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Abstract

Consistency learning with feature perturbation is a widely used strategy in semi-
supervised medical image segmentation. However, many existing perturbation
methods rely on dropout, and thus require a careful manual tuning of the dropout
rate, which is a sensitive hyperparameter and often difficult to optimize and may
lead to suboptimal regularization. To overcome this limitation, we propose VQ-Seg,
the first approach to employ vector quantization (VQ) to discretize the feature space
and introduce a novel and controllable Quantized Perturbation Module (QPM) that
replaces dropout. Our QPM perturbs discrete representations by shuffling the spatial
locations of codebook indices, enabling effective and controllable regularization.
To mitigate potential information loss caused by quantization, we design a dual-
branch architecture where the post-quantization feature space is shared by both
image reconstruction and segmentation tasks. Moreover, we introduce a Post-
VQ Feature Adapter (PFA) to incorporate guidance from a foundation model
(FM), supplementing the high-level semantic information lost during quantization.
Furthermore, we collect a large-scale Lung Cancer (LC) dataset comprising 828
CT scans annotated for central-type lung carcinoma. Extensive experiments on
the LC dataset and other public benchmarks demonstrate the effectiveness of our
method, which outperforms state-of-the-art approaches. Codes will be released’.

1 Introduction

Medical image segmentation serves as a fundamental step in numerous clinical applications, such as
disease diagnosis [1H3]], anatomical structure delineation [446]], lesion localization [7H9], and surgical
planning [[10H12]. In recent years, supervised deep learning methods have demonstrated outstanding
performance in segmentation tasks, significantly surpassing traditional approaches in both accuracy
and robustness [13H15]]. However, these methods typically require large amounts of finely annotated
medical data, the collection of which is not only expensive and labor-intensive but also demands
substantial domain expertise. To address this limitation, semi-supervised learning, which leverages a
small set of labeled data alongside a larger pool of unlabeled samples, has emerged as a promising
direction and is receiving growing attention in the medical imaging community.

Consistency learning represents a widely adopted paradigm in semi-supervised medical image
segmentation, designed to enforce prediction invariance under various perturbations [[16]]. Feature-
level dropout [17, [16] is a commonly employed technique within this framework, introducing
perturbation into intermediate representations to enhance model robustness. However, its effectiveness
is critically dependent on the selection of the dropout rate (DR), a hyperparameter.
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As depicted in Fig.[T] our experiments reveal two primary challenges associated with this methodology.
Firstly, the adoption of lower dropout rates (e.g., DR=0.3, DR=0.5) yields negligible impact on
segmentation performance. This suggests that the induced perturbation is insufficient to provide
meaningful regularization. Secondly, elevating the dropout rate (e.g., DR > 0.7) leads to a rapid
decline in performance metrics. Specifically, Dice and Jaccard scores exhibit a sharp decrease,
while HD95 and ASD values significantly increase, indicating a substantial degradation in both
structural accuracy and boundary delineation. Qualitative analyses further corroborate these findings,
demonstrating that segmentation outputs under high dropout rates frequently fail to yield meaningful
segmentation results, rendering them practically unusable.

These observations underscore the inherent difficulty in identifying an optimal dropout rate that
consistently enhances performance while mitigating the risk of model collapse. Consequently, there
is a pressing need for a more stable perturbation strategy, thereby achieving the desired regularization
effect in a predictable and robust manner.

In this paper, we introduce VQ-Seg, a novel semi-
supervised framework for medical image segmentation.
The core innovations of our approach include: first, the
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eters such as the dropout rate, QPM leverages distances
between codebook codewords to define perturbation strate-
gies, thereby offering enhanced interpretability and stabil-
ity. To address potential visual information loss arising
from vector quantization, we tackle this issue from two
perspectives. Initially, we construct a dual-branch archi-
tecture that shares a post-quantized space, unifying image
reconstruction and semantic segmentation tasks within a
joint optimization framework in a discrete representation
space. This design facilitates the preservation of critical
structural information from images while also utilizing
the reconstruction task as a self-supervisory signal to en-
courage the VQ encoder to learn improved representations.
Furthermore, to enhance semantic consistency and miti-
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Figure 1:  Effect of dropout rate on
segmentation performance in a fully
supervised setting on the LC dataset.
Low dropout rates show negligible
impact, whereas a high dropout rate
(DR > 0.7) severely degrades both quan-

gate the loss of high-level semantic information during
quantization, we incorporate a foundation model-guided
alignment strategy. Specifically, we develop a Post-VQ
Feature Adapter (PFA) that employs contrastive learning

titative metrics and visual outputs. No-
tably, DR = 0.9 leads to unusable pre-
dictions, highlighting the challenge of
selecting an optimal dropout rate.

to align quantized features with semantic features derived

from a pre-trained visual foundation model. This approach

effectively enriches the semantic content and spatial consistency of discrete representations. Extensive
experiments conducted on our collected Lung Cancer (LC) dataset (comprising 828 annotated cases)
and the open-source ACDC dataset demonstrate that VQ-Seg significantly outperforms state-of-the-
art semi-supervised segmentation methods across key evaluation metrics, including Dice, Jaccard,
HD?95, and ASD. Detailed ablation studies further validate the efficacy and synergistic effects of the
individual components of VQ-Seg.

In summary, our contributions are five-fold:

* We collected a new large-scale dataset, the Lung Cancer (LC) dataset, comprising 828 chest
CT scans with annotations of central-type carcinoma of the lung.

