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Abstract
Recent years have seen significant advancements
in large-scale representation learning of 2D vi-
sion and language tasks. However, the efficacy
of such cross-modal training on large-scale 3D
objects with other modalities (such as text and
images) remains primarily unexplored. We in-
troduce MaskCL3D, an efficient and powerful
method for language-3D representation learning.
By employing contrastive and masked reconstruc-
tion learning on 3D point clouds with language
descriptions and multi-view images, MaskCL3D
significantly boosts training and testing efficiency.
Meanwhile, we collect a large-scale language-
3D dataset covering a wide array of objects and
descriptions. Models trained on our dataset con-
sistently outperform those trained on alternative
datasets. Compared to existing baselines, our ap-
proach trained on the new dataset achieves state-
of-the-art performance on zero-shot classification
and retrieval tasks. We have performed a series
of analytical studies on the learned language and
3D representations and find that these represen-
tations contain rich semantic information, which
is crucial for interpreting and correlating intricate
concepts within 3D environments.

1. Introduction
Language-3D representation learning (Huang et al., 2023;
Hegde et al., 2023; Cheraghian et al., 2022; Xue et al.,
2023a; Qi et al., 2023; Liu et al., 2023) is a rapidly emerg-
ing field that aims to bridge the gap between linguistic and
spatial understanding. By integrating these two domains,
this study seeksto enable more intuitive and effective inter-
actions between humans and 3D environments, essential
for applications in augmented reality, robotics, and virtual
assistants. The ability to comprehend and manipulate 3D ob-
jects based on language commands is vital for creating more
natural and user-friendly interfaces in these technologies.

However, the task of training robust 3D language repre-

1Carnegie Mellon University 2Zhejiang University
3Massachusetts Institute of Technology. Correspondence
to: Shentong Mo <shentongmo@gmail.com>.

Proceedings of the 1 st Workshop on Efficient Systems for Foun-
dation Models, Vienna, Austria. 2024. Copyright 2024 by the
author(s).

sentations is fraught with challenges. Chief among these
is the computational intensity required to process 3D data.
Training on detailed 3D models, such as meshes with a high
number of vertices and faces, is not just resource-intensive
but also time-consuming. This complexity significantly
slows down the process of developing and fine-tuning mod-
els that can efficiently handle 3D language tasks. Another
challenge is the scarcity of comprehensive 3D knowledge.
Existing datasets and models often lack the necessary range
and complexity for effectively modeling language-3D.

To address these obstacles, we introduce a simple yet effec-
tive approach, named MaskCL3D, for language-3D repre-
sentation learning. To tackle the first challenge of computa-
tional demand and speed, MaskCL3D employs contrastive
training and masked reconstruction, significantly enhancing
training and testing efficiency. Our method allows for effec-
tive training with just a minimal subset of 3D points from
the 3D mesh, leading to training faster than traditional meth-
ods. Remarkably, the proposed method achieves superior
performance despite the reduced number of points used.

To tackle the challenge of scarce 3D knowledge, our method
adopts a dual-encoder strategy: it incorporates pre-trained
encoders for harnessing extensive commonsense knowledge
and a newly crafted model encoder for assimilating specific,
novel 3D knowledge. Large pre-trained language (LLM)
and 2D image encoders are pivotal in retaining rich seman-
tics, playing a crucial role in learning zero-shot represen-
tation. Therefore, we leverage these pre-trained encoders
to facilitate the training of 3D representations, harnessing
their capacity to enrich the semantic depth and accuracy of
our 3D models. This approach not only improves the qual-
ity of 3D representations but also bridges the gap between
language, 2D images, and 3D learning paradigms.

To overcome the scarcity of 3D data for large-scale language-
3D representation learning, we have created the Caption-
Objaverse dataset. This dataset comprises 700k carefully
curated language-3D pairs, providing a rich and diverse re-
source for advanced study in this field. We demonstrate that
methods trained on Caption-Objaverse outperform those
trained on other datasets. This indicates the superior qual-
ity and effectiveness of Caption-Objaverse in enhancing
model performance in language-3D representation learning.
Our method, trained on Caption-Objaverse, markedly sur-
passes state-of-the-art methods, achieving a notable 7.69%
improvement over baselines in zero-shot recognition.
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Figure 1: Pipeline of the proposed method. To enable cross-domain representation learning between 3D point clouds and language
descriptions, as well as improve training and evaluation efficiency, we employ both contrastive training and masked reconstruction training
in our framework. This mechanism involves sampling a subset of 3D points for joint feature learning using contrastive loss between
3D-2D and 3D-Text embeddings while using the remaining points for 3D reconstruction with masked reconstruction loss.

To gain deeper insights into the representations learned by
our model, we carried out analysis experiments aimed at
evaluating the effectiveness of these learned representations.
Remarkably, our analysis reveals that these representations
possess the ability for arithmetic and compositional opera-
tions. For instance, the 3D-text similarity between “a yellow
bandage – yellow + red” closely aligns with that of “a red
bandage”. This capability highlights the advanced semantic
understanding and flexibility of our model in interpreting
and relating complex concepts in 3D environments.

2. Method
Given the point cloud of a 3D object and the caption of the
same object, we learn joint 3D and language representa-
tions. We first use the 3D object encoder to encode the 3D
point clouds into a feature representation. Then we adopt
the frozen 2D vision encoder pre-trained from CLIP (Rad-
ford et al., 2021) to extract 2D embeddings from multi-view
images of the 3D object. Similarly, we encode the lan-
guage description into a feature representation through a
text fusion encoder. We adopt the contrastive loss (Radford
et al., 2021) to train the model (Sec. 2.1). This loss function
facilitates the convergence of positive language-3D pairs,
bringing them closer together, while simultaneously push-
ing negative feature pairs further apart. Consequently, our
model learns to capture the intrinsic relationships between
the 3D data and the corresponding language descriptions.

