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ABSTRACT

Longitudinal biomedical studies track individuals over time to capture dynam-
ics in brain development, disease progression, and treatment effects. Estimating
trajectories of brain measurements in such studies is challenging due to biolog-
ical variability and inconsistencies in measurement protocols (e.g. MRI scanner
variations and upgrades). Herein, we introduce a novel personalized Deep Ker-
nel Regression framework for forecasting longitudinal regional brain volumetric
changes. Our approach integrates two key components: a population model that
captures brain volume trajectories from a large and diverse cohort, and a person-
alization step that generates subject-specific models for individual trajectories. To
optimally combine these predictive distributions, we propose the Adaptive Poste-
rior Shrinkage Estimation technique, which effectively balances population-level
trends with individual-specific data. We evaluate model’s performance through
predictive accuracy metrics, uncertainty quantification, and validation against ex-
ternal clinical studies. Benchmarking against state-of-the-art statistical and ma-
chine learning models—including Linear Mixed Effects models, Generalized Ad-
ditive Models, and deep learning methods—demonstrates the superior predictive
performance of our approach across a variety of experiments. Additionally, we ap-
ply our method on predicting trajectories of composite neuroimaging biomarkers,
e.g. machine-learning patterns of brain structure related to aging and Alzheimer’s
Disease, which highlights the generalizability of our approach to model the pro-
gression of longitudinal neuroimaging biomarkers. Furthermore, validation on
three external neuroimaging studies confirms the generalizability and applicability
of our method across different clinical contexts. These results highlight the ver-
satility and robustness of our framework for predicting longitudinal brain volume
changes. Overall, this framework effectively addresses the inherent challenges
in longitudinal biomedical studies, providing a valuable predictive tool that can
inform patient management decisions, clinical trial design and treatment effect
estimation.

1 INTRODUCTION
Accurately predicting the temporal progression of brain atrophy is critical for tracking disease pro-
gression and determining optimal intervention points Maheux et al. (2023). To ensure robust pre-
dictions over time, models must adapt dynamically as new subject-specific data becomes available.
This task falls within the domain of longitudinal prediction from multivariate data, where tradi-
tional methods like Linear Mixed Effects models struggle in high-dimensional settings. Various
approaches have been proposed within the framework of Gaussian Processes (GPs) for personaliza-
tion Rasmussen & Williams (2006). Liu & Vasconcelos (2015) and Eleftheriadis et al. (2017) in-
troduced the concept of domain-adaptive GPs, which provide tractable and intuitive model updates
and integrate information from both training and adaptation data. This idea was further developed
by Rudovic et al. (2019), who proposed a meta-weighting scheme to combine two personalized GP
models to achieve a final personalized prediction. This approach was applied to predict the cogni-
tive score of ADAS-Cog13 Mohs et al. (1997) up to two years in the future. Chung et al. (2019)
proposed a Deep Mixed Effects approach for personalization in electronic health record (EHR) time-
series data, utilizing an LSTM Hochreiter & Schmidhuber (1997) as a deep mean function to learn
the population trend. Subsequently, an individual GP was employed to capture the prediction shift
due to the specific individual’s trend.
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In this paper, we introduce a composite framework for personalized Deep Kernel Regression to
model the longitudinal volumetric trajectories of brain Regions of Interest (ROIs) for subjects with
follow-up acquisitions. We adapt the shrinkage estimator idea from statistical learning, commonly
seen in Bayesian statistics and penalized inference Shou et al. (2014); Lindquist & Gelman (2009);
James & Stein (1961), and extend it to achieve optimal personalization by adaptively learning and
balancing the strengths and weaknesses of each predictor.

Diverging from previous works, our method focuses on the longitudinal prediction of the biomarker
at any time in the future and not the prediction in a specific time-window as suggested in Rudovic
et al. (2019). Additionally, our method does not require equal time intervals as Rudovic et al.
(2019), we rather utilize all the available longitudinal information across subjects even in the pres-
ence of temporal unalignment. From the personalization perspective, our method, learns the optimal
weights to combine the population DKGP prediction with the individual-level deep kernel proba-
bilistic predictor, while taking into account the time of observation and prediction uncertainty of
each component for each subject. By balancing the strengths and weaknesses of each predictor
through shrinkage, we achieve to optimally combine the two to provide a personalized outcome.

