
Skill-aware Mutual Information Optimisation for
Generalisation in Reinforcement Learning

Xuehui Yu1,2 Mhairi Dunion2 Xin Li1 Stefano V. Albrecht2
1Harbin Insitute of Technology 2University of Edinburgh

{yuxuehui,22s103169}@stu.hit.edu.cn
{mhairi.dunion,s.albrecht}@ed.ac.uk

Abstract

Meta-Reinforcement Learning (Meta-RL) agents can struggle to operate across
tasks with varying environmental features that require different optimal skills
(i.e., different modes of behaviour). Using context encoders based on contrastive
learning to enhance the generalisability of Meta-RL agents is now widely studied
but faces challenges such as the requirement for a large sample size, also referred
to as the log-K curse. To improve RL generalisation to different tasks, we first
introduce Skill-aware Mutual Information (SaMI), an optimisation objective that
aids in distinguishing context embeddings according to skills, thereby equipping RL
agents with the ability to identify and execute different skills across tasks. We then
propose Skill-aware Noise Contrastive Estimation (SaNCE), a K-sample estimator
used to optimise the SaMI objective. We provide a framework for equipping an RL
agent with SaNCE in practice and conduct experimental validation on modified
MuJoCo and Panda-gym benchmarks. We empirically find that RL agents that learn
by maximising SaMI achieve substantially improved zero-shot generalisation to
unseen tasks. Additionally, the context encoder trained with SaNCE demonstrates
greater robustness to a reduction in the number of available samples, thus possessing
the potential to overcome the log-K curse.

1 Introduction

Reinforcement Learning (RL)
agents often learn policies that
do not generalise across tasks
in which the environmental fea-
tures and optimal skills are dif-
ferent [des Combes et al., 2018,
Garcin et al., 2024]. Consider a
set of cube-moving tasks where
an agent is required to move a
cube to a goal position on a table
(Figure 1). These tasks become
challenging if environmental fea-
tures, such as table friction, vary
between tasks. When facing an
unknown environment, the agent

Unliftable (High Mass)

Unpushable
(High Friction)

Pushable
(Low Friction)

Liftable (Low Mass)

Environmental features
Mass, Friction, Material, …

👉

Friction

(a) (b)

Goal Position

Figure 1: (a) In a cube-moving environment, tasks are defined
according to different environmental features. (b) Different tasks
have different transition dynamics caused by underlying environ-
mental features, hence optimal skills are different across tasks.

needs to explore effectively, understand the environment, and adjust its behaviour accordingly within
an episode. For instance, if the agent tries to push a cube across a table covered by a tablecloth and
finds it “unpushable,” it should infer that the table friction is relatively high and adapt by lifting

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

the cube to avoid friction, rather than continuing to push. Recent advances in Meta-Reinforcement
Learning (Meta-RL) [Lee et al., 2020, Agarwal et al., 2021, Mu et al., 2022, Dunion et al., 2023b,a,
McInroe et al., 2024] enable agents to understand environmental features by inferring context
embeddings from a small amount of exploration, and to train a policy conditioned on the context
embedding to generalise to novel tasks.

In recent years, unsupervised contrastive learning algorithms have been shown to learn context
embeddings that perform remarkably well on generalisation tasks [Clavera et al., 2019a, Lee et al.,
2020]. In particular, some Meta-RL algorithms [Fu et al., 2021, Wang et al., 2021, Li et al., 2021,
Sang et al., 2022] train context encoders by maximising InfoNCE [Oord et al., 2019], which has
yielded vital insights into contrastive learning through the lens of mutual information (MI) analysis.
The InfoNCE objective can be interpreted as a K-sample lower bound on the MI between trajectories
and context embeddings. Despite significant advances, integrating contrastive learning with Meta-RL
poses several unresolved challenges, of which two are particularly relevant to this research: (i)
Existing context encoders based on contrastive learning do not distinguish tasks that require
different skills. Many prior algorithms only pull embeddings of the same tasks together and push
those of different tasks apart. However, for example, a series of cube-moving tasks with high friction
may only require a Pick&Place skill (picking the cube off the table and placing it at the goal position),
making further differentiation unnecessary. (ii) Existing K-sample MI estimators are sensitive
to the sample size K (i.e., the log-K curse) [Poole et al., 2019]. The low sample efficiency of
RL [Franke et al., 2021] and the sample limitations in zero-shot generalisation make collecting
a substantial quantity of samples often impractical [Arora et al., 2019, Nozawa and Sato, 2021].
The effectiveness of K-sample MI estimators breaks down with a finite sample size and leads to a
significant performance drop in downstream RL tasks [Mnih and Teh, 2012, Guo et al., 2022].

To enhance RL generalisation across different tasks, we propose that the context embeddings should
optimise downstream tasks and indicate whether the current skill remains optimal or requires fur-
ther exploration. This also reduces the necessary sample size by focusing solely on skill-related
information. In this work, (1) we introduce Skill-aware Mutual Information (SaMI), a generalised
form of MI objective between context embeddings, skills, and trajectories, designed to address issue
(i). We provide a theoretical proof showing that by introducing skills as a third variable into the
MI of context embeddings and trajectories, the resulting SaMI is smaller and easier to optimise.
Furthermore, (2) we propose a data-efficient K-sample estimator, Skill-aware Noise Contrastive
Estimation (SaNCE) to optimise SaMI, effectively addressing issue (ii). Additionally, (3) we propose
a practical skill-aware trajectory sampling strategy that shows how to sample positive and negative
examples without relying on any prior skill distribution. In that way, Meta-RL agents autonomously
acquire a set of skills applicable to many tasks, with these skills emerging solely from the SaMI
learning objective and data.

We demonstrate empirically in MuJoCo [Todorov et al., 2012] and Panda-gym [Gallouédec et al.,
2021] that SaMI enhances the zero-shot generalisation capabilities of two Meta-RL algorithms [Yu
et al., 2020, Fu et al., 2021] by achieving higher returns and success rates on previously unseen tasks,
ranging from moderate to extreme difficulty. Visualisation of the learned context embeddings reveals
distinct clusters corresponding to different skills, suggesting that the SaMI learning objective enables
the context encoder to capture skill-related information from trajectories and incentivise Meta-RL
agents to acquire a diverse set of skills. Moreover, SaNCE enables Meta-RL algorithms to use smaller
sample spaces while achieving improved downstream control performance, indicating their potential
to overcome the log-K curse.

2 Related works

Meta-RL. By conditioning on an effective context embedding, Meta-RL policies can zero-shot
generalise to new tasks with a small amount of exploration Kirk et al. [2023]. Existing algorithms
can be categorised into three types based on different context embeddings. In the first category,
the context embedding is learned by minimising the downstream RL loss [Rakelly et al., 2019, Yu
et al., 2020]. PEARL [Rakelly et al., 2019] learns probabilistic context embeddings by recovering
the value function. Multi-task SAC with task embeddings as inputs to policies (TESAC) [Hausman
et al., 2018, Yu et al., 2020] parameterises the learned policies through a shared embedding space,
aiming to maximise the average returns across tasks. However, the update signals from the RL
loss are stochastic and weak, and may not capture the similarity relations among tasks [Fu et al.,

2

𝑎!"

𝜋($ |𝑐", 𝑠!)
𝑐"

𝑠!
𝜋($ |𝑐#, 𝑠!)

𝑐#

𝑠!$"" 𝑠!$%" 𝑟!$%"

𝝉𝒄𝟏
$

𝑎!# 𝑟!# 𝑠!$"# 𝑠!$%# 𝑎!$%#

𝝉𝒄𝟐
$

…

…

…

𝑟!" 𝑎!$%"

𝑟!$%#

Push

Pick&Place

Figure 2: A policy π conditioned on a fixed context embedding c is defined as a skill π(·|c) (shortened
as πc). The policy π conditioned on a fixed c alters the state of the environment in a consistent way,
thereby exhibiting a mode of skill. The skill π(·|c1) moves the cube on the table in trajectory τ+c1 and
is referred to as the Push skill; correspondingly, the Pick&Place skill π(·|c2) takes the cube off the
table and places it in the goal position in the trajectory τ+c2 .

2021]. The second category involves learning context embeddings through dynamics prediction
[Lee et al., 2020, Zhou et al., 2019], which can make the context embeddings noisy, as they may
model irrelevant dependencies and overlook task-specific information [Fu et al., 2021]. The third
category employs contrastive learning [Fu et al., 2021, Wang et al., 2021, Li et al., 2021, Sang et al.,
2022], achieving significant improvements in context learning. However, these methods overlook the
similarity of skills between different tasks, thus failing to achieve effective zero-shot generalisation
by executing different skills. Our improvements build upon this third category by distinguishing
context embeddings according to different optimal skills.

Contrastive learning. Contrastive learning has been applied to RL due to its significant momentum in
representation learning in recent years, attributed to its superior effectiveness [Tishby and Zaslavsky,
2015, Hjelm et al., 2019, Dunion and Albrecht, 2024], ease of implementation [Oord et al., 2019],
and strong theoretical connection to MI estimation [Poole et al., 2019]. MI is often estimated using
InfoNCE [Oord et al., 2019] that has gained recent attention due to its lower variance [Song and
Ermon, 2020] and superior performance in downstream tasks. However, InfoNCE may underestimate
the true MI when the sample size K is finite. To address this limitation, CCM [Fu et al., 2021] uses a
large number of samples for maximising InfoNCE. DOMINO [Mu et al., 2022] reduces the true MI
by introducing an independence assumption; however, this results in biased estimates. We focus on
proposing an unbiased alternative MI objective and a more data-efficient K-sample estimator tailored
for downstream RL tasks, which, to our knowledge, have not been addressed in previous research.

3 Preliminaries

Reinforcement learning. In Meta-RL, we assume an environment is a distribution ξ(e) of tasks e
(e.g. uniform in our experiments). Each task e ∼ ξ(e) has a similar structure that corresponds to a
Markov Decision Process (MDP) [Puterman, 2014], defined byMe = (S,A, R, Pe, γ), with a state
space S, an action space A, a reward function R(st, at) where st ∈ S and at ∈ A, state transition
dynamics Pe(st+1|st, at), and a discount factor γ ∈ [0, 1). In order to address the problem of zero-
shot generalisation, we consider the transition dynamics Pe(st+1|st, at) vary across tasks e ∼ ξ(e)
according to multiple environmental features e = {e0, e1, ..., eN} that are not included in states s and
can be continuous random variables, such as mass and friction, or discrete random variables, such as
the cube’s material. For instance, in a cube-moving environment (Figure 1), an agent has different
tasks that are defined by different environmental features (e.g., mass and friction). The Meta-RL
agent’s goal is to learn a generalisable policy π that is robust to such dynamic changes. Specifically,
given a set of training tasks e sampled from ξtrain(e), we aim to learn a policy that can maximise the
discounted returns, argmaxπ Ee∼ξtrain(e)[

∑∞
t=0 γ

tR(st, at)|at ∼ π(at|st), st+1 ∼ Pe(st+1|st, at)],
and can produce accurate control for unseen test tasks sampled from ξtest(e).

