)× 1

n

n∑
j=1

(xc
m)j) +

1

2
xtri
m (7)

where xtri
m ∈ R1×d is a trainable embedding for modality m, λ is a hyperparameter for moving

average that is between 0 and 1. Notably, in Eq. 7, except for the regular moving average (the left
part), we use the trainable embedding xtri

m to construct modality baseline representation. This is
because in practice, we can only select a small proportion of samples for each updating due to the
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memory limitation of hardware, which inevitably introduces noise. Moreover, the features of sam-
ples change across iterations, and it might be difficult to balance the weights of previous embedding
and the current one. Therefore, we learn a bias embedding xtri

m that automatically compensates for
the possible noise and error introduced by regular moving average.

Combining the modality-specific and sample-specific information, the quality enhancer aims to
generate higher-quality unimodal representation x̄m:

x̄m=EHm(xm, {xs
m′ · αm′ |m′ ̸= m},xb

m; θEHm) (8)
where EHm is the abbreviation of quality enhancer Enhancerm, m′ ∈ {a, v, l},m′ ̸= m. The xs

m′

is multiplied by its estimated quality αm′ so that the quality enhancer can be aware of the quality of
modality m′ when leveraging its modality-specific information to enhance xm. Compared to prior
approaches that directly reconstruct missing modalities using available modalities (Lian et al., 2023;
Shi et al., 2025), the proposed quality enhancer comprehensively leverages the ‘sample-specific
information’ provided by other modalities and ‘modality-specific information’ provided by modality
baseline representation to enhance the quality of unimodal representations, avoiding the problem that
the generated representations do not contain modality-specific information.

Then, we generate multimodal representation X ∈ R1×d based on the enhanced representations:
X = Fusion(x̄l, x̄a, x̄v; θf ) (9)

In practice, we use a multi-layer perception (MLP) network as the fusion network Fusion.

3.2 MODALITY-QUALITY-AWARE MIXTURE-OF-EXPERTS

Each modality can be either high- or low-quality, yielding 2|M| distinct quality combinations (|M|
denotes the number of modalities). A single shared predictor becomes impractical for such combi-
natorial explosion. Therefore, taking inspiration from the MOE framework (Riquelme et al., 2021;
Mustafa et al., 2022), we design a MQ-MoE architecture that enables a unified framework to
specifically handle diverse modality-missing and modality-noise configurations. MQ-MoE em-
ploys specialized expert modules and quality-aware routing mechanism that separately processes
each modality-quality combination, ensuring dedicated handling of every possible configuration:

AG =
WG(X)R√

d
∈ Rh×1 (10)

ÂG, I = Topk(AG); X̄ =

k∑
j=1

Softmax(ÂG)jEj(X) (11)

where WG ∈ Rh×d is the gate control parameter (h is the total number of experts), AG is the expert
selection vector (the experts corresponding to the top-k largest values in AG will be selected as the
processing experts for X), ÂG denotes the vector consisting of the top-k largest values in AG (I
denotes their positions in AG), Ej denotes the jth selected expert ({E1, E2, ..., Ek} = {Ej |j ∈ I}).
MQ-MOE enforces several constraints on expert selection to ensure that samples sharing the same
modality-quality configuration (i.e., identical language, acoustic, and visual quality levels) are
routed to similar experts, whereas samples with differing configurations activate distinct experts:

ĀG =
1

n

n∑
i=1

Ai
G; Lbalance = V ar(ĀG) (12)

Lsample =
1

n

n∑
i=1

max(0,−V ar(Ai
G) + β) (13)

Lsame =
∑
i,j

||Ai
G −Aj

G||
2, s.t. pim = pjm, ∀m ∈ {l, a, v} (14)

where n denotes the batch size, V ar is the variance function, pim denotes the quality level for modal-
ity m in sample i (pim = 0 iff αi

m < τ else pim = 1, where τ is a quality threshold hyperparameter).
Lbalance enforces equal selection probabilities across all experts at the batch level, preventing any
subset of experts from being disproportionately activated. Lsample imposes that the variance of the
expert-selection vector within each individual sample be at least β, thereby preventing uniform prob-
abilities and enabling the router to accurately identify experts relevant to the given sample, Lsame
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constrains samples that share an identical modality-quality configuration (i.e., both samples present
the same modality-wise low- or high-quality patterns) to select the same set of experts. Collectively,
these losses render the proposed MQ-MOE quality-aware: distinct experts address distinct modality-
quality issues, while identical experts handle similar issues. Consequently, a unified framework can
address a broad spectrum of modality-quality problems more effectively with greater specificity.

Finally, we construct a predictor to infer the final prediction p and compute the predictive loss L:
p = Predictor(X̄; θpre); L = Loss(p, y) (15)

where y is the true label (the concrete form of Loss depends on downstream tasks).

3.3 TRAINING OF QUALITY ESTIMATOR

Compared to prior works that do not define explicit labels for the learning of unimodal
weights/confidences (Li et al., 2024b), we learn the quality estimator in an explicit supervised man-
ner to more accurately identify modality quality. To generate precise supervised signals, we first
discriminate between highest- and lowest-quality unimodal representations and assign them corre-
sponding quality labels. Lowest-quality instances are simulated by Gaussian noise and receive a
quality label of 0. Highest-quality instances are defined as unimodal representations whose predic-
tive loss falls below a predefined threshold η, and are assigned a large label (larger than 0.95). We
then leverage their accurate supervised signals to train the quality estimator:

αn̂,m = Estimatorm(N; θEm
); Lest

m = ||αn̂,m||2 (16)
Lest
m ←− Lest

m +max(0, γ − αm), s.t. Lm = Loss(Predictorm(xm; θm), y) < η (17)
where N ∈ R1×d denotes the Gaussian noise, Lm denotes the unimodal predictive loss for modality
m, η is a threshold hyperparameter that is set to 0.01, and γ is a hyperparameter that is set to 0.95.

However, for representations whose quality lies between these two extremes, assigning an absolute
label is non-trivial, and defining conventional absolute labels (such as transforming predictive losses
as the absolute labels (Mai et al., 2024)) would introduce label noise. Hence, we adopt a rank-
guided training strategy: the estimator is trained to compare the relative quality of representations
via a ranking loss that is constructed according to their relative unimodal predictive losses, enabling
accurate ordinal quality judgments without relying on absolute labels:

Lestr
m = max(0, αi

m + γ1 − αj
m), s.t. Lj

m < Li
m (18)

where γ1 is the margin. Additionally, we construct an ‘AddNoise’ function to simulate real-world
noise by randomly adding Gaussian noise to the original unimodal representations (features are
replaced with Gaussian noise in the most severe cases), and apply the rank-guided training strategy
to encourage the estimated quality of original representations to be larger than the corrupted ones:

x̂m = AddNoise(xm); α̂m = Estimatorm(x̂m; θEm) (19)
Lestn
m = max(0, α̂m + γ1 − αm) (20)

The total training loss for quality estimator is defined as:

Lest =
∑
m

Lest
m + Lestn

m + Lestr
m + Lm (21)

3.4 TRAINING OF QUALITY ENHANCER

To enable quality enhancer to produce higher-quality features, we apply ‘AddNoise’ function to
generate corrupted unimodal representations x̂m, and use quality enhancer to enhance the quality of
corrupted representations. In particular, to ensure more accurate training of the quality enhancer, we
select high-quality unimodal representations (whose estimated quality score αm is greater than the
threshold τ ) to perform feature enhancement. The loss for quality enhancer LEH is computed as:

x̃m=EHm(x̂m, {xs
m′ ·αm′ |m′ ̸= m},xb

m; θEHm); LEH =
∑
m

||x̃m−xm||2, s.t. αm > τ (22)

3.5 MODEL OPTIMIZATION

We jointly optimize the predictive loss and the auxiliary losses, and the final loss L is defined as :

L = Lp + βde · Lde + βest · Lest + βEH · LEH + βmoe · (Lbalance + Lsample + Lsame) (23)
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Table 1: The results on CMU-MOSI and CMU-MOSEI under complete modalities. The results
labeled with † are obtained from original papers, and other results are obtained from our experiments.

