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Abstract

The effectiveness of instruction fine-tuning001
for Large Language Models is fundamentally002
constrained by the quality and efficiency of003
training datasets. This work introduces Low-004
Confidence Gold (LCG), a novel filtering005
framework that employs centroid-based cluster-006
ing and confidence-guided selection for iden-007
tifying valuable instruction pairs. Through a008
semi-supervised approach using a lightweight009
classifier trained on representative samples,010
LCG curates high-quality subsets while pre-011
serving data diversity. Experimental evaluation012
demonstrates that models fine-tuned on LCG-013
filtered subsets of 6K samples achieve supe-014
rior performance compared to existing methods,015
with substantial improvements on MT-bench016
and consistent gains across comprehensive eval-017
uation metrics. The framework’s efficacy while018
maintaining model performance establishes a019
promising direction for efficient instruction tun-020
ing.021

1 Introduction022

Large Language Models (LLMs) have been trained023

to follow instructions by specific supervised re-024

sponse data after pre-training stage. Many instruc-025

tion finetuning (IFT) (Taori et al., 2023) datasets026

emerge to realize various downstream tasks, for027

example: mathematic calculation, sentence anal-028

ysis, haiku writing and etc, aiming to strengthen029

the ability of LLMs in instruction following. To030

save vast human costs for data annotation, most031

of studies introduce other teacher LLMs (e.g.032

text-davinci-003 (Brown et al., 2020)) to align033

the best instructions with corresponding responses.034

However, IFT datasets (e.g. Alpaca_52k (Taori035

et al., 2023), magpie (Xu et al., 2024)) suffer from036

misleading content and poor quality, resulting in037

the bottleneck of post-training performance, even038

though teacher models replenish the missing parts039

of context and instruction pairs. This highlights the040

Figure 1: We target to select complex and quality sam-
ples confidence ranking for benefiting LLM training.

need for effective data filtering methods that iden- 041

tify high-quality instruction subsets while reducing 042

fine-tuning time and computational costs. 043

Alpagasus (Chen et al., 2024) proposed a 044

model-based approach that introduces proprietary 045

LLMs to score data quality in multiple facets, re- 046

placing human annotation by taking advantage of 047

the automated pipeline. However, this leads to 048

datasets that are likely biased by the preference for 049

redundant and limited responses (Panickssery et al., 050

2024), which potentially deteriorates the diversity 051

of the original data. Ge et al., 2024 emphasizes 052

the necessity of diversity and therefore proposed 053

clustering and ranking to select subsets of data. 054

Further, Superfiltering (Li et al., 2024) gains more 055

insights in small open-source LLM that scores the 056

instruction following ability of Alpaca_52k. Al- 057

though the instruction score provides an efficient 058

and simple criterion for data selection, it does not 059

consistently correlate with both the quality and di- 060

versity of data. Consequently, improvements in 061

performance may not always be guaranteed. 062

To address these challenges, we propose a novel 063

data filtering framework, Low-Confidence Gold 064

(LCG) for efficient instruction tuning that signif- 065

icantly reduces computational costs while main- 066
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taining model performance. Our approach, shown067