Our contributions are as follows: (i) We present a novel Deep Kernel Regression framework specif-
ically designed for sparse longitudinal data. This framework employs a transformation function
that maps multimodal and high-dimensional imaging and clinical features into a lower-dimensional
space that is predictive of biomarker progression. (ii) We introduce a novel approach for person-
alized Deep Kernel Regression through Adaptive Shrinkage Estimation. This method optimally
and intuitively provides personalized predictions through posterior correction of both the popula-
tion and subject-specific predictive distributions (ii) We showcase that this method can be applied to
composite neuroimaging biomarkers and in general longitudinal neuroimaging markers from high-
dimensional multivariate input data. (iii) We demonstrate the generalizability of our method in
different clinical contexts, showing its ability to generalize in external clinical studies.

2 METHOD
2.1 PROBLEM STATEMENT AND NOTATIONS

In this work, we address the problem of predicting the temporal evolution of neuroimaging biomark-
ers based on the observed trajectories of individual subjects and baseline imaging and clinical in-
formation. We model a biomarker trajectory as a one-dimensional time series spanning multiple
years, formalized by the function f : U → Y , where U ∈ RK and Y ∈ R. We represent the
input as U = (X,M, T ), where X denotes the imaging features, M denotes the clinical covari-
ates at the baseline visit of each subject, and T represents the temporal variable. The temporal
variable T signifies the age increase in months between any subsequent scan and the baseline, pri-
marily used for extrapolating ROI values over time and reconstructing the ROI trajectory. An ROI
trajectory is denoted as Y = {y0, y1, . . . , yn}, corresponding to the ROI volumes at time points
T = {t0, t1, . . . , tn}.

We aim to learn smooth functions of brain changes using multimodal imaging and clinical data.
The Deep Kernel fuses the imaging and clinical modalities together and learns a lower dimensional
representation that is informative for the progression of each ROI, whereas the GP models the depen-
dency between time points and provides the smooth ROI temporal trajectories. Thus, the backbone
model is described with the equation f(U) ∼ GP(µ,K(Φ(U),Φ(U))), where Φ is a transforma-
tion function.

Fundamental to the DKGP exact inference is the dataset used for training. In our study, we assume
a heterogeneous population dataset with longitudinal MRI acquisitions from multiple subjects over
several years.

2.2 POPULATION MODEL (P-DKGP)
The population model leverages data from the population dataset Dp = {Up,Yp}. It applies the
transformation Φ(u;W,b), which is a Multi-Layer Perceptron (MLP) that maps the input data
Up = (X,M, T ) into a latent representation:

Zp = Φ(Up;W,b) (1)

This transformation is subsequently used by a Gaussian Process (GP), which models the ROI
function f using an RBF kernel as the covariance function and a zero mean: f(Zp) ∼
GP

(
0,K(Zp,Z

′
p)
)
.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ss-DKGP

p-DKGP

Traininga

                           
                     

                           
                     

Back Propagation
Forward Pass

Detach

Posterior Correction with Shrinkageb

                           
                     

                           
                     

Inference
Inference

Posterior Correction

Frozen
Component 

Figure 1: Overview of the proposed method. In Fig.1(a), we illustrate the training process of the
two probabilistic models, p-DKGP and ss-DKGP. The population dataset Dp contains multiple lon-
gitudinal acquisitions across subjects, where N is the total number of samples from all subjects,
and L is the latent dimension obtained after the transformation Φ. Different shades of green in the
population dataset indicate different subjects in Dp. We denote the observed trajectory of subject j
with h samples as Dsj |h. These samples are utilized to train the ss-DKGP. During the training of
the ss-DKGP, the transformation Φ is fixed, and only the subject-specific Gaussian Process (GPs) is
optimized. In Fig.1(b), we describe the personalization process through the shrinkage parameter α.
For subject j, we extrapolate ROI values over time using both the p-DKGP and ss-DKGP models.
These extrapolated values are then used to infer the optimal α for posterior correction, yielding the
personalized posterior predictive mean Yc variance Vc of the subject’s trajectory.

The population parameters γp = {Wp,bp, lp, σp} are learned jointly through the Marginal Log
Likelihood (MLL) of the GP Wilson et al. (2015); Rasmussen & Williams (2006).

For a test subject j with input uj = (xj ,mj , t), we denote the transformed input as zj =
Φ(uj ;Wp,bp).