* We propose a novel Quantized Perturbation Module (QPM) to perturb features within a
discrete vector quantization (VQ) space. QPM enables a more structured and controllable
mechanism for representation perturbation by shuffling the spatial locations of codebook
indices, offering enhanced interpretability and stability compared to traditional dropout.

* We introduce a dual-branch architecture where the post-quantized space is concurrently
utilized for both image reconstruction and the downstream segmentation task. This design



uses reconstruction as a self-supervisory signal, encouraging the VQ encoder to learn better
representations and preserving essential visual information.

* We develop a foundation model-guided alignment strategy, where a frozen foundation model
(FM) serves as an external semantic prior to guide and regularize the Post-VQ representation.
A Post-VQ Feature Adapter (PFA) is introduced to transform the quantized codebook
embeddings into a semantically aligned space using contrastive learning, mitigating the loss
of high-level semantic features.

* We compare our method with multiple cutting-edge methods on the LC dataset and open-
source datasets, demonstrating that our approach achieves state-of-the-art performance,
which verifies its effectiveness.

2 Related work

2.1 Semi-supervised Medical Image Segmentation

Obtaining large-scale, high-quality manual annotations for medical images is both time-consuming
and labor-intensive [[18]|19]. Semi-supervised learning (SSL) methods have thus gained attention as a
promising solution for medical image segmentation under limited annotation settings [20]. Among
various SSL strategies, pseudo-labeling-based approaches are widely adopted due to their simplicity
and ease of implementation [21]]. These methods [22125]] typically involve training an initial model
on the labeled dataset and then generating pseudo-labels. However, the use of pseudo-labels can
introduce noise and lead to training instability, especially when incorrect labels are propagated [26].
To address this, subsequent research [27H29] has incorporated consistency regularization to enforce
prior constraints on the learned representations. Consistency regularization is grounded in the
smoothness assumption, which posits that small perturbations to the input data should not significantly
alter the model’s predictions [30]. In this context, the design and implementation of perturbations
play a critical role in determining the effectiveness of the model.

2.2 Feature-level Dropout for Consistency Regularization

We focus on feature-level Dropout strategies. Leveraging Dropout-based regularization for con-
sistency learning has become a widespread approach in semi-supervised medical image segmen-
tation [31]. Specifically, techniques such as Monte Carlo Dropout (MC-Dropout) [16] have been
employed to model uncertainty and enforce prediction consistency under random feature pertur-
bations. These perturbations help improve the generalization ability of the model by encouraging
it to make stable and robust predictions despite the uncertainty inherent in the data. Several stud-
ies [16} 132} 29] have shown the effectiveness of such methods, demonstrating improved performance
in semi-supervised medical image Segmentation tasks. However, while these approaches have shown
promise, they typically require the careful tuning of a hyperparameter—the Dropout rate. The appro-
priate setting of the Dropout rate is critical. Both peer observations [29] and our own empirical studies
(see Fig.[T) suggest that this process is often challenging in practice, as the optimal Dropout rate may
vary depending on the specific dataset, task, and network architecture. In particular, inappropriate
Dropout configurations can lead to unstable training dynamics, such as excessive regularization that
prevents the model from learning effectively 33 [31]]. This highlights a significant limitation of
traditional Dropout-based methods. This situation motivates the need for alternative strategies that
can provide controlled and effective feature-level perturbations.

3 Methodology

3.1 Overview

Fig.[2|provides an overview of our Vector Quantization-based Semi-supervised Segmentation frame-
work (VQ-Seg). The input image is first encoded into continuous latent features, which are then
quantized into a discrete codebook space via the Vector Quantization (VQ) module. To introduce
structured perturbations for consistency learning, we propose the Quantized Perturbation Module
(QPM), which shuffles codebook indices based on their learned distances, offering a stable and
interpretable alternative to dropout. To compensate for potential visual information loss, VQ-Seg
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Figure 2: Overview of the VQ-Seg framework. The input image x is encoded into continuous features
z, which are then quantized into a discrete codebook space via vector quantization (VQ). Quantized
Perturbation Module (QPM) introduces controllable perturbations for consistency learning. The
dual-branch architecture jointly optimizes image reconstruction and segmentation using the shared
Post-VQ features. Additionally, a Post-VQ Feature Adapter (PFA) aligns the quantized features with
semantic embeddings from a foundation model (FM).

adopts a dual-branch architecture that jointly optimizes reconstruction and segmentation tasks using
the shared Post-VQ feature space. Furthermore, the Post-VQ Feature Adapter (PFA) aligns quan-
tized features with semantic embeddings from a pre-trained foundation model through patch-wise
contrastive learning, enriching representation semantics and reducing drift.

3.2 Theoretical Motivation

To analyze the sensitivity of the model to perturbations in the feature space, we interpret the KL
divergence KL(P||Q) as a measure of the perturbation radius from the original distribution P to
the perturbed one (). This is inspired by distributionally robust optimization (DRO) [34} 35], where
the worst-case risk is evaluated over an uncertainty set defined by a bounded KL divergence. Thus,
the divergence reflects the extent to which the input perturbation has structurally shifted the feature
representation. Supported by recent studies [36l], for Dropout, the KL divergence between the
posterior distribution ) (induced by dropout) and a prior distribution P can be approximated as:

Dra(PlQ) ~ 5 (2 +los(1 -1). m

where p € (0,1) denotes the dropout rate. As p increases, the approximation indicates a growing
perturbation radius, with the KL divergence rising sharply (see Appendix [A]for a full derivation).
Such behavior reveals the inherent instability of dropout from a theoretical standpoint: a large dropout
rate causes the posterior distribution to deviate significantly from the prior, potentially leading to
over-regularization and degraded learning performance, as supported by our empirical results (see
Fig.[I). To mitigate this issue, we propose the Quantized Perturbation Module (QPM), which perturbs
features within a discrete vector quantization (VQ) space, enabling a more structured and controllable
mechanism for representation perturbation.
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Figure 3: A concrete example of the Quantized Figure 4: Architecture of the Post-Quantization
Perturbation Mechanism (QPM) with a code- Feature Adapter (PFA) designed for aligning post-
book size of K = 4 and a perturbation strength ~ quantization features with a frozen Foundation
€ = 0.7. It illustrates the probabilistic transi- Model (FM) via a patch-wise contrastive loss,
tions from the original codeword c; (index 1)  Lyign. The PFA initially employs a resizing opera-
to itself and other codewords (cs, c3, c4) with  tion followed by a 1 x 1 convolution to match the
their respective probabilities 7(j|1), where the  spatial resolution and channel dimensionality of
transition to co (49%) exhibits the highest prob- the FM features, thereby facilitating subsequent
ability of replacement. semantic alignment.

3.3 Quantized Perturbation Module (QPM)

In our method, the encoder output z = fec () represents a continuous feature embedding of the
input medical image z. This embedding is then projected into a discrete latent space by selecting the
nearest codeword from a learnable codebook C = {¢y, ¢a, ..., ¢k }, where K denotes the total number
of codewords, i.e., the size of the codebook. The quantized codeword index ¢ is obtained by

i argje{rlr}}.r.{K} llz — c;ll- 2)
After the encoding step, we apply a perturbation strategy m(j | ¢). For each original codeword ¢;
(with index 7), a new codeword c; (with index j) is sampled based on the conditional probability
7(j | 9), and ¢; replaces the original codeword as the input to the decoder. This procedure introduces a
structured perturbation within the discrete latent space, resulting in a more controlled and interpretable
form of regularization. To implement this perturbation, we first define a prior distribution P(c;) over
the codebook Z. We assume a uniform distribution over all codewords:

P(c;) = % Vie{1,2,..,K}. 3)

The perturbation strategy defines the conditional probability of transitioning from the current code-
word ¢; to another codeword ¢;:

G i) = 1—c¢, ifj=1 @
T = comCdlene) 52

where € € [0, 1] is a control term controlling the perturbation strength, d(c;, ¢;) is a distance metric
between codewords ¢; and ¢;, and Z; = 7, exp(—d(c;,cx)) is a normalization factor. The

resulting perturbed distribution Q(c;|€) over the codewords is then given by:

exp(—d(c;, ¢j))
P(e = . 5
C]| Z C Z Ek#z eXp (CZ,C]C)) ( )

The KL divergence between the prior distribution P and the perturbed distribution @ is:

D (PIIQ) = ZP g (12 ) =~ D los (K, ). ©®

Qlejle)

Compared to Dropout, our QPM offers several advantages. The perturbed distribution Q(c;e)
is always well-defined and bounded, ensuring numerical stability (Detailed proof can be found



in Appendix [B). QPM is directly controlled via a single control term € and is influenced by the
learned codebook structure. Moreover, QPM introduces structured perturbations by probabilistically
transitioning between learned codebook entries based on their distances, yielding a potentially more
interpretable and controllable form of regularization compared to the stochastic perturbations inherent
in Dropout (refer to an example presented in Fig. [3). The perturbation remains within the learned
discrete latent space, offering a distinct approach to regularization.

3.4 Dual-Branch Architecture with Shared Post-VQ Space

Visual information inherently exists in a continuous space. The process of quantization, while
enabling discrete representations, can lead to a loss of fine-grained details and potentially reduce
the representational capacity for modeling intricate visual structures [37, [38]]. To address this, we
introduce a dual-branch architecture where the post-quantization feature space (Post-VQ Space),
is concurrently utilized for both image reconstruction and the downstream segmentation task. By
jointly optimizing the quantized feature space with respect to these two objectives, we encourage it to
encode fundamental structural information, as well as segmentation-relevant representations. This
dual utilization facilitates the preservation of essential visual information within the Post-VQ Space,
without compromising the performance of the segmentation task.

As depicted in Fig. [2] both the teacher (7) and student (5) decoder networks adopt this design.
Following the encoding stages and vector quantization, we obtain the discrete representations q(zlS )
for x;, q(27) for x4, q(22) for x, processed by the student, and g(z!) for z,, processed by the
teacher. The QPM-perturbed quantized representation of the unlabeled data is denoted as ¢/ (23 ) =
QPM (q(z5)), which is used by the student network. These discrete representations, where ¢(z) €
{a(29),q(25),q(2L), q'(25)}, serve as the input to the image decoder (D;) and the segmentation

decoder (Dy), as described by:
& = D;(q(z)),§ = Ds(q(z))- )

The loss function for the labeled data x; with its associated ground truth segmentation y; is defined
as:

[/l = Erec(-rla-i‘ls) + [’Se!](ylvgis)' (8)

For the unlabeled data x,,, we employ a pseudo-labeling strategy. Initially, a predicted segmentation
map is generated by the teacher network Ty, as y. = DT (g(zI)), with a corresponding recon-
structed image 21 = DT (q(21)). Subsequently, a pseudo-label §,, is derived from y. by selecting
the class with the maximum probability (argmax operation). This pseudo-label 7., is then used as
the target segmentation for the QPM-perturbed quantized representation ¢’(z,,) of the unlabeled data
in the student network Sg... The loss for the unlabeled data in the student network Sg.. integrates
both the reconstruction loss of the original unlabeled data and a segmentation loss based on the
teacher-generated pseudo-label applied to the perturbed representation:

Ly = Lrec(u, &) + Laeg(Gu ) + Loeg(Tus T )- ©9)
The overall dual-branch loss is defined as:
Edb = ‘Cl + /\uﬁu (10)

where )\, is a hyperparameter that balances the contribution of the unlabeled loss £, relative to
the labeled loss £;. L. denotes the L; loss, and L., represents the Cross-Entropy loss. By
jointly minimizing L5, we encourage the shared quantized feature space to encode information
beneficial for both reconstructing the input image and segmenting relevant structures. This synergistic
optimization leverages supervision from labeled data and self-supervisory signals from unlabeled
data via pseudo-labeling, where the teacher network generates pseudo-labels to guide the student
network’s learning on the QPM-perturbed quantized representations of the unlabeled data.

3.5 Foundation Model-Guided Alignment for Post-VQ Space

Although vector quantization (VQ) compacts the feature space, its discretization process introduce
semantic bias and loss of fine details [39], which is particularly detrimental in high-precision tasks
such as medical image segmentation. To mitigate these issues, we propose a foundation model-guided



alignment strategy, where a frozen foundation model (FM) serves as an external semantic prior
to guide and regularize the Post-VQ representation. Specifically, we introduce a Post-VQ Feature
Adapter (PFA) that transforms the quantized codebook embeddings into a semantically aligned space,
as illustrated in Fig. @] The PFA first resizes the VQ features and then applies a 1 x 1 convolution to
match the spatial resolution and channel dimension of the FM features. Denoting the output of the
PFA as fP ¢ RH'*W'*C" and the corresponding FM features as ™. We then apply a patch-wise
contrastive learning objective [40, 41]] to minimize the semantic discrepancy between the adapted
VQ features and the FM representations:

| HW exp (sim(fffa, ffm)/T)
Laign = “TwW Z log — 7 . epfa pfm ’
S e (sim(7, 1))

(1D

. T .
where sim(a, b) = W’ and 7 is the temperature parameter. f7 * and fim represent the feature

vectors at spatial location ¢ (flattened from the 2D grid) extracted from the adapted VQ features
and the FM features, respectively, both with dimensionality C’. The indices ¢ € {1,..., H'W'}
correspond to all patch locations on the H' x W' spatial grid. The patch-wise formulation enables
localized semantic supervision, allowing the model to align not just global representations but also
fine-grained spatial semantics. By minimizing Lj;gn, the discretized features are encouraged to retain
rich and spatially semantic information that are consistent with the external FM prior, effectively
mitigating the loss of detail and semantic drift introduced during quantization. In practice, we adopt
DINOV2 [42] as the foundation model to provide semantic supervision.

3.6 Total Optimization Objective

Drawing upon the loss formulations in equations[I0]and[T1] the overall optimization objective of our
framework is defined as follows:

L = Lap + Ao Lalign, (12)

where A, is a hyperparameter that balances the two loss terms. A decrease in Lg, indicates that the
model is learning more effective representations for reconstructing images and segmenting relevant
lesion regions. Furthermore, the optimization of Lz, suggests that stronger consistency is achieved
between quantized features and external foundation model priors, thereby mitigating detail loss and
semantic shift introduced during the quantization process. Detailed discussions on the hyperparameter
can be found in the ablation study part[4.5]

4 Experiments

4.1 Datasets.

Lung Cancer (LC) Dataset. We collect a multi-center dataset including 828 chest CT scans
of central-type lung carcinoma, which reveals the inherent challenges associated with detecting
and analyzing such cases, presenting subtle anomalies within the imaging data. There exists one
segmentation target per volume, and the dominant lesion is annotated precisely for each case.

ACDC dataset. This dataset [43]] is a cardiac MRI collection comprising 100 short-axis cine-MRI
scans, acquired using both 3T and 1.5T scanners.

Following previous studies, we applied the 70—10-20 split ratio for training, validation, and testing
on the LC dataset. To ensure a fair comparison, all experiments were conducted on 2D slices.

4.2 TImplementation Details.

Our model is implemented using PyTorch 2.0.1 with CUDA 11.8 and MONAI 1.3.0. All 2D slices are
cropped to 128 x 128 and used as input, with a batch size of 4 per GPU. The training process runs for
100 epochs, employing the cross-entropy loss and an SGD optimizer with a polynomial learning rate
scheduler (initial learning rate of 1 x 10~* and decay of 3 x 10~5). As shown in Fig.[2| several data
augmentation strategies are applied, including random rotation, color jittering, Gaussian noise, and



Table 1: Quantitative comparison on the LC dataset with two labeled ratio settings (5%, 10%) using
four metrics: Dice and Jaccard (1), HD95 and ASD (J). Best results are in bold, second best are
underlined.