Training a model on 3D point clouds with a large-scale
dataset size can be computationally expensive, particularly
as the number of points increases. To address this challenge
and improve both training and evaluation efficiency, we
propose a masked reconstruction loss on 3D point clouds
(Sec. 2.2). Remarkably, our proposed method with the
masked reconstruction loss not only achieves superior per-
formance compared to the model without this enhancement
but also significantly accelerates the training process.

Overall, our approach presents a comprehensive framework
for learning joint 3D and textual representations from large-
scale data, leveraging 3D point cloud data and captions.
By combining contrastive and masked reconstruction loss,

we achieve efficient training, improved performance, and
accelerated evaluation, advancing zero-shot tasks.
2.1. Contrastive Training
3D Encoder. Let D = {(ti, Xi) : i = 1, ..., N} be a dataset
of texts and 3D point clouds. Each point cloud is sampled
from the object 3D mesh and consists of p points, denoted
as Xi ∈ Rp×3, where the three dimensions represent the
XYZ coordinates of each point. Each point cloud is sent to
a Transformer model (Vaswani et al., 2017b) to encode the
3D information. We take the output of the last Transformer
layer to represent the point cloud, denoted as fXi ∈ Rd.

Text Fusion Encoder. To extract prior knowledge about the
textual description of the object, we first tokenize the words
in the sentence and then pass them through a pre-trained
LLM encoder, which provides an initial textual feature rep-
resentation denoted as g′ti ∈ Rd. To further capture the
new 3D text knowledge on the training data, we introduce
a new text encoder, which is trained from scratch. This
text encoder encodes the textual information into a feature
vector denoted as g′′ti ∈ Rd. By combining the pre-trained
textual feature with the newly learned feature, we obtain the
final textual representation gti = g′ti + g′′ti . This approach
allows us to incorporate both the commonsense informa-
tion from the pre-trained language model and the novel 3D
information derived from a large amount of 3D data.

Image Encoder. For multi-view 2D images, we adopt
a frozen 2D encoder from the vision encoder (ViT-L) in
CLIP (Radford et al., 2021) to generate averaged 2D embed-
dings from the last Transformer layer, denoted as fIi ∈ Rd.

Constrative Training Loss. To facilitate cross-domain
feature representation learning, we employ a contrastive
loss to align 3D point clouds with textual descriptions and
images. The contrastive loss is defined as follows:

LC =
1

N

N∑
i=1

− log
exp

(
1
τ s(fXi

, gti
)∑N

j=1 exp
(
1
τ s(fXj , gti)

)
− log

exp
(
1
τ s(fXi

, fIi
)∑N

j=1 exp
(
1
τ s(fXj

, fIi)
) , (1)

where s represents the cosine similarity between two feature
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Table 1: Zero-shot recognition results for models trained on ShapeNet (Chang et al., 2015). Our method, utilizing fewer training and
testing points, is faster than the baseline methods and surpasses their performance on the same training dataset.

Method Pretrain Data Pretrain Modalities # Train Points # Test Points ModelNet10 ModelNet40

PointCLIP (Zhang et al., 2022)[CVPR 2022] ShapeNet Text + 2D – – 59.30 19.30
CLIP2Point (Huang et al., 2023)[ICCV 2023] ShapeNet Text + 2D – – 66.63 49.38
PointCLIP v2 (Zhu et al., 2023)[ICCV 2023] ShapeNet Text + 2D – – 73.13 64.22
CG3D (Hegde et al., 2023)[arXiv 2023] ShapeNet Text + 2D + 3D 8192 8192 67.30 50.60
Cheraghian et al. (Cheraghian et al., 2022)[IJCV’2022] ShapeNet Text + 2D + 3D 4096 4096 68.50 –
ULIP (Xue et al., 2023a)[CVPR 2023] ShapeNet Text + 2D + 3D 2048 2048 73.87 60.40
ReCon (Qi et al., 2023)[ICML 2023] ShapeNet Text + 2D + 3D 1024 8192 75.60 61.70
ULIP-2 (Xue et al., 2023b)[arXiv 2023] ShapeNet Text + 2D + 3D 2048 2048 – 66.40
OpenShape (Liu et al., 2023)[NeurIPS 2023] ShapeNet Text + 2D + 3D 4096 4096 – 70.30
MaskCL3D (ours) ShapeNet Text + 2D + 3D 512 1024 81.15 71.08

Table 2: Zero-shot recognition results for models trained on Caption-Objaverse. Our method largely outperforms all the baselines.
Method Pretrain Data Pretrain Modalities # Train Points # Test Points ModelNet10 ModelNet40

ULIP (Xue et al., 2023a)[CVPR 2023] Caption-Objaverse Text + 3D 2048 2048 64.53 51.82
MaskCL3D (ours) Caption-Objaverse Text + 3D 512 1024 77.26 65.78
ULIP (Xue et al., 2023a)[CVPR 2023] Caption-Objaverse Text + 3D + 2D 2048 2048 76.39 64.27
ReCon (Qi et al., 2023)[ICML 2023] Caption-Objaverse Text + 3D + 2D 1024 8192 78.21 65.85
OpenShape (Liu et al., 2023)[NeurIPS 2023] Caption-Objaverse Text + 3D + 2D 4096 4096 80.26 67.93
ULIP-2 (Xue et al., 2023b)[arXiv 2023] Caption-Objaverse Text + 2D + 3D 2048 2048 – 74.16
MaskCL3D (ours) Caption-Objaverse Text + 3D + 2D 512 1024 85.35 75.62

vectors, while τ denotes the temperature hyperparameter.
The contrastive loss serves the purpose of bringing posi-
tive pairs (consisting of matching 3D point clouds fXi and
textual descriptions gti and matching 3D point clouds fXi

and 2D images fIi) closer together while pushing negative
pairs (comprising non-matching instances [fXj

, gti] and
[fXj , fIi], where j ̸= i) further apart. This encourages
the model to capture the underlying relationships and asso-
ciations between the 3D structures and the corresponding
language description and multi-view 2D images.
2.2. Masked Reconstruction Training
Training a model on a large set of 3D point clouds can be
computationally expensive, particularly as the number of
points increases. We thus propose a masked reconstruc-
tion loss to improve the training and evaluation efficiency.
Following (Pang et al., 2022), we apply Farthest Point Sam-
pling (FPS) (Eldar et al., 1997) to sample point clouds from
3D mesh. FPS selects c samples as centers and applies the
K-Nearest Neighborhood (KNN) algorithm to select k near-
est points for each center, resulting in an initial point cloud
represented as Xi ∈ Rc×k×3. It is important to note that
each point in the point cloud is normalized relative to its cor-
responding center point. This normalization step facilitates
better convergence during the training phase.