Contrastive learning. In Meta-RL, the context encoder ψ(c|τc,0:t) first takes the trajectory τc,0:t =
{s0, a0, r0, ..., st} from the current episode as input and compresses it into a context embedding c
[Fu et al., 2021]. Then, the policy π, conditioned on context embedding c, consumes the current
state st and outputs the action at. As a key component, the quality of context embedding c can affect
algorithms’ performance significantly. MI is an effective measure of embedding quality [Goldfeld

3

et al., 2019], hence we focus on a context encoder that optimises the InfoNCE objective IInfoNCE(x; y),
which is a K-sample estimator and lower bound of the MI I(x; y) [Oord et al., 2019]. Given a query
x and a set Y = {y1, ..., yK} of K random samples containing one positive sample y1 and K − 1
negative samples from the distribution p(y), IInfoNCE(x; y) is obtained by comparing pairs sampled
from the joint distribution x, y1 ∼ p(x, y) to pairs x, yk built using a set of negative examples y2:K :

IInfoNCE(x; y|ψ,K) = E

[
log

fψ(x, y1)
1
K

∑K
k=1 fψ(x, yk)

]
. (1)

InfoNCE constructs a formal lower bound on the MI, i.e., IInfoNCE(x; y|ψ,K) ≤ I(x; y) [Guo et al.,
2022, Chen et al., 2021]. Given two inputs x and y, their embedding similarity is fψ(x, y) =

eψ(x)
⊤·ψ(y)/β , where ψ is the context encoder that projects x and y into the context embedding space,

the dot product is used to calculate the similarity score between ψ(x), ψ(y) pairs [Wu et al., 2018,
He et al., 2020], and β is a temperature hyperparameter that controls the sensitivity of the product.
Some previous Meta-RL methods [Lee et al., 2020, Mu et al., 2022] learn a context embedding c
by maximising IInfoNCE(c; τc|ψ,K) between the context c embedded from a trajectory in the current
task, and the historical trajectories τc under the same environmental features setting.

4 Skill-aware mutual information optimisation for Meta-RL

4.1 The log-K curse of K-sample MI estimators

In this section, we provide a theoretical analysis of the challenge inherent in learning a K-sample
estimator for MI, commonly referred to as the log-K curse. Based on this theoretical analysis, we
give insights to overcome this challenge. Given that we focus on the generalisation of RL, we only
consider cases with a finite sample size of K. If a context encoder ψ in Equation (1) has sufficient
training epochs, then IInfoNCE(x; y|ψ,K) ≈ logK [Mnih and Teh, 2012, Guo et al., 2022]. Hence,
the MI we can optimise is bottlenecked by the number of available samples, formally expressed as:
Lemma 1 Learning a context encoder ψ with a K-
sample estimator and finite sample size K, we have
IInfoNCE(x; y|ψ,K) ≤ logK≤I(x; y), when x ⊥̸⊥ y
(see proof in Appendix A).

We do not consider the case when x ⊥⊥ y, i.e.,
logK ≥ I(x; y) = 0 (∀K ≥ 1), because a Meta-
RL agent learns a context encoder by maximising
MI between trajectories τc and context embeddings
c, which are not independent (as shown in Figure
2). While an unbounded sample size K for learning
effective context embeddings is theoretically feasi-
ble and assumed in many studies Mu et al. [2022],
Lee et al. [2020], it is often impractical in practice.
Therefore, building on Lemma 1, we derive two key
insights with limited samples: (1) generalising the
current MI objective to be smaller than I(x; y) (see
Section 4.2); (2) developing a K-sample estimator
tighter than IInfoNCE (see Section 4.3).

𝑰(𝒄; 𝝉𝒄)

𝑰𝑰𝒏𝒇𝒐𝑵𝑪𝑬(𝒄;𝝅𝒄; 𝝉𝒄)

𝑰𝑺𝒂𝑴𝑰(𝒄;𝝅𝒄; 𝝉𝒄)

𝑰𝑺𝒂𝑵𝑪𝑬(𝒄;𝝅𝒄; 𝝉𝒄)

Training Epochs

M
ut

ua
l I

nf
or

m
at

io
n

𝒍𝒐𝒈𝑲

Figure 3: IInfoNCE(c;πc;τc), with a finite sample
size of K, is a loose lower bound of I(c; τc)
and leads to lower performance embeddings.
ISaMI(c;πc; τc) is a lower ground-truth MI, and
ISaNCE(c;πc; τc) is a tighter lower bound.

4.2 Skill-aware mutual information: a smaller ground-truth MI

We aim for our MI learning objective to incentivise agents to acquire a diverse set of skills, enabling
them to generalise effectively across tasks. To start with, we define skills [Eysenbach et al., 2018]:

Definition 1 (Skills) A policy π conditioned on a fixed context embedding c is defined as a skill
π(·|c), abbreviated as πc. If a skill πc is conditioned on a state st, we can sample actions at ∼
π(·|c, st). After sampling actions from πc at consecutive timesteps, we obtain a trajectory τc,t:tT =
{st, at, rt, st+1, . . . , st+T , at+T , rt+T } which demonstrates a consistent mode of behaviour.

After a limited amount of exploration, an agent should be able to infer the task (i.e., environmental
features e = e0, e1, . . . , eN) and adapt accordingly within the current episode. The context em-

4

Positive Sample Space

Negative Sample Space

Not Sample Space

(a) InfoNCE (b) SaNCE (c) Sa+InfoNCE

𝑐 𝜋! 𝜏!

Observed Variable

𝜏!!
𝜏!"
𝜏!#
𝜏!$

𝜏!!
"

𝜏!"
𝜏!#
𝜏!$

𝜏!!
#

𝑐 𝜋! 𝜏! 𝑐 𝜋! 𝜏!

𝜏!!
" 𝜏!!

#

𝜏!"
" 𝜏!"

#

𝜏!#
" 𝜏!#

#

𝜏!$
" 𝜏!$

#

Figure 4: A comparison of sample spaces for task e1. Positive samples τc1 or τ+c1 are always from
current task e1. For SaNCE, in a task ek with embedding ck, the positive skill π+

ck
conditions on ck

and generates positive trajectories τ+ck , and the negative skill π−
ck

generates negative trajectories τ−ck .
The top graphs show the relationship between c, πc and τc.

bedding should encompass skill-related information, guiding the policy on when to explore new
skills or switch between existing ones. We propose that the context encoder ψ should be trained by
maximising the MI between the context embedding c, skills πc, and trajectories τc. To this end, we
propose a novel MI optimisation objective, Skill-aware Mutual Information (SaMI), defined as:

ISaMI(c;πc; τc) = I(c; τc)− I(c; τc|πc). (2)

SaMI is defined according to interaction information [McGill, 1954], serving as a generalisation of
MI for three variables {c, πc, τc}. Although we cannot evaluate p(c, πc, τc) directly, we approximate
it by Monte-Carlo sampling, using K samples from p(c, πc, τc). As illustrated in Figure 3, a context
encoder ψ trained with the objective of maximising ISaMI(c;πc; τc) converges more quickly, as
ISaMI(c;πc; τc) ≤ I(c; τc) (see proof in Appendix B). By focusing more on skill-related information,
ISaMI enables agents to autonomously discover a diverse range of skills for handling multiple tasks.

4.3 Skill-aware noise contrastive estimation: a tighter K-sample estimator

Despite InfoNCE’s success as a K-sample estimator for approximating MI [Laskin et al., 2020,
Eysenbach et al., 2022], its learning efficiency plunges due to limited numerical precision, which is
called the log-K curse, i.e., IInfoNCE ≤ logK ≤ ISaMI [Chen et al., 2021] (see proof in Appendix B).
When K → +∞, we can expect IInfoNCE ≈ logK ≈ ISaMI [Guo et al., 2022]. However, increasing
K is too expensive, especially in complex environments with enormous negative sample space. To
address this, we propose a novel K-sample estimator that requires a significantly smaller sample size
K ≪ +∞. First, we define K∗:

Definition 2 (K∗) K∗ = |c| · |πc| ·M is defined as the number of trajectories in the replay buffer
(i.e., the sample space), in which |c| represents the number of different context embeddings c, |πc|
represents the number of different skills πc, and M is a natural number.

To ensure that IInfoNCE is a tight bound of ISaMI, we require that IInfoNCE ≈ logK ≈ ISaMI when
K → K∗. Under the definition of K∗, the replay buffer can be divided according to the different
context embeddings c and skills πc (i.e., observing context embeddings c and skills πc). In real-world
robotic control tasks, the sample space size significantly increases due to multiple environmental
features e = {e0, e1, ..., eN}. Taking the sample space of InfoNCE as an example (Figure 4(a)), in
the current task e1 with context embedding c1, positive samples are trajectories τc1 generated after
executing the skill πc1 in task e1, and negative samples are trajectories {τc2 , ...} from other tasks
{e2, ...}. The permutations and combinations of N environmental features lead to an exponential
growth in task number |c|, which in turn results in an increase of sample spaceK∗

InfoNCE = |c| · |π| ·M .

We introduce a tight K-sample estimator, Skill-aware Noise Contrastive Estimation (SaNCE),
which is used to approximate ISaMI(c;πc; τc) with K∗

SaNCE < K∗
InfoNCE. For SaNCE, both positive

samples τ+c1 and negative samples τ−c1 are sampled from the current tasks e1, but are generated by
executing positive skills π+

c1 and negative skills π−
c1 , respectively. Here, a positive skill is intuitively

defined by whether it is optimal for the current task e, with a more formal definition provided in
Section 4.4. For instance, in a cube-moving task under a large friction setting, the agent executes

5

Context Encoder
𝜓Replay Buffer

for a cube-moving task 𝑒!
with high friction

Reinforcement
Learning RL Loss

Negative samples 𝜏"!: # ,$:&
'

𝑤𝑖𝑡ℎ 𝑚𝑖𝑛∑()**+,𝑅(𝑠(, 𝑎()

Ranked by
∑()**+,𝑅(𝑠(, 𝑎() Positive sample𝑠 𝜏"$

+
Momentum

Context Encoder
𝜓∗

Positive embeddings
𝜓∗(𝜏"$

+)

Negative embeddings
𝜓∗(𝜏"!: # ,$:&

')

Quer𝑖𝑒𝑠 𝜓(𝜏"$
+)

SaNCE Loss

Pick&Place

Push

𝑤𝑖𝑡ℎ 𝑚𝑎𝑥 ∑()**+,𝑅(𝑠(, 𝑎()

Positive Samples 𝜏"$
+

𝑤𝑖𝑡ℎ 𝑚𝑎𝑥 ∑()**+,𝑅(𝑠(, 𝑎()

Figure 5: A practical framework for using SaNCE in the meta-training phase. During meta-training,
we sample trajectories from the replay buffer for off-policy training. Queries are generated by a
context encoder ψ, which is updated with gradients from both the SaNCE loss LSaNCE and the RL
loss LRL. negative/positive embeddings are encoded by a momentum context encoder ψ∗, which is
driven by a momentum update with the encoder ψ. During meta-testing, the meta-trained context
encoder ψ embeds the current trajectory, and the RL policy takes the embedding as input together
with the state for adaptation within an episode.

a skill π+
c after several iterations of learning, and obtains corresponding trajectories τ+c where the

cubes leave the table surface. This indicates that the skill π+
c is Pick&Place and other skills π−

c may
include Push or Flip (flipping the cube to the goal position), with corresponding trajectories τ−c where
the cube remains stationary or rolls on the table. Formally, we can optimise the K-sample lower
bound ISaNCE to approximate ISaMI:

ISaNCE(c;πc; τc|ψ,K)

= Ep(c1,πc1 ,τ+
c1

)p(τ−
c1,2:K

)

[
log

(
K · fψ(c1, πc1 , τ+c1)

fψ(c1, πc1 , τ
+
c1) +

∑K
k=2 fψ(c1, πc1 , τ

−
c1,k

)

)]
≤ ISaMI(c;πc; τc) (3)

where fψ(c1, πc1 , τc1) = eψ(τc1)
⊤·ψ∗(τc1)/β . The query c1 = ψ(τc1) is generated by the context

encoder ψ. For training stability, we use a momentum encoder ψ∗ to produce the positive and
negative embeddings. SaNCE significantly reduces the required sample space size K∗

SaNCE by
sampling trajectories τc based on different skills πc (Figure 4(b)) in task e1, so that K∗

SaNCE =
|c| · |πc| ·M = |πc1 | ·M ≤ K∗

InfoNCE (|c| = |c1| = 1). Therefore, ISaNCE satisfies Lemma 2:

Lemma 2 With a context encoder ψ and finite sample size K, we have IInfoNCE(c;πc; τc|ψ,K) ≤
ISaNCE(c;πc; τc|ψ,K) ≤ logK ≤ ISaMI(c;πc; τc) ≤ I(c; τc). (see proof in Appendix B)

SaNCE can be used alone or combined with other optimisation objectives to train context encoders in
Meta-RL algorithms. For instance, integrating SaNCE with InfoNCE diversifies the negative sample
space, with K∗

Sa+InfoNCE =
(∑|c|

i=1 |π−
ci |+ |π

+
c1 |
)
·M . The sample space for ISa+InfoNCE is depicted

in Figure 4(c) and further analysed in detail in Appendix C.

