Exact Learning Dynamics of Bottlenecked and Wide Deep Linear Networks

Architectural diversity characterises both biological and artificial learning systems. In neuroscience,
distinct structural organisations support diverse functions, while in machine learning, variations in depth,
width, and connectivity shape learning dynamics and performance. Extending solvable models to reflect
such complexity is key to advancing both theory and applications. Building on the matrix Riccati
framework from [Fukumizu| [1998|, |Braun et al.||2022b|, Dominé et al.|[2024|, we derive exact dynamics
for wide and bottlenecked linear networks, expanding the class of solvable architectures. Despite their
simplicity, deep linear networks reveal rich fixed-point structures and nonlinear learning trajectories in
parameter and function space, paralleling behaviours of nonlinear systems |Baldi and Hornik} 1989}
\Fukumizu, |1998, |Saxe et al., 2014].

Consider a supervised learning task with a set of P training pairs {(x,,¥»)}>_;. We learn this task
with a two-layer linear network model that produces the output prediction §, = WoWix,,, with weight
matrices Wi € RV»XNi and Wy € RNoXNo where Ny, is the number of hidden units. The network’s
weights are optimised using full batch gradient descent with learning rate 1 on the mean squared error
loss £(§,y) = 5 {||[§ — y|[*), where (-) denotes the average over the dataset.

We employ an approach first introduced in the foundational work of |[Fukumizu |[1998| and ex-
tended in recent work by Braun et al. [2022b], |Dominé et al.| |2024], which, instead of studying
the parameters directly, considers the dynamics of a matrix of important statistics. In particu-
lar, defining Q = [W; Wg]T € RWitNo)XNu e consider the (N; + N,) x (N; + N,) matrix
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ings, and where ¢t € R represents training time. The approach monitors several key statistics col-
lected in the matrix. The off-diagonal blocks contain the network function Y (t) = WoyW,(1)X.
The on-diagonal blocks capture the correlation structure of the weight matrices, allowing for the
calculation of the temporal evolution of the network’s internal representations. This includes the
representational similarity matrices (RSM) of the neural representations within the hidden layer
RSM; = XTWIW,(1)X, RSMp = YI(W,WI(#))TY, where + denotes the pseudoinverse; and
the network’s finite-width NTK [Jacot et al.| |2018] [Lee et al.| [2019| |Arora et al.| [2019] NTK =
Iy, @ XTWIW, ()X + W,WZ(t) @ XTX, where Iy, is the N, x N, identity matrix and ® is the
Kronecker product. Hence, the dynamics of QQ” describe the important aspects of network behaviour.
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Our assumptions are weaker than those in prior Figure 1: The temporal dynamics of the numerical simu-
work [Fukumizu||1998, |Braun et al.||2022bl [Kunin| lation (colored lines) exactly matched by the analytical
|et al.H2024HXu and Ziyin|,|2024|,|D0miné et al. |2024]7 solution (black dotted lines) for A = —1, A = 0 and
which imposed stronger dimensionality constraints. A = —1 initial weight values.(N, = 2 and N; = N, = 3)
For example, |[Fukumizu| 1998 required equal input
and output dimensions (N; = N,) with A = 0, while|Braun et al.| [2022a],|Dominé et al.| [2024] allowed
N; # N, and arbitrary A, but restricted attention to non-bottleneck networks (N = min(N;, N,)) and
non-wide networks. In contrast, we further relax these conditions by considering arbitrary hidden-layer
widths, including bottlenecked architectures, with general values of A at initialization. It is worth noting
that the relaxation to wide networks provides only limited benefits: the effective rank of the model
remains bounded regardless of the hidden layer width, so expressivity does not significantly improve.
Nevertheless, narrow and bottlenecked networks remain highly relevant with established connections to
neuroscience. We illustrate our results in Fig