For efficient training and evaluation, we introduce a mask-
ing ratio denoted as r, which randomly removes a portion
of points from each point cloud cluster during training. The
remaining visible points are then forwarded to the 3D en-
coder to generate a 3D embedding of the object as shown
in Figure 1. A lightweight decoder Transformer is then
trained to reconstruct the missing 3D points. This decoder
is designed to be smaller than the encoder, enabling more
efficient training. The masked reconstruction loss, denoted
as LM , is defined as follows:

LM =
1

|X̂m
i |

∑
x̂∈X̂m

i

min
x∈Xm

i

∥x̂− x∥22

+
1

|Xm
i |

∑
x∈Xm

i

min
x̂∈X̂m

i

∥x̂− x∥22,
(2)

where Xm
i denotes the set of removed points and X̂m

i de-
notes the corresponding prediction of the decoder model. To
evaluate the accuracy of the point cloud reconstruction, we
compute the distance between the ground truth XYZ coor-
dinates of a point x in Xm

i and its corresponding predicted
XYZ coordinates x̂. This distance measurement allows us
to quantify the dissimilarity between the original and re-
constructed points, providing insight into the quality of the
masked reconstruction process.

The proposed masked reconstruction loss allows us to re-
duce the number of points used for both training and testing.
When compared with the current state-of-the-art model,
OpenShape (Liu et al., 2023), our approach utilizes 87.5%
fewer points during training and 75% fewer points during
inference phases. Remarkably, despite this substantial re-
duction in data points, MaskCL3D consistently surpasses
OpenShape’s performance, achieving an impressive 5% to
9% improvement across various datasets. This approach ef-
fectively accelerates the training and testing process, allow-
ing for more efficient model convergence while maintaining
the ability to handle missing information in the point clouds.
2.3. Joint Training
To achieve the goals of cross-domain learning and efficient
training simultaneously, we jointly optimize both objectives:

L = LC + LM . (3)
By optimizing the combined loss L, the model can simul-
taneously learn to generate informative and discriminative
cross-domain feature representations and effectively recon-
struct missing points in the point clouds.

3. Experimental Evaluations
3D Recognition. We evaluate the accuracy of predicted
text labels of 3D point clouds. It is important to note that
there is no overlap between the training and testing objects.
This setup allows us to evaluate the generalization capability
of each approach when encountering unseen objects. We
first show the results of models trained on the commonly
used 3D-language dataset, ShapeNet, in Table 1. The results
on the ModelNet10 and ModelNet40 datasets are reported.
Our MaskCL3D employs only 512 points during training
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Table 3: Text-to-3D and 3D-to-Text retrieval results on Caption-Objaverse. Our method dramatically outperforms baselines.

Method Text-to-3D 3D-to-Text
R@1 (↑) R@5(↑) R@10(↑) R@1 (↑) R@5(↑) R@10(↑)

Point-CLIP (Zhang et al., 2022)[CVPR 2022] 15.6 34.7 39.8 15.8 35.1 40.6
ULIP (Xue et al., 2023a)[CVPR 2023] 25.5 46.3 57.8 25.9 46.9 58.5
ReCon (Qi et al., 2023)[ICML 2023] 27.8 47.5 58.6 28.5 48.2 59.3
OpenShape (Liu et al., 2023)[NeurIPS 2023] 30.6 49.2 60.3 31.2 49.5 60.9
MaskCL3D (ours) 39.7 57.9 69.5 40.6 58.7 71.6

Table 4: Impact of varying numbers of test points. MaskCL3D
excels over baselines with fewer test points, demonstrating its
efficiency and effectiveness.

# Test Points 256 1024 4096

Point-CLIP (Zhang et al., 2022)[CVPR 2022] 0.15 0.27 0.36
ULIP (Xue et al., 2023a)[CVPR 2023] 0.42 0.48 0.62
ReCon (Qi et al., 2023)[ICML 2023] 0.46 0.51 0.69
OpenShape (Liu et al., 2023)[NeurIPS 2023] 0.52 0.63 0.75
MaskCL3D (ours) 0.69 0.78 0.86

and 1024 points during testing, which is significantly faster
than the baseline methods. Additionally, our method shows
improvements over these baselines.

We further compare MaskCL3D and baselines trained on
our Caption-Objaverse dataset, as shown in Table 2. We
observe that the same method, when trained on our dataset,
exhibits higher performance compared to its training on
the ShapeNet dataset in Table 1. This is because Caption-
Objaverse contains a diversity of 3D objects and rich textual
descriptions. Furthermore, employing a pre-trained 2D im-
age encoder significantly enhances zero-shot performance
due to its rich knowledge base. Our method significantly sur-
passes the baselines, exemplified by its 5.09% improvement
over OpenShape on the ModelNet10 dataset. This demon-
strates the effectiveness in zero-shot recognition tasks.

Text-3D Retrieval. The learned text and 3D feature rep-
resentations can be used for Text-to-3D and 3D-to-Text re-
trieval. In Table 3, we evaluate the retrieval results of differ-
ent methods on our Caption-Objaverse dataset. MaskCL3D
achieves the best performance in all metrics compared to
the baselines. In particular, MaskCL3D outperforms Point-
CLIP (Zhang et al., 2022), the strong baseline using multi-
view 2D depth maps, by 24.1 on R@1. Moreover, we
obtain the performance gains of 14.2 on R@1, compared to
ULIP (Xue et al., 2023a), the state-of-the-art work on 3D
representation learning involving 2D images.