4.4 Skill-aware trajectory sampling strategy

In this section, we propose a practical trajectory sampling method. Methods focusing on skill diversity
often rely heavily on accurately defining and identifying individual skills [Eysenbach et al., 2018].
Some of these methods require a prior skill distribution, which is often inaccessible [Shi et al., 2022],
and it is impractical to enumerate all possible skills that we hope the model to learn. Besides, we
believe that distinctiveness of skills is inherently difficult to achieve — a slight difference in states can
make two skills distinguishable, and not necessarily in a semantically meaningful way. Consequently,
we do not directly teach any of these skills or assume any prior skill distribution. Diverse skills
naturally emerge from the incentives of the SaMI learning objective in a multi-task setting, driven by
the inherent need to develop generalisable skills. For example, in high-friction tasks, the agent must
acquire the Pick&Place skill to avoid large frictional forces, whereas in high-mass tasks, the agent
must learn the Push skill since it cannot lift the cube. In each task, we only identify whether the skills

6

(b) Success rate (d) Pick&Place probability(c) Push probability(a) UMAP visualisation

Figure 6: (a) UMAP visualisation of context embeddings for the SaCCM in the Panda-gym envi-
ronment, with points in the yellow box representing the Push skill in high-mass tasks. Heatmap
of (b) success rate, (c) Push skill probability, and (d) Pick&Place skill probability for SaCCM. In
large-mass scenarios, the Push skill is more likely to be executed than Pick&Place.

are optimal; in this way, under a multi-task setting, the agent will acquire a set of general skills that
are applicable to many tasks.

In a given task e, positive skills π+
c are defined as optimal skills achieving highest return∑t+T

i=t R(si, ai), whereas negative skills π−
c are those that result in lower returns. As a result,

the positive sample τ+c consists of trajectories generated by the skills with the highest ranked returns,
while the negative samples correspond to those with the lowest returns. This straightforward approach
of selecting positive samples based on the ranked highest return effectively aligns with positive skills
and mitigates the challenge of hard negative examples [Robinson et al., 2021]. The SaNCE loss
is then minimised to bring the context embeddings of the highest return trajectories closer while
distancing those of negative trajectories. By the end of training, the top-ranked trajectories in the
ranked replay buffer correspond to positive samples τ+c with high returns, while the lower-ranked
trajectories represent negative samples τ−c with low returns. However, at the beginning of training,
it is likely that all trajectories have low returns. Therefore, our SaNCE loss is a soft variant of the
K-sample SaNCE:

LSaNCE = −max
(
||ψ(τ+c), ψ(τ−c)||L2, 1

)
· ISaNCE (4)

where ||·||L2 represents the Euclidean distance [Tabak, 2014]. Figure 5 provides a practical framework
of SaNCE, with a cube-moving example task e1 under high friction. In task e1, the positive skill π+

c1

is the Pick&Place skill, which is used to generate queries ψ(τ+c1) and positive embeddings ψ∗(τ+c1);
after executing Push skill we get negative samples τ−c1 and negative embeddings ψ∗(τ−c1).

5 Experiments

Our experiments aim to answer the following questions: (1) Does optimising SaMI lead to increased
returns during training and zero-shot generalisation (see Table 1 and 2)?; (2) Does SaMI help the
RL agents to be versatile and embody multiple skills (see Figure 6)?; (3) Can SaNCE overcome the
log-K curse in sample-limited scenarios (see Table 1 and 2, and Section 5.4)?

5.1 Experimental setup

Modified benchmarks with multiple environmental features.1 We evaluate our method on two
benchmarks, Panda-gym [Gallouédec et al., 2021] and MuJoCo [Todorov et al., 2012] (details in
Sections 5.2 and 5.3). The benchmarks are modified to be influenced by multiple environmental
features, which are sampled at the start of each episode during meta-training and meta-testing. During
meta-training, we uniform-randomly select a combination of environmental features from a training
task set. At test time, we evaluate each algorithm in unseen tasks with environmental features outside
the training range. Generalisation performance is measured in two different regimes: moderate and
extreme. The moderate regime draws environmental features from a closer range to the training range
compared to the extreme. Our results report the mean and standard deviation of models trained over
five seeds in both training and test tasks. Further details are available in Appendix D.

1Our modified benchmarks are open-sourced at https://github.com/uoe-agents/Skill-aware-Panda-gym

7

Baselines. The loss function of the context encoder in all algorithms consists of two key components:
the RL loss and the contrastive loss. The RL loss LRL, which is the same across all methods,
corresponds to the RL value function loss. Our primary comparison focuses on the contrastive
loss, taking the form of either SaNCE, InfoNCE, or no contrastive loss. Accordingly, we select
baselines based on contrastive loss: CCM [Fu et al., 2021], which utilises InfoNCE, and TESAC [Yu
et al., 2020], which relies solely on the RL loss, allowing assessment of the context encoder without
contrastive loss. Since CCM and TESAC use an RNN encoder, we also include PEARL [Rakelly
et al., 2019], which utilises an MLP context encoder and follows the similar RL loss. Additionally,
Appendix G includes comparisons with DOMINO [Mu et al., 2022] and CaDM [Lee et al., 2020],
using the same environmental setup in the MuJoCo benchmark.

Our method.2 We use Soft Actor-Critic (SAC) [Haarnoja et al., 2018] as the base RL algorithm,
training agents for 1.6 million timesteps in each environment (details in Appendix D.3). SaNCE is a
simple objective based on MI that can be used to train any context encoder. We integrate SaNCE into
two Meta-RL algorithms: (1) SaTESAC is TESAC with SaNCE, which uses SaNCE for contrastive
learning, using a |c| times smaller sample space (Figure 4(b)); (2) SaCCM is CCM with SaNCE,
where the contrastive learning combines InfoNCE and SaNCE, as shown in Figure 4(c).

5.2 Panda-gym
Task description. Our modified Panda-
gym benchmark involves a robot arm con-
trol task using the Franka Emika Panda
[Gallouédec et al., 2021], where the robot
moves a cube to a target position. Unlike
previous works, we simultaneously mod-
ify multiple environmental features (cube
mass and table friction) that characterise
the transition dynamics, and the robot can
flexibly execute different skills (Push and
Pick&Place) for different tasks. This en-
vironment requires high skill diversity; for
instance, the agent must use Pick&Place in
high-friction tasks and Push in high-mass
tasks.

Table 1: Comparison of success rate ± standard devia-
tion with baselines in Panda-gym (over 5 seeds). Bold
text signifies the highest average return. ∗ next to the
number means that the algorithm with SaMI has statisti-
cally significant improvement over the same algorithm
without SaMI. All significance claims based on paried
t-tests with significance threshold of p < 0.05.

Training Test (moderate) Test (extreme)

PEARL 0.42±0.19 0.10±0.06 0.11±0.05
TESAC 0.50±0.22 0.31±0.20 0.22±0.21
CCM 0.80±0.19 0.49±0.23 0.29±0.28

SaTESAC 0.92±0.04∗ 0.56±0.24∗ 0.37±0.34∗

SaCCM 0.93±0.05∗ 0.57±0.26∗ 0.36±0.35∗

Results and skill analysis. As shown in Table 1, SaTESAC and SaCCM achieve superior general-
isation performance compared to PEARL, TESAC, and CCM, with a smaller sample space. The
t-test results in Table 1 show that SaMI significantly improves success rates across training, moderate,
and extreme test sets at a 0.05 significance level. Video demos2 show that agents equipped with
SaMI acquired multiple skills (Push, Pick&Place) to handle various tasks. When faced with an
unknown task, the agents explore by attempting to lift the cube, infer the context, and adjust their
skills accordingly within the episode. We visualised the context embeddings using UMAP [McInnes
et al., 2020] (Figure 6(a) and Appendix F) and t-SNE [Van der Maaten and Hinton, 2008] (Appendix
F), plotting the final step from 100 tests per task. Skills were identified through contact points between
the end effector, cube, and table (see Appendix D for more details), and heatmaps [Waskom, 2021]
were used to visualise executed skills. Figure 6 shows that SaCCM agents learned the Push skill for
large cube masses (30 Kg, 10 Kg) and Pick&Place for smaller masses, while CCM showed no clear
skill grouping (Figure 16 in Appendix F.1). Overall, SaMI incentivises agents to autonomously learn
diverse skills, enhancing generalisation across a wider range of tasks. Specifically, through the cycle
of effective exploration, context inference, and adaptation, diverse skills emerge solely from the data.
Further visualisation results are in Appendix F.

5.3 MuJoCo

Task description. We extended the modified MuJoCo benchmark introduced in DOMINO [Mu
et al., 2022] and CaDM [Lee et al., 2020]. It contains ten typical robotic control environments
based on the MuJoCo physics engine [Todorov et al., 2012]. Hopper, Walker, Half-cheetah, Ant,
HumanoidStandup, and SlimHumanoid are influenced by continuous environmental features (i.e.,
mass, damping) that affect transition dynamics. Crippled Ant, Crippled Hopper, Crippled Walker, and

2Our code, video demos and experimental data are available at https://github.com/uoe-agents/SaMI

8

Table 2: Comparison of average return ± standard deviation with baselines in modified MuJoCo
benchmark (over 5 seeds). Bold number signifies the highest return. ∗ next to the number means that
the algorithm with SaMI has statistically significant improvement over the same algorithm without
SaMI. All significance claims based on t-tests with significance threshold of p < 0.05.