The posterior predictive distribution of the ROI function at point uj = (xj ,mj , t) is:

fpj
| (Zp,Yp), zj ∼ N (f̄pj

, cov(fpj
)) (2)

The mean and variance of the predictive posterior distribution provide the predictions and their
uncertainties, respectively, and are calculated as follows:

f̄pj
= E[f∗ | Zp,Yp, zj ] = K(zj ,Zp)[K(Zp,Zp) + σ2

nI]
−1Yp (3)

Var(fpj ) = K(zj , zj)−K(zj ,Zp)[K(Zp,Zp) + σ2
nI]

−1K(Zp, zj) (4)

,where σ2
n is the additive independent identically distributed Gaussian noise ϵ.

For simplicity, we refer to the predictive mean and predictive variance of a ROI of a test sub-
ject j from the p-DKGP as yp and vp, respectively. We can reconstruct the ROI trajectory of
subject j by prompting the p-DKGP model with different time intervals t.This results in the pre-
dicted trajectory and predictive uncertainty across time, represented as Yp = (yp1 , yp2 , . . . , ypT

)
and Vp = (vp1

, vp2
, . . . , vpT

).

2.3 SUBJECT-SPECIFIC MODEL (SS-DKGP)
For a new test subject, let h denote the number of observations and Tobs the time of observation from
the initial acquisition. We represent the observed data of the subject as Ds = {(Xs,Ms, Ts), Ys}.
The ss-DKGP model is trained on this dataset Ds to exclusively capture the subject’s trajectory. The
transformation Φ(·;Wp,bp), learned via the p-DKGP, is employed to initialize the Deep Kernel of
the subject-specific model.

3
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We initialize a new Gaussian Process (GP) with an RBF kernel and a zero mean. During the training
of the ss-DKGP, we use only the observed trajectory of the subject. Specifically, we update only the
hyperparameters of the new GP, which include the length-scale ls and the signal variance σs, while
keeping the weights of the function Φ(·;Wp,bp) frozen during backpropagation.

For the subject j with input uj = (xj ,mj , t), we denote their transformation as zj =
Φ(uj ;Wp,bp).

The posterior predictive distribution of the ROI function at time point t is:

fsj | (Zs,Ys), zj ∼ N (f̄sj , cov(fsj )) (5)

where zj = Φ(uj ;Wp,bp) and σ2
n is the additive independent identically distributed Gaussian noise

ϵ.

The predictive mean and variance, representing the predictions and their associated uncertainties
respectively, are computed as follows:

f̄sj = E[fsj | Zs,Ys, zj ] = K(zj ,Zs)[K(Zs,Zs) + σ2
nI]

−1Ys (6)

Var(fsj ) = K(zj , zj)−K(zj ,Zs)[K(Zs,Zs) + σ2
nI]

−1K(Zs, zj) (7)

For simplicity, we denote the predictive mean and predictive variance of the ss-DKGP as ysj and vsj ,
respectively. The ROI trajectory of subject j can be reconstructed by querying the ss-DKGP model
at different time intervals t.This process yields the predicted trajectory and predictive uncertainty
over time, represented as Ys = (ys1 , ys2 , . . . , ysT ) and Vs = (vs1 , vs2 , . . . , vsT ).

2.4 PREDICTIVE POSTERIOR CORRECTION

Given predictions yp and ys from two probabilistic models (p-DKGP and ss-DKGP, respectively),
the combined prediction is expressed as a linear combination:

yc = αyp + (1− α)ys (8)

Here, α is the shrinkage parameter reflecting the relative confidence in each model. For simplicity,
we assume independence between the models. Since the sum of Gaussian random variables remains
Gaussian, yc naturally retains Gaussian properties. Therefore, the combined variance is given by:

vc = α2vp + (1− α)2vs (9)

The weights α and 1−α indicate the credibility of each model, resulting in a new posterior predictive
mean Yc and variance Vc. Values of α close to 1 indicate higher confidence in the p-DKGP model,
while values close to 0 demonstrate greater trust in the ss-DKGP model. We refer to α as the
shrinkage parameter.

2.5 SHRINKAGE ESTIMATION: α
Determining the optimal shrinkage parameter α is a critical problem for constructing the personal-
ized posterior predictive mean and variance of the ROI trajectory. The parameter α quantifies the
degree of confidence placed in the population-level model versus the subject-specific trajectory.

To estimate α, we use a held-out validation set of subjects, unknown to the population model, with
known trajectories. Predictions for these subjects are generated using the p-DKGP model. For each
subject, the ss-DKGP component is trained by progressively increasing the length of the observed
trajectory, starting with 4 observed ROI values.