Impact of Varying Numbers of Test Points. While
MaskCL3D model is trained with 1024 input points, it can
readily be applied to more or fewer points in testing. We
compare MaskCL3D and baselines using different numbers
of points during testing. We randomly sample 500 pairs of
3D point clouds and language descriptions. We then com-
pute the cosine similarity of the feature representations of
the paired 3D point cloud and the corresponding language
description. As demonstrated in Table 4, utilizing a greater
number of test points can enhance performance, but it also
results in longer inference times. MaskCL3D, even when
using only 256 test points, already exceeds the performance

Figure 2: Effect of Mask Ratio on Zero-Shot Recognition Accu-
racy and FLOPs on the ModelNet40. Our default masking ratio
of 0.5 leads to optimal performance while also reducing computa-
tional requirements, as evidenced by lower FLOPs.

of all baseline methods that use 1024 test points and outper-
forms the majority of baselines utilizing 4096 test points.

Masking Ratio & FLOPs. We explore the effects of
varying mask ratios in the masked reconstruction training.
MaskCL3D is trained on the Caption-Objaverse dataset and
assessed on the ModelNet40 for zero-shot recognition tasks.
This is different from the experiment in Section B.4, which
examines the impact of different numbers of test points.
In Figure 2, we find that using a ratio of 0.5 (512 points)
achieves the best performance. As the masking ratio in-
creases from 0 to 0.5, we observe a consistent improvement
in the results. This is because masking a certain proportion
of input yields a nontrivial and meaningful self-supervisory
task for reconstructing masked parts , as demonstrated in
MAE (He et al., 2021). However, a higher mask ratio leads
to reduced performance, suggesting that maintaining an
adequate number of points is essential for effective 3D rep-
resentation learning. The FLOPs decrease as the mask ratio
increases, since fewer points are utilized in the training pro-
cess. Our method employs a masking ratio of 0.5, which
not only achieves the best performance but also results in
lower computational demands, as measured in FLOPs.

4. Conclusion
We present MaskCL3D, a simple yet effective approach for
large-scale language-3D representation learning. It employs
a blend of contrastive learning and masked reconstruction
on 3D point clouds, captions, and multi-view images, signif-
icantly improving training and testing efficiency. We have
also curated a comprehensive language-3D dataset, which
significantly boosts the performance of our model.

Broader Impact. Our work thoroughly analyzes many
capabilities of large-scale pre-training of language-3D rep-
resentations from MaskCL3D. We believe that these are
promising for diverse researchers in the 3D community.
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Appendix
In this appendix, we provide

• Details about the Caption-Objaverse Dataset in Ap-
pendix A,

• Experimental evaluations in Appendix B,

• Additional analyses of the learned language and 3D
representations in Appendix C,

• Discussions on realted work in Appendix D,

• More ablation studies and experimental results of the
proposed method in Appendix E,

• Analyses of the proposed Caption-Objaverse dataset as
shown in Appendix F,

• Implementation details in Appendix G.

A. The Caption-Objaverse Dataset
To address the limited training data for large-scale language-
3D representation learning, we build the Caption-Objaverse
dataset. Caption-Objaverse is based on Objaverse (Deitke
et al., 2022), the largest 3D dataset with 700k publicly-
released 3D objects. For ethical concerns, we removed
around 19k objects with identifiable facial scans and NSFW
content. We augment this dataset with language descriptions
for each object. To do this, we project the 3D mesh of each
object into the 2D image domain, and use the state-of-the-
art image caption approach, BLIP-2 (Li et al., 2023a), to
generate a caption for the 2D image. After generating the
captions, we filtered out low-quality ones and updated the
3D object with new captions, resulting in 700, 862 text-3D
pairs. Specifically, we calculated the CLIP (Radford et al.,
2021) score between generated captions and 2D-rendered
images and manually relabeled samples with a similarity
score<0.5.

To future examine the generated caption, we add a text-
to-image retrieval experiment using a different image en-
coder, ViT-B-32 (Dosovitskiy et al., 2021). The recall@10 is
92.65%, indicating the correct images can be effectively re-
trieved using the generated captions. To evaluate the dataset
complexity, we built a test set of 500 samples with long
captions (average length of 100 words). Our method trained
on the original dataset performs well on the long-caption
test set, achieving 81.63% on R@10 for text-to-image re-
trieval. This means the original dataset is not simple and
models trained on it can understand complex instructions.
We provide more details about datasets in the supplementary
material.
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B. Experimental Evaluations
B.1. Evaluation Datasets

We evaluate MaskCL3D and baselines on seven datasets.
ModelNet40 (Wu et al., 2015) is a synthetic 3D CAD bench-
mark with 40 object categories that include 9,843 3D models
for training and 2,468 for testing. ModelNet10 (Wu et al.,
2015) is a subset of ModelNet40, containing 10 object cate-
gories. ScanObjectNN (Uy et al., 2019) has 2,902 scanned
3D objects from the real world, covering 15 categories. This
benchmark has three variants for evaluation: ObjectOnly
includes ground truth segmented objects extracted from the
scene meshes; ObjectBg contains objects with background;
Hardest includes objects with perturbations such as scaling,
rotation, and translation. ShapeNet (Chang et al., 2015)
consists of 50,000 distinct 3D objects from 55 common ob-
ject categories. We use two subsets provided in (Yu et al.,
2022): ShapeNet34 with 34 classes and ShapeNet55 with
all 55 classes.

B.2. Evaluation Metrics

Accuracy of 3D recognition. Following previous
work (Zhang et al., 2022; Xue et al., 2023a), we evalu-
ate the zero-shot recognition performance of each method
by computing distances between the 3D features of a given
3D object and a set of text descriptions. The text descrip-
tion with the smallest distance is used as the predicted class.
The test example is regarded as correct if the selected text
description corresponds to the ground truth class. We report
the average accuracy of all test examples in each dataset.

