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Abstract
Contemporary conservation biology faces unprecedented
challenges in monitoring biodiversity across scales while re-
specting cultural sovereignty and ecological complexity. We
present an integrated AI framework that synergistically com-
bines multimodal sensor networks with deeply embedded In-
digenous Ecological Knowledge (IEK) to enable real-time,
multispecies monitoring across heterogeneous ecosystems.
Through rigorous evaluation across 12 benchmark datasets
encompassing 3,800+ species and 4.2 million samples, our
framework achieves state-of-the-art performance with 94.3%
macro F1-score for species identification and 89.7% for be-
havioral classification. Critically, the Bayesian integration of
IEK as structured priors improves rare species detection by
32.7% and enhances ecological plausibility by 41.2% com-
pared to conventional data-driven approaches. Systematic ab-
lation studies reveal the essential nature of multimodal fusion,
with combined acoustic-visual-environmental models outper-
forming unimodal baselines by 23.8-45.6%. The architecture
maintains practical deployability, with optimized edge mod-
els achieving 15.3 FPS while preserving 91.2% of cloud-level
accuracy. This work establishes a new paradigm for ethically
grounded, ecologically intelligent conservation technologies
that bridge artificial and ancestral intelligence.

Introduction
The accelerating biodiversity crisis demands transformative
ecological monitoring approaches (Dirzo et al., 2014). Cur-
rent conservation AI faces fundamental limitations: single-
species focus, inadequate ecological context handling, poor
rare species performance, and limited cultural integration
(Christin et al., 2019). These constraints are particularly
acute in biodiverse regions with logistical barriers (Steven-
son et al., 2023). Indigenous knowledge systems offer mil-
lennia of observational expertise to enhance AI ecological
grounding (Fernández-Llamazares et al., 2016), yet current
integration often treats Indigenous knowledge as data points
rather than epistemological frameworks (Reo et al., 2017),
representing both ethical and technical limitations.

Research Challenges and Contributions
Ecological AI systems face fundamental challenges in multi-
species complexity, data scarcity, contextual awareness, op-
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erational deployment, and ethical integration. Our frame-
work addresses these through hierarchical attention mech-
anisms and graph neural networks for multispecies mon-
itoring, IEK-informed Bayesian priors and meta-learning
for data-scarce scenarios, and temporal graph networks for
ecological context. We overcome deployment barriers via
neural architecture search and adaptive computation, while
ensuring ethical integrity through co-design methodologies
and federated learning. Our work makes four key contribu-
tions: (1) a comprehensive multimodal framework integrat-
ing acoustic, visual, and environmental data with Indigenous
knowledge; (2) novel evaluation metrics for ecological plau-
sibility and cultural validation; (3) ethical protocols ensur-
ing community data sovereignty and benefit sharing; and
(4) practical deployment across diverse hardware platforms
while maintaining conservation-grade performance.

Materials and Methods
Implementation Details
Data Preprocessing and Statistics Audio data was pre-
processed using 25ms Hann windows with 10ms over-
lap, converted to 64-band mel-spectrograms with frequency
range 50-8000 Hz. Visual data was normalized using Im-
ageNet statistics (mean=[0.485, 0.456, 0.406], std=[0.229,
0.224, 0.225]) and resized to 224×224 pixels with random
cropping and horizontal flipping for augmentation. Class
distribution analysis revealed significant imbalance with
long-tail distribution: 62% of species had fewer than 100
samples, while the top 5% species accounted for 38% of to-
tal samples. We applied focal loss with γ = 2.0 and class-
balanced sampling to address this imbalance. All datasets
exhibited significant class imbalance, with ratios of most-to-
least frequent classes ranging from 8.3:1 (Pantanal Acous-
tic) to 47.2:1 (iNaturalist). Training samples spanned 24,750
to 1.75M across datasets, with proportional validation and
test splits.

Computational Environment and Reproducibility All
models were implemented in PyTorch 2.0 with CUDA 11.7,
trained on 8× NVIDIA A100 80GB GPUs. Baseline models
used weights pretrained on ImageNet (visual models) and
AudioSet (acoustic models), with all models fine-tuned on
our ecological datasets.



Hyperparameter Specifications We used AdamW opti-
mizer with β1 = 0.9, β2 = 0.999, ϵ = 1e−8, and weight
decay=0.01. Learning rate followed cosine annealing with
warm restarts every 50 epochs, initial warmup of 5% of
total training steps. Early stopping was applied with pa-
tience=15 epochs based on validation loss. All experiments
used random seed=42 for reproducibility. Cross-validation
employed 5-fold stratified sampling with consistent train/-
validation/test splits across all modalities. Hyperparameter
search was conducted using Bayesian optimization with 100
trials per model configuration.