We then reconstruct the entire ROI trajectory from the baseline time (t = 0) to the last time point
of the subject (tn). Using both models, p-DKGP and ss-DKGP, we obtain two estimates of the
ROI trajectory along with their predictive variances. The term ”reconstruct” is used here because
the ground truth ROI values for the validation subjects are known. Denote the p-DKGP model
predictive mean and variance as Yp and Vp, and the ss-DKGP model predictive mean and variance
as Ys and Vs. Let Y represent the ground truth ROI values over time. Our goal is to estimate the
optimal α. To achieve this, we minimize the following criterion:

Js|h(α) =

tn∑
t=0

(yt − (α · ypt + (1− α) · yst))
2 (10)
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We use the notation Js|h because we optimize this for a subject s, given h observed acquisitions.
The algorithm for calculating the optimal shrinkage estimates on the validation set is outlined in
Algorithm 1. The algorithm processes each subject’s data individually, applying the optimization to
each sequence of observations recorded for the subject. This process is repeated for every subject in
the validation set.

In Supplementary Section D.1 we attach detailed theoretical justification on the criterion 10

Algorithm 1 Shrinkage Estimation
Require: Validation set V consisting of subjects S, where for each subject s ∈ S, the ground truth

trajectory Y is known.
Ensure: Optimal shrinkage parameters αs|h for each s ∈ S and each h ∈ H

1: for each subject s ∈ S do
2: for each number of observations h ∈ H do
3: Initialize:
4: Ground truth trajectory: Y
5: P-DKGP trajectory: Yp, Vp

6: ss-DKGP trajectory: Ys, Vs

7: Define the objective function Js|h(α) for subject s given h observations as:

Js|h(α) =

tn∑
t=0

(yt − (α · ypt
+ (1− α) · yst))

2

8: Initialize α = 0.5
9: Use L-BFGS-B to minimize Js|h(α) subject to α ∈ [0, 1]

10: Store optimized α̂s|h
11: end for
12: Collect all α̂s|h values for subject s into a list
13: end for

2.6 LEARNING THE SHRINKAGE α
The shrinkage parameter α represents the trust factor between the two components (p-DKGP, ss-
DKGP), and we model it as a function of the input variables q = {yp, ys, vp, vs, Tobs}, where q ∈ R5

and Tobs represents the time of the last observed acquisition from the baseline. We have collected
all the optimal values of α from the Shrinkage Estimation (Section 2.5) in the validation set. Our
objective is to learn a mapping function, with parameters θ, that transforms the input space Q =
{Yp, Ys, Vp, Vs, Tobs}, where Q ∈ R5, to the output space A ∈ R, as α̂ = g(Q; θ).

We employ XGBoost regression to find the function g that minimizes the difference between the
predicted α and the actual values. We denote the learned function as gα. In the Supplementary
(Section D.2.1), we provide results from additional models we experimented with. Our experiments
demonstrate that the best α function is the XGBoost.

2.7 PERSONALIZATION THROUGH ADAPTIVE SHRINKAGE

For a new test subject with h observations and Tobs the time of the last observation from the baseline,
we train the ss-DKGP model with the process described in Section 2.3. We call the posterior cor-
rected predictive distribution as pers-DKGP. The Personalization through α-Shrinkage is described

Algorithm 2 Personalization through α-Shrinkage
Require: p-DKGP model, ss-DKGP model, and fα
Ensure: Adapted predictive mean and variance: Yc, Vc

1: Yp, Vp trajectory from p-DKGP model
2: Ys, Vs trajectory from ss-DKGP model
3: αh = gα(Yp, Ys, Vp, Vs, Tobs)
4: Yc = αh · Yp + (1− αh) · Ys

5: Vc = α2
h · Vp + (1− αh)

2 · Vs

6: return Yc, Vc

in algorithm 2.

5
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3 RESULTS

3.1 DATASETS

We use T1-weighted (T1w) MR imaging (MRI) and clinical variables from the iSTAGING
(Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases) consortium for
cognitive impairment and dementia Habes et al. (2021). All MRIs are corrected for intensity in-
homogeneities Sled et al. (1998). Then, 145 ROIs of brain volumes are extracted using a multi-atlas
label fusion method Doshi et al. (2016) and harmonized Pomponio et al. (2020) to remove site ef-
fects. Prior to incorporating the ROIs into our model, we normalize them. From iSTAGING, we
extract data from five longitudinal studies—ADNI Weiner et al. (2017), BLSA Ferrucci (2008), OA-
SIS, AIBL LaMontagne et al. (2019), PreventAD Tremblay-Mercier et al. (2021). ADNI and BLSA
provide a cohort of total 2,200 subjects. The 1560 subjects are used for training the p-DKGP model,
the 200 subjects are used for learning the Adaptive Shrinkage function and the rest 440 subjects are
used for testing any personalization approach. To ensure generalizability, OASIS, AIBL and Pre-
ventAD studies, are exclusively reserved as external clinical studies for testing. Please see Section
B.1 for a comprehensive description of the datasets.