CMU-MOSI CMU-MOSEI
Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

MFM (Tsai et al., 2019) 33.3 80.0 80.1 0.948 0.664 50.8 83.4 83.4 0.580 0.722
DEVA† (Wu et al., 2025) 46.3 86.3 86.3 0.730 0.787 52.3 86.1 86.2 0.541 0.769

AtCAF† (Huang et al., 2025) 46.5 88.6 88.5 0.650 0.831 55.9 87.0 86.8 0.508 0.785
DLF† (Wang et al., 2025) 47.1 85.1 85.0 0.731 0.781 53.9 85.4 85.3 0.536 0.764
C-MIB (Mai et al., 2023b) 47.7 87.8 87.8 0.662 0.835 52.7 86.9 86.8 0.542 0.784
ITHP (Xiao et al., 2024) 47.7 88.5 88.5 0.663 0.856 52.2 87.1 87.1 0.550 0.792

Multimodal Boosting (Mai et al., 2024) 49.1 88.5 88.4 0.634 0.855 54.0 86.5 86.5 0.523 0.779
UMQ 49.7 90.1 90.0 0.630 0.863 55.5 88.1 88.1 0.506 0.796

where Lp is the predictive loss, βde, βest, βEH and αmoe are the weights of the auxiliary losses.

4 EXPERIMENTS

UMQ is evaluated on CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI (Zadeh et al., 2018), CH-
SIMS (Yu et al., 2020), UR-FUNNY (Hasan et al., 2019), and MUStARD (Castro et al., 2019)
datasets. Due to space limitation, the experimental settings, baselines, datasets, and additional re-
sults (including hyperparameter analysis, results on CH-SIMS, etc) are introduced in the Appendix.

4.1 PERFORMANCE IN MSA UNDER COMPLETE MODALITIES

Table 2: The results on UR-FUNNY dataset.

Model Acc Parameters
HKT† (Hasan et al., 2021) 77.4 -

DMD+SuCI† (Yang et al., 2024) 70.8 -
AtCAF† (Huang et al., 2025) 72.1 -

HKT (Hasan et al., 2021) 76.5 17,066,564
MCL (Mai et al., 2023a) 77.7 13,762,973

MGCL (Mai et al., 2023c) 78.1 14,062,342
UMQ 78.8 13,315,778

The results in the MSA task are presented in Ta-
ble 1. On CMU-MOSI, UMQ outperforms strong
baselines Multimodal Boosting and AtCAF in all
metrics. On CMU-MOSEI, UMQ obtains the best
results in Acc2, F1 score, MAE, and Corr. Notably,
due to space limitation, we present the results on
CH-SIMS (Yu et al., 2020) dataset in Section A.1,
and the results also suggest that UMQ outperforms
all baselines. Generally, UMQ achieves state-of-
the-art results in MSA even in the settings of com-
plete modalities. This is mainly because we learn the quality estimator and enhancer with explicit
supervised signals, which can enhance unimodal representations. Moreover, MQ-MoE can effec-
tively handle different modality-quality configurations, specifically addressing different types of
inputs and thus boosting the performance of complex multimodal systems.

4.2 RESULTS IN MHD AND MSD UNDER COMPLETE INPUTS

Table 3: The results on MUStARD dataset.

Model Acc Parameters
HKT† (Hasan et al., 2021) 79.4 -

MO-Sarcation† (Tomar et al., 2023) 79.7 -
HKT (Hasan et al., 2021) 76.5 17,101,372
MCL (Mai et al., 2023a) 77.9 13,828,449

MGCL (Mai et al., 2023c) 77.9 14,282,000
UMQ 80.6 14,362,506

To validate the generalizability of UMQ, we eval-
uate it in the MHD and MSD tasks using the UR-
FUNNY and MUStARD datasets. Tables 2 and 3
show that UMQ surpasses the best existing meth-
ods, MGCL and MO-Sarcation, respectively, while
maintaining a moderate parameter count. Thus,
UMQ reaches state-of-the-art performance with
restrained complexity, confirming its broad appli-
cability to diverse multimodal learning tasks.

4.3 DISCUSSION ON MISSING MODALITIES

For incomplete inputs, we compare UMQ with CIDer (Zhong et al., 2025), MMIN (Zhao et al.,
2021), GCNet (Lian et al., 2023), IMDer (Wang et al., 2023), and MoMKE (Xu et al., 2024b).
Table 4 reports the performance of UMQ under missing rates (MR) spanning 0.1 (mild) to 0.7
(severe). Across both datasets, UMQ surpasses strong baselines in nearly all missing configurations,
confirming its robustness. Averaged over all MRs, UMQ consistently ranks first: on CMU-MOSI
it yields 74.8% Acc2 and 37.8% Acc7, improving GCNet by 1.4 and 8.6 points; on CMU-MOSEI
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Table 4: The results under missing modalities on the CMU-MOSI and CMU-MOSEI datasets.

CIDer MMIN GCNet IMDer MoMKE UMQMR Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7 Acc2 / F1 / Acc7

MOSI

0.1 81.1 / 79.7 / 39.4 81.8 / 81.8 / 41.2 82.2 / 82.3 / 35.4 83.5 / 83.4 / 42.1 82.5 / 81.6 / 35.1 85.1 / 85.1 / 48.9
0.2 78.5 / 75.6 / 36.7 79.0 / 79.1 / 38.9 79.4 / 79.5 / 34.6 80.5 / 80.5 /41.6 78.5 / 76.6 / 32.9 82.5 / 82.5 / 44.5
0.3 76.0 / 71.6 / 34.0 76.1 / 76.2 / 36.9 77.1 / 77.2 / 32.5 77.4 / 77.6 / 37.4 74.4 / 71.7 / 30.6 78.2 / 78.2 / 41.4
0.4 73.4 / 67.4 / 31.3 71.7 / 71.6 / 34.9 75.3 / 75.4 / 30.3 66.5 / 66.3 / 35.2 70.7 / 67.5 / 28.4 74.1 / 74.2 / 38.3
0.5 70.8 / 63.3 / 28.5 67.2 / 66.5 / 34.2 72.4 / 72.4 / 29.3 65.2 / 65.4 / 29.5 66.9 / 63.2 / 26.2 70.7 / 70.9 / 34.1
0.6 68.2 / 59.1 / 25.8 64.9 / 64.0 / 29.1 64.3 / 64.5 / 23.6 66.0 / 65.5 / 27.0 63.2 / 58.9 / 23.9 67.7 / 67.7 / 30.3
0.7 66.4 / 56.4 / 24.0 62.8 / 61.0 / 28.4 64.8 / 64.9 / 18.9 62.2 / 60.4 / 26.5 60.6 / 55.9 / 22.4 65.4 / 65.5 / 27.4
Avg 73.5 / 67.6 / 31.4 71.9 / 71.5 / 34.5 73.6 / 73.7 / 29.2 71.6 / 71.3 / 34.2 71.0 / 67.9 / 28.5 74.8 / 74.9 / 37.8