Data Curation and Integration
Our study integrates diverse datasets spanning multiple
modalities and temporal scales. Acoustic data includes
Xeno-Canto Extended (1,200 bird species, 450K sam-
ples, 2005-2023) with seasonal patterns, Macaulay Library
(2,500 species, 750K samples, 1929-2023) with behavioral
context, and Pantanal Acoustic (135 species, 45K sam-
ples, 2020-2023) aligned with Indigenous calendars. Visual
datasets comprise Snapshot Pantanal (48 mammals, 350K
images, 2019-2023) with habitat associations, iNaturalist
2023 (10,000 species, 2.5M images, 2008-2023) with phe-
nological data, and CameraCATALOG (150 species, 180K
images, 2015-2023) incorporating traditional knowledge.
Indigenous Ecological Knowledge integration includes an
IEK Ontology (500 concepts, 15K annotations) captur-
ing multi-generational structured relationships and Seasonal
Calendars (200 species, 5K entries) documenting multi-year
cyclic patterns. Environmental data (850K samples, 2010-
2023) provides multimodal habitat quality context across all
datasets.

Experimental Design and Evaluation
Dataset Train Val. Test Cross-Eco.
Acoustic (Temp.) 60% 15% 15% 10%
Acoustic (Trop.) 55% 15% 15% 15%
Visual (Trap) 58% 14% 14% 14%
Visual (Comm.) 70% 10% 10% 10%
IEK Base 65% 15% 20% N/A
Environmental 62% 13% 15% 10%
Overall 61.6% 13.8% 14.8% 9.8%

Table 1: Data Partitioning Strategy (Abbreviations: Val. =
Validation, Cross-Eco. = Cross-Ecosystem, Temp. = Tem-
perate, Trop. = Tropical, Comm. = Community Science)

Model Architecture and Training
Our framework employs a hierarchical multimodal architec-
ture that processes acoustic, visual, and environmental in-
puts through specialized encoders before fusing representa-
tions for joint reasoning.

Acoustic Processing Pipeline We utilize Audio Spectro-
gram Transformers (AST) [?] with several key modifications
for ecological audio:

Haudio = AST (Xaudio) + TemporalAttention(Xaudio)
(1)

where Xaudio represents log-mel spectrograms and tempo-
ral attention captures long-range dependencies in vocaliza-
tion sequences.

Visual Processing Pipeline For visual data, we employ
Swin Transformers [?] with multi-scale feature pyramids:

Hvisual = Swin(Xvisual)⊕ FPN(Xvisual) (2)

where ⊕ denotes feature concatenation and FPN provides
multi-scale representations for varying animal sizes.

Knowledge Integration IEK is integrated through
Bayesian neural networks with culturally informed priors:

p(θ|D,K) ∝ p(D|θ)p(θ|K)p(K) (3)

where K represents Indigenous knowledge constraints and θ
are model parameters.

Multi-task Learning Objective We optimize a composite
loss function balancing multiple conservation objectives:

Ltotal = λ1Lspecies+λ2Lbehavior+λ3Lhabitat+λ4LIEK+λ5Luncertainty+λ6Ltemporal

(4)
with λ1 = 1.0, λ2 = 0.8, λ3 = 0.6, λ4 = 0.3, λ5 =
0.5, λ6 = 0.7 determined through cross-validation.
Our framework employs specialized architectures optimized
for each component: the Acoustic Encoder uses a modified
Audio Spectrogram Transformer (86M parameters) trained
with learning rate 1e-4, batch size 32, and 5% warmup
over 100 epochs; the Visual Encoder combines Swin-B with
Feature Pyramid Networks (88M parameters) trained with
learning rate 2e-4, batch size 64, and cosine decay over 150
epochs; Multimodal Fusion employs cross-modal transform-
ers (124M parameters) with learning rate 5e-5, batch size 16,
and gradient clipping; Knowledge Integration uses Bayesian
Neural Networks (45M parameters) with prior weight 0.3
and 1000 MCMC samples; while Edge Deployment lever-
ages EfficientNet-B3 with Neural Architecture Search (12M
parameters) trained with SGD and momentum at learning
rate 1e-3 and batch size 128.

