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ABSTRACT

Spatial transcriptomics has the potential to reveal cellular interactions by mea-
suring gene expression in situ, while maintaining the tissue context of each cell.
Existing deep learning methods for non-spatial single-cell omics optimize cellular
embeddings of gene expression. By resolving cell state variation current methods
enable the harmonization between assays of different experimental batches. Spa-
tial transcriptomics facilitates to study the cell state composition within a distinct
spatial neighborhood. These cellular niches confine the tissue organization and
encompass functional units of an organ. However, computational methods encod-
ing meaningful low-dimensional representations of both gene expression and cell
states of neighboring cells a are currently lacking. Here, we introduce NicheVI,
a deep learning model that decodes gene expression, niche cell-type composition,
and variation in cell state of other cells within a spatial niche. We applied NicheVI
to uncover fine-grained heterogeneity within cell-types across cellular niches not
captured by non-spatial and other spatially aware models. Thus, NicheVI can
be instrumental to identify niches in spatial transcriptomics data and advance our
understanding of tissue biology in health and disease.

1 INTRODUCTION

Cells in our bodies do not function in isolation. Instead, biological systems rely on the processing of
information between individual cells via cell-cell interactions to exert higher-order tissue functions,
such as the synchronized conduction of the heart muscle, cognition in the central nervous system
or the immune response to aberrant cells. Tissues are organized by cells populating distinct niches.
A niche is characterized by the abundance and distribution of various cell types in space and the
adaptation of cell states as a consequence of the sum of stimuli a cell receives from its surrounding
(in our case immediate spatial neighbors). Accordingly, the same cell type, e.g. a T cell, may evoke
very different effector functions depending on the niche it populates. Therefore, the characterization
of the complex cellular interplay in intact tissues has long been a scientific endeavor (Wagner et al.,
2016; Palla et al., 2022)).

Recent methodologies have been developed to overcome the limitation to analyse dissociated cells
in isolation and quantify transcripts in situ. These spatial transcriptomics technologies (ST) offer
the unique opportunity to better understand how tissues are organized by revealing the cellular tran-
scriptional state and spatial location. Image-based ST technologies, such as Vizgen MERSCOPE,
10X XENIUM, and Nanostring CosMx, can target up to a few thousand genes while retaining sub-
cellular resolution.
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These technologies offer the possibility to interrogate the contribution of individual cells to higher-
level tissue and organ functions, such as the mechanisms by which tumor-infiltrating leukocytes are
imprinted by the local tumor microenvironment to drive tolerance against the tumor. However, solv-
ing these fundamental biological questions requires an understanding of niche architecture and how
cell states deviate depending on their localization within the tissue. Thus, novel computational tools
are urgently needed that make use of the promise of ST and embed each cell in its cellular context.

Here, we present Niche VI, a probabilistic end-to-end deep learning tool to decode niches in ST data.
NicheVI learns a low-dimensional representation of each cell that captures both, cell-type and cell
state variation across niches. This spatially-aware cell representation reveals subsets of cells that
localize in distinct niches, demonstrate subtle differences in gene expression and show pronounced
differences in their cellular neighborhood. Embedding each cell in its cellular context offers a novel
perspective on our understanding of tissue biology and will improve our understanding of cell
phenotypes in health and disease.

Related work. Various methods have been developed to learn representations of non-spatial
single-cell RNA-seq data, such as scVI (Lopez et al., 2018) and related models (Gayoso* et al.,
2022). The low-dimensional latent space learned by these variational auto-encoders (VAE) is used
to extract information from single-cell omics, and corresponding cell embeddings can be used
for downstream analysis, e.g. to define clusters of cell types. It also provides a principled way
of harmonizing information from different studies. The generative part of the VAE is used for
hypothesis testing in the data domain, e.g., for differential gene expression analysis or gene-gene
coexpression.