5% Labeled 10% Labeled
Dicet Jaccard? HD95] ASD] Dicet Jaccard? HD95] ASD]

UNet-F [47] 0.8345 0.7386 6.9634 22913 0.8345 0.7386 6.9634 22913
UNet-S [47] 0.4343 0.3118 26.0498  12.6188  0.6490 0.5175 21.4063  7.3382
nnUNet-F [54]  0.8259 0.7236 4.2533 1.4216 0.8259 0.7236 42533 1.4216
nnUNet-S [54]  0.4590 0.3438 13.2746 8.8636 0.6538 0.5194 25.2100  8.9332

UA-MT [16] 0.6029 0.4647 48.6681  24.6020  0.7222 0.5989 11.6724  5.4939
MCNet [48] 0.6378 0.4970 15.2759 4.9231 0.7555 0.6414 16.1903  9.9647
SSNet [49] 0.6328 0.4886 25.1005 9.3180 0.7480 0.6278 14.9581  7.3399
BCP [50] 0.6243 0.4854 269303 104789  0.7252 0.5994 18.9768  6.5105
ARCO [31] 0.6162 0.4778 36.2256  14.6243  0.7246 0.5945 14.4803  4.3660
ABD [52] 0.6414 0.5024 12.5608 5.9661 0.7468 0.6244 12.6570  6.7437
Unimatch [53]  0.6493 0.5071 17.8700 5.4526 0.7511 0.6333 17.0178  5.7388
Ours 0.6643 0.5257 12.2525 4.2276 0.7852 0.6731 11.6179  4.2094

Img MCNet BCP ARCO ABD Unimatch Ours GT

Method

Figure 5: Visual results on LC with 5% and 10% labeled data show that VQ-Seg consistently yields
more accurate predictions of anatomical structures and boundaries than all other compared methods.

blurring. To enable gradient backpropagation through the non-differentiable operations in our model,
we employ the Straight-Through Estimator (STE) technique [44], which approximates gradients
during the backward pass. In our main experiments, we set the VQ codebook size to K = 16,384
and further conduct corresponding ablation studies (see Sec. to evaluate its influence. Moreover,
the codebook mapping mechanism [45] 146] is incorporated to accelerate the learning dynamics of the
codebook. An Exponential Moving Average (EMA) strategy is applied to update the teacher network,
where the parameters of the teacher encoder and decoder are updated from the student’s parameters
as follows: 6; «+ « - 0, + (1 — «) - 05, where 6, and 0, represent the parameters of the teacher and
student networks, respectively, and @ = 0.99 denotes the EMA decay rate. All experiments are
conducted on a cloud computing platform equipped with four NVIDIA GeForce RTX 4090 GPUs.

4.3 Evaluation and Metrics.

We compare our method with other state-of-the-art (SOTA) approaches, including UNet [47], UA-
MT [16], MCNet [48]], SSNet [49], BCP [50]], ARCO [51], ABD [52], and Unimatch [53]]. Note that
methods labeled with “F” denote fully supervised models trained using all labeled data, while those
labeled with “S” indicate semi-supervised models trained with limited annotations. To ensure a fair
comparison, our VQ-Seg model adopts the same encoder and decoder architecture as Unimatch [53].
The main difference lies in the introduction of a quantization and alignment process after the encoder
output. Segmentation performance is evaluated using four common metrics: Dice and Jaccard for
region overlap, and HD95 and ASD for boundary accuracy.



Table 2: A comprehensive ablation study evalu-  Table 3: Impact of hyperparameters on metrics.
ating the contributions of the Quantized Pertur- _Param. Value | Dicef Jaccardf HD95] ASD|

bation Module (QPM), the dual-branch architec- 82 8';;3; 8'225 }%ggi; j'g?gg
ture with shared Post-VQ space (DB), and the ¢ 07 | 07852 06731 116179 4.2094
Post-VQ Feature Adapter (PFA) on segmentation 0.9 | 07418 06142 14.8054 5.1328

—|

performance using the LC dataset (10% labeled). 0.7720 - 0.6591 11.5080  4.2672

; A 5 0.7852 0.6731 11.6179 4.2094
Base QPM DB PFA | Dicet Jaccardf HD95] ASD| @
7 07443 06238 142153 52301 10 | 07765 06640 11.9235 4.1926
v v 07701  0.6559  13.0246 4.9378 1 0.7852  0.6731 11.6179 4.2094
v v 0.7784  0.6620 12.4728 4.6013 A 5 0.7670 0.6553 11.7421 4.1652
v v v 0.7761 0.6597 12.7381 4.7005 10 0.7843 0.6724 11.8852 4.1013
v v v 0.7852  0.6731 11.6179  4.2094

4.4 Comparison Results

Quantitative Comparisons. Tables |l| and [/| summarize the quantitative comparisons for each
method on the LC and ACDC datasets across two labeled ratio settings (5% and 10%). On the LC
dataset, our method demonstrates superior performance. At 5% labeled data, VQ-Seg achieves the
highest Dice (0.6643) and Jaccard (0.5257), outperforming the second-best Unimatch (Dice: 0.6493,
Jaccard: 0.5071) by 1.5% and 1.86%, respectively. It also yields the best HD95 (12.2525) and ASD
(4.2276), improving upon the second-best ABD (HD95: 12.5608) and MCNet (ASD: 4.9231) by
0.3083 and 0.6955. With 10% labeled data, our method maintains the lead, achieving the highest Dice
(0.7852) and Jaccard (0.6731), surpassing the second-best MCNet (Dice: 0.7555, Jaccard: 0.6414) by
2.97% and 3.17%. It also yields the best HD95 (11.6179) and ASD (4.2094), improving upon the
second-best UA-MT (HD95: 11.6724) and ARCO (ASD: 4.3660) by 0.0545 and 0.1566. Results on
the ACDC dataset (see Appendix [C]and Table[7) exhibit a similar trend, confirming the robustness
and generalizability of our approach across diverse datasets.