MOSEI

0.1 81.5 / 81.5 / 46.3 81.9 / 81.3 / 50.6 84.3 / 84.5 / 46.9 82.9 / 82.9 / 52.1 85.1 / 84.7 / 47.2 85.9 / 85.6 / 53.3
0.2 78.9 / 78.8 / 45.7 79.8 / 78.8 / 49.6 83.3 / 82.3 / 45.1 80.6 / 79.7 / 51.3 83.3 / 82.7 / 45.4 84.0 / 83.8 / 51.9
0.3 76.3 / 76.0 / 45.2 77.2 / 75.5 / 48.1 81.2 / 81.5 / 44.5 78.7 / 77.8 / 49.6 81.6 / 80.7 / 43.6 81.8 / 81.7 / 48.9
0.4 73.5 / 73.2 / 44.6 75.2 / 72.6 / 47.5 79.3 / 77.7 / 43.4 73.7 / 73.3 / 48.0 79.8 / 78.7 / 41.7 79.9 / 79.4 / 48.4
0.5 70.8 / 70.4 / 44.1 73.9 / 70.7 / 46.7 77.3 / 74.7 / 41.8 72.1 / 68.4 / 46.6 78.1 / 76.7 / 39.8 78.1 / 77.9 / 46.7
0.6 68.1 / 67.6 / 43.6 73.2 / 70.3 / 45.6 75.9 / 73.2 / 38.6 70.8 / 65.9 / 45.0 76.3 / 74.7 / 37.9 76.3 / 76.0 / 46.0
0.7 66.3 / 65.7 / 43.2 73.1 / 69.5 / 44.8 75.0 / 73.7 / 38.1 69.1 / 66.6 / 44.1 75.2 / 73.3 / 36.7 75.1 / 74.9 / 45.1
Avg 73.6 / 73.3 / 44.7 76.3 / 74.1 / 47.6 79.5 / 78.2 / 42.6 75.4 / 73.5 / 48.1 79.9 / 78.8 / 41.8 80.2 / 79.9 / 48.6

it reaches 80.2% Acc2 and 48.6% Acc7, outperforming MoMKE. These gains stem from UMQ’s
explicit simulation of modality absence via noise injection and quality enhancement that enables
UMQ to cope with missing data and enhance low-quality features in incomplete settings.

4.4 DISCUSSION ON NOISY MODALITIES

Table 5: Discussion on noisy modalities.

C-MIB Multimodal Boosting UMQNR Acc2/MAE Acc2/MAE Acc2/MAE

MOSI

0.1 87.8 / 0.670 86.7 / 0.678 88.2 / 0.627
0.2 87.5 / 0.726 86.1 / 0.738 87.8 / 0.652
0.3 86.4 / 0.912 86.4 / 0.785 87.6 / 0.644
0.4 83.2 / 1.366 85.5 / 0.841 86.9 / 0.643
0.5 84.9 / 1.660 86.1 / 1.172 88.1 / 0.673
0.6 80.8 / 2.595 82.0 / 1.355 86.9 / 0.763
0.7 82.1 / 3.146 84.4 / 1.750 85.8 / 0.764
Avg 84.7 / 1.582 85.3 / 1.046 87.3 / 0.681

MOSEI

0.1 86.1 / 0.545 86.4 / 0.544 87.3 / 0.531
0.2 84.5 / 0.582 86.6 / 0.557 87.0 / 0.528
0.3 85.6 / 0.622 85.5 / 0.623 86.7 / 0.530
0.4 84.4 / 0.703 85.3 / 0.682 87.0 / 0.536
0.5 83.7 / 0.875 84.1 / 0.724 86.6 / 0.543
0.6 82.4 / 1.054 85.4 / 0.924 85.6 / 0.573
0.7 80.5 / 1.404 80.3 / 1.125 85.5 / 0.616
Avg 83.9 / 0.826 84.8 / 0.740 86.5 / 0.551

For noisy modalities, we corrupt all modali-
ties with Gaussian noise (noise rate 10%–70%)
to assess the robustness of UMQ to modality
noise. For comparison, we include C-MIB (Mai
et al., 2023b) and Multimodal Boosting (Mai
et al., 2024), two baselines that also address
modality noise, and report Acc2 and MAE as
per common practice. Table 5 shows that UMQ
outperforms all baselines across every noise
level, most notably in MAE, and maintains
stable performance even when the noise rate
reaches 0.7. This robustness arises from the
design of our UMQ to comprehensively han-
dle noisy input from quality estimation, quality
enhancement to specialized modeling via MQ-
MoE. In contrast, C-MIB only filters out noise and Multimodal Boosting only identifies noisy level.
These findings underscore the superiority and robustness of UMQ in handling noise data. In sec-
tion A.2, we show the results on other noises, verifying that UMQ can generalize to unseen noises.

4.5 ABLATION EXPERIMENTS

Table 6: Ablation experiments.

CMU-MOSIModel
Acc7↑ Acc2↑ MAE↑

W/O Quality Estimation 44.8 86.4 0.676
W/O Rank-Guided Training 46.8 86.6 0.670
W/O Quality Enhancement 47.1 88.4 0.640
W/O Modality Decoupling 48.6 88.3 0.639

W/O Modality-Specific Information 48.1 88.1 0.641
W/O Sample-Specific Information 48.7 88.1 0.635

W/O MQ-MOE 48.4 87.6 0.639
W/O Lsame 47.4 89.0 0.637

UMQ 49.7 90.1 0.630

(1) The importance of quality estimation: As pre-
sented in Table 6, in the case of ‘W/O Quality Es-
timation’, we remove the quality estimator, and the
components within MQ-MoE and quality enhancer
that rely on quality scores are also removed. The
model exhibits its sharpest performance decline, as
quality estimation is not only the most pivotal com-
ponent of UMQ but also the foundation upon which
all other modules are based. In addition, the removal
of the rank-guided training strategy causes a severe
performance drop, as it constitutes the core tech-
nique for training the quality estimator and is the key
to the accurate identification of the quality of modality.

(2) The importance of quality enhancement: Removing quality enhancement module also leads
to a noticeable performance drop, because quality enhancer can strengthen modality representations.
When any of its key sub-components (modality decoupling, modality-/sample-specific information)
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is ablated, performance declines consistently. These results underscore the necessity of learning
both modality-specific and sample-specific information for enhancing modality representations.

(3) The importance of MQ-MoE: In ‘W/O MQ-MoE’, model performance decreases by 2.5 points
in Acc2, indicating MQ-MoE can improve the performance via modeling different types of input
data in a more specialized manner. When Lsame is removed, the performance drops by over 2
points in Acc7. This is mainly because Lsame is the core constraint of MQ-MoE that ensures
samples sharing an identical modality-quality configuration can be processed by the same set of
experts, so that various inputs can be handled appropriately.

4.6 VISUALIZATION OF THE ENHANCED REPRESENTATIONS

Figure 3: Visualization of the original and re-
constructed language features. ‘UMQ’ and
‘W/O MSI’ denote the reconstructed features
obtained by our method and obtained without
modality-specific information, respectively.

To verify that modality-specific information is im-
portant to modality recovery, we present the visu-
alization of the original and reconstructed language
representations using t-SNE (Van der Maaten & Hin-
ton, 2008) on the CMU-MOSI testing set. We first
mix the original language features with Gaussian
noise to generate corrupted features, and then use
the quality enhancer to generate two versions of en-
hanced features (with and without modality base-
line representation xb

m). As shown in Figure 3,
features enhanced by the quality enhancer in our
UMQ lie closer to the original features in the feature
space and exhibit partial overlap with the original
ones, whereas features generated without modality-
specific information are markedly more distant and
display virtually no overlapping regions. The visu-
alization suggests that using modality baseline rep-
resentation to enhance low-quality data can produce
more similar features to the original ones.