3.2 EVALUATION METRICS AND BASELINES

We evaluate model performance from two perspectives: predictive accuracy and uncertainty quan-
tification (UQ). Predictive accuracy is assessed using Absolute Error (AE) and Mean Absolute Error
(MAE) per subject. For uncertainty quantification, we compute interval width and coverage, de-
fined as the range between two standard deviations above and below the predictive mean and the
proportion of true values that fall within this range, respectively. Effective UQ is characterized
by narrow intervals and high coverage, reflecting confidence in the predictions without sacrificing
accuracy. Importantly, all evaluation metrics—including AE, interval width, and coverage—are cal-
culated over the entire unseen trajectory of the test subjects, rather than focusing on the next time
point alone. This allows for a more comprehensive assessment of model generalization over time.

We benchmark our method against several baselines: Linear Mixed Effects (LMM) models, Gen-
eralized Additive Models (GAMs), Deep Regression, and the Deep Mixed Effects (DME) method
Chung et al. (2019). Further details on the baselines are provided in Supplementary E.2.

3.3 EVALUATION OF PREDICTED TRAJECTORIES OF ATROPHY ON BRAIN ROIS

In this section, we evaluate the Adaptive Shrinkage Estimation on 6 Brain ROIs: Hippocampus
(R/L), Thalamus, Amygdala, Parahippocampal Gyrus, and Lateral Ventricle. The evaluation of the
predictive performance is performed on the 440 test subjects from the ADNI and BLSA cohorts.
For details on the training of the ROI deep kernel models (p-DKGP and ss-DKGP) please see Sec-
tion C.3.

Our model demonstrates the capability to accurately predict long-term longitudinal trajectories. In
Figure 2(a), we visualize the mean AE across different lengths of observed trajectories and plot
the errors relative to the time from the last observation. Our model achieves progressively lower
Mean AE over time, indicating improved precision in both long-term and short-term predictions.
We also present the Mean MAE across progression status for the 6 ROIs in Figure 2(a). Notably, the
largest Mean MAE difference between the two models was observed in participants with AD and
AD progressors, who exhibit non-linear and steeper trends that the competing baselines where not
able to capture. Specifically, the LMM that is only constrained to linear patterns in ROI volumes
evidences by the high percentage mean AE differences in AD 177.66% and AD progressors 22.05%.
In healthy controls, the LMM also shows critical percentage difference from our method, with a
percentage MAE difference of 29.78%. This indicates that even for subjects with relatively stable
brain atrophy, the LMM is unable to capture trajectories.

We proceed with qualitative evaluation of the predicted trajectories. The efficacy of our model is
further illustrated by the predicted trajectories in Figure 3. For the brain ROIs of Hippocampus R,
Thalamus Proper R, and Lateral Ventricle, our model successfully adapts to the observed trajecto-
ries of test subjects, resulting in more accurate long-term predictions. Specifically, for the second
subject in Figure 3, the population prediction significantly deviates from the actual trajectory. How-
ever, as the number of observations increases, the pers-DKGP trajectory shifts towards the observed
trajectory, adapting to the subject-specific trend. The third subject in this panel, a progressor from
Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD), shows a more abrupt increase in
ventricular volume. This trend is captured with few observations by the pers-DKGP model, while
the Linear Mixed Model (LMM) underestimates the ventricular volume in the long term.

6
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a  Atrophy b SPARE-AD c SPARE-BA

Figure 2: Quantitative Comparison with Baseline methods: Mean AE across all ROIs categorized by
progression status (top). Error bars represent 95% confidence intervals and Mean AE over predicted
time horizon from last observation (bottom) for: (a) Atrophy on 6 ROIs, (b) SPARE-AD and (c)
SPARE-BA scores. Our method is denoted as pers-DKGP.
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Figure 3: Adaptation of the predicted personalized ROI trajectories for three different test subjects,
going from using 4 to 7 observations as training to learn the optimal shrinkage parameters. The
dashed lines are the results using LMM as a comparison. The first two panels show the Hippocampus
and Right Thalamus Proper volumes from two stable Cognitively Normal individuals. Last panel
shows the Right Lateral Ventricle volumes from one subject who progressed from MCI to AD. The
shaded bands represent the predictive uncertainty over time.