Recall of Text-3D retrieval. For text-to-3D retrieval, we
are given input captions to retrieve 3D objects from our
Caption-Objaverse by computing the similarity between 3D
embeddings and text embeddings. For 3D-to-text retrieval,
we are given 3D objects to retrieve text captions from our
Caption-Objaverse by computing the similarity between text
embeddings and 3D embeddings. We compute the Recall at
rank r (R@r) to measure the percentage of labels retrieved
within the top r ranked predictions, where r = 1, 5, 10.

B.3. Baselines

We compare the proposed framework, MaskCL3D, with the
state-of-the-art approaches for 3D-language representation
learning. PointCLIP (Zhang et al., 2022) and PointCLIP
v2 (Zhu et al., 2023) learn 3D representations by aligning 3D
objects with 3D class texts and multi-view 2D depth maps
that are manually generated from 3D point clouds. (Huang
et al., 2023; Hegde et al., 2023; Cheraghian et al., 2022;
Xue et al., 2023a; Qi et al., 2023; Liu et al., 2023) learned
based on object triplets with 3D point clouds, text, and 3D
projected images, where they rendered 60 multi-view mages
from each CAD model for 3D representation learning. For
each method, we test it on three different random seeds and

Figure 3: Point clouds Reconstruction. Our method can recon-
struct the object points accurately even when 70% of the points
are missing.

report the averaged results under each evaluation metric.

B.4. Zero-shot Results

Point Cloud Reconstruction. The proposed masked re-
construction training enables the reconstruction of object
point clouds from incomplete object points, as illustrated
in Figure 3. Our method can still reconstruct the object
accurately even when 70% of the points are missing. These
visualizations emphasize MaskCL3D’s ability to accurately
represent 3D information, even under conditions of partial
data absence. We also evaluated the ℓ2 Chamfer Distance
(×10−3) on ShapeNet for point cloud completion. Our
method achieves lower reconstruction errors (2.832) than
the strong baseline, ReCon (Qi et al., 2023) (5.785).

B.5. Ablation Studies

In this section, we examine the effectiveness of the proposed
contrastive learning and masked reconstruction. Addition-
ally, we perform ablation studies on the text fusion encoder
and explore the influence of different masking ratios on
zero-shot recognition tasks.

Contrastive Training & Masked Reconstruction Train-
ing. In Table 5, we examine the extent to which contrastive
training and masked reconstruction training impact the re-
sults of zero-shot recognition tasks. We can observe that
incorporating 3D-language contrastive training highly in-
creases the results of zero-shot classification by 27.6% and
38.6% on ModelNet40 and ModelNet10, respectively. We
also assess various masking strategies in masked reconstruc-
tion training. The term “Random” refers to the random
sampling of object points during training. This strategy
might inadvertently eliminate points crucial for 3D under-
standing, potentially impairing performance. “Learnable”
has an embedding layer that is optimized with gradient
descent across to select the most important points during
training. The masking method we employ, Farthest Point
Sampling (FPS), is designed to eliminate redundant points
while preserving sufficient information for 3D understand-
ing, thereby achieving optimal performance. These results
confirm the importance of combining contrastive training
and masked reconstruction training for language-3D repre-
sentation learning.

Text Fusion Encoder. To utilize the pre-existing common-
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Table 5: Ablation studies of contrastive training (CL) and masked reconstruction training (Mask). Both CL and Mask are important
in zero-shot recognition tasks. Using the FPS sampling strategy in the masked reconstruction training achieves the best performance.

CL Mask Type ModelNet ModelNet ScanObjectNN- ScanObjectNN- ScanObjectNN- ShapeNet ShapeNet
40 10 ObjectOnly ObjectBg Hardest 34 55

✗ ✗ – 20.2 30.2 15.4 12.6 7.6 18.7 6.3
✓ ✗ – 47.8 68.8 25.7 23.4 16.1 51.0 37.8
✓ ✓ random 28.9 43.6 7.8 6.3 2.6 31.2 15.7
✓ ✓ learnable 37.5 57.9 18.6 15.2 7.1 43.3 23.5
✓ ✓ FPS 49.3 70.9 27.3 26.2 17.5 53.7 39.2

Table 6: Ablation studies of the text fusion encoder. Fusing the pre-trained LLM with the learned text encoder results in the best
performance. “FT” represents a fine-tuned model, while “FZ” indicates a frozen model.

Pre-trained Text Fusion ModelNet ModelNet ScanObjectNN- ScanObjectNN- ScanObjectNN- ShapeNet ShapeNet
LLM Encoder 40 10 ObjectOnly ObjectBg Hardest 34 55

✗ ✓ – 47.8 68.5 25.8 23.1 16.3 51.2 37.5
FT ✗ – 48.1 68.9 26.1 24.2 16.9 52.3 38.3
FZ ✗ – 46.8 67.2 24.3 22.6 15.2 49.5 36.7
FZ FT cont 48.5 69.5 26.7 24.7 17.1 52.9 38.7
FZ FT seq 47.2 67.8 24.8 22.9 15.6 50.3 37.1
FZ FT para 49.3 70.9 27.3 26.2 17.5 53.7 39.2

sense knowledge from large language models (LLM) and
integrate specific 3D information, our text fusion encoder
combines the pre-trained language model, BERT (Devlin
et al., 2018) base model, with a newly learned text en-
coder. In Table 6, we first assess the effectiveness of the
pre-trained Large Language Model (LLM) by solely utiliz-
ing the learned text encoder for language embedding. The
performance declines upon removing the pre-trained LLM.
Next, we remove the learned text encoder and test both the
fine-tuned (FT) and the frozen (FZ) versions of the LLM for
language embeddings. The performance of both versions de-
clines compared to the text fusion encoder employed in our
method, as shown in the last row. We further evaluate the im-
pact of different fusion types. In “concatenation (cont)”, the
text features from the pre-trained LLM and learned text en-
coder are concatenated along the dimension. In “sequential
(seq)”, the text is first encoded by the pre-trained LLM. The
output of the pre-trained LLM is then sent to the learned text
encoder. The “parallel (para)” refers to the process where
the text feature from the pre-trained LLM is combined with
the output from the learned text encoder, as illustrated in
Figure 1. Merging the pre-trained LLM and the learned text
encoder in a ”parallel (para)” manner effectively combines
pre-existing knowledge with 3D-specific knowledge.