A few methods have recently adapted this VAE scheme to spatial transcriptomics, facilitating the
optimization of a spatially aware latent space. |[Haviv et al.| (2024) introduced ENVI, a model that
jointly embeds paired scRNA sequencing and image-based spatial transcriptomics data in a single
latent space. One network decodes the transcriptome-wide gene expression, and a second network
decodes the environmental context, modeled as the local gene covariance matrix. In this way,
ENVI latent space incorporates spatial context and full transcriptome information. However, ENVI
requires both, scRNA-seq and paired spatial transcriptomics data of the same study specimen to
be applied. Dong et al.| (2023)) presented SIMVI, which embeds the gene expression of a cell and
the gene expression of its niche in intrinsic and spatially informed latent spaces. SIMVI aims to
disentangle intrinsic and spatial variations by minimizing the mutual information between both
embeddings. However, incorporating the spatial information during encoding might lead to spurious
niche types in the latent space even though cells may be similar in gene expression.

Our contributions. Here, we present NicheVI, a probabilistic deep-learning tool that dissects
spatial transcriptomics data into spatially aware niche phenotypes at the single cell level. We show-
case NicheVI’s performance to detect cells differing in their spatial niche (nichetypes) by dissecting
murine microglia into fine-grained regional subsets that correspond to microglia within human anno-
tated regions of the murine brain. In a second case study, Niche VI detected two subsets of cytotoxic
T cells in breast cancer tissues located close to highly invasive or relatively benign tumor subtypes,
respectively. Differential gene expression analysis between T cells close to invasive and non-invasive
tumor types revealed up-regulation of programs in CD8 T cells leading to immune evasion.

2 RESULTS

2.1 NICHEVI LEARNS A CELLULAR EMBEDDING REFLECTING GENE EXPRESSION AND
CELLULAR NICHE.

We consider a single cell resolution spatial transcriptomics data set, which provides the following
measurements for N cells and G genes. For each cell n, we denote by x,, € N the vector of
observed gene expression in the cell. We assume that each cell is annotated and we denote by ¢, its
discrete type assignment, taking values in 7 = {1, ..., T}, where T is the total number of cell types
in the data set. We also assume knowledge of B batch annotations (donor, sample ID, etc.) stored
in a vector s,,.
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Furthermore, the experiment provides cell coordinates for each cell, vy, € R2. We take the K
nearest neighbors of a cell to define its niche using the Euclidean distance in physical space. We
characterize the niche by its cell-type composition and gene expression. We denote by «,, the T’
dimensional vector of cell type proportions among the K nearest neighbors of the cell n. Its values
are in the probability simplex. The niche gene expression is defined as the average expression of
each cell type present in the niche. In practise, we leverage gene expression embeddings (PCA,
scVI or similar) and characterize a cell type expression profile as the local average embedding of
cells of the same type. The average embeddings are stored in the matrix 1, € RT*", where D is
the embedding dimension. See[A.T|for details.

The proposed graphical model is shown in Figure fc. The latent variable z,, is a vector of dimen-
sion P following a normal distribution, N'(0, Ip). Here, P is a hyperparameter that represents the
dimension of the latent embedding. NicheVI encodes cell expression x,, and decodes the expression
and composition of the niche «,, and the activation state of all cell types in the niche 7,, while
treating the batch s,, as a covariate. We condition the decoder on s,, similar to the approach in scVIL.
Therefore, the latent variable z,, captures the intrinsic and spatial sources of variation of the cell in
a batch-independent manner.

Finally, we model the observed gene expressions x,, as samples from the Poisson distribution whose
rate is determined by a neural network taking both z,, and s,, as input. We estimate the posterior dis-
tribution of z,, using amortized variational inference, allowing us to approximate this latent variable
for each individual cell. All parameters of the model and of the variational distributions are learned
via evidence lower bound maximization (Kingma & Welling| 2013)).

2.2 DELINEATING REGION-SPECIFIC MICROGLIA POPULATIONS IN THE MOUSE BRAIN

To demonstrate the ability of NicheVI to learn meaningful spatially aware embeddings, we first
consider the brain data set of Zhang et al.|(2023)), which imaged a panel of 1100 genes across
the entire adult mouse brain using MERFISH. The slides are whole hemispheres annotated with
main cell types (Figure [Th) and anatomical regions (Figure [Tb). We use scVI to learn expression
embeddings eta,, (Figure[Ik). We evaluated NicheVI against scVI and simVI, using the single cell
integration benchmark developed by [Luecken et al.|(2022). The metric details can be found in
For the benchmark, scVI acts as a non-spatial baseline, and we considered three flavors of simVI:
we first used the intrinsic and spatial variation embeddings separately and then used a concatenation
of the two. Considering individual slides as batch covariates, we find that learning neighborhood
properties makes batch alignment harder, as scVI is the top-performing method for batch correction.
simVT has the best performance for capturing cell-type, while NicheVI has the best performance
in anatomical region label preservation, while maintaining the cell type information (Figure [T{).
We also introduce the niche composition divergence to quantify to what extent cells within similar
micro-environments are embedded together and show the best performance for NicheVI (Figure[Tk).

