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Abstract

In reinforcement learning, distributional off-policy evaluation (OPE) focuses on
estimating the return distribution of a target policy using offline data collected
under a different policy. This work focuses on extending the widely used fitted
Q-evaluation—developed for expectation-based reinforcement learning—to the
distributional OPE setting. We refer to this extension as fitted distributional evalua-
tion (FDE). While only a few related approaches exist, there remains no unified
framework for designing FDE methods. To fill this gap, we present a set of guiding
principles for constructing theoretically grounded FDE methods. Building on these
principles, we develop several new FDE methods with convergence analysis and
provide theoretical justification for existing methods, even in non-tabular environ-
ments. Extensive experiments, including simulations on linear quadratic regulators
and Atari games, demonstrate the superior performance of the FDE methods.

1 Introduction

In reinforcement learning (RL), the return, defined as the cumulative sum of (discounted) rewards, is
a fundamental measure for how well the underlying policy performs. Traditional RL assesses policies
by calculating the expected return, whereas distributional RL [5] focuses on the full distribution
of return, providing a richer and more complete understanding of the policy behavior. Leveraging
distributional properties beyond the expectation (e.g., risk, multimodality) enables the handling of
more general tasks, such as risk assessment [27] and risk-sensitive policy learning [e.g., 15, 32].
Therefore, distributional RL has found applications across various domains [e.g., 8, 4, 64, 17, 12].

In this paper, we focus on addressing off-policy evaluation (OPE) problems within distributional RL,
referred to as distributional OPE. The goal is to estimate the return distribution of a target policy
using data collected under a different policy known as the behavior policy. Many distributional OPE
methods extend existing OPE techniques from traditional RL, including temporal difference (TD)
methods [e.g., 7, 14, 65, 52] and model-based approaches [e.g., 31]. Bellman residual minimization,
a well-studied method in traditional RL [e.g., 33, 21, 48], was recently adapted for distributional OPE
by [26]. Another key methodology, fitted Q-evaluation (FQE)—an iterative algorithm extensively
analyzed in traditional RL [e.g., 10, 69, 46, 59]—has also been recently extended to the distributional
setting [32, 63]. In this work, we focus on the distributional extension of FQE.

Unlike FQE, where the discrepancy function (squared ℓ2-loss) is defined over real numbers, distri-
butional extensions operate directly on distributions, making the choice of discrepancy non-trivial.
Although statistical distances are natural candidates for measuring discrepancy between distributions,
some well-known distances (e.g., total variation distance) perform poorly. Existing distributional
extensions of FQE [32, 63] are developed based on specific discrepancy functions. [32] utilizes the
p-powered Wasserstein-p metric, whereas [63] is based on log-likelihood (closely related to Kull-
back–Leibler (KL) divergence). A general guideline for selecting appropriate discrepancy functions
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in FDE remains unclear, leaving practitioners without systematic guidance for developing valid
FQE extensions tailored to their specific needs. In this paper, we address this gap by proposing
a unified framework for FDE that clarifies the role of discrepancy function selection and enables
analysis under a broad class of discrepancy functions and general conditions (including non-tabular
settings, i.e., inifinite state-action space). Along the way, we establish several guiding principles and
provide theoretical support for our framework. Beyond these general principles, we present concrete
examples of discrepancy functions derived from our framework, accompanied by their statistical
analyses, offering readily applicable discrepancy functions for practitioners. Additionally, our general
framework gives rise to FDE methods that overcome some challenges faced by existing distributional
OPE approaches (beyond those FQE extensions). In particular, many of such FDE methods support
multi-dimensional returns, which are incompatible with widely used quantile-based methods [e.g.,
15, 32, 47]. Furthermore, we provide examples of FDE methods with theoretical guarantees for
unbounded distributions, in contrast to conventionally assumed bounded distributions [e.g., 63, 45].