in 1, innovatively seeks to identify high-value in-068

struction data through classification tasks. Specifi-069

cally, we develop a lightweight classification model070

trained on centroid subsets that effectively catego-071

rizes instruction-response pairs, and leverage low-072

confidence predictions to curate challenging exam-073

ples most beneficial for instruction tuning. Another074

perspective is that, since the common instruction075

tuning data are lack of annotations and labels, we076

adopt the manner of semi-supervised learning, to077

construct pseudo-labels as our training groundtruth,078

as well as getting inspired quality data from afford-079

able yet effective models.080

Through extensive experiments on the081

Alpaca_52K dataset, we demonstrate that our082

filtered subsets achieve comparable or better083

performance when fine-tuning various open-source084

language models, while requiring only a fraction085

of the original data. Our main contributions are086

threefold:087

1. A novel and efficient data filtering paradigm088

for instruction tuning that combines nearest089

neighbor classification with confidence-based090

selection.091

2. We train a small classifier model that enables092

selection for the whole set of instruction fine-093

tuning data.094

3. Experiments and evaluations are conducted095

that demonstrate the outstanding effectiveness096

of our filtered datasets working on multiple097

open-source LLMs. We reach states-of-the-098

arts performance in MT-Bench and Hugging-099

Face OpenLLM Leaderboard benchmarks.100

2 Preliminaries101

2.1 K-means Clustering102

Given the Alpaca_52k dataset D = {(xi, yi)}Ni=1103

where N = 52, 000, we first cluster instructions104

into K semantic groups using K-means. Let105

ϕ(xi) ∈ Rd denote the embedding vector of in-106

struction xi. The clustering objective minimizes:107

min
{Ck}Kk=1

K∑
k=1

∑
xi∈Ck

∥ϕ(xi)− µk∥2 (1)108

where µk = 1
|Ck|

∑
xi∈Ck

ϕ(xi) is the centroid109

of cluster Ck. This partitions D into K disjoint110

subsets {C1, ..., CK} based on instruction similar-111

ity.112

2.2 Problem Setting 113

Our filtering framework, LCG aims to select a sub- 114

set Dfiltered ⊆ D that satisfies: 115

Dfiltered =

K⋃
k=1

{(xj , yj) ∈ Ck | F(xj , yj) < τk}

(2) 116

where F : D → [0, 1] is a discriminative con- 117

fidence scorer and τk is an adaptive threshold for 118

cluster Ck. The scorer F evaluates how "hard" a 119

sample is to be trivially categorized, with higher 120

values indicating the simplicity of data which is 121

easily determined and differentiated. The training 122

efficiency therefore increases since only a small 123

subset of instructions are curated. 124

3 Methodology 125

3.1 Motivation 126

Instruction filtering demands a dual-focus mech- 127

anism that intrinsically balances data quality 128

and diversity. Traditional supervised methods 129

face inherent scalability limitations as manual an- 130

notation becomes prohibitively expensive for large- 131

scale instruction datasets (Liu et al., 2022; Longpre 132

et al., 2023; Liu et al., 2023). Meanwhile, it is 133

difficult to identify suitable and challenging data 134

for LLMs training without introducing proprietary 135

LLMs or labors. Our semi-supervised framework 136

addresses these limitations through pseudo-label 137

refinement and early-stopped confidence detection, 138

creating dynamic selection boundaries aligned with 139

language model learning dynamics. 140

Cluster-centric pseudo-labeling addresses 141

data distribution challenges in instruction tun- 142

ing. Traditional sampling methods often struggle 143

to balance between common and rare instruction 144

patterns, leading to either over-representation of 145

frequent cases or loss of valuable rare examples. 146

We create semantic clustering anchors that natu- 147

rally preserve the diversity of instruction patterns. 148

By sampling 3% of data points nearest to cluster 149

centroids, we ensure each semantic category con- 150

tributes meaningful examples while maintaining 151

the inherent data distribution characteristics. 152

Early-stopped classifier training induces un- 153

certainty to identify high-quality samples. Lim- 154

iting the classifier to 3 epochs creates deliberate 155

underfitting - the model develops basic pattern 156

recognition without over-specializing to pseudo- 157

labels. When applied to non-centroid samples, this 158
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Figure 2: The overall pipeline of Low-Confidence Gold. We split our pipeline into two main steps: 1) Clustering to
get pseudo-labels and centroid data to collect the initial diversity of data. 2) We feed annotated data into a tiny yet
effective classifier to rank the confidences for the rest of the distant data to implement subset selection.

partially-trained classifier’s low-confidence predic-159

tions signal instructions containing non-trivial se-160

mantic constructs. These samples challenge the161

classifier’s emerging decision boundaries precisely162

because they contain valuable complexity that lan-163

guage models should master, not avoid.164

3.2 Centroid Coreset Selection for165

Pseudo-labels166

In the initial step of our approach, we select a core-167

set from the whole corpus to identify pseudo-labels168

by the K-means algorithm, which effectively de-169

termine each semantic clusters. Given a dataset170

of instruction pairs D = {(xi,yi)}Ni=1, we first171

encode each instruction xi into a dense vector rep-172

resentation using MiniLM (Wang et al., 2022):173

hi = AvgPool(MiniLM(xi)) ∈ R384 (3)174

This geometric progression ensures proportional175

coverage of both frequent and rare instruction pat-176

terns. Cluster centroids {cj}kj=1 are computed via:177

cj =
1

|Cj |
∑
xi∈Cj

h̃i (4)178

where Cj denotes the set of samples assigned to179

cluster j. Centroid-proximal samples are selected180

as high-confidence candidates:181

Dcore = {xi|∥h̃i − cj(i)∥2 < γ} (5)182

where γ is the 90th percentile distance within each183

cluster.184

3.3 Low-Confidence Gold: Calibrating with 185

Low-confidence samples to select data 186

After determining pseudo-labels based on clusters, 187

those annotations can be served for classification 188

training. Specifically, we train a multi-class classi- 189

fier on the core samples Dcore. The model architec- 190

ture consists of: 191

fθ(x) = Softmax(W2 ·GELU(W1hi+b1)+b2)
(6) 192

where W1 ∈ R384×768, W2 ∈ R768 are learn- 193

able parameters, and GELU denotes the Gaussian 194

Error Linear Unit activation. The model optimizes 195

cross-entropy loss: 196

L(θ) = − 1

|Dcore|
∑

(xi,yi)

k∑
j=1

I(yi = j)