4.7 CASE STUDY ON ESTIMATED QUALITY AND EXPERTS

Figure 4: Analysis on estimated quality and se-
lected experts. The modalities enclosed by the red
bounding box are replaced with Gaussian noise.

We use three examples to illustrate the effec-
tiveness of the quality estimator and MQ-MoE
(we construct 10 experts and each sample is
routed to 3 experts.). As shown in Figure 4, the
quality estimator accurately assigns a very low
score to noisy modalities. Meanwhile, the com-
paratively high rating for the acoustic modal-
ity of sample 1 compared to other samples re-
veals that the estimator can identify more dis-
criminative information and assign appropri-
ate scores. Moreover, it can be observed that
MQ-MoE correctly assigns same experts to two
samples (samples 1 and 2) sharing an identi-
cal modality-quality configuration, while allo-
cating distinct experts to samples with differing
configurations, demonstrating the effectiveness of the proposed routing strategy.

5 CONCLUSION

We jointly handle missing and noisy modalities to enhance model robustness for low-quality data.
UMQ trains the quality estimator with explicit supervised signals via a rank-guided training strategy,
and uses sample- and modality-specific information to enhance the quality of modality representa-
tions. MQ-MoE is then constructed to enable multiple modality-quality problems to be addressed
specifically. UMQ outperforms competitive baselines in various settings.
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Table 8: Complete results on CMU-MOSI and CMU-MOSEI under complete modalities. The results
labeled with † are obtained from original papers, and other results are obtained from our experiments.
The best results are highlighted in bold and the second best results are marked with underlines.

CMU-MOSI CMU-MOSEI
Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

MFM (Tsai et al., 2019) 33.3 80.0 80.1 0.948 0.664 50.8 83.4 83.4 0.580 0.722
Self-MM (Yu et al., 2021) 45.8 84.9 84.8 0.731 0.785 53.0 85.2 85.2 0.540 0.763

AtCAF† (Huang et al., 2025) 46.5 88.6 88.5 0.650 0.831 55.9 87.0 86.8 0.508 0.785
DLF† (Wang et al., 2025) 47.1 85.1 85.0 0.731 0.781 53.9 85.4 85.3 0.536 0.764
DEVA† (Wu et al., 2025) 46.3 86.3 86.3 0.730 0.787 52.3 86.1 86.2 0.541 0.769

C-MIB (Mai et al., 2023b) 47.7 87.8 87.8 0.662 0.835 52.7 86.9 86.8 0.542 0.784
ITHP (Xiao et al., 2024) 47.7 88.5 88.5 0.663 0.856 52.2 87.1 87.1 0.550 0.792

Multimodal Boosting (Mai et al., 2024) 49.1 88.5 88.4 0.634 0.855 54.0 86.5 86.5 0.523 0.779
HumanOmni (Zhao et al., 2025) - 76.9 76.9 - - - 80.5 80.4 - -
Qwen2.5Omni (Xu et al., 2025) - 84.4 84.3 - - - 84.0 83.2 - -
MiniCPM-o (Yao et al., 2024) - 80.0 80.1 - - - 77.4 77.3 - -

VideoLLaMA2-AV (Cheng et al., 2024) - 80.2 79.6 - - - 76.8 77.2 - -
UMQ 49.7 90.1 90.0 0.630 0.863 55.5 88.1 88.1 0.506 0.796

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 ADDITIONAL RESULTS ON COMPLETE MODALITIES

Table 7: The results on CH-SIMS dataset. The results
labeled with † are obtain in their original paper.

MAE ↓ Corr ↑ Acc2 ↑ F1-score ↑
MFM (Tsai et al., 2019) 0.493 0.473 71.7 70.5

Self-MM (Yu et al., 2021) 0.425 0.592 80.0 80.4
ConFEDE (Yang et al., 2023) 0.394 0.637 81.0 81.0

DEVA† (Wu et al., 2025) 0.424 0.583 79.6 80.3
ITHP (Xiao et al., 2024) 0.425 0.581 79.4 79.4

HumanOmni (Zhao et al., 2025) - - 79.4 80.2
Qwen2.5Omni (Xu et al., 2025) - - 82.5 81.6
MiniCPM-o (Yao et al., 2024) - - 76.2 73.4

VideoLLaMA2-AV (Cheng et al., 2024) - - 76.8 77.2
UMQ 0.401 0.668 82.9 82.6

(1) Results on the CH-SIMS dataset:

On the CH-SIMS dataset, UMQ leads in
all evaluation metrics except for the MAE
metric, where it ranks second, marginally
behind ConFEDE (Yang et al., 2023).
Overall, considering the results across the
three widely-used datasets, UMQ demon-
strates state-of-the-art performance in the
task of MSA, further verifying the effec-
tiveness of the proposed unified modality-
quality framework.

(2) Comparison with multimodal large
language models (MLLMs):

Owing to the robust capacity of MLLMs to manage diverse modalities, we evaluate the efficacy of
MLLMs that are capable of simultaneously processing visual, acoustic, and textual inputs. This in-
cludes models such as HumanOmni (Zhao et al., 2025), Qwen2.5Omni (Xu et al., 2025), MiniCPM-
o (Yao et al., 2024), and VideoLLaMA2-AV (Cheng et al., 2024). Given that MLLMs often face
challenges in precisely determining continous sentiment scores, our assessment is limited to binary
sentiment classification tasks, where the models are required to classify a sample’s sentiment as
either positive or negative. For those MLLMs that fail to produce positive/negative indicators, we
ascertain the token ids associated with these sentiments and make predictions based on which token
id is assigned a higher likelihood. As detailed in Tables 8 and 7, MLLMs demonstrate commend-
able performance, outperforming several baseline models that have undergone dataset-specific fine-
tuning. This suggests that MLLMs have an innate aptitude for sentiment analysis tasks. Among the
MLLMs, Qwen2.5Omni stands out as the top performer and even secures the second-highest scores
on the CH-SIMS dataset. Nonetheless, it still falls short when compared to the proposed UMQ,
indicating that MLLMs need additional dataset-specific fine-tuning to enhance their performance.

A.2 ADDITIONAL RESULTS ON OTHER TYPES OF NOISE

In addition to Gaussian noise, we have evaluated the robustness of UMQ against Laplace noise and
random erasing noise (randomly select a portion of the features and set them to zero to simulate data
loss), which are not used in the ‘AddNoise’ function for training. For each sample, we randomly
select one type of noise to add to the features, and the results are shown in Table 9. The noisy
rate (NR) is set to 10% - 70%. For a comprehensive and fair comparison, we present the results of
NIAT (Yuan et al., 2024), C-MIB (Mai et al., 2023b), and Multimodal Boosting (Mai et al., 2024) in
Table 9, which use the same training and testing settings as our UMQ (we also present the complete
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Table 9: Additional results on other types of noise on the CMU-MOSI and CMU-MOSEI datasets.