Our key contributions are summarized as follows. (1) Principled Framework for Fitted Distributional
Evaluation: We introduce guiding principles for constructing theoretically grounded extensions
of FQE to the distributional OPE problems, which we term fitted distributional evaluation (FDE)
methods. In particular, we show that functional Bregman divergences are natural candidates for
the discrepancy measures within this framework. See Section 2; (2) Survey of Valid Discrepancy
Measures: Leveraging the proposed framework, we derive many examples and discover novel
discrepancy measures that have not previously been considered as objective functions for distributional
OPE. See Tables 1 and 2; (3) Unified Statistical Convergence Analysis: We provide a comprehensive
convergence analysis covering a broad class of FDE methods in tabular (i.e., finite state-action space)
and non-tabular settings. This significantly expands the set of distributional OPE methods with
theoretical guarantees in non-tabular scenarios. See Section 3.

2 Fitted distributional evaluation in off-policy settings

Consider a homogeneous Markov decision process (S,A, p̃, γ) where S and A refer to the state and
action spaces, p̃ is the transition probability, and γ ∈ [0, 1) is the discount factor. More specifically,
the transition probability p̃ represents the conditional distribution of reward R ∈ Rd and next
state S′ ∈ S conditional on the current state S ∈ S and action A ∈ A. We shall focus on the
evaluation of a stationary target policy π : S → ∆(A) under infinite-horizon setting. Consider a
trajectory {(St, At, Rt)}t≥0 generated by iteratively sampling from the target policy and the transition
probability: At ∼ π(·|St) and Rt, St+1 ∼ p̃(·|St, At) (and some initial distribution of S0). The
return of the trajectory is defined by

∑
t≥0 γ

tRt. Unlike traditional RL which focuses on the policy
value, i.e., the expectation of return, distributional RL considers the whole distribution of return.
Analogously to Q-function estimation in traditional RL, the policy evaluation problem in distributional
RL, known as distributional policy evaluation, aims to estimate the conditional distribution of return
Υπ ∈ PS×A (with P ⊆ ∆(Rd) as a convex set of probability measures1), where Υπ(s, a) ∈ P refers
to the probability measure of

∑
t≥0 γ

tRt under π starting from the initial state-action pair s, a. We
are interested in distributional policy evaluation in the off-policy setup, where data are collected under
a different policy, resulting in a distributional mismatch. More specifically, we shall assume that the
data consisting of tuples in the form (S,A,R, S′) that are generated by S ∼ µ, A ∼ b(·|S) with b
being the behavior policy, and followed by (R,S′) ∼ p̃(·|S,A). We further let (S,A) ∼ ρ = µ× b.

2.1 Fitted distributional evaluation algorithm

In traditional RL, fitted Q-evaluation (FQE) [e.g., 10, 30, 58, 29, 46, 59] is a popular approach to
estimate Q-function, i.e., Qπ(s, a) := E{

∑
t≥0 γ

tRt|s, a}. It is motivated by the Bellman equation

Qπ(s, a) = ER,S′∼p̃(·|s,a),A′∼π(·|S′)

{
R+ γ ·Qπ(S

′, A′)

}
=: (BπQπ)(s, a), s, a ∈ S ×A, (1)

where Bπ : RS×A → RS×A is known as the Bellman operator. Based on the contractive property of
Bπ with respect to L∞-norm, iterative application of the Bellman operator yields convergence towards

1For our objective functions to be well-defined, P should be closed under push-forward mapping with respect
to affine maps: g(x) = r + γx for any r in the support of the reward distribution. See Appendix C.1.2.
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the unique target, i.e., limT→∞(Bπ)TQ0 = Qπ in L∞-norm for an initial value Q0. However, the
Bellman operator is often unknown and so is the evaluation of the RHS in (1), rendering this approach
impractical. Instead, given a data set D = {(si, ai, ri, s′i)}Ni=1, FQE aims to iteratively approximate
Qt ≈ BπQt−1 by minimizing the mean squared error

Qt = arg min
Q∈Q

1

|D|
∑

(s,a,r,s′)∈D

[
Q(s, a)−

{
r + γ · EA′∼π(·|s′)

{
Qt−1(s

′, A′)
}}

︸ ︷︷ ︸
sample-approximated RHS of BπQt−1(s, a)

]2
(t ≥ 1), (2)

whereQ ⊆ RS×A is a chosen function class. Succinctly stated, FQE consists of iteratively solving re-
gression problems with predictions Q(s, a) and the Bellman backup r+γ ·EA′∼π(·|s′)(Qt−1(s

′, A′)),
where the squared ℓ2-loss is used to measure the discrepancy.