Overall, the LMM exhibits limited flexibility in capturing non-linear patterns in ROI volumes, ren-
dering it inadequate for long-term trend prediction. While it performs reasonably well in short-
term forecasts and lower-dimensional settings, its expressiveness falls short for complex, high-
dimensional inputs. Deep regression, though capable of learning from observed data, often yields
non-smooth or non-monotonic trajectories that deviate from biologically plausible biomarker pro-
gression trends. The deep mixed effects model, with a shared deep mean function and subject-
specific Gaussian processes, struggles to achieve personalization in high-dimensional input spaces,
with persistent errors across time and diagnostic categories. These issues stem from the limitations
of the RBF kernel in managing multivariate, high-dimensional data. In contrast, our method effec-
tively approximates non-linear mixed effects models, demonstrating flexibility in handling multivari-
ate, high-dimensional data and capturing diverse temporal patterns. Through Adaptive Shrinkage of
the two GP probabilistic models, it consistently produces smooth, biologically plausible trajectories,
delivering robust predictions for neuroimaging biomarkers and brain ROIs.
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3.4 APPLICATION TO NEUROIMAGING BIOMARKERS: SPARE SCORES

Having shown that our framework effectively adapts longitudinal predictions of atrophy on Brain
ROIs on Section 3.3, we also demonstrate that our method is applicable to other neuroimaging
biomarkers apart from atrophy. Specifically, we apply it to composite biomarkers, the SPARE-AD
Davatzikos et al. (2009) and SPARE-BA Habes et al. (2016) scores. SPARE-AD quantifies atrophy
patterns associated with Alzheimer’s disease, focusing on regions vulnerable to early AD pathology.
SPARE-BA reflects brain aging patterns, capturing structural decline typically linked to aging. By
modeling these biomarkers, we explore the intersection between pathological aging, as seen in AD,
and normative brain aging trajectories. We use the population dataset from ADNI and BLSA so as
to train the p-DKGP and the held-out validation dataset to train the Adaptive Shrinkage function for
the SPARE-AD and SPARE-BA scores. Details on these models are attached on the Supplementary
Section C.4. The evaluation of the Adaptive Shrinkage function for SPARE scores is done on the
ADNI and BLSA 440 test subjects.

Our model demonstrates robust performance in predicting long-term longitudinal trajectories for
both SPARE-AD and SPARE-BA biomarkers, as illustrated in Figure 2(b, c). Notably, the model
achieves progressively lower Mean Absolute Error (MAE) over time, indicating improved precision
in forecasting long-term outcomes. Compared to other approaches, the LMM is the second most
competitive in the majority of the diagnosis status. For SPARE-BA, model performance differences
are minimal in stable subjects and healthy controls, but more pronounced in Alzheimer’s disease
(AD) subjects, where SPARE-BA exhibit steeper progression trends due to accelerated brain aging.

With this experiment, we demonstrate that our method effectively models the progression of com-
posite neuroimaging longitudinal biomarkers using high-dimensional multivariate inputs for sub-
jects with follow-up biomarker measurements.

3.5 GENERALIZATION TO EXTERNAL CLINICAL STUDIES

In this section, we demonstrate the generalizability of our method to previously unseen clinical
neuroimaging datasets. After training the p-DKGP and Adaptive Shrinkage function on the popu-
lation and validation datasets from the ADNI and BLSA cohorts, we personalize from the second
follow-up point on each subject and predict the rest of the trajectory. This process is repeated for all
follow-up points, leaving the very last follow-up for testing purposes. We assess the performance of
our framework on subjects from three independent clinical studies: OASIS, AIBL, and PreventAD.

These datasets differ from the training population. The variations in demographics, diagnosis com-
position, site, and follow-up intervals across the three studies underscore the challenge of generaliz-
ing across diverse clinical populations. Thus, they provide a robust test of the model’s generalizabil-
ity. The differences in demographics and follow-up intervals between the three studies emphasize
the challenge of generalizing across diverse clinical populations:

• AIBL: Includes individuals with a mean age of 75 years, which is slightly older than the
ADNI cohort and comparable to BLSA. It is predominantly composed of Alzheimer’s dis-
ease (AD) patients (91 subjects), followed by MCI and controls. On average, each subject
has approximately 3 follow-up visits, with a mean interval of 24 months between visits.