NIAT C-MIB Multimodal Boosting UMQNR Acc2 / MAE Acc2 / MAE Acc2 / MAE Acc2 / MAE

MOSI

0.1 85.5 / 0.622 87.6 / 0.681 87.3/0.660 88.3 / 0.625
0.2 84.1 / 0.684 87.3 / 0.695 85.8/0.726 87.4 / 0.659
0.3 83.4 / 0.777 85.0 / 0.890 85.6/0.757 87.6 / 0.655
0.4 82.2 / 0.825 83.7 / 1.019 87.6/0.798 87.9 / 0.679
0.5 80.5 / 1.031 81.5 / 1.629 86.9/0.839 87.6 / 0.656
0.6 79.7 / 1.115 79.4 / 1.274 84.6/1.048 87.5 / 0.706
0.7 79.1 / 1.237 81.4 / 3.443 85.4/1.432 85.8 / 0.732
Avg 82.1 / 0.899 83.7 / 1.376 86.2/0.894 87.4 / 0.673

MOSEI

0.1 83.9 / 0.557 86.8 / 0.531 86.8 / 0.555 87.2 / 0.525
0.2 81.6 / 0.573 85.9 / 0.587 86.0 / 0.581 87.0 / 0.523
0.3 81.0 / 0.612 85.7 / 0.606 85.2 / 0.586 87.1 / 0.529
0.4 79.1 / 0.651 84.0 / 0.646 85.4 / 0.680 86.7 / 0.527
0.5 77.9 / 0.716 83.9 / 0.798 85.0 / 0.746 86.6 / 0.541
0.6 77.5 / 0.740 82.2 / 1.046 86.0 / 0.957 86.3 / 0.562
0.7 76.1 / 0.802 77.6 / 1.271 81.2 / 1.018 84.4 / 0.584
Avg 79.6 / 0.664 83.7 / 0.784 85.1 / 0.732 86.5 / 0.542

Table 10: Complete Results on noisy modalities (Gaussian noise) on the CMU-MOSI and CMU-
MOSEI datasets.

NIAT C-MIB Multimodal Boosting UMQNR Acc2/MAE Acc2/MAE Acc2/MAE Acc2/MAE

MOSI

0.1 83.6 / 0.672 87.8 / 0.670 86.7 / 0.678 88.2 / 0.627
0.2 83.0 / 0.689 87.5 / 0.726 86.1 / 0.738 87.8 / 0.652
0.3 82.3 / 0.741 86.4 / 0.912 86.4 / 0.785 87.6 / 0.644
0.4 81.7 / 0.847 83.2 / 1.366 85.5 / 0.841 86.9 / 0.643
0.5 80.2 / 0.949 84.9 / 1.660 86.1 / 1.172 88.1 / 0.673
0.6 78.9 / 1.153 80.8 / 2.595 82.0 / 1.355 86.9 / 0.763
0.7 77.6 / 1.290 82.1 / 3.146 84.4 / 1.750 85.8 / 0.764
Avg 81.0 / 0.910 84.7 / 1.582 85.3 / 1.046 87.3 / 0.681

MOSEI

0.1 80.3 / 0.554 86.1 / 0.545 86.4 / 0.544 87.3 / 0.531
0.2 79.1 / 0.593 84.5 / 0.582 86.6 / 0.557 87.0 / 0.528
0.3 77.7 / 0.637 85.6 / 0.622 85.5 / 0.623 86.7 / 0.530
0.4 77.2 / 0.672 84.4 / 0.703 85.3 / 0.682 87.0 / 0.536
0.5 76.3 / 0.735 83.7 / 0.875 84.1 / 0.724 86.6 / 0.543
0.6 74.9 / 0.797 82.4 / 1.054 85.4 / 0.924 85.6 / 0.573
0.7 73.4 / 0.863 80.5 / 1.404 80.3 / 1.125 85.5 / 0.616
Avg 77.0 / 0.673 83.9 / 0.826 84.8 / 0.740 86.5 / 0.551

results of Gaussian noise in Table 10 for completeness). We reproduce the results of the baselines
using the same training and testing settings as our UMQ to make a fair comparison. It can be seen
from Table 9 that our UMQ still significantly outperforms competitive baselines under other noises
that are unseen during training (especially when the noise rate is large), further demonstrating the
effectiveness and generalization ability of UMQ.

A.3 HYPERPARAMETER ROBUSTNESS ANALYSIS

In this section, we evaluate the effectiveness of hyperparameters on the CMU-MOSEI dataset, in-
cluding the weight for modality decoupling loss βde, the weight for MQ-MoE loss βmoe, the weight
for quality estimator loss βest, the number of selected experts k, and the number of total experts h.

The results with the loss weights βde, βmoe, and βest setting to different values are presented in
Fig. 5 (a), (b), and (c), respectively. For all loss weights, the model performs best when they are
set to moderate values, and there is a noticeable decline in performance when their values are either
too large or too small. This is mainly because when the weights are too small, the effect of the
designed losses is not significant enough, and when they are too large, the designed auxiliary losses
can interfere with the learning of the main task loss. We have found in our experiments that the
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(a) βde (Decoupling Loss Weight) (b) βmoe (MQ-MoE Loss Weight) (c) βest (Estimator Loss Weight)

Figure 5: The MAE of UMQ with respect to the change of loss weights on CMU-MOSEI.

(a) k (Number of Selected Experts) (b) h (Number of Total Experts)

Figure 6: The MAE of UMQ with respect to the change of the number of total experts h and the
number of selected experts k on CMU-MOSEI.

model performance with respect to the change of other loss weights is similar, so we only present
the results of the above losses.

The results with the number of selected experts k and the number of total experts h setting to differ-
ent values are presented in Fig. 6 (a) and (b), respectively. As shown in Fig. 6 (a), When the number
of selected experts k is set to 7 or 8, the model achieves the best performance, surpassing the default
setting (k = 4), and there is a noticeable decline in performance when k is greater than 10. This
is because when k exceeds 10, the number of experts selected for each sample is very close to or
equal to the total number of experts (h = 12), at which point nearly all samples share the same set
of experts. Samples with different modality quality configurations are processed in the same way,
making it difficult to achieve more targeted processing for each specific modality quality configura-
tion. Conversely, when k is too small, the number of experts handling each sample is insufficient,
leading to a decrease in expressive power, and thus the performance of UMQ is not as good as when
k is of moderate size. As for the number of total experts h, it can be observed from Fig. 6 (b) that
as the value of h increases, the performance of UMQ generally improves. This is because, with a
larger h, there are more experts available to choose from, and the expressive capability of the model
is enhanced. For the sake of model complexity, we do not infinitely increase h, but instead select it
within a reasonable range and set the default value of h to 12 after a random search of fifty-times.

In particular, we find that when the hyperparameters are set to some specific values (e.g., when k
is 7), the performance of UMQ is better than that obtained by random grid search, indicating that
the performance of UMQ can be further improved after a more careful hyperparameter tuning and
suggesting the potential of UMQ.

B IMPLEMENTATION DETAILS

B.1 UNIMODAL NETWORKS

In this part, we describe the architectures of unimodal networks and demonstrate the generation
of unimodal representations for subsequent integration. To be consistent with state-of-the-art tech-
niques (Xiao et al., 2024; Hasan et al., 2021; Wang et al., 2025), we employ pre-trained language
models (PLMs) (He et al., 2021; Lan et al., 2020) to produce advanced textual features. The proce-
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dure of the language network for all downstream tasks is outlined as follows.:

Ûl = PLM(Ul; θl) ∈ RTl×dl

Xl = (ÛlWpro + bpro) ∈ RTl×d
(24)

where Ul denotes the input token sequence and Tl is the length of the token sequence. Wpro ∈
Rdl×d and bpro ∈ R1×d are trainable parameters that transform the output dimensionality of the
language network to the shared feature dimensionality d. For the MSA task, the operational proce-
dures for both the acoustic and visual networks, which utilize transformer encoders (Vaswani et al.,
2017), are presented below (m ∈ {a, v}):

Ûm = Conv 1D(Um; Km) ∈ RTm×d

Xm = Transformer(Ûm; θm) ∈ RTm×d
(25)

where Conv 1D represents the temporal convolution with kernel size Km being 3.