We aim to extend FQE for distributional policy evaluation, where the quantity of interest is the whole
conditional distribution Υπ ∈ PS×A instead of the conditional mean Qπ ∈ RS×A. To this end, we
define the distributional Bellman operator T π : PS×A → PS×A [7] by(

T πΥ
)
(s, a) :=

∫
Rd×S×A

(gr,γ)#Υ(s′, a′)dπ(a′|s′)dp̃(r, s′|s, a), (3)

where (gr,γ)# : P → P is the push-forward mapping with respect to the function gr,γ(x) := r+ γx,
that maps the distribution of any random vector X to the distribution of r + γX . Analogously to
(1), Υπ is the solution to the distributional Bellman equation: Υ = T πΥ. As in FQE, we would
like to form a sequence Υt ≈ T πΥt−1 based on the data. In a similar spirit of FQE, given a single
observation (s, a, r, s′), we compute the distributional Bellman backup

Ψπ(r, s
′,Υt−1) :=

∫
A
(gγ,r)#Υt−1(s

′, a′)dπ(a′|s′) ∈ P, (4)

as the target. Then we aim to optimize the prediction Υ(s, a) such that some discrepancy measure
is minimized. Specifically, consider an appropriate mapping d : P × P → [0,∞), we can then
formulate a distributional extension of FQE by performing iterative minimization:

Υt = arg min
Υ∈M

1

|D|
∑

(s,a,r,s′)∈D

d
{
Υ(s, a),Ψπ(r, s

′,Υt−1)
}
, t ≥ 1, (5)

whereM⊆ PS×A is a chosen set of conditional distributions. We call the resulting method fitted
distributional evaluation (FDE). See Algorithm 1 in Appendix A for its full algorithm. In passing,
[32] also discussed a distributional FQE extension with the same name, but there are some key
differences as will be explained in Remark 2.1.

In FQE, it is straightforward to choose squared ℓ2-loss for minimization as the Bellman backup is
real number. However, in FDE, the distributional Bellman backup is a distribution. Thus, to construct
a FDE algorithm, a key question is:

How to choose d correctly to build a theoretically grounded FDE?

This question is indeed non-trivial. While many known statistical distances are natural candidates
for measuring discrepancy between two probabilities, a number of them fail. For instance, total
variation distance can perform poorly as shown in Section 4 (also see Figure 1). A major reason
is that (the expected-extended or supremum-extended) total variation distance does not lead to
contraction of the distributional Bellman operator [5]. See Section 2.3 for more details. This may not
be surprising, as the core motivation behind FQE is the contraction argument, which likely extends to
its distributional counterpart, FDE. However, a metric that guarantees contraction of the distributional
Bellman operator may also fail. One example is the (expectation-extended or supremun-extended)
Wasserstein distance due to biased gradient [7]. The issue originates from the sample approximation
based on the Bellman backup in (5), which will be explained in Section 2.4. In Section 2.2, we will
outline several principles to choose a valid discrepancy d, based on a motivating error-bound analysis.
Remark 2.1. Two existing methods share a similar construction with FDE. Crucially, both focus
exclusively on specific objective functions, without any general guideline on how to select an
appropriate divergence d. First, [32] formulated their objective using powered Wasserstein-p metric
(see their Equation (4)). Instead of applying the distributional Bellman backup Ψπ (4) based on a
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single sample, [32] estimates T π by leveraging the entire data to approximate the transition dynamics
with conditional empirical distributions. However, this approach generally fails to yield consistent
estimates in non-tabular settings (i.e., |S × A| =∞), introducing potential bias. The second method
is fitted likelihood evaluation (FLE) [63], which is based on log-likelihood. Unlike FDE, FLE uses
only a single draw from the distribution Bellman backup, leading to information loss. Moreover, FLE
is restricted to the cases where the return distributions have densities. Theoretically, their statistical
convergence rate (see their Corollary 4.14) is also slower than ours; see details in Section 3.2.