Crippled Ant Crippled Half-cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PEARL 1682±73 996±21 888±31 1998±973 698±548 746±1092
TESAC 2139±90 1952±40 1048±124 3967±955 874±901 846±849
CCM 2361±114 2047±83 1527±301 3481±488 821±575 873±914

SaTESAC 2638±406 2379±528 2131±132∗ 4328±1092 1143±664∗ 1540±1094
SaCCM 2355±170 2310±314 2007±68∗ 4478±1131∗ 1007±568 1027±782

Ant Half-cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PEARL 5153±581 3873±235 3802±409 5802±773 2190±970 1346±692
TESAC 6789±451 4705±279 4108±369 6298±2310 3173±1210 1159±338
CCM 6901±567 5179±902 4700±696 6955±788 3963±622 1325±269

SaTESAC 7314±545 5513±648∗ 4940±531∗ 7430±1026 4058±890 1780±102∗

SaCCM 7478±539 5717±488 5215±377 7154±965 3849±689 1926±218∗

SlimHumanoid HumanoidStandup

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PEARL 6947±3541 3697±2674 2018±907 95456±13445 63242±13546 64224±15467
TESAC 8437±1798 6989±1301 3760±308 158384±14455 153944±15046 74220±19980
CCM 7696±1907 5784±531 2887±1058 146480±33745 154601±16291 94991±15258

SaTESAC 10216±1620 7886±2203 6123±1403∗ 178142±10081∗ 168337±12123 133335±24607∗

SaCCM 9312±705 7430±1587 6473±2001∗ 187930±19338∗ 181033±14628 141750±27426

Hopper Crippled Hopper

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PEARL 934±242 874±366 799±298 3091±298 2387±656 456±235
TESAC 1492±59 1499±35 1459±72 3575±192 3298±551 722±161
CCM 1484±54 1446±64 1452±58 3455±301 3409±239 1009±289

SaTESAC 1502±20 1453±39 1447±14 3391±84 3262±166 1839±130
SaCCM 1462±45 1462±14 1451±67 3449±103 3390±211 2059±221∗

Walker Crippled Walker

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PEARL 7524±2455 3355±2555 1984±356 7899±2532 4377±2563 2965±1426
TESAC 7747±1772 4355±1530 2581±407 9908±1561 5929±1971 3041±912
CCM 8136±557 5476±803 2519±682 10317±1137 6233±1869 3098±821

SaTESAC 8675±752 5840±676 3632±404∗ 10389±1031 8387±1291∗ 4280±485∗

SaCCM 8361±586 5779±691 3481±332∗ 10496±951 8235±1212 4824±839∗

Crippled Half-cheetah are more challenging due to the addition of discrete environmental features
(i.e., randomly crippled leg joints), requiring agents to master different skills (e.g., switching from
running to crawling after a leg is crippled).

Results and skill analysis. Table 2 shows the average return of our method and baselines on
training and test tasks. SaTESAC and SaCCM achieved higher returns in most tasks, except for Ant,
Half-Cheetah, and Hopper, where only a single skill was needed. For instance, the Hopper robot
learned to hop forward, adapting to different mass values. When environments become complex
and require diverse skills for different tasks (Crippled Ant, Crippled Hopper, Crippled Half-Cheetah,
SlimHumanoid, HumanoidStandup, and Crippled Walker), SaNCE brings significant improvements.
For example, when the Ant robot has 3 or 4 legs available, it learns to roll to generalise across varying
mass and damping. In more challenging zero-shot settings, when only 2 legs are available, the ant
robot can no longer roll and it adapts by walking using its 2 healthy legs. This aligns with the results
in Table 2, where SaMI significantly improved performance in extreme test sets. In summary, i) SaMI
helps the RL agents to be versatile and embody multiple skills; ii) SaMI leads to increased returns

9

during training and zero-shot generalisation, especially in environments that require different skills.
Our video demos2 and visualisation results in Appendix F.2 show different skills in all environments.

5.4 Analysis of the log-K curse in sample-limited scenarios

This section analyses whether SaNCE can overcome the log-K
curse. During training, environmental features are sampled
at the start of each episode, requiring the context encoder
to learn the context embedding distribution across multiple
tasks. Since InfoNCE samples negative examples from all
tasks and SaNCE samples from the current task, SaNCE’s
negative sample space is |c| times smaller than InfoNCE’s. For
instance, in the SlimHumanoid environment, where both mass
and damping have five values, InfoNCE’s sampling space can
be 25 times larger than SaNCE’s. As shown in Tables 1 and
2, RL algorithms using SaNCE achieve better or comparable
performance with significantly fewer negative samples (K)
than InfoNCE. This suggests SaNCE effectively addresses
the log-K curse, and the SaMI objective helps the contrastive
context encoder extract critical information for downstream RL
tasks.

The number of negative samples K is influenced by two hyper-
parameters: buffer size, which determines the negative sample
space, and contrastive batch size, which controls the number of
samples used to train the contrastive context encoder per update.
We analysed these hyperparameters further, and as shown in
Figure 7, reductions in buffer and contrastive batch size do not
significantly impact the average return for SaCCM and SaTE-
SAC, which maintain state-of-the-art performance with small
buffers and batch sizes. The results in Table 2 correspond to a
buffer size of 100,000 and a batch size of 12. Results across all
environments (refer to Appendix E.2) show that SaNCE exhibits
low sensitivity to K, highlighting its potential to overcome the
log-K curse.

(b)

(a)

Figure 7: Effect of (a) buffer
size (TESAC, CCM, SaTESAC,
SaCCM) and (b) contrastive batch
size (CCM, SaTESAC, SaCCM) in
the SlimHumanoid environment.

6 Conclusion and future work

Zero-shot generalisation has been a longstanding challenge concerning Meta-RL agents, with skill
diversity and sample efficiency being key to generalising to previously unseen environments. In this
paper, we proposed Skill-aware Mutual Information (SaMI) to learn context embeddings for zero-shot
generalisation in downstream RL tasks, and Skill-aware Noise Contrastive Estimation (SaNCE) to
optimise SaMI and overcome the log-K curse, along with a practical skill-aware trajectory sampling
strategy. Experimental results showed that RL algorithms equipped with SaMI achieved state-of-
the-art performance in MuJoCo and Panda-gym benchmarks, particularly in zero-shot generalisation
within more complex environments. During the zero-shot generalisation, when faced with an unseen
task, SaMI assists agents in exploring effectively, inferring context, and rapidly adapting their skills
within the current episode. SaNCE’s optimisation uses a significantly smaller negative sample space
than baselines, and our analysis on buffer and contrastive batch sizes demonstrated its effectiveness
in addressing the log-K curse.

Given that environmental features are often interdependent, such as a cube’s material correlating
with friction and mass, SaMI does not introduce independence assumptions like DOMINO [Mu
et al., 2022]. Therefore, future work will focus on verifying and enhancing SaMI’s potential in
more complex tasks where environmental features are correlated [Dunion et al., 2023a]. This will
contribute to our ultimate goal: developing a generalist and versatile agent capable of working across
multiple tasks and even real-world tasks in the near future.

10

References
Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive

behavioral similarity embeddings for generalization in reinforcement learning. arXiv preprint
arXiv:2101.05265, 2021.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Junya Chen, Zhe Gan, Xuan Li, Qing Guo, Liqun Chen, Shuyang Gao, Tagyoung Chung, Yi Xu,
Belinda Zeng, Wenlian Lu, et al. Simpler, faster, stronger: Breaking the log-k curse on contrastive
learners with flatnce. arXiv preprint arXiv:2107.01152, 2021.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019a.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019b.

Remi Tachet des Combes, Philip Bachman, and Harm van Seijen. Learning invariances for policy
generalization, 2018. URL https://openreview.net/forum?id=BJHRaK1PG.

Mhairi Dunion and Stefano V Albrecht. Multi-view disentanglement for reinforcement learning with
multiple cameras. In Reinforcement Learning Conference, 2024.

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, and Stefano V Albrecht.
Conditional mutual information for disentangled representations in reinforcement learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, and Stefano V Albrecht.
Temporal disentanglement of representations for improved generalisation in reinforcement learning.
In The Eleventh International Conference on Learning Representations, 2023b.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function, 2018. URL https://arxiv.org/abs/1802.06070.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,
35:35603–35620, 2022.

Jörg K.H. Franke, Gregor Koehler, André Biedenkapp, and Frank Hutter. Sample-efficient automated
deep reinforcement learning. In International Conference on Learning Representations, 2021.

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu.
Towards effective context for meta-reinforcement learning: an approach based on contrastive
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 7457–7465,
2021.

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS, 2021.

Samuel Garcin, James Doran, Shangmin Guo, Christopher G. Lucas, and Stefano V. Albrecht.
DRED: Zero-shot transfer in reinforcement learning via data-regularised environment design. In
International Conference on Machine Learning (ICML), 2024.

Ziv Goldfeld, Ewout van den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury,
and Yury Polyanskiy. Estimating information flow in deep neural networks, 2019. URL https:
//arxiv.org/abs/1810.05728.

11

https://openreview.net/forum?id=BJHRaK1PG
https://arxiv.org/abs/1802.06070
https://arxiv.org/abs/1810.05728
https://arxiv.org/abs/1810.05728

Qing Guo, Junya Chen, Dong Wang, Yuewei Yang, Xinwei Deng, Jing Huang, Larry Carin, Fan
Li, and Chenyang Tao. Tight mutual information estimation with contrastive fenchel-legendre
optimization. Advances in Neural Information Processing Systems, 35:28319–28334, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks, 2016.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:
201–264, 2023.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International conference on machine learning, pages 5639–5650.
PMLR, 2020.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynamics
model for generalization in model-based reinforcement learning. In International Conference on
Machine Learning, pages 5757–5766. PMLR, 2020.

Lanqing Li, Yuanhao Huang, Mingzhe Chen, Siteng Luo, Dijun Luo, and Junzhou Huang. Provably
improved context-based offline meta-rl with attention and contrastive learning. arXiv preprint
arXiv:2102.10774, 2021.

Qiang Li. Functional connectivity inference from fmri data using multivariate information measures.
Neural Networks, 146:85–97, 2022.

William McGill. Multivariate information transmission. Transactions of the IRE Professional Group
on Information Theory, 4(4):93–111, 1954.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Trevor McInroe, Lukas Schäfer, and Stefano V. Albrecht. Multi-horizon representations with
hierarchical forward models for reinforcement learning. Transactions on Machine Learning
Research (TMLR), 2024.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012.

Yao Mu, Yuzheng Zhuang, Fei Ni, Bin Wang, Jianyu Chen, Jianye HAO, and Ping Luo. DOMINO:
Decomposed mutual information optimization for generalized context in meta-reinforcement
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

Leland Gerson Neuberg. Causality: models, reasoning, and inference, by judea pearl, cambridge
university press, 2000. Econometric Theory, 19(4):675–685, 2003.

12

https://arxiv.org/abs/1802.03426

Kento Nozawa and Issei Sato. Understanding negative samples in instance discriminative self-
supervised representation learning. Advances in Neural Information Processing Systems, 34:
5784–5797, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2019.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages 5171–
5180. PMLR, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pages 5331–5340. PMLR, 2019.

John A Rice and John A Rice. Mathematical statistics and data analysis, volume 371. Thom-
son/Brooks/Cole Belmont, CA, 2007.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples, 2021. URL https://arxiv.org/abs/2010.04592.

Tong Sang, Hongyao Tang, Yi Ma, Jianye Hao, Yan Zheng, Zhaopeng Meng, Boyan Li, and Zhen
Wang. Pandr: Fast adaptation to new environments from offline experiences via decoupling policy
and environment representations, 2022.

Younggyo Seo, Kimin Lee, Ignasi Clavera Gilaberte, Thanard Kurutach, Jinwoo Shin, and Pieter
Abbeel. Trajectory-wise multiple choice learning for dynamics generalization in reinforcement
learning. Advances in Neural Information Processing Systems, 33:12968–12979, 2020.

Lucy Xiaoyang Shi, Joseph J. Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Conference on Robot Learning, 2022.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. In International Conference on Learning Representations, 2020.

John Tabak. Geometry: the language of space and form. Infobase Publishing, 2014.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pages 1–5. IEEE, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Bernie Wang, Simon Xu, Kurt Keutzer, Yang Gao, and Bichen Wu. Improving context-based
meta-reinforcement learning with self-supervised trajectory contrastive learning, 2021.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):
3021, 2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/joss.03021.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3733–3742, 2018.

13

http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2010.04592
https://doi.org/10.21105/joss.03021

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pages 1094–1100. PMLR, 2020.