· log pθ(y = j|xi)

(7) 197

Training terminates at epoch T = 3 since we aim 198

to keep the model in an early-stopped stage so that 199

they would not overfit to the centroid subset data. 200

After training, we rank the confidence distribution 201

calculated from softmax function and select the top 202

K most uncertain data in each cluster. 203

4 Experiments 204

In this section, we utilize LCG to filter 205

Alpaca_52k dataset into 6k and evaluate the sub- 206

set by fine-tuning in 2 open-source LLMs: 1) 207

Mistral-7b-v0.3 (Jiang et al., 2023) and 2) 208
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Model MT-bench Huggingface Open LLM Leaderboard Scores (%)

Score Hellaswag MMLU GSM8k ARC Avg

First Group - Base Model
Mistral-7b-v0.3 3.639 60.94 58.96 36.62 48.81 51.33

First Group - Methods
Alpaca-52k 4.018 61.18 57.73 31.61 53.07 50.90
SuperFiltering-10% 3.963 60.98 59.34 35.71 49.83 51.47
Random-6k 4.314 60.83 58.75 35.03 53.07 51.92
Perplexity-6k 4.352 61.64 58.48 37.00 51.88 52.25
Kmeans-6k 4.283 60.86 58.45 35.10 52.05 51.62
LIMA-6k 4.440 60.58 59.34 37.31 51.11 52.09
LCG-MultinomialNB-6k (Ours) 5.086 62.00 59.51 40.51 52.90 53.73
LCG-DistilBERT-6k (Ours)

:::::
4.894

:::::
61.99 59.51

:::::
40.33

:::::
52.22

:::::
53.51

LCG-DistilBERT-1k (Ours) 4.869 61.94
:::::
59.24 38.29 51.62 52.77

Second Group - Base Model
LLaMa3-8b 3.418 60.17 62.13 50.42 50.26 49.98

Second Group - Methods
Alpaca-52k 3.718 60.57 61.36 46.10 52.41 55.74
SuperFiltering-10% 3.968 60.38 61.95

:::::
50.34 51.54 55.36

Random-6k 3.912 60.83 58.75 35.03 53.07 51.92
Perplexity-6k 4.120

:::::
61.14 61.09 50.87

:::::
53.50 56.65

Kmeans-6k 3.731 60.86 58.45 35.10 53.07 51.87
LIMA-6k 4.450 60.58

:::::
62.13 50.34 51.11 55.82

LCG-DistilBERT-6k (Ours) 4.963 61.43 62.67 54.28 54.78 58.29
LCG-DistilBERT-1k (Ours)

:::::
4.776 60.95 62.26 52.92 52.82

:::::
57.23

Table 1: Performance comparison on standard benchmarks. Results in bold indicate best performance within each
group, while

:::::::::
underlined values represent second-best performance within each group. The table is divided into two

groups, each with its base model and various fine-tuning methods.

LLaMa3-8b (Dubey et al., 2024). Additionally,209

we adopt two different classifiers as our semi-210

supervised training model to examine difficult sam-211

ples. Both results demonstrate the effectiveness of212

our method, as shown in Tab. 1.213

Settings. Two classifiers are Multinomial Naive214

Bayes (Pedregosa et al., 2011) and DistilBERT215

(Sanh et al., 2019) respectively. We set the training216

learning rate as 1e-5 and also 3 epochs to train as217

mentioned before. After training is finished, we218

select curated datasets by confidences < 0.7 to fine-219

tune open-source LLMs by LoRA (Hu et al., 2022)220

with a learning rate of 2e-5 and 3 epochs.221

Our proposed Low-confidence Gold (LCG)222

method consistently outperforms existing instruc-223

tion data filtering approaches across multiple base224

models and evaluation benchmarks. When applied225

to Mistral-7b, LCG with MultinomialNB achieves226

the highest MT-bench score of 5.086, surpassing227

the previous best (LIMA-6k (Zhao et al., 2024)) by228

14.5%. Similarly, LCG with DistilBERT demon-229

strates superior performance on LLaMA3-8b, im- 230

proving the MT-bench score by 11.5% over LIMA- 231

6k. Notably, our method maintains strong perfor- 232

mance even with only 1k examples, highlighting its 233

effectiveness in identifying high-quality instruction 234

data. The consistent improvements across diverse 235

metrics (Hellaswag (Zellers et al., 2019), MMLU 236

(Hendrycks et al., 2021), GSM8k (Cobbe et al., 237

2021), and ARC (Clark et al., 2018)) further vali- 238

date the robustness of our approach. 239

5 Conclusion 240

In this paper, we proposed Low-Confidence Gold 241

(LCG), a novel data filtering framework that com- 242

bines cluster-centric pseudo-labeling with early- 243

stopped classifier training for efficient instruction 244

tuning. Through extensive experiments, we demon- 245

strated the strong performance across multiple 246

benchmarks and base models, validating the effec- 247

tiveness of our semi-supervised learning paradigm 248

in maintaining both data quality and diversity for 249
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instruction tuning.250