2.2 A motivating error-bound analysis

To motivate a theoretically grounded FDE method, we begin with an error-bound analysis. Firstly,
the metric under which the distributional Bellman operator is contractive plays a crucial role.
Definition 2.2. (Contraction-inducing metric) Let η̃ be a metric over PS×A. We call it a contraction-
inducing metric if T π is ζ-contraction with respect to η̃, i.e., η̃(T πΥ1, T πΥ2) ≤ ζ · η̃(Υ1,Υ2) for a
constant ζ ∈ (0, 1).

We will focus exclusively on contraction-inducing metrics under which T π is contractive. Given a
contraction-inducing metric η̃, we can derive the inequality for any sequence Υ0, . . . ,ΥT ∈ PS×A

(see Appendix C.2):

η̃(ΥT ,Υπ) ≤
T∑
t=1

ζT−t · η̃(Υt, T πΥt−1)︸ ︷︷ ︸
iteration-level error

+ ζT · η̃(Υ0,Υπ)︸ ︷︷ ︸
shrinks to zero as T→∞

, (6)

which provides an upper bound for η̃(ΥT ,Υπ), referred to as the η̃-error of ΥT . Roughly speaking,
the second term ζT · η̃(Υ0,Υπ) in the error upper bound (6) becomes negligible as we increase
T , due to ζ ∈ (0, 1). Then, to ensure small η̃-error of ΥT , it suffices to additionally require that
η̃(Υt, T πΥt−1) converges. This is the essential goal of the minimization (5). To build a successful
FDE method, we lay out the following principles to choose a valid pair (η̃, d):

(P1) η̃ is a contraction-inducing metric;

(P2) For any given Υ̃ ∈ PS×A, the unique2 minimizer of the population objective F (Υ; Υ̃) :=

ES,A∼ρ,R,S′∼p̃(·|S,A){d(Υ(S,A),Ψπ(R,S′, Υ̃))} is Υ = T πΥ̃.

(P3) For any Υ̃ ∈ PS×A, there exists a function g : R→ [0,∞) such that: (i) g(ξ) = 0 and g is
continuous at ξ = minΥ F (Υ; Υ̃); (ii) η̃(Υ, T πΥ̃) ≤ g(F (Υ; Υ̃)) for any Υ ∈ PS×A.

(P2) ensures that the minimizer of the population objective F (Υ;Υt−1) of (5) is the target T πΥt−1.
In addition, (P3) indicates that sufficiently small value of F (Υ;Υt−1) implies closeness between Υ
and T πΥt−1 with respect to the metric η̃. In the following subsections, we will center our discussion
around these three principles. With the systematic construction based on these principles, we are able
to construct a wide range of FDEs, even with choices of d that have never been used in the current
literature of distributional RL (see Table 2). The above principles do not address the finite-sample
error, but we will provide a unified statistical analysis for a broad class of FDEs in Section 3.

2.3 Contraction-inducing metrics

In this subsection, we will focus on the choices of contraction-inducing metrics (P1). To broaden the
choices of valid discrepancy d (see (P3)), we describe two classes of contraction-inducing metrics
over PS×A. The first class comprises supremum-extended metrics (7), which are well studied in
the literature [e.g., 42, 40, 6], whereas the second class consists of expectation-extended metrics (8),
which have received significantly less attention but are particularly useful for large or continuous
state-action spaces.

Supremum extension Given a probability metric η over P , its supremum-extended metric is
defined as

η∞(Υ1,Υ2) := sup
s,a

{
η
(
Υ1(s, a),Υ2(s, a

)
)

}
, Υ1,Υ2 ∈ PS×A. (7)

2Uniqueness is only required to hold almost surely over the data generating distribution ρ.
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If the individual probability metric η satisfies (i) scale-sensitivity (c-sensitivity), (ii) location-
insensitivity (regularity) and (iii) q-convexity, collectively denoted by (S-L-C) with definitions
deferred to Appendix C.4, then η∞ is a contraction-inducing metric with ζ = γc (proof in Ap-
pendix C.3.2). Our result is a slight extension from Theorem 4.25 of [6], not requiring that R and
S′ to be independent conditioned on S,A. We have listed three examples that satisfy (S-L-C) in
Table 3 of Appendix C.4, along with a survey of other well-known probability metrics that fail to
satisfy (S-L-C). Examples include total variation distance (TVD) whose supremum extension is not
guaranteed to be a contraction-inducing metric [5].