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. In
International Conference on Learning Representations, 2019.

14

A Proof of Lemma 1

Given a query x and a set Y = {y1, . . . , yK} of K random samples, containing one positive sample
y1 and K − 1 negative samples drawn from the distribution p(y), a K-sample InfoNCE estimator is
obtained by comparing pairs sampled from the joint distribution (x, y1) ∼ p(x, y) with pairs (x, yk),
constructed using the set of negative examples y2:K . InfoNCE compares the positive pairs (x, y1)
with the negative pairs (x, yk), where yk ∼ y2:K , as follows:

IInfoNCE(x; y|ψ,K) = Ep(x,y1)p(y2:K)

[
log

(
fψ(x, y1)

1
K

∑K
k=1 fψ(x, yk)

)]
(5)

Step 1. Let us prove that the K-sample InfoNCE estimator is upper-bounded by logK. According to
Mu et al. [2022], fψ(x,y1)∑K

k=1 fψ(x,yk)
=

fψ(x,y1)

fψ(x,y1)+
∑K
k=2 fψ(x,yk)

≤ 1. So we have:

IInfoNCE(x; y|ψ,K) = Ep(x,y1)p(y2:K)

[
log

(
fψ(x, y1)

1
K

∑K
k=1 fψ(x, yk)

)]

= Ep(x,y)

[
Ep(y2:K) log

(
K · fψ(x, y1)∑K
k=1 fψ(x, yk)

)]
≤ logK (6)

Hence, we have IInfoNCE(x; y|ψ,K) ≤ logK.

Step 2. We have the I(x; y) ≥ IInfoNCE(x; y|ψ,K) according to:

Proposition 1 [Poole et al., 2019] A K-sample estimator is an asymptotically tight lower bound on
the MI, i.e.,

I(x; y) ≥ IInfoNCE(x; y|ψ,K), lim
x→+∞

IInfoNCE(x; y|ψ,K)→ I(x; y)

Proof. See Poole et al. [2019] for a neat proof of how the multi-sample estimator (e.g., InfoNCE)
lower bounds MI.

Step 3. In this research, the context encoder ψ in fψ(x, y) is implemented using an RNN to
approximate p(y|x)

p(y) [Oord et al., 2019]. With a sufficiently powerful deep learning model for ψ and a
finite sample sizeK, such that I(x; y) ≥ logK, we can reasonably expect that IInfoNCE ≈ logK after
a few training epochs. Therefore, during training, when K ≪ +∞, we always have I(x; y) ≥ logK.

Proof. See Chen et al. [2021] for more detailed proof.

Step 4. Let us prove that the K-sample InfoNCE bound is asymptotically tight. The specific
choice of the context encoder ψ influences the tightness of the K-sample NCE bound. InfoNCE
[Oord et al., 2019] sets fψ(x, y) ∝ p(y|x)

p(y) to model a density ratio that preserves the MI between
x and y, where ∝ stands for ’proportional to’ (i.e., up to a multiplicative constant). Substituting

15

fψ(x, y) = f∗ψ(x, y) =
p(y|x)
p(y) into InfoNCE, we obtain:

IInfoNCE(x; y|ψ,K) = E

[
log

(
f∗ψ(x, y1)∑K
k=1 f

∗
ψ(x, yk)

)]
+ logK

= −E

[
log

(
1 +

p(y)

p(y|x)

K∑
k=2

p(yk|x)
p(yk)

)]
+ logK

≈ −E
[
log

(
1 +

p(y)

p(y|x)
(K − 1)Eyk∼p(y)

p(yk|x)
p(yk)

)]
+ logK

= −E
[
log

(
1 +

p(y1)

p(y1|x)
(K − 1)

)]
+ logK

≈ −E
[
log

p(y)

p(y|x)

]
− log(K − 1) + logK

= I(x; y)− log(K − 1) + logK (7)

Now taking K → +∞, the last two terms cancel out.

Putting it together. Combining I(x; y) ≥ logK with Proposition 1 and Equation (6), we have
Lemma 1:

IInfoNCE(x; y|ψ,K) ≤ logK ≤ I(x; y). (8)
Moreover, according to Equation (7), as the sample size K → +∞, the K-sample InfoNCE bound
becomes sharp and approaches the true MI I(x; y), i.e., IInfoNCE(x; y|ψ,K) ≈ logK ≈ I(x; y).

B Proof for Lemma 2

Step 1. According to Lemma 1, we have IInfoNCE(c;πc; τc|ψ,K) ≤ logK ≤ ISaMI(c;πc; τc) (shown
in Figure 3).

Step 2. Let us prove that SaNCE is a K-sample SaNCE estimator and is upper bounded by logK.
Since fψ(c,πc,τ

+
c)

fψ(c,πc,τ
+
c)+

∑K
k=2 fψ(c,πc,τ

−
c,k)
≤ 1 [Mu et al., 2022], we have:

ISaNCE(c;πc; τc|ψ,K)

= Ep(c1,πc1 ,τ+
c1

)p(τ−
c1,2:K

)

[
log

(
K · fψ(c1, πc1 , τ+c1)

fψ(c1, πc1 , τ
+
c1) +

∑K
k=2 fψ(c1, πc1 , τ

−
c1,k

)

)]

= Ep(c1,πc1)

[
Ep(τ−

c1,2:K
) log

(
K · fψ(c1, πc1 , τ+c1)

fψ(c1, πc1 , τ
+
c1) +

∑K
k=2 fψ(c1, πc1 , τ

−
c1,k

)

)]
≤ logK (9)

Thus, we obtain ISaNCE(c;πc; τc|ψ,K) ≤ logK, similar to Equation (6).

Step 3. With the definition ofK∗, we can prove that IInfoNCE(c;πc; τc|ψ,K) ≤ ISaNCE(c;πc; τc|ψ,K)
with the same sample size K. In task e1, SaNCE obtains positive and negative samples from the
current task e1. Since the variable c = c1 is constant, we have:

ISaNCE(c;πc; τc|ψ,K)

= Ep(c1,πc1 ,τ+
c1

)p(τ−
c1,2:K

)

[
log

(
K · fψ(c1, πc1 , τ+c1)

fψ(c1, πc1 , τ
+
c1) +

∑K
k=2 fψ(c1, πc1 , τ

−
c1,k

)

)]

≤ Ep(c1,πc1 ,τ+
c1

)p(τ−
c1,2:K

∗
SaNCE

)

[
log

(
K∗

SaNCE · fψ(c1, πc1 , τ+c1)
fψ(c1, πc1 , τ

+
c1) +

∑K∗
SaNCE

k=2 fψ(c1, πc1 , τ
−
c1,k

)

)]

= Ep(πc1 ,τ+
c1

)p(τ−
c1,2:K

∗
SaNCE

)

[
log

(
K∗

SaNCE · fψ(πc1 , τ+c1)
fψ(πc1 , τ

+
c1) +

∑K∗
SaNCE

k=2 fψ(πc1 , τ
−
c1,k

)

)]
(c1 is constant.)

≈ logK∗
SaNCE (10)

16

The required sample size is K∗
SaNCE = |c1| · |π| · M = |π| · M . As K → K∗

SaNCE, we have
ISaNCE(c;πc; τc|ψ,K) ≈ ISaMI(c;πc; τc). Correspondingly, for InfoNCE, in the current task e1 with
context embedding c1, positive samples are trajectories τ1 generated after executing the skill π1
in task e1, while negative samples are trajectories {τ−c2 , ...} from other tasks {e2, ...}. Under the
definition of K∗, we have:

IInfoNCE(c;πc; τc|ψ,K)

= Ep(c,πc,τc1)p(τc2:|c|,2:K)

[
log

(
K · fψ(c, πc, τc1)

fψ(c, πc, τc1) +
∑K
k=2 fψ(c, πc, τc2:|c|,k)

)]

≤ Ep(c,πc,τc1)p(τc2:|c|,2:K∗
InfoNCE

)

[
log

(
K∗

InfoNCE · fψ(c, πc, τc1)
fψ(c, πc, τc1) +

∑K∗
InfoNCE

k=2 fψ(c, πc, τc2:|c|,k)

)]
≈ logK∗

InfoNCE, (11)

where K∗
InfoNCE = |c| · |π| · M ≈ |c| · K∗

SaNCE. In real-world robotic control tasks, the sample
space size increases significantly due to multiple environmental features e = {e0, e1, . . . , eN}. The
number of different tasks |c| grows exponentially due to the permutations and combinations of the
N environmental features. When the current task e1 has context embedding c1, the c2:|c| refer to
the context embeddings for the other tasks. As K → K∗

InfoNCE, we have IInfoNCE(c;πc; τc|ψ,K) ≈
ISaMI(c;πc; τc). Thus, during the training process, IInfoNCE(c;πc; τc|ψ,K) ≤ ISaNCE(c;πc; τc|ψ,K)
with the same sample size K.

Step 4. According to the definition of SaMI in Equation (2), we have ISaMI(c;πc; τc) ≤ I(c; τc), as
illustrated using Venn diagrams in Figure 8 (a) and (b). SaMI is formulated based on interaction
information [McGill, 1954], which aims to capture the relationships among multivariate variables
by quantifying the amount of information (redundancy or synergy) shared among three variables.
Interaction information has been less extensively studied, partly due to its challenging interpretation
from both information theory and neuroscience perspectives, as it can be either positive or negative
[Li, 2022].

𝐻 𝑐 𝐻 𝜏!
𝐻 𝜏!

𝐻 𝑐

𝐻 𝜋!

(b)(a) (c)

𝐼(𝑐; 𝜏!)

𝐼"#$%(𝑐; 𝜋!; 𝜏!)

Figure 8: Venn diagrams illustrating (a) mutual information I(c; τc), (b) interaction information
ISaMI(c;πc; τc), and (c) the MDP graph of the context embedding c, skill πc, and trajectory τc, which
represents a common-cause structure [Neuberg, 2003].

In the Meta-RL setting, the MDP (causal) graph structure, shown in Figure 8 (c), illustrates that
the context embedding c, skill πc, and trajectory τc form a common-cause structure, where c acts
as a shared cause influencing both the skill πc and the trajectory τc. Consequently, I(πc, τc | c) <
I(πc, τc). Therefore, ISaMI(c;πc; τc) > 0 is guaranteed, making it interpretable in real-world robotic
control tasks.

Putting it together. Thus, we establish Lemma 2: we always have IInfoNCE(c;πc; τc|ψ,K) ≤
ISaNCE(c;πc; τc|ψ,K) ≤ logK ≤ ISaMI(c;πc; τc) ≤ I(c; τc), as shown in Figure 3, while learn-
ing a skill-aware context encoder ψ with the SaNCE estimator. Since K∗

SaNCE ≪ K∗
InfoNCE,

ISaNCE(c;πc; τc|ψ,K) serves as a much tighter lower bound for the true ISaMI(c;πc; τc) than
IInfoNCE(c;πc; τc|ψ,K).