We then evaluated to what extent the nicheVI embedding, when restricted to a single cell type, can
be clustered by region. To do so, we computed the Normalized Mutual Information (NMI) between
Leiden clustering and region class assignments. Overall, NicheVI exhibited superior performance
(Figure[5). Next, we set out to study whether capturing niche information allows novel insights into
cell states. We used microglia to further dissect this, as this type is present throughout the murine
brain and it has been shown that this cell type has regional-dependent gene expression. Indeed, mi-
croglia cell states are resolved by all three methods (Figure [2h), while NicheVI detected additional
nichetypes. For example, NicheVI identified a microglia niche type (group 7) that was located pri-
marily in the hippocampus (Figure 2k). This cluster was characterized by the expression of Rreb],
which has been demonstrated to be downregulated in microglia under LPS stimulation (Freilich
et al.} |2013) and the expression of Tgfbr2, which has been shown to be associated with a quiescent
state in microglia. Therefore, we find that microglia in the hippocampus are least activated com-
pared to other regions of the brain. Studying these microglia cells during pathological aging could
reveal how these cells become pro-inflammatory in Alzheimer’s disease. Another cluster delineated
microglia in the striatum (cluster 9) and showed upregulation of (NfatcI), which is important for the
reaction of microglia to LPS stimulation demonstrating a more activated state (Nagamoto-Combs &
Combs, 2010). In addition, we find an up-regulation of Col27al in cluster 5, which is associated
with surveillant microglia (Uyar et al., 2022).
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Figure 1: Benchmarking on the MERFISH mouse brain. A. Example tissue slice colored by cell
type labels. B. Slice annotated by major regions. C. We use scVI to embed cell expression. Cell
types are separated in the Minimum Distorsion Embedding space (Agrawal et all, 2021). D. SCIB
metrics benchmarking scVI, nicheVI and 3 flavours of simVI: int = intrinsinc embedding, ext
= spatial-induced, [int, ext]| = concatenation of the two. Scores range between 0 and 1. In
the following, we use the [int, ext] version of simVI as it performed best in the benchmark.
E. Latent neighbors niche composition divergence. We consider the 100-nn neighborhood of each
cell in Niche VI latent space and compute the average divergence between niche compositions (Sec-
tion [AZ3). Smaller values indicate better integration of cells with similar context. Leff: Summary
of method ranks, we see that the divergence computed from nicheVI latent is lowest for 53% of the
cells. Right: Scatter plot of NicheVI against scVI and simVI. We cap the divergence to 10 in the
figure for better visualization. Dashed line is identity, solid blue line is fitted to the data. Slopes
smaller than one indicate a trend for smaller values for NicheVI.

We have demonstrated here that nicheVI can uncover novel cell states associated with spatial dis-

tribution of microglia. Studying these cell states during disease might help uncover their functional
role.

2.3 NICHEVI UNCOVERS LOCAL T CELL NICHES THAT ARE ASSOCIATED WITH POOR
ANTI-TUMOR RESPONSE

Next, we applied NicheVI to a 10X Xenium data set of human breast cancer sections (Figure [3p).
Janesick et al. (2023)) identified distinct tumor domains, corresponding to in situ ductal carcinoma
(DCIS1 / 2) and invasive tumor (Figure Bp). We focussed our analysis on CD8 T cells, which are
essential for antitumor response. NicheVI dissected cytotoxic T cells into meaningful niche types
characterized by unique tissue localization and gene expression programs. Specifically, NicheVI
identified two clusters of CD8 T cells that were located close to two distinct molecular tumor sub-
types: cluster 8 resided in close proximity to DCIS1 and DCIS2 pre-malignant cells (Figure 3k), a
cancer precursor stage that can develop into invasive disease (Janesick et al.,[2023). In contrast, cells
of cluster 7 were closely associated with invasive tumor cells. Differential gene expression between
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Figure 2: Study of microglial cells in the mouse brain. A. Separation of microglia into main regions
in the MDE space. B. Leiden clustering of NicheVI microglia embedding. C. Confusion matrix
showing overlap of Leiden clusters with main brain regions, measured by Jaccard index. NicheVI
identifies more region-sepcific clusters. D. Differential expression analysis of each microglia cluster
from NicheVI.