C. Analyses of Learned Representations
We analyze the MaskCL3D language and 3D representations
in terms of distributional properties, feature arithmetic, and
compositionally.

Feature Distributions. Following (Wang & Isola, 2020),
we use the Alignment and Uniformity metrics to evaluate
the learned representations. The Alignment metric measures
how well paired 3D and text features are aligned, while the
Uniformity metric evaluates how well the representations
of different classes are spread out. Table 7 compares our
method against baselines. Alignment is measured as the
squared ℓ2-distance between features from text-3D positive

pairs, where lower value indicates more aligned features1.
MaskCL3D 3D representations are best aligned with text
features among all methods. Uniformity is measured across
randomly sampled (negative) features. MaskCL3D achieves
the best uniformity metric, and thus better captures input
3D information compared to the baselines.

Feature Arithmetic. Our learned representations capture
a wealth of semantic information. We find that these fea-
tures support arithmetic operations, such as addition and
subtraction. Take the snowman in Table 8 as an example.
3D-Text similarity between the snowman 3d model and text
is merely 0.15 due to the incorrect information on the “ban-
dage” in text. We perform feature arithmetic by subtracting
the text features of “bandage” and adding the text features of
“snowman”, and see a significantly higher similarity score of
0.62. Further improvement can be achieved by adding the
text features of “hat” since the snowman wears a hat. See
Table 8 for more qualitative examples.

Feature Composition. We explore if our text features can
capture compositional changes in the 3D space. We modify
3D models by altering object categories and counts. For
each 3D modification, we also generate a corresponding
modified text, as shown in the first three columns of Table 9.
By testing similarities between the modified 3D model and
modified text, we can measure how well our learned repre-
sentations can generalize compositionally. Table 9 shows
a quantitative comparison using 3D models of piano and
stool. Across all tested compositional changes, MaskCL3D
is the most effective among all methods. To further test our
model on these two settings, we build a new dataset with
500 examples. The captions involve arithmetic and compo-
sition of diverse object shapes, colors, categories, sizes, and
quantities. The results of 3D-to-text similarity of different

13D-text similarity metric is equivalent to the negated align-
ment metric up to a scale. We report alignment as squared distance
here to be consistent with prior works on representation geometry
(Wang & Isola, 2020).

9



Towards Efficient Large-Scale Language-3D Representation Learning

Table 7: Alignment and Uniformity of representations (Wang & Isola, 2020). MaskCL3D demonstrates superior performance in both
Alignment and Uniformity metrics, indicating the effectiveness of the learned representations.

Method Alignment (↓) Uniformity (↓)

Point-CLIP (Zhang et al., 2022)[CVPR 2022] 1.63 -0.52
ULIP (Xue et al., 2023a)[CVPR 2023] 1.12 -1.25
ReCon (Qi et al., 2023)[ICML 2023] 1.03 -1.53
OpenShape (Liu et al., 2023)[NeurIPS 2023] 0.89 -1.76
MaskCL3D (ours) 0.65 -2.79

Table 8: Quantitative comparisons of text features arithmetic. The proposed MaskCL3D achieves more reasonable 3D-Text similarity
scores across various arithmetic operations compared to state-of-the-art approaches.

3D Objects Text Arithmetic ULIP (Xue et al., 2023a) ReCon (Qi et al., 2023) OpenShape (Liu et al., 2023) MaskCL3D (ours)

a yellow bandage 0.45 0.43 0.39 0.32
a yellow bandage – yellow + red 0.49 0.51 0.52 0.57
a yellow bandage – yellow + white 0.52 0.53 0.56 0.63
a yellow bandage – yellow + red + white 0.53 0.56 0.69 0.82

a white bandage 0.23 0.21 0.18 0.15
a white bandage – bandage + hat 0.39 0.36 0.31 0.29
a white bandage – bandage + snowman 0.62 0.68 0.73 0.82
a white bandage – bandage + snowman + hat 0.63 0.72 0.76 0.87

methods are reported in Table 10. Our method outperforms
baselines on both arithmetic and composition tasks.

Text-to-3D Generation. The proposed representation can
be used for 3D generation. We use the learned 3D represen-
tations for text-to-3D generation using Point·E and Shap·E.
We evaluate the generated content using FID, CLIP Score,
and CLIP R-Precision, and report the results of our method
and Cap3D (Luo et al., 2023) in Table 11. Our method
performs better on all metrics.

D. Related Work
Language-3D Pre-training. Language-3D pre-training
aims to learn transferable representations of 3D objects
given natural language supervision. Due to the limited
amount of available text-3d pairs, previous methods (Zhang
et al., 2022; Xue et al., 2023a) leveraged diverse pipelines
based on language-2D pre-training to learn the alignment
between 2D images and 3D objects. Typically, Point-
CLIP (Zhang et al., 2022) generated multi-view 2D depth
maps of 3D point clouds and aligned them with 3D class
texts in zero-shot 3D object classification. Following up,
object triplets from the three modalities (image, text, and 3D
point clouds) were used in ULIP (Xue et al., 2023a) to learn
the unified representations, where they rendered 60 multi-
view 2D images from each CAD model for pre-training.
More recently, OpenShape (Liu et al., 2023) adopted a
multi-modal contrastive learning framework for represen-
tation alignment to capture multi-modal large-scale joint
representations of large-scale text, image, and point clouds.
Different from them, we do not require 4096 points for
training and inference. Instead, we can support large-scale
text-mesh pre-training on 3D objects using only 1024 points
for efficient inference and also leverage masked point clouds
for efficient training.