Visual Comparisons. As depicted in Fig. [5] our VQ-Seg effectively identifies the cancerous areas
with high precision. Segmentation outcomes exhibit improved consistency and clearer boundary
delineation when compared to other state-of-the-art techniques. Notably, our method better preserves
the structural integrity of cancer regions. These visual advantages further demonstrate the superior
performance of our model across various cases. For a more comprehensive understanding, please refer
to Appendix [D]for the statistical visualization analysis and Appendix [E|for the t-SNE visualization of
the codebook update dynamics.

4.5 Ablation Studies

Module Analysis. As shown in Table |2} we conduct a step-by-step ablation to evaluate the con-
tribution of each proposed component. The baseline model is a VQ-embedded Unimatch with a
student-teacher framework. Based on this, incorporating the Quantized Perturbation Module (QPM)
leads to a notable improvement in Dice from 0.7443 to 0.7701. Adding the dual-branch (DB) archi-
tecture further enhances performance to 0.7784, while using the Post-VQ Feature Adapter (PFA)
alone yields a Dice of 0.7761. When all three modules are combined, the full model achieves the best
performance across all metrics, including a Dice of 0.7852, Jaccard of 0.6731, HD95 of 11.6179, and
ASD of 4.2094, confirming the complementary benefits of the proposed components.

Hyper-parameter Experiment. Table [3| reports the impact of key hyperparameters. For the
perturbation strength €, performance improves as e increases to 0.7, achieving the best Dice score of
0.7852. Regarding the loss weights, setting A, = 5 and \,, = 1 leads to the best overall results.

Effect of Foundation Models. We choose DINOv2 as our backbone because it has demonstrated
remarkable generalization across diverse downstream tasks [55} 156]; despite being trained on natural
images, it transfers strongly to medical domains and has been widely used in medical segmentation
and registration. To further validate this design choice, we conducted an ablation replacing DINOv2
with alternative foundation models, including those pretrained on medical data. CLIP [57] and
BiomedCLIP [58] are vision—language models trained on large-scale image—text pairs (natural and
medical, respectively), MAE [59] is trained via masked autoencoding, and Rad-DINO [60] adopts
a DINO-style architecture on radiology images. As summarized in Table @ DINOv2 consistently
outperforms all alternatives under both 5% and 10% labeled regimes, including models specialized



Table 4: Ablation on foundation models. Table 5: Ablation on the codebook size.

Foundation Model Dice (5%) Dice (10%) Codebook Size Dice (5%) Dice (10%) Uti. (%)
CLIP [57] 0.6421 0.7483 o oo AT 10
BiomedCLIP [58] 0.6507 0.7629 1096 0.6627 0'7775 99
MAE [59] 0.6386 0.7541 16384 0.6643 0.7852 98
Rad-DINO [60] 0.6535 0.7793 32768 0.6595 0.7764 95
DINOv2 [42] 0.6643 0.7852 65536 0.6415 0.7638 92

Table 6: Comparison of performance under different labeled data ratios.

Method 5% 10% 20% 50% 100 %
UNet-S [47] 0.4343  0.6490 0.7205 0.7880  0.8345
MCNet [48] 0.6378 0.7555 0.7812 0.8203  0.8751
ABD [52] 0.6414 0.7468 0.7780 0.8235 0.8824

Unimatch [53] 0.6493 0.7511 0.7855 0.8279 0.8871
VQ-Seg (Ours) 0.6643 0.7852 0.8100 0.8507 0.9102

for medical domains, empirically supporting DINOvV2 as a robust and effective semantic prior for
semi-supervised medical image segmentation.

Effect of Codebook Size. We further investigate the impact of codebook size on model performance,
as shown in Table[5] The codebook size determines the granularity of the discrete latent space: a
smaller codebook provides limited representational capacity, while an excessively large one may lead
to code redundancy and unstable optimization. Our results show that the Dice score steadily increases
as the codebook size grows from 1,024 to 16,384, indicating that a moderately large codebook enables
richer and more discriminative representations. However, further enlargement (e.g., 32,768 or 65,536)
slightly degrades performance due to decreased code utilization and overfitting. Here, “Uti.” denotes
codebook utilization, which measures the proportion of code vectors actively used during training.

Ablation on Labeled Ratio Settings. As shown in Table[f] we evaluate VQ-Seg under different
labeled ratios to examine its scalability in semi-supervised learning. The results show a consistent per-
formance gain with more labeled data, demonstrating the model’s strong ability to exploit supervision.
Remarkably, VQ-Seg achieves significant improvements in low-label regimes, indicating that the
discrete representation learned via vector quantization provides effective regularization and semantic
consistency. Even with increasing supervision, the performance gain remains stable, highlighting
VQ-Seg’s robustness and scalability across varying annotation levels.

5 Conclusion and Limitations

We present VQ-Seg, a novel semi-supervised medical image segmentation framework. VQ-Seg
introduces a Quantized Perturbation Module (QPM) that performs controlled perturbations in the
vector-quantized (VQ) feature space, enhancing the robustness of representation learning. In addition,
a dual-branch architecture with a Post-VQ Feature Adapter (PFA) is designed to refine the quantized
features and integrate high-level semantic information. Extensive experiments on the Lung Cancer
(LC) and ACDC datasets demonstrate that VQ-Seg achieves state-of-the-art performance, substantially
improving segmentation accuracy under limited supervision.