However, controlling supremum-extended metric (7) requires uniform control of probability metrics
over all state-action pairs. For large or infinite state-action space, supremum-extended metrics can be
challenging to control, which limits the choice of discrepancy d in view of (P3). This is related to
the fundamental difficulty for using an expectation-based criterion (or the sample version in (5)) to
control a supermum-based quantity (7). Indeed, existing analyses of statistical error bounds in η∞
for distributional OPE methods mainly focus on tabular setting (|S × A| <∞) [e.g., 47, 22, 45].

Expectation extension In view of the above explanation, we also introduce expectation-extended
metrics which are more compatible with the expectation-based criterion (P3). Given a probability
metric η over P and a parameter q ≥ 1, an expectation-extended metric is defined as

η̄dπ,q(Υ1,Υ2) :=

[
ES,A∼dπ

{
η2q

(
Υ1(S,A),Υ2(S,A)

)}] 1
2q

, (8)

where dπ ∈ ∆(S ×A) is defined as dπ = (1− γ)−1
∑∞
h=1 γ

h−1dhπ with dhπ(E) := P((Sh, Ah) ∈
E|S0, A0 ∼ ρ,At ∼ π(·|At) for t ≥ 1). The distribution dπ has appeared commonly in the RL
literature [e.g., 39, 68, 66], and is important for ensuring contraction-inducing property as in Theorem
2.3 below. Note that the supremum-extended metric η∞ (7) can be regarded as a special case of
η̄dπ,q when q →∞ (under appropriate conditions of dπ). Expectation-extended metrics (based on
possibly different distributions in the expectation) have been recently used for distributional OPE
[63, 26]. Here, we provide a new result that facilitates the construction of a contraction-inducing
expectation-extended metric as follows, with the corresponding proof given in Appendix C.3.1.
Theorem 2.3. Suppose that a probability metric η over P satisfies (S-L-C) with convexity parameter
q ≥ 1 and scale-sensitivity parameter c > 1/(2q) (see (15) of Appendix C.4). Then the expectation-
extended metric η̄dπ,q is a contraction-inducing metric with ζ = γc−

1
2q defined in Definition 2.2.

2.4 Discrepancy measures

We will now provide some guideline on the choice of discrepancy d. Based on (P2), we would ask
how to choose d such that, for any Υ ∈ PS×A,

T πΥ = arg min
Υ′∈PS×A

ES,A∼ρ,R,S′∼p̃(·|S,A)

{
d
(
Υ′(S,A),Ψπ(R,S′,Υ)

)}
, (9)

where the minimizer is unique up to almost surely equivalence. Note that E{Ψπ(R,S′,Υ)|S =
s,A = a} = T πΥ(s, a) for any (s, a) ∈ S ×A. As such, we hope that this conditional expectation
of random measure is the minimizer of the expected discrepancy. In the case of FQE where the
discrepancy is defined between two scalar values (see (2)), it is well known that minimizing the
expected squared loss yields the conditional expectation. However, extending this property to settings
where the discrepancy is defined between two measures is less obvious. Nevertheless, we show that
a broad family of discrepancies—the functional extension of Bregman divergences—does satisfy
this desirable property. This result significantly expands the possible construction of FDE. The
formal definition of functional Bregman divergence [43] is technically involved and thus deferred to
Definition C.1 of Appendix C.1.1. Before further discussion of functional Bregman divergences, we
present the following key result, which we prove in Appendix C.1.2:
Theorem 2.4. A functional Bregman divergence d satisfies (9) for any ρ ∈ ∆(S ×A), transition p,
and target policy π.