• OASIS: Includes individuals younger on average (67.8 years) compared to both ADNI and
BLSA. It is primarily composed of healthy controls, with smaller representations of MCI
and AD cases. The average number of follow-ups is ∼ 3 per subject, with a mean interval
of 32 months.

• PreventAD: PreventAD focuses on pre-symptomatic early detection of AD in a healthier
and younger population (mean age 65.3 years) with an average of 4 follow-up visits per
subject and a shorter mean interval of 10 months.

Our method demonstrates consistent superiority over baseline methods across three independent
clinical studies—AIBL, OASIS, and PreventAD—underscoring its robustness and reliability in di-
verse real-world scenarios (Figure 4). The model achieves significantly lower Mean Absolute Error
(Mean AE) compared to traditional baselines, with narrow confidence intervals reflecting its preci-
sion and stability.

In the AIBL study, pers-DKGP achieves a Mean AE of 0.197 ± 0.009, substantially outperforming
the baselines. This trend is similarly observed in the OASIS study, where pers-DKGP attains a Mean
AE of 0.259 ± 0.006. Notably, in the PreventAD study, our method achieves the lowest Mean AE of
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0.139 ± 0.004, outperforming LMM and GAM. The narrow CIs associated with pers-DKGP across
all datasets highlight its reliability, offering consistently precise predictions that are resilient to data
variability.

The superior performance of our method is attributed to its ability to effectively combine population-
level and subject-specific predictions via the Adaptive Shrinkage function, enabling it to generalize
across diverse neuroimaging populations. These results establish our model as a robust and reliable
framework for personalized forecasting of neurodegeneration, with significant potential for deploy-
ment in clinical trials and neuroimaging studies.

Figure 4: Comparison of Mean Absolute Errors (MAE) and 95% confidence intervals across three
independent external clinical studies, evaluating the proposed method against competing baselines.

3.6 EXPLAINING ADAPTIVE SHRINKAGE: AN ABLATION STUDY ON THE α FUNCTION

In this section, we aim to demonstrate the effectiveness and interpretability of the Adaptive Shrink-
age function. First, we compare it to other posterior correction approaches. Then, through explain-
ability analysis, we illustrate how Adaptive Shrinkage learns in a data-driven manner to optimally
balance the two posterior predictive distributions, making its decision-making process intuitive.

We explore different strategies for selecting the α parameter to evaluate their performance in the
personalization process. Initially, we experiment with a constant α = c, where c ∈ (0, 1). This
approach serves as an uninformative way to correct the posterior. Next, we employ a semi-
informative (deterministic) approach, where we determine the optimal α for each test subject by
optimizing the objective in Equation 10 using only the observed trajectory. Finally, we use our
Adaptive Shrinkage method (Section 2.6) to determine α.

We conduct this experiment for seven distinct ROIs: Hippocampus R/L, Lateral Ventricle, Thalamus
Proper, Amygdala R/L, and the Parahippocampal Gyrus (PHG R). The deterministic method result
in the worst outcomes in terms of both predictive performance and uncertainty quantification. This
suggests that the observed trajectory of the subject alone is insufficient to determine the optimal
α correction for future predictions. Herein, we present the results for Hippocampus R, Lateral
Ventricle, and Thalamus Proper under the two settings of constant α and the XGBoost α. The results
for the remaining ROIs are provided in Table 6 of the Supplementary E.1 for completeness. In the
constant α section of Table 1, we present the performance of the best α values. This demonstrates
that optimal performance is not achieved through simple averaging, and that the optimal α for each
ROI can vary significantly. For example, for Hippocampus the optimal α is 0.5 while for Ventricles
and Thalamus is 0.3 and 0.7 respectively.The results in Table 1 show that the best constant α values
for Hippocampus R, Lateral Ventricle, and Thalamus Proper differ from each other.This variation
highlights the inadequacy of a one-size-fits-all approach and underscores the necessity for a more
sophisticated method. The presented evidence suggests that Adaptive Shrinkage α estimation is
a more informed approach for determining the optimal shrinkage parameted, leading to improved
predictive performance and uncertainty quantification.

