
Exact Learning Dynamics of Bottlenecked and Wide Deep Linear Networks

Architectural diversity characterises both biological and artificial learning systems. In neuroscience,
distinct structural organisations support diverse functions, while in machine learning, variations in depth,
width, and connectivity shape learning dynamics and performance. Extending solvable models to reflect
such complexity is key to advancing both theory and applications. Building on the matrix Riccati
framework from Fukumizu [1998], Braun et al. [2022b], Dominé et al. [2024], we derive exact dynamics
for wide and bottlenecked linear networks, expanding the class of solvable architectures. Despite their
simplicity, deep linear networks reveal rich fixed-point structures and nonlinear learning trajectories in
parameter and function space, paralleling behaviours of nonlinear systems [Baldi and Hornik, 1989,
Fukumizu, 1998, Saxe et al., 2014].

Consider a supervised learning task with a set of P training pairs {(xn,yn)}Pn=1. We learn this task
with a two-layer linear network model that produces the output prediction ŷn = W2W1xn, with weight
matrices W1 → RNh→Ni and W2 → RNo→Nh , where Nh is the number of hidden units. The network’s
weights are optimised using full batch gradient descent with learning rate ω on the mean squared error
loss L(ŷ,y) = 1
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〈
||ŷ ↑ y||2

〉
, where ↓·↔ denotes the average over the dataset.

We employ an approach first introduced in the foundational work of Fukumizu [1998] and ex-
tended in recent work by Braun et al. [2022b], Dominé et al. [2024], which, instead of studying
the parameters directly, considers the dynamics of a matrix of important statistics. In particu-
lar, defining Q =

[
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]T → R(Ni+No)→Nh , we consider the (Ni + No) ↗ (Ni + No) matrix
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, which is divided into four quadrants with interpretable mean-

ings, and where t → R represents training time. The approach monitors several key statistics col-
lected in the matrix. The o!-diagonal blocks contain the network function Ŷ(t) = W2W1(t)X.
The on-diagonal blocks capture the correlation structure of the weight matrices, allowing for the
calculation of the temporal evolution of the network’s internal representations. This includes the
representational similarity matrices (RSM) of the neural representations within the hidden layer
RSMI = XTWT

1 W1(t)X, RSMO = YT (W2W
T
2 (t))

+Y, where + denotes the pseudoinverse; and
the network’s finite-width NTK [Jacot et al., 2018, Lee et al., 2019, Arora et al., 2019] NTK =
INo ↘ XTWT

1 W1(t)X + W2W
T
2 (t) ↘ XTX, where INo is the No ↗ No identity matrix and ↘ is the

Kronecker product. Hence, the dynamics of QQT describe the important aspects of network behaviour.

Figure 1: The temporal dynamics of the numerical simu-
lation (colored lines) exactly matched by the analytical
solution (black dotted lines) for ε = ↑1, ε = 0 and
ε = ↑1 initial weight values.(Nh = 2 and Ni = No = 3)

We derive an exact solution for QQT under the
following assumptions: A1 (Whitened input).
The input data is whitened, i.e., !̃xx = I.
A2 (ε-Balanced). The network’s weight matri-
ces are ε-balanced at the beginning of training, i.e.,
WT

2 W2(0) ↑ W1W1(0)T = εIh. If this condition
holds at initialisation, it persists throughout training
[Saxe et al., 2014, Arora et al., 2018].

Our assumptions are weaker than those in prior
work [Fukumizu, 1998, Braun et al., 2022b, Kunin
et al., 2024, Xu and Ziyin, 2024, Dominé et al., 2024],
which imposed stronger dimensionality constraints.
For example, Fukumizu [1998] required equal input
and output dimensions (Ni = No) with ε = 0, while Braun et al. [2022a], Dominé et al. [2024] allowed
Ni ≃= No and arbitrary ε, but restricted attention to non-bottleneck networks (Nh = min(Ni, No)) and
non-wide networks. In contrast, we further relax these conditions by considering arbitrary hidden-layer
widths, including bottlenecked architectures, with general values of ε at initialization. It is worth noting
that the relaxation to wide networks provides only limited benefits: the e!ective rank of the model
remains bounded regardless of the hidden layer width, so expressivity does not significantly improve.
Nevertheless, narrow and bottlenecked networks remain highly relevant with established connections to
neuroscience. We illustrate our results in Fig 1.
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