cluster 7 and cluster 8 (Figure [3[d) revealed that cytotoxic T cells in the vicinity of precursor tumor
cells DCIS1/2 demonstrated increased expression of genes encoding for the cytotoxic molecules
NKG7, KLRG1, GZMB and IL2RG, which are essential for a productive antitumor response (Wang
et al.,[2021; |L1 et al., 2022b)). On the contrary, CD8 T cells of cluster 7 close to invasive tumor cells
demonstrated increased expression of the chemokine receptor CXCR4 and PRDM 1, which has been
associated with tumor escape mechanisms (L1 et al., [2022a). Pharmacological inhibition of CXCR4
is currently being evaluated for the treatment of breast cancer (Steele et al., 2023)). Thus, NicheVI
enable fine-grained dissection of CDS8 T cells and may provide a causal link between the identified
niche types and anti-tumor response.

Finally, we compare NicheVI to our benchmark methods in terms of their ability to embed cells
in the breast cancer TME in a meaningful manner. Using the niche composition divergence cri-
terion as in the brain, we find that the NicheVI latent space indeed better reflects the immediate
microenvironments of the cells (Figure Ek).

3 DISCUSSION

Spatial transcriptomics allows one to study cellular niches and understand spatially-confined units
inside tissues. However, using embeddings that are not aware of the spatial context obscures those
intricacies of gene expression that is dependent on neighboring cells. We have introduced here a
novel method to embed cells into a latent space that is not only informative of the gene expression
of a specific cell but also the composition and expression of cell-types surrounding a specific cell.
We have demonstrated that NicheVI can uncover novel nichetypes in the mouse brain and found
several changes in transcription associated with those niches. NicheVI uses the gene expression of
the center cell to learn the latent embedding of a cell by an encoder. Therefore, it will not learn
the spatial niche of a cell for which gene expression and niche are independent. NicheVI’s clusters
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Figure 3: Analysis of the XENIUM breast cancer samples. A. Tissue colored by cell type labels. B.
We highlight the main two cancer regions - ductal carcinoma in situ and invasive. C. Left: Leiden
clustering of nicheVI CD8+T cell embedding. Center: Average distance to the 3 tumor regions
for cells in each cluster. We identify cluster 7 as close to invasive tumor, while cluster 8 is close
to DCIS 1 and 2. Right: Spatial plot of the Leiden clusters 7 and 8 overlap with the two cancer
regions. D. Diffential expression analysis betwen the T cells in the DCIS regions and the T cells
in the invasive region. E. Latent neighbors niche composition divergence. We consider the 100-
nn neighborhood of each cell in niche VI latent space and compute the average divergence between
niche compositions (Section [A-3). Smaller values indicate better integration of cells with similar
context. Top: Summary of method ranks, we see that the divergence computed from nicheVI latent
is lowest for 54% of the cells. Bottom: Scatter plot of nicheVI against scVI and simVI. We cap the
divergence to 10 in the figure for better visualization. Dashed line is identity, solid blue line is fitted
to the data. Slopes smaller than one indicate a trend for smaller values for nicheVI.

can therefore be interpreted as gene expression changes of the centering cell correlating with niche
structure, and the network learns the mapping of gene expression to the local spatial composition.
Instead, simVI uses the cellular composition of neighboring cells to encode a spatially aware latent
space and therefore learns the relationship of the cellular composition of the neighborhood and
the cell itself. Therefore, NicheVI does not provide insight into the effect of neighboring cells on
gene expression, but instead uncovers subtle changes in gene expression between cells in different
niches. Identifying these cell types will improve our understanding of cell biology. To underline
this, we identified that CD8 T cells close to in situ carcinoma are highly cytotoxic, while cells in
established cancers show signs of immune dysfunction. Further studying this effect will provide
insights into how cancers can suppress and bypass effective antitumor immunity.
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A METHODS

A.1 NICHEVI DETAILS

Descriptive model. We propose a latent variable model for spatial transcriptomics assay aim-
ing to capture both gene expression heterogeneity and spatial variation resulting from the micro-
environment.