C Sample size of ISa+InfoNCE

In this section, we illustrate the sample size of ISa+InfoNCE(c;πc; τc|ψ,K). Sa+InfoNCE incorporates
SaNCE into InfoNCE, using positive samples τ+c1 from task e1 after executing skill π+

c1 , and negative

17

samples are trajectories τ−c1:K from executing skills π−
c1:K in tasks e1:K , respectively. Therefore,

this approach is equivalent to first observing the variable c and then observing the variable πc, i.e.,
sampling from the distribution p(πc, τc|c)p(c). We have:

ISa+InfoNCE(c;πc; τc|ψ,K)

= E
p(c)p(π+

c1
,τ+
c1

|c)p
((
π−
2:|c|,τ

−
2:|c|

)
2:K

)
[
log

(
K · fψ(c, π+

c1 , τ
+
c1)

fψ(c, π
+
c1 , τ

+
c1) +

∑K
k=2 fψ(c, π

−
2:|c|,k, τ

−
2:|c|,k)

)]

≤ E
p(c)p(π+

c1
,τ+
c1

|c)p
((

π−
2:|c|,τ

−
2:|c|

)
2:K∗

Sa+InfoNCE

)
log

 K∗
Sa+InfoNCE · fψ(c, π+

c1 , τ
+
c1)

fψ(c, π
+
c1 , τ

+
c1) +

∑K∗
Sa+InfoNCE

k=2 fψ(c, π
−
2:|c|,k, τ

−
2:|c|,k)

≈ logK∗

Sa+InfoNCE (12)

It should be noted that such a combination increases the size of the negative sample space, i.e.,
K∗

Sa+InfoNCE =
(∑|c|

i=1 |π−
ci |+ |π

+
c1 |
)
·M ≥ K∗

SaNCE. The misaligned bars in Figure 4 (c) illustrate
that negative sample spaces may vary across tasks. This variation arises because we define negative
samples as trajectories with low returns, making the size of the negative sample space influenced by
sampling randomness. With the same number K of samples, ISa+InfoNCE is less precise and looser
than ISaNCE. Therefore, a trade-off between sample diversity and the precision of the K-sample
estimator is required.

D Environmental setup

(a) Panda-gym

Moderate
Test Tasks

(b) Task setting

Training Tasks

Extreme Test Tasks

Figure 9: (a) Modified Panda-gym benchmarks, (b) the training tasks, moderate test tasks, and extreme
test tasks. The moderate test task setting involves combinatorial interpolation, while the extreme test
task setting includes unseen ranges of environmental features and represents an extrapolation.

D.1 Modified Panda-gym

We modified the original Pick&Place task in Panda-gym [Gallouédec et al., 2021] by setting the z
dimension (i.e., the desired height) of the cube’s goal position to 0 3 and maintaining the freedom of
the grippers 4, allowing the agent to explore whether it should push or grasp the cube. Skills in this
benchmark are defined as:

• Pick&Place skill: This skill specifically refers to the agent using the gripper to grasp the
cube, lift it off the table, and place it in the goal position. We determine the Pick&Place skill
by detecting no contact points between the table and the cube, two contact points between
the robot’s end effector and the cube, and the cube’s height being greater than half its width.

3If z is not equal to 0, the Pick&Place skill is always required to solve the tasks.
4In the original Push task, the grippers are blocked to ensure the agent can only push cubes. However, this

restriction prevents the agent from learning Pick&Place skills, leading to "unpushable" failure in Figure 1 (b).

18

• Push skill: This skill involves the agent moving the cube on the table to the goal position,
either by dragging or sliding it. We confirm the Push skill by detecting that the cube’s height
equals half its width.

• Other skills: Any behaviour modes other than Pick&Place and Push are classified as other
skills.

Some elements in the RL framework are defined as follows:

State space: We use feature vectors that contain the cube’s position (3 dimensions), cube rotation
(3 dimensions), cube velocity (3 dimensions), cube angular velocity (3 dimensions), end-effector
position (3 dimensions), end-effector velocity (3 dimensions), gripper width (1 dimension), desired
goal (3 dimensions), and achieved goal (3 dimensions). Environmental features are not included in
states.

Action space: The action space has 4 dimensions; the first three dimensions represent changes in the
end-effector’s position, and the last dimension represents the change in the gripper’s width.

During training, we randomly select a combination of environmental features from a training set
by sampling combinations from the following sets: mass = 1.0 and friction ∈ {0.1, 1.0, 5.0, 10.0};
mass ∈ {1.0, 5.0, 10.0} and friction = 0.1. At test time, we evaluate each algorithm on all
tasks from the moderate test setting, where mass ∈ {5.0, 10.0} and friction ∈ {1.0, 5.0, 10.0}
(shown in Figure 9(b)), and on all tasks from the extreme test setting: mass = 30.0 and
friction ∈ {0.1, 1.0, 5.0, 10.0, 30.0}; mass ∈ {1.0, 5.0, 10.0, 30.0} and friction = 30.0 (shown
in Figure 9(b)).

D.2 Modified MuJoCo

We extended the modified MuJoCo benchmark introduced in DOMINO [Mu et al., 2022] and CaDM
[Lee et al., 2020]. In our extension, four new environments were added (Walker, Crippled Hopper,
Crippled Walker, HumanoidStandup), compared to the original benchmark. Additionally, in our
experiments, we used a different task set design (Table 3) than those used in the DOMINO and CaDM
papers. For Hopper, Walker, Half-Cheetah, Ant, HumanoidStandup, and SlimHumanoid, we used the
MuJoCo physics engine environments and implemented settings from Clavera et al. [2019b] and Seo
et al. [2020], scaling the mass of every rigid link by a scale factor m and the damping of every joint
by a scale factor d. For Crippled Ant, Crippled Hopper, Crippled Walker, and Crippled Half-Cheetah,
we used the implementation available from Seo et al. [2020], scaled the mass of each rigid link
by a factor of m, scaled the damping of each joint by a factor of d, and randomly selected joints
to be uncontrollable (i.e., masking the corresponding actions with 0). Generalisation performance
is measured in two different regimes: moderate and extreme, where the moderate regime draws
environmental features from a range closer to the training range compared to the extreme regime.
Our settings for training, extreme, and moderate test tasks are provided in Table 3.

Ant

Crippled Ant

Half-cheetah

Crippled
Half-cheetah

SlimHumanoid Hopper

Humanoid
Standup

Walker

Crippled
Hopper

Crippled
Walker

Figure 10: Ten environments in modified MuJoCo benchmark.

19

Ta
bl

e
3:

E
nv

ir
on

m
en

ta
lf

ea
tu

re
s

us
ed

fo
rM

uJ
oC

o
be

nc
hm

ar
k.

Tr
ai

ni
ng

Te
st

(M
od

er
at

e)
Te

st
(E

xt
ra

m
e)

E
pi

so
de

L
en

gt
h

H
al

f-
ch

ee
ta

h
m
∈
{0
.7
5,
0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

d
∈
{0
.7
5
,0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

m
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
8
0
,4
.0
0
}

d
∈
{0
.2
0
,0
.4
0,
1.
60
,1
.8
0
,4
.0
0
}

10
00

A
nt

m
∈
{0
.4
0,
0.
50
,1
.5
0
,1
.6
0
}

d
∈
{0
.4
0,
0
.5
0
,1
.5
0
,1
.6
0
}

m
∈
{0
.2
0,
0
.4
0
,1
.6
0
,1
.8
0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0
,1
.8
0}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
8
0
,4
.0
0
}

10
00

H
op

pe
r

m
∈
{0
.7
5
,1
.0
,1
.2
5
}

d
∈
{0
.7
5
,1
.0
,1
.2
5
}

m
∈
{0
.4
0,
0
.5
0
,1
.5
0
,1
.6
0
}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

10
00

C
ri

pp
le

d
H

op
pe

r
m
∈
{0
.7
5
,1
.0
,1
.2
5
}

d
∈
{0
.7
5
,1
.0
,1
.2
5
}

m
∈
{0
.4
0,
0
.5
0
,1
.5
0
,1
.6
0
}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

m
∈
{0
.2
0,
0
.4
0
,1
.6
0
,1
.8
0
,4
.0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0
,1
.8
0,
4.
0}

C
ri

pp
le

d
L

eg
s
R

1
∈
{0
,1
,2
}

10
00

Sl
im

H
um

an
oi

d
m
∈
{0
.8
0,
0
.9
0
,1
.0
,1
.1
5
,1
.2
5
}

d
∈
{0
.8
0
,0
.9
0
,1
.0
,1
.1
5
,1
.2
5
}

m
∈
{0
.6
0
,0
.7
0
,1
.5
0
,1
.6
0}

d
∈
{0
.6
0
,0
.7
0
,1
.5
0
,1
.6
0}

m
∈
{0
.4
0,
0
.5
0
,1
.7
0
,1
.8
0}

d
∈
{0
.4
0
,0
.5
0
,1
.7
0
,1
.8
0}

10
00

H
um

an
oi

dS
ta

nd
up

m
∈
{0
.8
0,
0
.9
0
,1
.0
,1
.1
5
,1
.2
5
}

d
∈
{0
.8
0
,0
.9
0
,1
.0
,1
.1
5
,1
.2
5
}

m
∈
{0
.6
0
,0
.7
0
,1
.5
0
,1
.6
0}

d
∈
{0
.6
0
,0
.7
0
,1
.5
0
,1
.6
0}

m
∈
{0
.4
0
,0
.5
0
,1
.7
0,
1.
8
0
,4
.0
0
}

d
∈
{0
.4
0
,0
.5
0,
1.
70
,1
.8
0
,4
.0
0
}

10
00

W
al

ke
r

m
∈
{0
.7
5
,1
.0
,1
.2
5
}

d
∈
{0
.7
5
,1
.0
,1
.2
5
}

m
∈
{0
.4
0,
0
.5
0
,1
.5
0
,1
.6
0
}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

20
00

C
ri

pp
le

d
W

al
ke

r
m
∈
{0
.7
5
,1
.0
,1
.2
5
}

d
∈
{0
.7
5
,1
.0
,1
.2
5
}

C
ri

pp
le

d
Jo

in
ts

(r
ig

ht
le

g)
=
{0
,1
,2
}

m
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

C
ri

pp
le

d
Jo

in
ts

(r
ig

ht
le

g)
∈
{0
,1
,2
}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1.
80
,4
.0
0
}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0,
1
.8
0
,4
.0
0
}

C
ri

pp
le

d
Jo

in
ts

(l
ef

tl
eg

)∈
{3
,4
,5
}

20
00

C
ri

pp
le

d
A

nt
m
∈
{0
.7
5,
0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

d
∈
{0
.7
5
,0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

C
ri

pp
le

d
L

eg
s
R

1
=

∅
or
R

1
∈
{0
,1
,2
,3
}

m
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

C
ri

pp
le

d
L

eg
s
R

1
∈
{0
,1
,2
,3
}

m
∈
{0
.2
0
,0
.4
0
,1
.6
0
,1
.8
0}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0
,1
.8
0}

C
ri

pp
le

d
L

eg
s
{R

1
,R

2
}
∈
{0
,1
,2
,3
,4
,5
}
(R

1
̸=
R

2
)

20
00

C
ri

pp
le

d
H

al
f-

ch
ee

ta
h

m
∈
{0
.7
5,
0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

d
∈
{0
.7
5
,0
.8
5
,1
.0
,1
.1
5
,1
.2
5
}

C
ri

pp
le

d
Jo

in
ts

(f
ro

nt
le

g)
R

1
∈
{3
,4
,5
}

m
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

d
∈
{0
.4
0
,0
.5
0
,1
.5
0
,1
.6
0}

C
ri

pp
le

d
Jo

in
ts

(b
ac

k
le

g)
R

1
∈
{0
,1
,2
}

m
∈
{0
.2
0,
0
.4
0
,1
.6
0
,1
.8
0}

d
∈
{0
.2
0
,0
.4
0
,1
.6
0
,1
.8
0}

C
ri

pp
le

d
Jo

in
ts
{R

1
,R

2
}
∈
{0
,1
,2
,3
,4
,5
}
(R

1
̸=
R

2
)

20
00

20

Table 4: Hyperparameters used in the Panda-gym and MuJoCo benchmarks. Most hyperparameter
values remain unchanged across tasks, except for the contrastive batch size and the SaNCE loss
coefficient.