6 Limitation251

Our work introduces a semi-supervised training252

paradigm to curate a subset of data for instruc-253

tion tuning based on confidence score. However,254

there still exist several challenges: 1) Even though255

classifiers are tiny and spend low computational256

resources to train, it still takes time and effort to257

initially select data with annotated pseudo-labels.258

2) It is likely to be hindered by the original biases259

and tasks of the dataset, which might still cause260

inefficiency after selection.261
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A Extended Analysis of Semi-Supervised 382

Model Configurations 383

A.1 MultinomialNB Implementation 384

The confidence distribution patterns of our Multi- 385

nomialNB baseline, as visualized in Fig. 3, re- 386

veal fundamentally different characteristics com- 387

pared to deep learning architectures. The histogram 388

demonstrates remarkable uniformity across confi- 389

dence intervals (0.0-1.0 with 0.1 increments), show- 390

ing no significant concentration in specific confi- 391

dence ranges. This equilibrium phenomenon stems 392

from the model’s inherent probabilistic nature and 393

linear decision boundaries, which produce well- 394

calibrated confidence estimates despite its simplic- 395

ity. 396

A.2 DistilBERT comparative experiment on 397

learning rate 398

Our DistilBERT implementation employed a sys- 399

tematic exploration of learning rate hyperparame- 400

ters 1e-4, 1e-5, 1e-6 within the following experi- 401

mental framework: 402

1. Architecture: DistilBERT-base-uncased (66M 403

parameters) with custom classification head. 404

2. Optimization: Adam optimizer. 405

3. Training regime: 3-epoch constraint to pre- 406

vent overfitting in low-data scenarios. 407

4. Data alignment: Identical train/test splits 408

(stratified sampling) as MultinomialNB for 409

direct comparability. 410

The empirical results (shown in Fig. 4) demon- 411

strate non-monotonic performance relationships 412

with learning rate scaling. Peak accuracy (62%) 413

emerged at 1e-5, while extreme values at both ends 414

(1e-4: 36%, 1e-6: 28%) showed substantial per- 415

formance degradation. This U-shaped accuracy 416

curve suggests the existence of optimal learning 417

rate basins in semi-supervised BERT fine-tuning. 418

The model exhibited distinct confidence distri- 419

bution characteristics at the 1e-6 learning rate, with 420

predictions predominantly clustered in the low- 421

confidence range (0-0.2). However, as revealed 422

in Figure 2, comparative analysis across learning 423

rates demonstrated minimal performance variation, 424

showing only marginal improvements that corre- 425

lated with accuracy increments. 426
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Figure 3: The data distribution of MultinomialNB across different confidence intervals.

0.0
-0.

1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9

0.9
-1.

00

2000

4000

6000

8000

10000

12000

Sa
m

pl
e 

C
ou

nt

DistilBERT 1e-4

20

40

60

80

Ac
cu

ra
cy

 (%
)

91.4%

0.0
-0.

1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9

0.9
-1.

00

2000

4000

6000

8000

Sa
m

pl
e 

C
ou

nt

DistilBERT 1e-5

20

40

60

80

Ac
cu

ra
cy

 (%
)

92.7%

0.0
-0.

1

0.1
-0.

2

0.2
-0.

3

0.3
-0.

4

0.4
-0.

5

0.5
-0.

6

0.6
-0.

7

0.7
-0.

8

0.8
-0.

9

0.9
-1.

00

10000

20000

30000

40000

50000

Sa
m

pl
e 

C
ou

nt

DistilBERT 1e-6

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

All Samples Correct Predictions Accuracy Trend

Figure 4: The data distribution of DistilBERT across different confidence intervals under various learning rates.

7


	Introduction
	Preliminaries
	K-means Clustering
	Problem Setting

	Methodology
	Motivation
	Centroid Coreset Selection for Pseudo-labels
	Low-Confidence Gold: Calibrating with Low-confidence samples to select data

	Experiments
	Conclusion
	Limitation
	Extended Analysis of Semi-Supervised Model Configurations
	MultinomialNB Implementation
	DistilBERT comparative experiment on learning rate