Despite the technically involved definition of functional Bregman divergence, it has a close relation-
ship with strictly proper scoring rule, which has been broadly studied in statistics literature. A scoring
rule S(·, ∗) : P ×ΩX → R (with ΩX being the corresponding support space of P , say Rd) is strictly
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proper if S̄(Q,Q) ≥ S̄(P,Q) where S̄(P,Q) :=
∫
ΩX

S(P, x)dQ(x) [23] with equality holding only
when P = Q. Given a strictly proper scoring rule S, we can always build a functional Bregman
divergence by letting d(P,Q) = S̄(Q,Q) − S̄(P,Q) ≥ 0, and vice versa (see Definition 3.8 and
Theorem 4.1 of [43]). This linkage, together with Theorem 2.4, provides justifications to many
examples that have been used in distributional RL, including logarithmic scoring rule [e.g., 63, 61]
that corresponds to Kullback–Leibler (KL) divergence, and squared maximum mean discrepancy
(MMD) with specific kernels [40]. More interestingly, we also find (and analyze) various examples
that have never been used in distributional RL, including squared MMD with additional kernels and
L2 distance based on density functions (see Table 2). Finally, our result also provides justifications for
adopting other strictly proper scoring rules (e.g., survival, spheric, Hyvärinen, Tsallis, Brier scoring
rules) [e.g., 23, 43, 16], which are not analyzed in this work.
Remark 2.5. With appropriate differentiability condition, the property (9) also implies that expected
gradient of d(Υ(S,A),Ψπ(R,S′,Υt−1)) (with respect to Υ) becomes zero at Υ = T πΥt−1. This is
a crucial unbiased gradient property for building TD-based or more general gradient-based algorithms.
Despite our focus on FDE, we note that Theorem 2.4 also provides justifications for building such
algorithms (e.g., TD update based on squared-MMD in [40, 67]) via functional Bregman divergence.

Next, we discuss the last principle (P3). Unlike (P1) and (P2), which involve a single quantity (either
η̃ or d), (P3) requires establishing an appropriate relationship between the contraction-inducing metric
η̃ and the discrepancy d. Since each discrepancy d has its own relationship with different probability
metrics η (prior to their extension to η̃), the discussion of (P3) becomes specific to each pair (η̃, d).
While a certain level of generalization is possible—for the squared form of some probability metric
(i.e., d = m2), η̃ can be controlled under conditions such as Assumption 3.2—this framework does
not accommodate other divergences (e.g., KL divergence). Additionally, depending on the cardinality
of S ×A, different forms of η̃ may be employed (e.g., η̃ = η∞ or η̃ = η̄dπ,q). Consequently, unlike
(P1) and (P2), it is challenging to establish a concise guideline to choose (η̃, d) based on (P3). Instead,
we study a number of examples (Table 1 for η̃ = η∞ and Table 2 for η̃ = η̄dπ,q). Section 3 provides
statistical convergence analyses of FDE methods based on different choices of d.

3 Theoretical results

First, we make the modeling in (5) explicit and writeM =MΘ := {Υθ ∈ PS×A : θ ∈ Θ}. We
assume that the offline dataset D = {(si, ai, ri, s′i)}Ni=1 consists of N independently and identically
distributed draws according to: (si, ai) ∼ ρ and ri, s

′
i ∼ p̃(·|si, ai). To simplify the theoretical

analysis, we will slightly modify the objective function (5) so that we use non-overlapping subsets of
data in each iteration. That is, the data is first split into T equally sized partitions, i.e., D = ∪t∈[T ]Dt
with |Dt| = n = N/T (assuming that N is divisible by T , without loss of generality), and, at the
t-th iteration, we obtain the estimator θ̂n,t := argminθ∈Θ F̂n,t(θ|θ̂n,t−1) where

F̂n,t(θ|θ̂n,t−1) :=
1

n

∑
(s,a,r,s′)∈Dt

d
{
Υθ(s, a),Ψπ(r, s

′,Υθ̂n,t−1
)
}
. (10)

For convergence of iteration-level error in (6), i.e., η̃(Υθ̂n,t
, T πΥθ̂n,t−1

)
P→ 0 , T πΥθ̂n,t−1

should be
accommodated in the chosen model, which is implied by the completeness assumption:
Assumption 3.1. (Completeness) For ∀θ ∈ Θ, T πΥθ = Υθ′ for some θ′ ∈ Θ.

This assumption is common in the analysis of many iteration-based RL algorithms [e.g., 13, 61, 63,
60, 24]. By Assumption 3.1, there exists a value θ∗,t ∈ Θ such that Υθ∗,t = T πΥθ̂n,t−1

.