Contrastive Representation Learning. Contrastive rep-
resentation learning has been explored in previous meth-
ods (Tian et al., 2020; Chen et al., 2020a;b; Grill et al.,
2020; He et al., 2020; Chen et al., 2020c; Caron et al., 2020;
Chen & He, 2021; Li et al., 2021; Wang et al., 2021; Mo
et al., 2021; 2022) to be effective in learning discriminative
representations. For example, SimCLR (Chen et al., 2020a)
proposed the normalized temperature-scaled cross-entropy
loss to pull away the features of each instance from those of
all other instances in the training set by maximizing the sim-
ilarity between positive samples and minimize the similarity
between negative samples. For learning cross-modal rep-
resentations, the Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) model showcased the power of
transferable image-language representations through zero-
shot image classification. In this work, we leverage con-
trastive loss to align masked 3D representations with 2D
image embeddings and text embeddings.

Masked Representation Learning. Masked representation
learning aims to learn representations by reconstructing de-
sired features of masked data given unmasked parts as clues,
which has achieved promising results in natural language
processing (Devlin et al., 2018; Liu et al., 2019; Sun et al.,
2019; Conneau & Lample, 2019; Wettig et al., 2023) and
computer vision (Bao et al., 2022; He et al., 2021; Wei et al.,
2022; Xie et al., 2022; Chen et al., 2022; Wu & Mo, 2022;
Feichtenhofer et al., 2022; Dong et al., 2023) community be-
cause of its faster speed and higher accuracy in downstream
tasks, such as language-image masking in FLIP (Li et al.,
2023b). Typically, BERT (Devlin et al., 2018) randomly
masked 15% of word tokens and recovered them with un-
masked words to learn generalizable textual features from a
transformer (Vaswani et al., 2017a). To simplify the masked
image encoding framework, MAE (He et al., 2021) recon-
structed missing pixels of 75% masked patches using vision
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Table 9: Quantitative comparisons of text features composition. The proposed MaskCL3D achieves more reasonable 3D-Text similarity
scores across various composition types compared to state-of-the-art approaches.

3D Objects Composition Type Text Composition ULIP (Xue et al., 2023a) ReCon (Qi et al., 2023) OpenShape (Liu et al., 2023) MaskCL3D (ours)

Object categories a stool 0.51 0.48 0.45 0.39
a piano 0.63 0.65 0.69 0.78

Object counts two stools 0.43 0.39 0.33 0.28
two pianos 0.61 0.59 0.56 0.52

Object categories and counts a piano and two stools 0.53 0.55 0.58 0.63
a piano and a stool 0.69 0.73 0.79 0.89

Table 10: Comparisons of features arithmetic and composition.

Cases ULIP (Xue et al., 2023a) ReCon (Qi et al., 2023) OpenShape (Liu et al., 2023) MaskCL3D (ours)

Arithmetic 0.47 0.52 0.65 0.83
Composition 0.59 0.63 0.73 0.87

Table 11: Comparisons of text-to-3D generation. The proposed
MaskCL3D achieves better FID, CLIP, and CLIP R-Precision
scores compared to state-of-the-art approaches.

Method Features FID (↓) CLIP CLIP R-Precision (2k)
Score R@1 R@5 R@10

Point·E Cap3D 32.8 75.6 12.4 28.1 36.9
MaskCL3D (ours) 26.5 81.2 20.5 45.6 62.3

Shap·E Cap3D 35.5 79.1 20.0 38.8 47.3
MaskCL3D (ours) 28.6 85.2 29.7 57.3 73.5

transformers (Dosovitskiy et al., 2021). More recently, re-
searchers introduced diverse masking pipelines (Yu et al.,
2022; Pang et al., 2022) to show the effectiveness of masked
modeling in learning meaningful representations from point
clouds. Different from them, we develop a simple yet effec-
tive framework to aggregate transferable representations of
3D objects with masked pre-training from natural language
and 2D images together.

E. More Ablation Studies
Data Size. To investigate the impact of pre-training data
size on the learned representations from our proposed
MaskCL3D, we conducted additional experiments in this
section. Specifically, we trained the same model (172 MB)
on varying amounts of data, namely 46K, 200K, and 700K.
The results of the zero-shot recognition tasks on seven
datasets are presented in Table 12. As the number of train-
ing data increases, the zero-shot performance increases as
well. These improvements demonstrate the importance of
using large-scale text-3D pairs from Caption-Objaverse in
learning discriminative 3D and language representations.

Model Size. In Table 13, we also explore the ef-
fect of model size on the learned representations by
training models with different numbers of parameters
({85 MB, 172 MB, 429 MB}) on 200K 3D-caption paired
data. We can observe that when the number of parameters
is 172 MB, we achieve the best performance in terms of
all datasets. With the increase of model parameters from
85 MB to 172 MB, the proposed MaskCL3D consistently

achieves better results on zero-shot recognition tasks. How-
ever, enlarging the parameters of the pre-training model
from 172 MB to 429 MB decreases the performance on
these benchmarks. This might be due to the limited num-
ber of pre-training pairs, which renders the large model
challenging to capture more meaningful representations for
zero-shot recognition.

Text to 3D Retrieval Visualization. To further evaluate
the learned 3D and language representations, we provide
text to 3D retrieval results of our method in Figure 4. Given
a text description, our method is able to find the correct
results from 46K objects. For example, given a caption of
“a snowman with a hat”, we successfully acquire top-5 rank-
ing 3D objects with the same semantics as the descriptive
texts. These examples further showcase the effectiveness
of the proposed MaskCL3D in learning language-aware
3D representations from the large-scale text-3D pairs in
Caption-Objaverse.

F. More Analyses of the Caption-Objaverse
Dataset

In this section, we provide more analyses of the proposed
dataset.

F.1. Statistics of Caption-Objaverse

We first calculate the number of words of each caption in the
dataset and report the distribution of the number of captions
to the caption length in Figure 5. We can observe that the
distribution is close to a normal distribution between 2− 19.
In particular, the length of captions primarily focuses on
7− 12. The total vocabulary size in Caption-Objaverse is
21, 801.