In particular, we assume these two sources of variability are both captured by a P-dimensional latent
variable

20 ~ N0, Ip), (1)

with P < (. As our model is general for any cell n, we drop the index notation such that
{2n, Sn, Qny Tny M } = {2, 8, , x,n}. We model the observed expression profile z as follows:

x|z, s ~ Poisson (g(z, s)) . (2)

Here, ¢ is a non-linear function with output in (R—f—)G, where G is the number of genes in the data.
We follow the implementation of scVI (Lopez et al.l |2018)), thus g is a composition of Multi-Layer
Perceptrons (MLP).

We also allow z to capture compositional and expression variability of neighboring cells. In partic-
ular, we assume that the cell-type proportions of the cell’s K nearest neighbors are obtained as

alz ~ Dirichlet (f(z)), (3)

where f is a non-linear function with output in (R—l—)T. We also parameterize f with a MLP.
Last, we assume that the neighboring cells’ average expression profiles are obtained as

N (hi(z,s),diag(hi(z,s))), ifa; >0

il 8,0 {0 otherwise @

where t = 1,..., T and h', h? are non-linear functions with outputs in R” and Rf *D respectively.

Variational inference recipe. =~ We present the evidence lower bound decomposition for one cell.
The joint probability distribution factorizes as:
p(z,a,m,m | s) = pla | 2)p(z | z,8)p(n | 2,5, a)p(2). (5)

We use variational inference to approximate the posterior p(z|x, s). The variational approximation
is denoted ¢ (z | z, s). The variational lower bound is:

q(z|z,s)
p(z7a7xan ‘ S):|
>E z|x,s log ————=
- ”[ ® )
> — Dir(q(zlz, 5)[p(2)) + Eqz1z,s) log p(a | 2)] + Ey(z)z,s) log p(z | 2, 5)]
+ Eq(z)z,5) [logp(n | 2,5, )] .

logp (o, 2,1 | 5) = 1og Eq(2|a,s) {

Assuming {n:|z, s, a}e7 are mutually independent, we have

logp(n | z,5,0) =Y logp(m | 2,5, ). (©6)
teT

Modelling of ¢ (z | z,s). The variational posterior is chosen to be Gaussian with a diagonal co-
variance matrix, with parameters given by a Multi-Layer Perceptron (MLP) encoder applied to

(z,s).
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Figure 4: NicheVI model. A. In addition to the cell gene expression vector, we have access to spatial
coordinates and assume the availability of cell type annotation and gene expression embedding. We
define the cell niche by K nearest neighbors and compute the vector of cell type proportions within
the niche. We also retrieve the K gene expression embeddings of the neighbors and average them by
cell type, so that we get a T x D matrix. If a cell type is not present in the niche, its entry is set to zero.
B. NicheVI uses a probabilistic auto-encoder architecture to encode the cell gene expression, and
reconstruct the cell expression and the niche properties. C. The underlying graphical model. Shaded
nodes represent observed random variables. Empty represent latent random variables. Edges signify
conditional dependency. The rectangle represent independent replication across cells.

Training procedure. We use analytical expression for the Kullback-Leibler divergences as well
as the log-likelihoods to optimize the lower bound over generative and variational parameters.

The standard VAE terms are

Lrrpo = —Dkr(q(z]z,5)||p(2)) + Eq(zz,s) logp(z | 2, 5)], (N

while the spatial contribution is

Lniche = IEq(z|ac,s) [lng(OL | Z)} + IEq(z|;v,s) [logp(ﬁ | 258, Ot)] . ®)

Introducing 8 > 0 as the spatial regularization strength, we write the total loss as

L= EELBO + /8 £m’che- (9)

10



Machine Learning for Genomics Explorations workshop at ICLR 2024

A.2 MODEL ARCHITECTURE AND TRAINING

We report below the architectures of the modes used. The architectures are constant across datasets.

scVI  The model has 1 hidden layer with 128 neurons and a 10-dimensional latent space. It is
trained for 400 epochs, with a batch size of 128 cells. The learning rate is 0.001 and we use Adam
as the optimizer (Kingma & Bal 2014)). We keep a constant KL weight of 1.