It should be noted that, for the MHD and MSD tasks, in order to effectively detect humor-related
content, we follow previous approaches (Hasan et al., 2021; Mai et al., 2023c) by extracting Human
Centric Features (HCF) from the language modality to complement as an additional fourth modality
(see (Hasan et al., 2021) for more details) and is represented as Uh ∈ RTl×dh . Moreover, each
instance comprises a target punchline segment accompanied by its preceding contextual segments.
By merging the feature sequences of the punchline and the context segments along the temporal
axis, we generate the unimodal inputs Um ∈ RTm×dm (m ∈ M = {a, v, l, h}). The unimodal
network designed for the HCF modality, which is also composed of transformer encoders, shares
a comparable structure with those utilized for visual and acoustic modalities. Specifically, for the
MHD and MSD tasks, the operational procedures of the transformer-based unimodal networks are
detailed as follows (m ∈ {a, v, h}):

Ûm=Transformer(Um; θm) ∈ RTm×dm

Xm = Conv 1D(Ûm; Km) ∈ RTm×d
(26)

Furthermore, to streamline the subsequent modeling procedure, we combine the language and HCF
modalities using a simple linear layer:

Xl ←− Linear(Xl ⊕Xh; θlin) ∈ RTl×d (27)

For all tasks, given the extracted unimodal representation Xm ∈ RTm×d, we use a layer normaliza-
tion to regularize the feature distributions, and then conduct mean pooling at the temporal dimension
to obtain a feature vector that simplifies the later processing by the quality estimator:

xm = MeanPooling(LN(Xm)) ∈ R1×d (28)

The obtained xm is used for quality estimation.

B.2 DATASET COMPOSITION

We apply the following widely-used datasets to evaluate the effectiveness of UMQ:

(1) CMU-MOSI (Zadeh et al., 2016): CMU-MOSI is a dataset extensively used for MSA, compris-
ing over 2,000 video segments collected from the Internet. Each segment is manually assigned a
sentiment score ranging from -3 to 3, with 3 indicating the most intense positive sentiment and -3
indicating the most intense negative sentiment.

(2) CMU-MOSEI (Zadeh et al., 2018): CMU-MOSEI represents a large-scale MSA dataset, en-
compassing more than 22,000 video segments from over 1,000 YouTube speakers on 250 diverse
subjects. The segments are randomly chosen from an assortment of topics and individual video pre-
sentations. Each video segment is marked with two types of labels: emotions categorized into six
distinct classes and sentiment scores that vary from -3 to 3. To evaluate UMQ’s performance on the
MSA task, we utilize the sentiment labels from the CMU-MOSEI dataset, which correspond to the
sentiment scale of the CMU-MOSI dataset.
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(3) CH-SIMS (Yu et al., 2020) dataset is distinguished as a dedicated resource for multimodal
sentiment analysis in Chinese, consisting of 2,281 premium video segments sourced from films,
television series, and chat programs. These segments exhibit a spectrum of spontaneous emotional
displays under varying head positions, obstructions, and illumination settings. Human evaluators
have carefully assigned a sentiment rating to each segment, ranging from -1, indicating extremely
negative, to 1, indicating extremely positive. Following the partitioning approach of prior research
(Yu et al., 2021; Han et al., 2021), the dataset is organized into 1,368 utterances for the training
phase, 456 for the validation phase, and 457 for the testing phase.

(4) UR-FUNNY (Hasan et al., 2019): Created for the MHD task, the UR-FUNNY dataset consists
of TED talk videos from 1,741 speakers. In this dataset, each target video segment, labeled as a
‘punchline’, includes language, acoustic, and visual information. The video segments that come
before these punchlines, called context segments, are also fed into the model to provide context
for analysis. Punchlines are recognized by the ‘laughter’ marker in the transcripts, marking the
times when the audience laughed during the presentation. Negative examples are identified using a
comparable approach, where the target punchline segments are not accompanied by the ‘laughter’
marker. The UR-FUNNY dataset includes 7,614 samples for training, 980 for validation, and 994
for testing. To maintain consistency with the latest research methods (Hasan et al., 2021; Mai et al.,
2023a;c), we use version 2 of the UR-FUNNY dataset to assess our proposed model.

(5) MUStARD (Castro et al., 2019): MUStARD is a dataset for sarcasm detection that originates
from several popular TV series, such as Friends, The Big Bang Theory, The Golden Girls, and
Sarcasmolics. It comprises 690 video segments, each of which has been manually classified as either
sarcastic or non-sarcastic. Beyond the punchline segments, MUStARD also includes the preceding
dialogues (context segments) for each punchline to offer contextual details.

B.3 ASSESSMENT CRITERIA

For assessing the MSA task, we measure the performance of UMQ and the baselines based on the
following criteria: (1) Acc7: This metric evaluates how well the model can categorize sentiment
scores into seven distinct classes. To compute Acc7, both predictions and labels are rounded to the
nearest integer value between -3 and 3; (2) Acc2: This metric assesses the model’s capability to
correctly differentiate between positive and negative sentiments in a binary classification scenario;
(3) F1 score: This is a metric that combines precision and recall for binary sentiment classification
tasks. When calculating both Acc2 and the F1 score, neutral segments are ignored; (4) MAE: This
represents the mean absolute error between the model’s predictions and the actual labels; (5) Corr:
This is the correlation coefficient that measures the strength and direction of the relationship between
the model’s predictions and the actual labels.

For the MHD and MSD tasks, consistent with previous methodologies (Hasan et al., 2021; Mai et al.,
2023a;c), we present the model’s binary accuracy (i.e., whether it classifies samples as humorous or
not, sarcastic or not).

B.4 FEATURE EXTRACTION STRATEGY

We applies the following methods to extract the features of each modality:

(1) Visual Modality: In line with previous studies (Xiao et al., 2024), for the CMU-MOSI and
CMU-MOSEI datasets, we employ Facet1 to extract visual features including facial action units,
facial landmarks, and head positioning, creating a temporal sequence that captures facial expressions
and body gestures over time. For the CH-SIMS dataset, following previous works (Yu et al., 2021;
2020), we use the MTCNN face detection algorithm (Zhang et al., 2016) to obtain aligned facial
images. Following this, the MultiComp OpenFace2.0 toolkit (Baltrusaitis et al., 2018) is applied to
extract facial features, including 68 facial landmarks, 17 facial action units, as well as head pose,
orientation, and eye gaze data. For the MHD and MSD tasks, aligning with current state-of-the-art
approaches (Hasan et al., 2021; Mai et al., 2023c), we utilize OpenFace 2 (Baltrusaitis et al., 2018)
to extract facial action units, as well as rigid and non-rigid facial shape parameters, among others.

1iMotions 2017. https://imotions.com/
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(2) Acoustic Modality: For the CH-SIMS dataset, following prior methods (Yu et al., 2021; 2020),
we employ the LibROSA (McFee et al., 2015) speech toolkit with its default settings to extract
acoustic features at a frequency of 22050Hz. The extracted 33-dimensional frame-level features
include 1-dimensional log F0, 20-dimensional MFCCs, and 12-dimensional CQT. For other datasets,
we employ COVAREP (Degottex et al., 2014) for the extraction of time-series acoustic features
from audio segments, encompassing 12 Mel-frequency cepstral coefficients, pitch tracking, speech
polarity, glottal closure moments, spectral envelope, and more. These features, extracted across
the entirety of each audio segment, capture the dynamic fluctuations in vocal tone throughout the
speech.