However, the current perturbation operates solely in the discrete VQ space, making it difficult to
extend to continuous feature representations commonly used in existing semi-supervised frameworks.
Moreover, while the adoption of a foundation model introduces richer semantic priors, it also brings
additional computational overhead. Future work will focus on developing controllable perturbation
mechanisms in continuous spaces and exploring more efficient foundation model integration.
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A KL Divergence Approximation under Dropout Perturbation

To support the theoretical analysis in Section 3.2} we derive an approximation of the KL divergence
between a prior distribution P(h) and a perturbed distribution Q(%) induced by applying dropout to
intermediate feature. This divergence is used to quantify the perturbation radius caused by dropout in
the feature space.

A.1 Dropout-Induced Feature Distribution as a Mixture

Consider a simplified setting where a feature activation h follows a Gaussian prior:
P(h) = N(0,07). (13)

Under dropout with rate p, the feature is zeroed out with probability p, or retained with probability
1 — p. This results in the perturbed distribution:

Q(h) = (1 —p)-N(0,08) +p-d(h), (14)

where 0(h) is the Dirac delta function centered at zero. This mixture captures the effect of randomly
dropping activations.

A.2 Intractability of Exact KL Divergence

The KL divergence between P(h) and Q(h) is:
= P(h)>
DkL(P = P(h)1 ——= | dh. 15
(Pl = [~ P (5] (15)
Substituting the forms of P(h) and Q(h), we obtain:
— = . 2 N(h7 Oa 08) >
Da(PIQ) = [~ Ntwso.odyon (it By ao)

Due to the singular nature of (k) at h = 0, this expression is intractable in closed form. To make
progress, we adopt a moment-matching approximation.

A.3 Moment-Matching Approximation

We approximate Q(h) with a Gaussian distribution Qupprox () that matches the first and second
moments of the dropout-perturbed activations. Let o’ ~ Q(h) denote the post-dropout feature. Then:

E[r'] =0, Var(h') =o5(1 —p). (17)
Therefore, we define:
Qupprox(h) = N (0,05(1 = p)). (18)
The KL divergence between the original and approximated feature distributions becomes:
2 2
DKL(P”Qapprox) = % (03(;-0_}7) —1+1log (O'O(ig_p)>> . (19)
Simplifying gives:
Dice (P Qupror) = 5 (1 —1+log(1 p)) -2 (p + log(1 p)) e
2\1—p 2\1—p

A.4 Interpretation and Connection to Perturbation Radius

This result provides a clean, analytical expression for the perturbation radius induced by dropout,
interpreted as a KL divergence. Notably, as p — 1, the divergence grows rapidly and even diverges
(.e., becomes unbounded), indicating severe deviation from the original distribution. This supports
our theoretical claim: Dropout induces increasingly unstable perturbations when the dropout rate
is high, as observed empirically (see Fig.[I]), potentially leading to over-regularization, distorted
representations, and degraded model performance. This motivates our Quantized Perturbation Module
(QPM), which constrains perturbations to a structured, discrete space and avoids such instability.
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B Proof of Numerical Stability of QPM

In this appendix, we prove that the perturbed distribution Q(c; | €) used in the Quantized Perturbation
Module (QPM) is always well-defined and bounded, thereby ensuring the numerical stability of the
associated KL divergence, even in the extreme case of ¢ = 1.

B.1 Definition of Q(c; | €)

Let the prior distribution over codewords be uniform:

1
Ple;))=—=, Vie{l,...,K}. 21
K
The perturbation mechanism 7 (j | ¢) is defined as:
. 1—¢, ifj=1
7(-(.7 | Z) = § eexp(—d(cs,cy)) o - . where Z; = ZGXP(—d(Ciack))~ (22)
— e, iy A pavy
Then, the overall perturbed distribution is:
| X
Qcj | e) = ZP ci)m Z):?§W(]|Z). (23)

B.2 Basic Properties of Q(c; | )

(1) Non-negativity and Positivity: Since 7(j | i) > 0 for all 4, j, it follows that Q(c; | €) > 0.
Furthermore, under mild assumptions (e.g., finite distances and € > 0), we have 7 (j | ¢) > 0 for
some 4, 50 Q(c; | €) > 0 for all j.

(2) Normalization: We verify that () is a valid probability distribution:
K K K | KK 1 X
D Qeila=3 > wrili)=2> > wlili=2> 1=1 (24)
j=1 j=1i=1 i=1 j=1 i=1

B.3 KL Divergence Between P and ()
The KL divergence between P and () is defined as:

kL(P ] Q) = chj 1og< J(D( |))> —éém%%) (25)

_ _% Z log (KQ(c; | €)). (26)
j=1

This expression is numerically stable as long as Q(c; | €) > 0 and bounded away from 0, which we
prove next for the extreme case € = 1.

B.4 QPM Perturbation Distribution at ¢ = 1

Recall that when € = 1, the transition distribution becomes:

. 0, ifj=1
ﬂ-(] | Z) =\ exp(—d(ci,cj)) oo ., where Z; = Zexp(fd(civ Ck)) (27)
— =z o i 7 ki
Thus, the resulting perturbed distribution is given by:
exp Clv Cj))
Qe le=1) P(e;) | 7) . (28)
j | Z g K ; > ki exp(—d(cis i)
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B.5 Lower Bound of Q(¢; | e =1)