NicheVI  The niche cell type composition and average expression are computed using the K
nearest neighbors of each cell, in our experiments we fixed K = 20. We add to the scVI architecture
a niche composition decoder as well as a niche expression decoder. Both have 1 hidden layer of
size 128. During training, we keep a constant KL weight of 1 and the spatial regularization strength
is set to B = 10. We use scVI to provide cell embeddings. Batch covariate is only fed to the cell
expression decoder and the niche expression decoder.

simVI  The spatial graph is also built using a K-nn scheme with 20 neighbors. We kept default
settings for the architecture: two hidden layers for the gene expression encoder and one for the
decoder, one graph attention layer for the spatial encoder. Hidden layer size is 128. During training,
mutual information regularization strength is kept to its default value of 5 and the two KL terms are
kept to 1.

A.3 METRICS

Batch correction and label preservation. We evaluate NicheVI integration performance using
the Jax implementation of |[Luecken et al.| (2022) benchmark methodology. Specifically, the batch
correction score is the average of the iLISI, KBET, Silhouette batch and Graph connectivity met-
rics, and the biological conservation score is computed from the cLISI, Silhouette label, KMeans
NMI/ARI. We benchmark our embeddings with the cell type, and then with the region annotations
as labels.

Divergence in niche composition between latent neighbors. A desirable property of our model
is the embedding of cells with similar spatial contexts. Let us first define &, to be the set of K’
nearest neighbors in the latent space. One characterization of a cell spatial context is the vector
of niche cell type proportions. For a cell n, we denote it «,,. We therefore want to compare this
quantity with the niche cell type proportions of each of the latent nearest neighbors &, .

Our metric (,, is defined as the average KL divergence between «,, and the proportions of niche cell
types of each of the cells in &,,:

¢n = mean(KL(ay,, a;),i € E,,). (10)

A.4 ADDITIONAL MODEL DETAILS

Differential Expression. In both the brain and breast cancer studies, we conducted a Differential
Expression analysis (DE) between different clusters of a single cell type (microglia, T cell) to detect
niche-specific cell state markers. However, the limitation in cellular segmentation of our technolo-
gies implies that some genes not expressed in a given cell type might still be detected.

Following |Boyeau et al.| (2023)), we restrict our analysis to genes with higher expression in the cell
type of interest than other cell types. We identified these genes by one-vs-all differential expression.
For the microglia analysis, we selected genes with log-fold change higher than 2 and adjusted p-
value for mean expression t-test higher than 0.05. This gives a list of 49 genes. For the CD8+ T
cells, we selected genes with log-fold change higher than 0.3 and adjusted p-value higher than 0.05,
for a total of 65 genes.
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A.5 DATASETS

All data sets used in this study are publicly available. We provide download links and processing
steps below.

MERFISH mouse brain atlas. [Zhang et al.| (2023) imaged a panel of 1100 genes across the
entire adult mouse brain with the MERFISH technology. For two different mice, we selected
three consecutive slices, gathering in total six slices and 250k cells. We used the provided cell
type and major brain region annotations. The data can be downloaded from the CellXGene| portal.
Our subset corresponds to slide indices 'C57BL6J — 1.074',) C57TBL6J — 1.077') C57TBL6J —
1.079') C57BL6J — 2.035" C57BL6J — 2.036', C57BL6.J — 2.037".

XENIUM human breast cancer. Using the 10X XENIUM In Situ platfrom in human breast
cancer samples, Janesick et al.| (2023)) studied tumor invasion in ductal carcinoma in situ (DCIS).
Two tumor samples were analyzed with a panel of 313 genes, for a total of 282k cells. The authors
defined three different tumor domains: two types of DCIS and invasive tumor. The data can be
downloaded from 10x Genomics.
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Figure 5: A. Normalised Mutual Information between Leiden clustering and main brain region
annotations. We compared NicheVI with scVI and three flavours of simVI. For most of the cell types,
NicheVI peforms best. We tested the significance using a related t-test between nicheVI and each
method. psevr = 1.33¢ =05, psimvi—an = 1.44e—4, psimvi—int = 4426 =07, PsimVvi—Ewxt =
7.34e — 4.
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