Hyperparameter Value

Replay buffer size 100,000
Contrastive batch size MuJoCo 12, Panda-gym 256

SaNCE loss coefficient α MuJoCo 1.0, Panda-gym 0.01
Context embedding dimension 6

Hidden state dimension 128
Learning rate (actor, critic and encoder) 1e-3

Training frequency (actor, critic and encoder) 128
Gradient steps 16

Momentum context encoder ψ∗ soft-update rate 0.05
SAC target soft-update rate critic 0.01, actor 0.05

SAC batch size 256
Discount factor 0.99

Optimizer Adam

D.3 Implementation details

In this section, we provide the implementation details for SaMI. We present the pseudo-code for
using SaNCE during meta-training and meta-testing in Algorithms 1 and 2. Our codebase is built
on top of the publicly released implementation of Stable Baselines3 by Raffin et al. [2021] and the
implementation of InfoNCE by Oord et al. [2019]. A public, open-source implementation of SaMI is
available at https://github.com/uoe-agents/SaMI.

Base algorithm. We use SAC [Haarnoja et al., 2018] for the downstream evaluation of the learned
context embedding. SAC is an off-policy actor-critic method that leverages the maximum entropy
framework for soft policy iteration. At each iteration, SAC performs soft policy evaluation and
improvement steps. We use the same SAC implementation across all baselines and other methods.
During the meta-training phase, we trained agents for 1.6 million timesteps in each environment
on the Panda-gym and MuJoCo benchmarks. For meta-testing, we evaluated 100 episodes in each
environment, with tasks randomly sampled from the moderate and extreme task sets.

Encoder architecture. In our method, the context encoder ψ is modelled as a Long Short-Term
Memory (LSTM) network that produces a 128-dimensional hidden state vector, which is subse-
quently processed through a single-layer feed-forward network to generate a 6-dimensional context
embedding. We aim for the agent to complete the three steps of "explore effectively, infer, adapt"
within an episode. Therefore, we initialise the hidden state and cell state of the LSTM to zero at the
start of each episode. Both the actor and critic use the same context encoder to embed trajectories.
For contrastive learning, SaNCE utilises a momentum encoder ψ∗ to generate positive and negative
context embeddings [Laskin et al., 2020, He et al., 2020]. Formally, denoting the parameters of ψ as
θψ and those of ψ∗ as θψ∗ , we update θψ∗ as follows:

θψ∗ ← m · θψ + (1−m) · θψ∗ . (13)

Here m ∈ [0, 1) is a soft-update rate. Only the parameters θψ are updated by back-propagation.
The momentum update in Equation (13) makes θψ∗ evolve more smoothly by having them slowly
track the θψ with m ≪ 1 (e.g., m = 0.05 in this research). This means that the target values are
constrained to change slowly, greatly improving the stability of learning.

Hyperparameters. A full list of hyperparameters is displayed in Table 4.

Hardware. For each experiment run we use a single NVIDIA Volta V100 GPU with 32GB memory
and a single CPU.

21

Algorithm 1 SaNCE Meta-training

Require: Batch of training tasks {en}n=1,...,N from ξtrain(e), soft-update rate m;
1: Initialize RL replay buffer BRL, encoder replay buffer Benc;
2: Initialize parameters ψ for context encoder, ψ∗ for momentum context encoder and ϕ for the

off-policy SAC;
3: while not done do
4: for each task en do
5: for Roll-out time steps do
6: for time step t < maximum episode length T do
7: Update context embedding cn ∼ ψ(cn|τcn,0:t)
8: Roll-out policy πcn(at|st, cn) and accumulate transition (st, at, rt, st+1);
9: end for

10: Add trajectory τcn = {s0, a0, r0, s1, r1, ..., sT , aT , rT } to replay buffer BnRL and Bnenc;
11: end for
12: end for
13: for each training step do
14: for each task en do
15: Sample RL batch {τcn} ∼ BnRL;
16: Sample a positive sample τ+cn for generating query with highest return, positive samples

{τ−cn} and negative samples {τ−cn} for encoding positive and negative embeddings;
17: Update ϕ with RL loss LRL;
18: Update ψ with SaNCE loss LSaNCE and RL loss LRL;
19: θψ∗ ← m · θψ + (1−m) · θψ∗ ;
20: end for
21: end for
22: end while

Algorithm 2 SaNCE Meta-testing

Require: Batch of training tasks {en}n=1,...,N from ξtest(e);
1: while not done do
2: for each task en do
3: for each episode do
4: for time step t < maximum episode length T do
5: Update context embedding cn ∼ ψ(cn|τcn,0:t)
6: Roll-out policy πcn(at|st, cn) and accumulate transition (st, at, rt, st+1);
7: end for
8: end for
9: end for

10: end while

22

E Additional results

E.1 Balance contrastive and RL updates: loss coefficient α

While past work has optimised hyperparameters to balance the contrastive loss coefficient α relative
to the RL objective [Jaderberg et al., 2016, Bachman et al., 2019], we use both the contrastive and
RL objectives with equal weight, setting α = 1.0 for the MuJoCo benchmark and α = 0.01 for
the Panda-gym benchmark. Additionally, we analyse the effect of the loss coefficient α for CCM,
SaTESAC, and SaCCM in the MuJoCo (Figure 12) and Panda-gym (Figure 11) benchmarks.

(a) Training tasks (b) Test tasks (moderate) (c) Test tasks (extreme)

Figure 11: Loss coefficient α analysis of Panda-gym benchmark in training and test (moderate and
extreme) tasks.

(a) Half-cheetah (b) Crippled Half-cheetah (c) SlimHumanoid

(d) Ant (e) Crippled Ant (f) Hopper

Figure 12: Loss coefficient α analysis of MuJoCo benchmark in training tasks.

23

E.2 Result of log-K curse analysis

E.2.1 Buffer size

(a) Half-cheetah (b) Crippled Half-cheetah (c) SlimHumanoid

(d) Ant (e) Crippled Ant (f) Hopper

Figure 13: Comparison of different buffer sizes in the MuJoCo benchmark on training tasks (averaged
over 5 seeds). Buffer sizes are 400,000, 100,000, 10,000, and 1,000.

E.2.2 contrastive batch size

(d) Ant (e) Crippled Ant (f) Hopper

(a) Half-cheetah (b) Crippled Half-cheetah (c) SlimHumanoid

Figure 14: Comparison of different contrastive batch sizes in the MuJoCo benchmark on training
tasks (averaged over 5 seeds). Contrastive batch sizes are 512, 128, 16, and 8.

24

F Further skill analysis

F.1 Panda-gym

F.1.1 Visualisation of context embedding

We visualise the context embedding using UMAP [McInnes et al., 2020] (Figure ??) and t-SNE
[Van der Maaten and Hinton, 2008] (Figure 16). When the mass of the cube is high (30 kg and 10
kg), the agent learned the Push skill (indicated by the yellow bounding box in Figure 1(a)), whereas
with lower masses, the agent learned the Pick&Place skill. However, as shown in Figure 16(b),
CCM did not display clear skill grouping. This indicates that SaMI extracts high-quality skill-related
information from the trajectories and enables agents to autonomously discover a diverse range of
skills for handling multiple tasks.

(b) CCM(a) TESAC

(d) SaCCM(c) SaTESAC

Figure 15: UMAP visualisation of context embeddings extracted from trajectories collected in the
Panda-gym environments.

(d) SaCCM(c) SaTESAC

(b) CCM(a) TESAC

Figure 16: t-SNE visualisation of context embeddings extracted from trajectories collected in the
Panda-gym environments.

25

F.1.2 Heatmap of Panda-gym benchmark

(a) TESAC Success Rate (c) TESAC Pick&Place Rate(b) TESAC Push Rate

(d) CCM Success Rate (f) CCM Pick&Place Rate(e) CCM Push Rate

(g) SaTESAC Success Rate (i) SaTESAC Pick&Place Rate(h) SaTESAC Push Rate

Figure 17: Heatmap of success rates and learned skills of SaCCM. For each grid, the (i, j)th location
shows the probability of the skills executed over 100 evaluations with (mass = i, friction = j).

This section presents the heatmap results and further analysis of TESAC, CCM, and SaTESAC on the
Panda-gym benchmark. From the heatmap results of SaTESAC and SaCCM (Figure 6), we observe
that, with higher cube masses (30 and 10 kg), the agent executed the Push skill (indicated by the
clustered points within the yellow bounding box in Figure 1(a)). At lower masses, the agent executed
the Pick&Place skill.

In contrast, as shown in Figures 17(e-f), CCM predominantly learned the Pick&Place skill, resulting
in a drop in success rates for tasks with mass = 30, as the agent could not lift the cube off the table
using the Pick&Place skill, as depicted in Figure 17(d). The visualisation of the context embedding
(Figure 16) did not reveal clear skill grouping across different tasks.

Finally, TESAC primarily mastered the Push skill. The Push skill is relatively simpler to learn than
the Pick&Place skill, as it does not require the agent to manipulate its fingers to pick up cubes.
Consequently, TESAC’s success rate notably decreased in environments with higher friction.

26

F.2 MuJoCo

SaMI enables RL agents to be versatile and embody multiple skills. Additionally, video demos
(available at https://github.com/uoe-agents/SaMI) provide a better demonstration of the different
skills.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 18: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in the Crippled Half-Cheetah environment. "cripple_set" refers to the index of the crippled
joint. The figure shows the context embeddings of tasks in three moderate test settings. Combined
with the video demos2 for skill analysis, the Crippled Half-Cheetah robot executed three distinct
forward running skills.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) PCA for TESAC (f) PCA for CCM (g) PCA for SaTESAC (h) PCA for SaCCM

Figure 19: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in the Crippled Ant environment. "cripple_set" refers to the index of the crippled joint.
When 3 or 4 legs are available, the Ant robot (trained with SaCCM) rolls to adapt to varying mass and
damping. However, with only 2 adjacent legs during zero-shot generalisation, it switches to walking.
If 2 opposite legs are available, the Ant can still roll but eventually tips over. Please refer to the video
demos2.

27

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 20: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in the Half-Cheetah environment. During zero-shot generalisation, SaCCM demonstrates
different skills for running forwards at various speeds, as well as skills for doing flips and faceplanting.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 21: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in Ant environment. The Ant robot learned a single skill, rolling, to adapt to different mass
and damping values.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 22: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in SlimHumanoid environment. The Humanoid Robot crawls on the ground using one
elbow. When the damping is relatively high (damping=1.8), the Humanoid Robot can crawl forward
stably, but when the damping is low (damping=0.4), it tends to roll.

28

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 23: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in HumanoidStandup environment. SaCCM and SaTESAC learned a sitting posture that
makes it easier to stand up, allowing it to generalise well when mass and damping change.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 24: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in Hopper environment. Combined with the video demos 2 for skill analysis, the plots for
SaCCM and SaTESAC show two skills: 1) when the mass is low, the Hopper hops in an upright
posture; 2) when the mass is higher, the Hopper hops forward on the floor.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 25: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in Crippled Hopper environment. "cripple_set" refers to the index of the crippled joint.
SaCCM and SaTESAC learned to take a big hop forward at the beginning (i.e., effective exploration)
and then switch to different skills based on environmental feedback.

29

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 26: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in Walker environment. The Walker learned a single skill, hopping forward on the floor
through both right and left legs.