Assume the codebook C = {ci,...,cx} is fixed and that the pairwise distance is bounded: 0 <
Dyin < d(¢;,¢j) < Dyax < oo forall i # j. Then for any ¢ # j, the transition term is lower
bounded:

exp(—d(ci, Cj)) > eXp(_Dmax) _ eXp(Dmin - Dmax) (29)
cexp(—d(c;,cx)) — (K —1)exp(—Dmin K—-1 '
k#i
Hence,
exp(—d(ci, ¢j))
Q(C'|€:1):* (30)
! ; Zk;ﬁz exp(—d(ci, cx))
1 eXp(Dmin - Dmax) eXp(Dmin - Dmax)
> —(K—-1)- = . 1
g KD K-1 K >0 @b
B.6 Upper Bound of Q(c; | e =1)
Likewise, for any i # j:
eXp(_d(Civ Cj)) < eXp(_Dmin) _ exp(Dmax - Dmin) (32)
Zk;ﬁi eXp(_d(ci’Ck)) a (K - 1) eXp(_Dmax) K-1 .
Thus,
1 exp(Dmax - Dmin) eXp(Dmax - Dmin)
Qlej e =1) < (K — 1) TP - (33)

B.7 Implication for KL Divergence

Since Q(c; | € = 1) is strictly positive and bounded above by 1, the term log(K Q(c;)) in the KL
divergence remains finite:

K
1
Dx(P||Q) = —4 Zl log(KQ(c;)) < oo. (34)
j=
Therefore, the QPM perturbation strategy ensures numerical stability for all valid € € [0, 1].

C Performance Analysis on the ACDC Dataset

Table 7: Quantitative comparison on the ACDC dataset with two labeled ratio settings (5%, 10%)
using Dice and Jaccard (7). Best results are in bold.

5% Labeled 10% Labeled
Dicet Jaccardt? Dicet  Jaccardf

UNet-F [47] 09130  0.8427 09130  0.8427
UNet-S [47] 04674 03698  0.7952  0.6882
nnUNet-F [54] 09185  0.8491  0.9185  0.8491
nnUNet-S [54] 04892 03876  0.8113  0.7040

UA-MT [16] 0.6123  0.5324  0.8423  0.7382
MCNet [48] 0.6485  0.5338  0.8621 0.7701
SSNet [49] 0.6542  0.5568  0.8689  0.7753
BCP [50] 0.8621 0.7846  0.8827  0.8032
ARCO [51] 0.8879  0.8021 09026  0.8252
ABD [52] 0.8874  0.7924  0.8992  0.8213
Unimatch [53] 0.8915  0.7983  0.8978  0.8290
Ours 0.9057 0.8173  0.9103  0.8327

Method

Table[7|compares our method with leading baselines on the ACDC dataset under 5% and 10% labeled
data settings. Our model consistently outperforms others in both Dice and Jaccard metrics.
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With 5% labeled data, our method achieves a Dice of 0.9057, exceeding Unimatch (0.8915), ABD
(0.8874), and ARCO (0.8879), and approaching the fully supervised nnUNet-F (0.9185). This
highlights its strong representation ability under limited supervision.

At 10% labeled data, the advantage becomes more evident, reaching the best Dice (0.9103) and
Jaccard (0.8327), surpassing ABD (0.8992) and ARCO (0.9026). These consistent gains demonstrate
the robustness and scalability of our approach as more labeled data are available.

D Statistical Analysis
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Figure 6: Comparison under 5% labeled LC dataset.

To evaluate the statistical reliability of our method, we ran the competing models MCNet [48]],
Unimatch [33]], and our VQ-Seg ten times under the 5% labeled LC dataset using different random
seeds. The averaged Dice scores together with their standard deviations are visualized in Fig. [6]
where the error bars denote the standard deviation across repeated runs, reflecting the robustness and
stability of each method. The noticeably smaller error bar of VQ-Seg indicates lower performance
variance, demonstrating its stronger training stability across random seeds.

To confirm the statistical significance of the observed improvements, we performed paired two-tailed
t-tests between VQ-Seg and each baseline method over the ten independent trials. The results show
that the differences are statistically significant with p < 0.05.

E Codebook Evolution
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Figure 7: T-SNE visualization of codebook evolution.

We visualize in Fig. [7) the t-SNE projections of all codebook vectors across three training stages.
Each point represents a codeword, where orange and blue indicate activated and inactive entries,
respectively. Initially (left), only a few codewords (3.4%) are activated, showing a compact cluster
and limited diversity. As training proceeds (middle), activation increases to 67%, and the distribution
becomes more uniform. By convergence (right), nearly all codewords (98%) are active and evenly
dispersed, forming a stable and well-structured embedding space.

These results demonstrate that our quantization strategy progressively enhances codebook utilization
and representation diversity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we clearly outline five main contributions:
(1) the collection of a new large-scale Lung Cancer (LC) dataset; (2) the proposal of
the Quantized Perturbation Module (QPM), which replaces dropout for structured feature
perturbation; (3) the design of a dual-branch architecture that jointly optimizes segmentation
and image reconstruction in the post-VQ space; (4) the development of the Post-VQ Feature
Adapter (PFA) to align quantized features with semantic priors from a foundation model;
and (5) extensive experiments demonstrating state-of-the-art performance on both the LC
dataset and public benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section[3l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical derivations, including KL divergence approximation under dropout
and numerical stability of QPM, are provided in Appendix[A]and[B]with detailed assumptions
and mathematical proofs supporting the proposed method.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We disclose all implementation details in Section[4.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide code and the data downloading link.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We disclose all implementation details in Section[4.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide detailed statistical analysis in Appendix [D]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section we provide the information about the computer resources we
use.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research does not raise ethical concerns related to privacy, bias, or misuse.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive societal impacts in Section[5] As a research work in
the field of medical image segmentation, we believe this paper will also not have negative
impacts on society.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all the models used in the paper and stated their version.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not employ large language models (LLMs) in any capacity.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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