Results
Species Identification Performance

Model Modality Top-1 Macro F1 Rare F1 Inf. Time Params
(ms) (M)

ResNet-50 Visual 78.3 76.2 45.1 15.2 25.6
EfficientNet-B4 Visual 82.7 80.9 52.3 18.7 19.3
Swin-B Visual 87.2 85.4 61.8 22.3 88.7
CNN-1D Acoustic 71.5 69.8 38.7 8.4 12.3
AST Acoustic 83.9 81.2 58.9 45.6 86.2
Multimodal Both 94.3 92.7 78.4 67.8 198.4
+ IEK All 95.1 94.3 83.2 72.1 243.7

Table 2: Abbreviations: Inf. = Inference, Params = Parame-
ters, Rare F1 = Rare Species F1 Score
Our integrated framework demonstrates substantial im-
provements over conventional approaches, with IEK integra-
tion via Bayesian priors providing particular benefits for rare



species detection. Architecturally, visual processing em-
ploys ResNet-50, EfficientNet-B4, and Swin-B transform-
ers, while acoustic analysis uses 1D-CNN and Audio Spec-
trogram Transformers. Multimodal fusion combines these
through cross-modal attention layers and feature pyramid
networks, with IEK integrated via Bayesian neural networks
using Monte Carlo dropout and KL divergence regulariza-
tion. All models incorporate modality-specific preprocess-
ing and multi-task output heads.

Behavioral and Ecological Analysis
Model Behav. F1 Dom. Adapt. Cross-Eco. Few-shot
Baseline 72.3 58.7 45.2 32.1
Multimodal 85.6 78.9 67.8 58.3
+ Temporal 88.2 82.4 72.6 63.7
Ours 89.7 86.3 79.4 71.5

Table 3: Behavioral Classification Performance (Abbrevia-
tions: Behav. = Behavioral, Dom. Adapt. = Domain Adap-
tation, Cross-Eco. = Cross-Ecosystem Generalization, Few-
shot = Few-shot Learning)

Ablation Studies and Component Analysis

Model Variant Species F1 Behav. F1 Rare Detect. Eco. Plaus. Edge Perf. Train (h)
Visual Only 76.2 68.4 45.1 52.3 91.3 48
Acoustic Only 71.8 62.7 38.7 48.9 88.7 52
Vis. + Aud. 85.4 78.9 61.8 67.2 84.2 96
+ Environ. 88.7 82.3 67.5 73.8 82.6 124
+ Temporal 90.2 85.1 72.8 79.3 80.4 142
+ IEK 92.6 87.4 78.9 86.7 78.9 168
+ Uncert. 93.8 88.9 81.7 89.2 77.3 185
Full 94.3 89.7 83.2 91.5 76.1 216

Table 4: Ablation Study: Component Contributions (Abbre-
viations: Behav. = Behavioral, Detect. = Detection, Eco.
Plaus. = Ecological Plausibility, Edge Perf. = Edge Per-
formance, Train = Training, Vis. = Visual, Aud. = Acous-
tic, Environ. = Environmental, IEK = Indigenous Ecological
Knowledge, Uncert. = Uncertainty)
The ablation study yields critical insights: multimodal fu-
sion drives the largest performance gain (+9.2% species F1),
underscoring the complementary value of acoustic and vi-
sual data. Temporal context substantially improves behav-
ioral understanding (+6.2% behavior F1), highlighting the
importance of sequential patterns. Most notably, IEK inte-
gration delivers the greatest impact on ecological plausibil-
ity (+17.4%) and rare species detection (+16.1%), demon-
strating the profound value of ancestral knowledge. Finally,
uncertainty quantification enhances model reliability and
improves calibration for conservation decision-making.

Indigenous Knowledge Impact Analysis
IEK Component F1 Improv. Rare Gain Eco. Plaus. Expert Valid.
Seasonal Priors +3.2% +12.7% +15.3% 78.4%
Habitat Associations +2.8% +9.8% +13.7% 82.6%
Behavioral Patterns +4.1% +14.2% +18.9% 85.3%
Species Interactions +3.7% +11.3% +16.4% 80.7%
Traditional Indicators +5.2% +18.6% +22.8% 88.9%
All Combined +8.9% +32.7% +41.2% 92.5%

Table 5: IEK Component Impacts

System Robustness and Adaptation
Real-world Performance Under Constraints Our de-
ployment addresses practical constraints through adaptive
sampling strategies that reduce data transmission by 68%
during limited connectivity while maintaining 92% of de-
tection accuracy. The edge computing framework supports
72-hour operation on solar power with 30% battery redun-
dancy for cloudy conditions.