To elucidate the decision-making process of Adaptive Shrinkage, we conducted explainability anal-
ysis. We focus on the impact of each input variable—ypp, yss, Vpp, Vss, and Tobs—and their inter-
actions on the prediction of the shrinkage parameter α. Specifically, we aimed to understand how
the deviation between the population and subject-specific predictive means (δy = ypp − yss) and the
observation time Tobs influence the model’s predictions.

We employed SHAP (SHapley Additive exPlanations) values Lundberg & Lee (2017) to interpret
the contribution of each feature to individual predictions. Figure 8 in Supplementary D.3 reveals
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Table 1: Ablation on α functions
Best Constant XGB

ROI α Mean AE (CI) Mean Cov. Mean Int. Mean AE (CI) Mean Cov. Mean Int.

Hippocampus R 0.5 0.257 (±0.007) 0.808 0.843 0.243 (±0.003) 0.795 0.902
Lateral Ventricle R 0.3 0.143 (±0.006) 0.853 0.507 0.131 (±0.002) 0.855 0.626
Thalamus Proper R 0.7 0.241 (±0.007) 0.934 1.127 0.219 (±0.003) 0.849 0.911

that Tobs is the variable that most affects the decision-making process. This is further validated by
observing that the distribution of the predicted α decreases as we increase the number of follow-up
observations, and thus Tobs. In Figure 7 in Supplementary D.3, we demonstrate the distribution of α
with the number of observations for the six ROIs and the SPARE scores, as well as the predicted α
values obtained from the application to external studies. The consistent trend of decreasing α as the
number of observations increases highlights the biomarker-agnostic ability of Adaptive Shrinkage
to optimally combine population and subject-specific trends. Also, the same behavior of alpha as
the number of observations increases, highlights the consistent behavior of the Adaptive Shrinkage
function to external clinical studies.

Additionally, correlation analysis (Supplementary D.3, Table 5) reveals that the model consistently
demonstrates a negative relationship between the observation time Tobs and the predicted α when
the deviation δy is large. This indicates that, in the presence of significant deviations between the
two predictors, Adaptive Shrinkage decreases the weight assigned to the population-level model
(p-DKGP) for longer observation periods. This aligns with the intuition that the more follow-up
observations we have for a subject, the more we trust their subject-specific predictive distribution.

4 DISCUSSION

In this study, we introduce Adaptive Shrinkage Estimation for personalized Deep Kernel Regression
via posterior correction. We show that our method learns a shrinkage parameter that effectively com-
bines the two posterior predictive distributions, adapting the predictive trajectory to each subject’s
follow-up acquisitions. We evaluate the predictive performance of our model across multiple scenar-
ios, demonstrating superior accuracy over baselines in both short-term and long-term predictions,
and across all diagnosis statuses from Healthy Controls to AD Progressors. Additionally, we show
that our method generalizes to other neuroimaging biomarkers. It effectively models the progression
of monotonic longitudinal biomarkers using high-dimensional multivariate inputs in subjects with
any follow-up measurements. The accurate prediction of SPARE-AD and SPARE-BA trajectories
suggests broader applicability to biomarkers such as cognitive measures (MMSE, ADAS-Cog13)
and blood biomarkers (Amyloid-β, Tau protein).

Importantly, our approach exhibits strong generalization capabilities when applied to external clin-
ical studies with diverse demographics and follow-up intervals. Across the OASIS, AIBL, and
PreventAD datasets, our model consistently outperforms baseline methods, highlighting its robust-
ness and adaptability in varying clinical settings. This generalization is particularly valuable for
real-world clinical scenarios, where models must perform reliably across different populations.

However, we acknowledge some limitations in our approach. In the posterior correction part of our
algorithm (Section 2.4), we assumed independence between the α parameter and the posterior distri-
butions. While this assumption simplifies the correction process, as we elaborate in Supplementary
Section D.1.4, it affects only the uncertainty quantification and leaves the posterior-corrected pre-
dictive mean unaffected. This ensures that our method remains accurate in its primary predictions.

Our method’s optimal and intuitive design positions it as a valuable tool for clinical trial design,
disease progression modeling, treatment effect estimation, and clinical neuroimaging research. The
use of personalized predicted brain ROIs and neuroimaging biomarkers, such as SPARE-AD, as
endpoint for selecting trial subjects, showcases its potential for real-world application. The Adap-
tive Shrinkage mechanism balances population-level and subject-specific insights, ensuring both
accuracy and clinical relevance. With robust performance across diverse external datasets and vary-
ing clinical settings, our method stands out as a reliable, generalizable, and transparent solution for
advancing clinical research in neurodegeneration.
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