(3) Language Modality: In the CMU-MOSI and CMU-MOSEI datasets, adhering to state-of-the-
art approaches (Xiao et al., 2024), we utilize DeBERTa (He et al., 2021) to obtain advanced textual
features. For the CH-SIMS dataset, to make a fair comparison with previous methods (Xie et al.,
2024; Yu et al., 2021), BERT-cn (Devlin et al., 2019) is used as the language network. For the MHD
and MSD tasks, in line with contemporary methodologies (Hasan et al., 2021; Mai et al., 2023a),
ALBERT (Lan et al., 2020) is implemented as the language model. Notably, for MHD and MSD,
we combine the sequences of punchlines and context tokens to produce the ultimate input for the
language model: Ul = Cl⊕ [SEP ]⊕Pl, where the [SEP ] token serves to distinguish between the
context token Cl and the punchline tokens Pl (Hasan et al., 2021).

For the CMU-MOSI dataset, the dimensions of the language, acoustic, and visual features are 768,
74, and 47, respectively. As for the CMU-MOSEI dataset, the dimensions of the corresponding uni-
modal features are 768, 74, and 35, respectively. For the CH-SIMS dataset, the language, acoustic,
and visual modalities have input dimensionalities of 768, 33, and 709, respectively. Regarding the
UR-FUNNY and MUStARD datasets, the dimensions of the language, acoustic, visual, and HCF
features are 768, 60, 36, and 4, respectively. For detailed information on the feature extraction
process for the HCF modality, please see (Hasan et al., 2021).

B.5 EXPERIMENTAL DETAILS

(1) Hyperparameter setting: We develop the proposed UMQ using the PyTorch framework on an
NVIDIA RTX2080Ti GPU, equipped with CUDA version 11.6 and PyTorch version 1.13.1, and
employ the AdamW optimizer (Loshchilov & Hutter, 2019) to train the model. The hyperparameter
configurations are specified in Table 11. To be consistent with prior research (Gkoumas et al.,
2021), we establish a feasible search range for each hyperparameter and conduct a random grid
search with 50 iterations on the validation set to identify the most effective hyperparameters. We
retain the top-performing hyperparameter configuration identified during the random search (based
on the loss metric). After hyperparameter searching, we retrain the model for five times with the
optimal settings under various random seeds, and present the average outcomes from these five runs.

(2) Structures of the components: The structures of the modality decouple network, modality
couple network, fusion network and predictor are shown in Figure 7, and the structures of quality
estimator, quality enhancer, and experts are presented in Figure 8. Notably, in the quality enhancer,
we define a learnable query qm ∈ R1×d to aggregate the information within sample-specific infor-
mation {xs

m′ ·αm′ |m′ ̸= m} and modality-specific information xb
m, and the resulted representation

is concatenated with xm to explicitly provide modality- and sample-specific information.

(3) Protocol for the evaluation of missing modalities: For assessing the impact of absent modal-
ities, we conduct an extensive evaluation of the effectiveness of different methods on multimodal
datasets with differing levels of modality missing. The rate of missing modality is determined as:

MR = 1−
∑N

i=1 Mi

N × |M|
(29)

where Mi denotes the number of available modalities in the i-th sample, N is the total number of
samples, and |M| is the number of modalities. For every sample possessing |M| modalities, we
randomly mask a subset of these modalities with a probability that matches the specified missing
rate MR, while guaranteeing that for each sample at least one modality remains accessible, i.e.,
Mi ≥ 1. This constraint guarantees that the missing rate does not exceed |M|−1

|M| . In our experi-
ments, the number of modalities is |M| = 3, and we choose MR from the set {0.1, 0.2, . . . , 0.7}.
Particularly, when MR = 0.7, each sample randomly preserves one modality, epresenting the most
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Figure 7: The structures of modality decouple network, modality couple network, fusion network
and predictor.

Figure 8: The structures of quality estimator, quality enhancer, and experts.
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Table 11: Hyperparameter Settings of UMQ. MSE and BCE denotes mean square error and binary
cross-entropy, respectively.

CMU-MOSI CMU-MOSEI CH-SIMS UR-FUNNY MUStARD
Loss Function MSE MSE MSE BCE BCE

Batch Size 64 64 32 48 48
Learning Rate 1e-5 1e-5 1e-5 5e-6 5e-6

Shared Dimensionality d 100 100 100 100 64
Variance Margin β 0.1 0.1 0.1 0.1 0.1

Margin γ1 0.05 0.1 0.1 0.1 0.1
Maximum distance ϵ 0.2 0.2 0.1 0.1 0.2
Quality Threshold τ 0.5 0.6 0.5 0.5 0.6
Number of Experts h 10 12 12 10 10
Selected Experts k 3 4 3 3 3

Decouple Loss Weight βde 1e-5 0.001 1e-4 1e-4 0.001
Estimator Loss Weight βest 0.001 0.001 0.001 1e-4 0.005
Enhancer Loss Weight βen 0.001 0.001 0.005 1e-4 0,001
MQ-MoE Loss Weight βest 0.001 0.001 0.005 0.1 1e-4

extreme case of modality missing. To make a fair comparison with our baselines, the same missing
rate configuration is applied across the training, validation, and test phases, following the protocol
adopted in previous works (Wang et al., 2023; Lian et al., 2023). Notably, for the experiments re-
garding missing modalities, to make a fair comparison with our baselines, we use the same feature
sets as our closest baselines (Xu et al., 2024b; Lian et al., 2023).

(4) Protocol for the evaluation of noisy modalities: For the evaluation of noisy modalities, we
generate the noisy features using the following equation:

xn
m = (1−NR) · xm +NR · N (30)

where xm is the unimodal representation, NR is the noisy rate ranging from 0.1 to 0.7, N is the
Gaussian noise data of mean 0 and variance 1, and xn

m is the noisy representation that is used for the
later quality estimator. Importantly, we apply the above noise mixing operation to all modalities of
every sample in order to simulate real-world noise. Given that input-level noise ultimately impacts
the features, it is reasonable to introduce noise at the feature level. Furthermore, to ensure fairness
and protect privacy, multimodal affective computing algorithms usually model using the same set
of features. This makes it even more practical to apply noise at the feature level. We reproduce
the results of the baselines (Yuan et al., 2024; Mai et al., 2023b; 2024) using the same training and
testing settings as our UMQ to make a fair comparison.

Additionally, to test the robustness of our model to other types of noise (see Table 9), we further
evaluate the robustness of UMQ against Laplace noise and random erasing noise (randomly select
a portion of the features and set them to zero to simulate data loss). At this point, for each sample,
there is a 50% probability that the features will be mixed with Laplacian noise using Equation 30,
and a 50% probability that the features will experience random feature dropout (random feature
missing), where the dropout ratio is NR.

B.6 BASELINES

The selected baselines for the MSA task include:

(1) Multimodal Factorization Model (MFM) (Tsai et al., 2019): MFM separates down multimodal
features into two separate sets of factors: multimodal discriminative factors and modality-specific
generative factors. This separation aids in the learning of effective multimodal representations, and
the resulting factorized features can be utilized to comprehend essential inter-modal interactions in
multimodal learning. (2) Information-Theoretic Hierarchical Perception (ITHP) (Xiao et al.,
2024): Adhering to the information bottleneck principle, ITHP identifies a single core modality
and treats the rest of the modalities as detectors within the information pathway, whose role is to
refine the information flow. (3) Multimodal Boosting (Mai et al., 2024): It utilizes several base
learners, each of which concentrates on distinct facets of multimodal learning. To evaluate their
individual contributions, Multimodal Boosting incorporates a contribution learning module that dy-
namically assesses each base learner’s contribution and the noise level of unimodal representations.
(4) Complete Multimodal Information Bottleneck (C-MIB) (Mai et al., 2023b): It employs the
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information bottleneck principle to diminish redundancy and noise within both unimodal and mul-
timodal features, serving as the baseline for handling noisy modalities. (5) Self-Supervised Multi-
task Multimodal sentiment analysis network (Self-MM) (Yu et al., 2021): It derives sentiment
labels for individual modalities by utilizing the global labels of multimodal samples through a self-
supervised approach, which in turn enables the extraction of more discriminative unimodal features.
(6) Attention-based Causality-Aware Fusion (AtCAF) (Huang et al., 2025): AtCAF employs
a counterfactual cross-modal attention module to identify causal relationships within the training
data, thereby building a complete causality chain that tracks causal pathways from user inputs to
model outputs. (7) Disentangled-Language-Focused Model (DLF) (Wang et al., 2025): It in-
troduces a feature disentanglement module to distinguish between modality-shared and modality-
specific information. Additionally, four geometric measures are incorporated to refine the dis-
entanglement process, which helps to reduce redundancy and bolster language-targeted features.
Moreover, a language-focused attractor is designed to enhance language representation by utiliz-
ing complementary modality-specific information. (8) Disentangled-Language-Focused Model
(DLF) (Wang et al., 2025): It designs a feature disentanglement module to distinguish between
modality-shared and modality-specific information. In addition, four geometric measures are intro-
duced to refine the disentanglement process, helping to reduce redundancy and bolster language-
targeted features. Furthermore, a language-focused attractor is designed to enhance language fea-
tures by utilizing complementary modality-specific information. (9) Contrastive FEature DEcom-
position (ConFEDE) (Yang et al., 2023): It concurrently executes contrastive representation learn-
ing and contrastive feature decomposition to enhance the multimodal representation. (10) Missing
Modality Imagination Network (MMIN) (Zhao et al., 2021): MMIN creates robust joint multi-
modal representations through cross-modal imagination, allowing it to predict any absent modality
from the available modalities under various missing modality scenarios. (11) Causal Inference
Distiller (CIDer) (Zhong et al., 2025): CIDer primarily comprises two essential components: a
Model-Specific Self-Distillation (MSSD) module and a Model-Agnostic Causal Inference (MACI)
module. MSSD boosts robustness against feature missing by implementing a weight-sharing self-
distillation method across low-level features, attention maps, and high-level representations. To ad-
dress out-of-distribution issues, MACI utilizes a tailored causal graph to alleviate label and language
biases via a multimodal causal module and fine-grained counterfactual texts. (12) Graph Complete
Network (GCNet) (Lian et al., 2023): GCNet addresses the missing modality problem in conversa-
tional settings by incorporating Speaker GNN and Temporal GNN to capture speaker and temporal
relationships. It simultaneously optimizes classification and reconstruction tasks to make use of
both complete and incomplete modality data. (13) Incomplete Multimodality-Diffused emotion
recognition (IMDer) (Wang et al., 2023): IMDer employs a score-based diffusion model to re-
construct missing modalities by converting Gaussian noise into modality-specific distributions. It
utilizes the available modalities as conditional guidance to maintain consistency and semantic align-
ment throughout the recovery process. (14) Mixture of Modality Knowledge Experts (MoMKE)
(Xu et al., 2024b): MoMKE adopts a two-stage framework: initially, unimodal experts are trained
separately, and subsequently, they are jointly trained with both unimodal and joint representations.
A Soft Router is incorporated to dynamically combine these representations, facilitating enriched
and adaptive multimodal learning in scenarios with incomplete modalities. (15) Noise Intimation
based Adversarial Training (NIAT) (Yuan et al., 2024): NIAT formulates modality imperfection
with the modality feature missing at the training period and improves the robustness against various
potential imperfections at the inference period.

The additional baselines for the MHD and MSD tasks include:

(1) Multimodal Global Contrastive Learning (MGCL) (Mai et al., 2023c): MGCL performs
supervised contrastive learning on multimodal representations and develops various methods to cre-
ate positive and negative samples for each representation. (2) Multimodal Correlation Learning
(MCL) (Mai et al., 2023a): MCL constructs a supervised multimodal correlation learning task to
preserve modality-specific information and obtain a more discriminative embedding space. (3) De-
coupled Multimodal Distillation (DMD) (Li et al., 2023): To boost the discriminative features of
each modality, DMD enables flexible and adaptive cross-modal knowledge distillation. This process
splits each unimodal representation into modality-irrelevant and modality-exclusive spaces, and uti-
lizes a graph distillation unit to handle each separated component in a more specialized and efficient
way. (4) Subject Causal Intervention (SuCI) (Yang et al., 2024): It introduces a straightfor-
ward yet effective causal intervention module to separate the influence of subjects as unobserved
confounders, thereby attaining unbiased predictions through genuine causal effects. (5) Humor
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Knowledge Enriched Transformer (HKT) (Hasan et al., 2021): HKT is a promising approach for
MHD and MSD, leveraging humor-centric features as external knowledge to tackle the ambiguity
and sentiment information concealed within the language modality. (6) Modality Order-driven
module for Sarcasm detection (MO-Sarcation) (Tomar et al., 2023): It incorporates a modality
order-driven fusion module into a transformer network, enabling the ordered fusion of modalities.

The compared MLLMs include:

(1) Humanomni (Zhao et al., 2025): HumanOmni represents a sophisticated multimodal framework
designed for the analysis of videos that focus on human elements. This model’s design incorporates
three specialized streams for assessing facial expressions, body movements, and social interactions.
HumanOmni employs the SigLIP (Zhai et al., 2023) algorithm to process visual data, relies on
Qwen2.5 (Hui et al., 2024) for managing linguistic inputs, and uses Whisper-large-v3 (Radford
et al., 2023) for handling audio signals. Furthermore, it applies the MLP2xGeLU (Li et al., 2024a)
architecture to convert audio features into text, thus enabling a seamless blend with visual and textual
information.

(2) Qwen2.5Omni (Xu et al., 2025): Qwen2.5-Omni functions as a comprehensive multimodal
platform capable of managing a variety of data formats including text, audio, and video, and is ca-
pable of generating both written responses and spoken words. This system is designed based on the
Thinker-Talker model. The Thinker module analyzes textual, acoustic, and visual content to gener-
ate sophisticated representations along with corresponding text. Following this, the Talker module
takes these complex representations and transforms them into a series of spoken language elements.
Underpinning the system is a language model that begins with the foundational parameters of the
Qwen2.5 model (Hui et al., 2024). For processing audio inputs, it incorporates a Whisper-large-v3
encoder (Radford et al., 2023), while video inputs are processed using the Vision Transformer (ViT)
(Han et al., 2022) architecture.

(3) MiniCPM-o (Yao et al., 2024): MiniCPM-o, an open-source MLLM crafted by OpenBMB, is
designed to handle inputs from images, text, audio, and video, and to produce superior text and
speech outputs in a seamless end-to-end process. MiniCPM-o leverages the capabilities of SigLip-
400M (Zhai et al., 2023), Whisper-medium-300M (Radford et al., 2023), and Qwen2.5-7B-Instruct
(Hui et al., 2024), amalgamating a substantial parameter count of 8 billion.

(4) VideoLLaMa2-AV (Cheng et al., 2024): VideoLLaMA2-AV is designed to enhance the rep-
resentation of spatial-temporal dynamics and the understanding of audio in video-audio tasks.
VideoLLaMA2-AV integrates a spatial-temporal convolutional interface to effectively seize the intri-
cate spatial and temporal details present in video content. It functions through a two-branch system
encompassing a vision-language pathway and an audio-language pathway. The language decoders
are initialized with parameters from the Qwen2 model (Team, 2024). The vision-language pathway
utilizes the CLIP (ViT-L/14) model (Radford et al., 2021) as its primary vision component, process-
ing video frames sequentially. In contrast, the audio-language pathway extracts audio characteristics
through the application of BEATs (Chen et al., 2022).
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