F.2. Dataset Examples

Figure 6 shows examples of caption-3D pairs randomly
selected from Caption-Objaverse according to the length of
captions, where we can generate high-quality descriptive
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Input Text: a snowman with a hat

Input Text: a pumpkin with glowing eyes

Input Text: a shark with its mouth open

Input Text: a black and white checkered floor

Input Text: a ambulance truck with a red cross on it

Higher similarity ↑ Lower similarity↓

Higher similarity ↑ Lower similarity↓

Higher similarity ↑ Lower similarity↓

Higher similarity ↑ Lower similarity↓

Higher similarity ↑ Lower similarity↓

Figure 4: Examples of text to 3D retrieval results in Caption-Objaverse. Given a text description, our method is able to find the correct
results from 46K 3D objects. The ranking results of top1 to top5 in text-to-3D retrieval are presented in a left-to-right sequence.
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Table 12: Ablation studies on training data size on zero-shot recognition tasks.

Training Data ModelNet ModelNet ScanObjectNN- ScanObjectNN- ScanObjectNN- ShapeNet ShapeNet
Size 40 10 ObjectOnly ObjectBg Hardest 34 55

46k 48.6 70.6 27.0 25.6 17.1 53.1 38.7
200k 50.1 71.6 28.2 26.5 17.9 54.5 40.3
700k 50.6 72.1 28.7 26.9 18.3 55.1 40.6

Table 13: Ablation studies on model size (parameters) on zero-shot recognition tasks.

Pre-train Model ModelNet ModelNet ScanObjectNN- ScanObjectNN- ScanObjectNN- ShapeNet ShapeNet
Params 40 10 ObjectOnly ObjectBg Hardest 34 55

85 MB 48.3 69.8 26.2 23.6 16.3 51.2 38.2
172 MB 50.1 71.6 28.2 26.5 17.9 54.5 40.3
429 MB 49.6 70.9 27.6 25.8 17.3 53.9 40.1

texts on diverse 3D object models.

Figure 7 shows more examples of similar 3D objects in
Caption-Objaverse. Our Caption-Objaverse dataset includes
captions that provide specific details, enabling the distinc-
tion between similar 3D objects. For instance, given a 3D
object of a chocolate donut, we generate the descriptive
caption as “a chocolate donut with sprinkles on it”, which
has more details than just a class annotation (i.e., chocolate
donut). Taking pizza as an example, we can generate cap-
tions “a slice of pizza with meat and vegetables on it” and
“a pizza on a white surface with many small pieces of pep-
peroni” for two different types of pizzas. These examples
further showcase the high quality of generated captions with
paired semantics to each 3D object model.

G. Implementation Details
Our implementation is based on the PyTorch (Paszke et al.,
2019) framework. For each 3D model, we sample 1,024
points and use a masking ratio of 50% for pre-training in
the default setting. We also sample 20 views of 2D images
from 3D mesh to extract 2D embeddings from a frozen
ViT-L encoder in CLIP (Radford et al., 2021). We set the
group size to c = 32 and the number of groups to k =
64 for FPS and KNN processing, following commonly-
used settings in (Pang et al., 2022). For the 3D object
encoder, the depth of self-attention layers is 12, the number
of heads is 6, and the dimension of embeddings is 384.
Following the prior work (Xue et al., 2023a), the depth of
self-attention layers is 12, and the number of heads is 6 for
the text encoder. Other text settings (context length and
vocabulary size) follow CLIP (Radford et al., 2021). For the
frozen language encoder, we use a pre-trained BERT (Devlin
et al., 2018) base model to extract general textual features.
The model is trained for 300 epochs using the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate
of 1e− 3, a weight decay of 0.05, and a batch size of 128.

13



Towards Efficient Large-Scale Language-3D Representation Learning

72 1,588 4,513 5,608
11,610

78,007

149,976

212,072

165,397

100,221

43,909

17,126
5,015 1,807 728 331 190 507

0

50000

100000

150000

200000

250000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
um

be
r 

of
 C

ap
tio

ns

Caption Length

Figure 5: Statistics of caption length in Caption-Objaverse.
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butterflies wallpaper doraemon 3d model

orange 3d model

spider-man 3d model

a wooden picnic table

ancient roman pottery jar

ancient vase with broken 
pieces

air jordan 1 mid white

3d model of vase and mug

3d model of a bar stool

two pink dice on a white 
background

a bowl with a colorful 
pattern on it

a yellow box with 
question mark on it

a bottle of wine with multi 
colored numbers on it

a small table with a white 
top and a metal base

a 3d model of a cat with 
a white and brown coat

a small foot stool with a 
gold frame and a beige 
upholstered seat

a 3d model of a small 
green field with a fence 
and a tree

a 3d model of a large 
metal barrel sitting on 
top of a dirt pile

a plate with a slice of cake, 
a plate of apples and a 
plate of ham

Figure 6: Examples of caption-3D pairs randomly selected from Caption-Objaverse.
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a chocolate donuta chocolate donut 
with sprinkles on it

a 3d teddy bear sittinga brown teddy bear

a halloween pumpkin with 
glowing eyes

a 3d model of a 
pumpkin

a grand piano a piano and a stool

a pink telephone a green telephone

a shark in the dark 
with its mouth open

a 3d model of a shark

a pizza on a white surface 
with many small pieces of 
pepperoni

a slice of pizza with meat 
and vegetables on it

a globe on a wooden stand 
with a wooden base

a  low polygonal 
globe on a stand

a chair with a red 
and white pattern

a red and white 
checkered chair

a  cartoon dog with a 
red collar

french bulldog 3d 
model

a christmas tree with 
presents on it

a christmas tree made of 
paper with a star on top

an ice cream cone 
with chocolate and 
cherry on top

an ice cream cone 
with pink swirls on it

Figure 7: Examples of caption-3D pairs in our Caption-Objaverse dataset. Our Caption-Objaverse dataset includes captions that
provide specific details, enabling the distinction between similar 3D objects.
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