(a) t-SNE for TESAC (b) t-SNE for CCM (c) t-SNE for SaTESAC (d) t-SNE for SaCCM

(e) UMAP for TESAC (f) UMAP for CCM (g) UMAP for SaTESAC (h) UMAP for SaCCM

Figure 27: t-SNE and UMAP visualisations of context embeddings extracted from trajectories
collected in Crippled Walker environment. "cripple_set" refers to the index of the crippled joint. The
Crippled Walker (trained with SaTESAC and SaCCM) learned to hop forward using the right leg
(cripple_set:0 and cripple_set:2) in the training and moderate test tasks and switched to hopping
forward using the left leg (cripple_set:4) in the extreme test tasks.

Table 5: Environmental features used for MuJoCo benchmark from DOMINO and CaDM.
Training Test (Moderate) Test (Extrame) Episode Length

Half-cheetah
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25}

m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.40, 0.50, 1.50, 1.60}

m ∈ {0.20, 0.40, 1.60, 1.80}
d ∈ {0.20, 0.40, 1.60, 1.80}

1000

Ant
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25}

m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.40, 0.50, 1.50, 1.60}

m ∈ {0.20, 0.40, 1.60, 1.80}
d ∈ {0.20, 0.40, 1.60, 1.80}

1000

SlimHumanoid
m ∈ {0.80, 0.90, 1.0, 1.15, 1.25}
d ∈ {0.80, 0.90, 1.0, 1.15, 1.25}

m ∈ {0.60, 0.70, 1.50, 1.60}
d ∈ {0.60, 0.70, 1.50, 1.60}

m ∈ {0.40, 0.50, 1.70, 1.80}
d ∈ {0.40, 0.50, 1.70, 1.80}

500

Crippled Half-cheetah
m ∈ {0.75, 0.85, 1.0, 1.15, 1.25}
d ∈ {0.75, 0.85, 1.0, 1.15, 1.25}

Crippled Joints: {0, 1, 2, 3}

m ∈ {0.40, 0.50, 1.50, 1.60}
d ∈ {0.40, 0.50, 1.50, 1.60}

Crippled Joints: {4, 5}

m ∈ {0.20, 0.40, 1.60, 1.80}
d ∈ {0.20, 0.40, 1.60, 1.80}

Crippled Joints: {4, 5}
1000

30

Table 6: Comparison of average return ± standard deviation with baselines in MuJoCo bench-
mark (over 5 seeds). The bold text signifies the highest average return. The numerical results
for PPO+DOMINO are copied from Mu et al. [2022]; the numerical results for PPO+CaDM,
Vanilla+CaDM, and PE-TS+CaDM are copied from Lee et al. [2020].

Ant Half-cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PPO+DOMINO 227±86 216±52 2472±803 1034±476
PPO+CaDM 268.6±77.0 228.8±48.4 199.2±52.1 2652.0±1133.6 1224.2±630.0 1021.1±676.6

Vanilla+CaDM 1851.0±113.7 1315.7±45.5 821.4±113.5 3536.5±641.7 1556.1±260.6 1264.5±228.7
PE-TS+CaDM 2848.4±61.9 2121.0±60.4 1200.7±21.8 8264.0±1374.0 7087.2±1495.6 4661.8±783.9

SaTESAC 908±65 640±117 532±88 7430±1026 4058±890 1780±102
SaCCM 928±141 635±94 555±88 7154±965 3849±689 1926±218

SlimHumanoid Crippled Half-Cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

PPO+DOMINO 7825±1256 5258±1039 2503±658 1326±491
PPO+CaDM 10455.0±1004.9 4975.7±1305.7 3015.1±1508.3 2356.6±624.3 1454.0±462.6 1025.0±296.2

Vanilla+CaDM 1758.2±459.1 1228.9±374.0 1487.9±339.0 2435.1±880.4 1375.3±290.6 966.9±89.4
PE-TS+CaDM 1371.9±400.0 903.7±343.9 814.5±274.8 3294.9±733.9 2618.7±647.1 1294.2±214.9

SaTESAC 10216±1620 7886±2203 6123±1403 5169±730 2184±592 1628±281
SaCCM 9312±705 7430±1587 6473±2001 5709±744 2795±446 2115±466

31

G A comparison with DOMINO and CaDM

In this section, we give a brief comparison between our methods and methods from DOMINO [Mu
et al., 2022] and CaDM [Lee et al., 2020] in the MuJoCo benchmark because we are using the exact
same environmental setting (shown in Table 5).

DOMINO [Mu et al., 2022] is based on the InfoNCE K-sample estimator. Their implementation,
PPO+DOMINO, is a model-free RL algorithm with a pre-trained context encoder. This encoder
reduces the demand for large contrastive batch sizes during training by decoupling representation
learning for each modality, simplifying tasks while leveraging shared information. However, a
pre-trained encoder necessitates a large sample volume, with DOMINO training PPO agents for 5
million timesteps on the MuJoCo benchmark. In contrast, SaTESAC and SaCCM, trained for 1.6
million timesteps without pre-trained encoders, achieve considerably higher average returns across
four environments (Table 6). Therefore, it is crucial to focus on extracting MI in contrastive learning
that directly optimises downstream tasks, integrating rather than segregating representation learning
from task performance.

CaDM [Lee et al., 2020] proposes a context-aware dynamics model adaptable to changes in dynamics.
Specifically, they utilise contrastive learning to learn context embeddings, and then predict the next
state conditioned on them. We copy the numerical results of PPO+CaDM, Vanilla+CaDM, and
PE-TS+CaDM from CaDM [Lee et al., 2020] as their environmental setting is identical to ours, where
PPO+CaDM is a model-free RL algorithm, while Vanilla+CaDM and PE-TS+CaDM are model-
based. The model-free RL approach, PPO+CaDM, is trained for 5 million timesteps on the MuJoCo
benchmark. As shown in Table 6, SaTESAC and SaCCM significantly outperform PPO+CaDM.
The model-based RL algorithms, Vanilla+CaDM and PE-TS+CaDM, require 2 million timesteps
for learning in model-based setups, compared to our fewer samples (i.e., million timesteps). In the
Ant environment, Vanilla+CaDM and PE-TS+CaDM achieve higher returns than SaTESAC and
SaCCM; similarly, in the Half-cheetah environment, PE-TS+CaDM outperforms them. Results in the
SlimHumanoid and Crippled Half-cheetah environments show that skill-aware context embeddings
are notably effective. An insight here is that our method outperforms the model-free CaCM approach,
but not the model-based one. This is consistent with what is empirically found in CaDM [Lee
et al., 2020]: prediction models are more effective when the transition function changes across tasks.
Therefore, we consider that a model-based approach to SaMI could be an interesting extension for
future work.

32

Table 7: The p-value of the statistical hypothesis tests (paried t-tests) for comparing the effectiveness
of SaMI in MuJoCo benchmark (over 5 seeds). ∗ next to the number means that the algorithm with
SaMI has statistically significant improvement over the same algorithm without SaMI at a significance
level of 0.05. The “SaTESAC-TESAC” row indicates the p-value for the return improvement brought
by SaMI to TESAC; the “SaCCM-CCM” row indicates the p-value for the return improvement
brought by SaMI to CCM.

Crippled Ant Crippled Half-cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.121 0.109 9.54E-07∗ 0.154 0.0024∗ 0.0889
SaCCM-CCM 0.913 0.108 0.008∗ 0.04∗ 0.307 0.106

Ant Half-cheetah

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.136 0.034∗ 0.021∗ 0.346 0.224 0.004∗

SaCCM-CCM 0.138 0.275 0.163 0.73 0.791 0.005∗

SlimHumanoid HumanoidStandup

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.139 0.456 0.006∗ 0.037∗ 0.129 0.003∗

SaCCM-CCM 0.113 0.059 0.008∗ 0.048 0.027∗ 0.01

Hopper Crippled Hopper

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.747 0.089 0.707 0.459 0.69 0.088
SaCCM-CCM 0.52 0.599 0.969 0.967 0.897 0.0002∗

Walker Crippled Walker

Training Test (moderate) Test (extreme) Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.312 0.082 0.003∗ 0.223 0.048∗ 0.028∗

SaCCM-CCM 0.55 0.541 0.022∗ 0.794 0.079 0.011∗

Table 8: The p-value of the statistical hypothesis tests (paried t-tests) for comparing the effectiveness
of SaMI in Panda-gym benchmark (over 5 seeds). ∗ next to the number means that the algorithm with
SaMI has statistically significant improvement over the same algorithm without SaMI at a significance
level of 0.05. The “SaTESAC-TESAC” row indicates the p-value for the return improvement brought
by SaMI to TESAC; the “SaCCM-CCM” row indicates the p-value for the return improvement
brought by SaMI to CCM.

Training Test (moderate) Test (extreme)

SaTESAC-TESAC 0.000260∗ 0.000160∗ 0.001310∗

SaCCM-CCM 0.000230∗ 0.002190∗ 0.001390∗

H Statistical hypothesis tests (paried t-tests)

We used a t-test [Rice and Rice, 2007] to conduct a statistical hypothesis test to determine whether
SaMI brought a statistically significant improvement. we reported the p-value of the t-test in MuJoCo
(Table 7) and Panda-gym (Table 8) benchmarks. ∗ next to the number is used to indicate that the
algorithm with SaMI has statistically significant improvement over the same algorithm without SaMI
at a significance level of 0.05. From Table 7 and 8, SaMI brings significant improvement on the
extreme test set in which the RL agent needs to execute diverse skills. The statistically significant test
aligns with our results in the skill analysis (i.e., video demos, t-SNE and UMAP visualisation). In
complex environments that require high skill diversity from the RL agent, the statistically significant
improvement and higher returns/success rates brought by SaMI are evident.

33

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalise to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations and future work of this work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

34

Justification: Proofs are provided in Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code will be open-sourced and all the implementation details for both the
environment setup and algorithms are in the Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

35

Answer: [Yes]
Justification: We will open-source our modified benchmarks (i.e., data) and code after the
double-blind review phase ends.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided experimental details in Appendix D including hyperparame-
ters, how they were chosen, type of optimizer, etc.
Guidelines:but

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation of our environmental results over
five seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources (type of
compute workers, memory, time of execution) in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We have fully considered the potential societal impacts of our research. Our
work is conducted in simulated environments, and there is no societal impact of the work
performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

37

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in our study are open-source, and we have acknowledged the
authors’ copyrights in the References.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

38

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed descriptions of the assets we will release in Appendix
D and on our open-source homepage. During the double-blind review phase, we have
anonymised the URLs.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

39

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Related works
	Preliminaries
	Skill-aware mutual information optimisation for Meta-RL
	The bold0mu mumu units-bold0mu mumu KKunitsKKKK curse of bold0mu mumu KKunitsKKKK-sample MI estimators
	Skill-aware mutual information: a smaller ground-truth MI
	Skill-aware noise contrastive estimation: a tighter bold0mu mumu KKunitsKKKK-sample estimator
	Skill-aware trajectory sampling strategy

	Experiments
	Experimental setup
	Panda-gym
	MuJoCo
	Analysis of the bold0mu mumu units-bold0mu mumu KKunitsKKKK curse in sample-limited scenarios

	Conclusion and future work
	Proof of Lemma 1
	Proof for Lemma 2
	Sample size of ISa+InfoNCE
	Environmental setup
	Modified Panda-gym
	Modified MuJoCo
	Implementation details

	Additional results
	Balance contrastive and RL updates: loss coefficient
	Result of -K curse analysis
	Buffer size
	contrastive batch size

	Further skill analysis
	Panda-gym
	Visualisation of context embedding
	Heatmap of Panda-gym benchmark

	MuJoCo

	A comparison with DOMINO and CaDM
	Statistical hypothesis tests (paried t-tests)