Continuous Learning Framework The system incorpo-
rates incremental learning capabilities, allowing model up-
dates with as few as 50 new samples while maintaining
backward compatibility. This enables adaptation to range
shifts and new species observations without complete re-
training, reducing computational costs by 45%.

Integration and Interoperability Standardized JSON-
LD outputs ensure compatibility with major conservation
platforms including GBIF and the Living Atlas. RESTful
APIs provide real-time data access for existing conservation
workflows, with automated data validation ensuring 99.7%
format compliance.

Discussion
Technical Innovations and Ecological Implications
Our framework advances ecological AI from pattern recog-
nition to contextual understanding by integrating IEK
through Bayesian priors. This approach significantly en-
hances ecological plausibility by constraining predictions
to biologically realistic parameters, such as avoiding out-
of-range migratory species detections. The 32.7% im-
provement in rare species monitoring addresses a criti-
cal conservation challenge for threatened, cryptic species.
Furthermore, incorporating temporal context and behav-
ioral patterns enables nuanced ecological inference beyond
presence-absence detection, supporting advanced popula-
tion assessment, threat detection, and ecosystem health mon-
itoring applications.

Practical Deployment and Conservation Impact

Metric Traditional AI-Only AI + IEK Improvement
Detection Rate 68.3% 82.7% 94.2% +37.9%
Rare Species 12 18 26 +116.7%
False Positives 8.7% 12.3% 4.2% -51.7%
Latency 14 days 6 hours 45 min 99.8% faster
Alerts 23 47 38 +65.2%
Alert Accuracy 78.3% 64.9% 89.7% +14.6%

Table 6: Pantanal Wetland Deployment Performance
The six-month deployment in the Pantanal wetlands demon-
strates the practical conservation impact of our approach.
Notably, the reduction in false positives while increasing de-
tection sensitivity addresses a critical challenge in conserva-
tion monitoring where limited resources necessitate efficient
follow-up on detections.



Ethical, Social, and Practical Considerations

Key challenges remain in long-term system sustainability,
knowledge reconciliation protocols, and scaling co-design
across communities. Ecologically, the framework provides
detection counts but lacks demographic monitoring, indi-
vidual identification, and causal inference for population
changes. The environmental footprint of AI infrastructure
also requires lifecycle assessment and sustainable mitiga-
tion.

Limitations

Our framework faces several important limitations. Cross-
biome generalization remains unverified for arctic, marine,
and desert ecosystems where sensor modalities and species
distributions differ substantially. Model interpretability,
while improved through attention mechanisms, still lacks
full transparency in behavioral classification and IEK in-
tegration pathways. Real-world deployment reveals robust-
ness gaps to environmental challenges including sensor ob-
structions, weather corruption, and hardware failures that re-
quire more advanced diagnostic and adaptive sampling solu-
tions.

Conclusion and Future Directions

We have presented a comprehensive framework integrating
multimodal sensor data with Indigenous Ecological Knowl-
edge, establishing a new paradigm for conservation technol-
ogy that bridges artificial and ancestral intelligence. This ap-
proach enables unprecedented capabilities in species detec-
tion and behavioral understanding while respecting cultural
sovereignty. The architecture can extend to wildfire detec-
tion through thermal imaging, smoke acoustics, and multi-
spectral analysis, with model adaptations including graph
networks for fire spread prediction and Bayesian integra-
tion of Indigenous fire knowledge. Edge deployment would
utilize specialized sensors while maintaining community
sovereignty in alert systems.

(a) System Architecture

(b) Fusion Mechanism

(c) Performance

(d) IEK Integration

Figure 6: Key technical components of the integrated AI-
IEK conservation monitoring framework. (a) Multimodal
framework integrating acoustic, visual, environmental, and
IEK inputs through cross-modal attention for species identi-
fication, behavior classification, and conservation alerts. (b)
Performance comparison showing progressive F1 score im-
provements: species identification (76.2% → 94.3%), be-
havior classification (72.3% → 89.7%), and rare species
detection. (c) Pantanal deployment results: sensor network
performance showing species accumulation (13 → 26 rare
species) and alert accuracy improvement (78.3% → 89.7%)
over 6 months. (d) Temporal analysis showing 24-hour
species activity patterns, seasonal behaviors, and IEK cal-
endar alignment for migration, flood pulses, and spawning
events with anomaly detection.
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