Our results are divided into the following two subsections. In Section 3.1, we focus exclusively on
divergences that can be expressed as squared metrics and consider the tabular setting. In this case, we
can obtain near-minimax optimal convergence rates for various FDEs (see Table 1). In Section 3.2,
we broaden the analysis to cover a wider range of divergences in both tabular and non-tabular settings
(see Table 2), establishing theoretical guarantees for many FDEs under more general conditions.

3.1 Squared metric divergence under tabular setting

Under tabular setting (i.e., |S × A| < ∞), we shall assume that every state-action pair can be
observed with non-zero probability, which is at least pmin := mins,a ρ(s, a) > 0, where ρ represents
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the probability mass function of (S,A) in the data generating distribution. In this subsection, we
focus on a class of functional Bregman divergences that are squared metrics, i.e., d = m2 for some
induced metric m associated with an appropriate inner product space (G, ⟨·, ·⟩m). More specifically,
we require that each probability distribution µ ∈ P admits a unique representation G(·|µ) ∈ G, and
that m(µ1, µ2) = ∥G(·|µ1)−G(·|µ2)∥m holds for any µ1, µ2 ∈ P . (It is possible that some element
in G does not correspond to any element in P .) The inner product structure supports a stronger
theoretical analysis, leading to near-minimax optimal convergence rate established in Theorem 3.3.
The precise requirement (including an additional technical condition) for the metric m are formally
stated in Definition C.2 of Appendix C.6. We will refer to such metrics as inner-product-space (IPS)
metrics. Under mild conditions, squared IPS metrics d = m2 are functional Bregman divergences
(see Appendix C.9.1). Examples of functional Bregman divergence d that can be represented as
squared IPS metrics are listed in Table 1. See Appendix C.5 for the their technical constructions.

Regarding (P3), we assume that η can be well-bounded by m in the following assumption.
Assumption 3.2. The probabaility metric η satisfies (S-L-C). For any µ1, µ2 ∈ P , there exist some
constants Csurr > 0, δ > 0, ϵ0 ≥ 0 such that

η(µ1, µ2) ≤ Csurr ·m(µ1, µ2)
δ + ϵ0.

Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold. Moreover, given a probability metric η that
satisfies (S-L-C) with convexity parameter q ≥ 1 and scale-sensitivity parameter c > 0 (i.e., (15) of
Appendix C.4), consider the FDE with a functional Bregman divergence d = m2 where m is an IPS
metric (Definition C.2 of Appendix C.6). Assume that there exists Cmax,m ∈ (0,∞) such that

Cmax,m ≥ sup
θ∈Θ

sup
s,a
∥G(·|Υθ(s, a))∥m & Cmax,m ≥ sup

θ∈Θ
sup
r,s′
{∥G(·|Ψπ(r, s′,Υθ))∥m}. (11)

Then for any δ0 ∈ (0, 1), by letting T = ⌊ δ2 ·
1
c · log1/γ(

N
log(4|S×A|/δ0) )⌋, we have, with probability

larger than 1− δ0,

η∞(ΥθT ,Υπ) ≤
C

1− γc
·
(
log1/γ N · log(log1/γ N)

N
· log

(4|S × A|
δ0

)
· 1

pmin
2

)δ/2
+

ϵ0
1− γc

,

for a constant C > 0 that does not depend on any of γ,N, |S × A|, δ0.

See Appendix C.6 for its proof and more detailed bound (21). Table 1 shows valid examples
of (d = m2, η), along with the parameters presented in Theorem 3.3. The second last column
determines the convergence rate (Nδ/2, up to a logarithmic order), which depends on the moment
degree r ≥ 1 (defined in Table 1) for those that can cover unbounded distributions. We can see
that m = l2, dL2

,MMDcou achieves OP (N−1/(2p)) (up to a logarithmic order) in Wp,∞-error for
bounded distributions (i.e., r =∞), where Wp,∞ is the supremum extension (7) of Wp metric. For
p = 1, the convergence rate is (near-)optimal, aligning with the minimax optimal convergence rate
for W1,∞-error shown in Theorem B.1 of [45] (up to a logarithmic order). To our knowledge, there is
no corresponding minimax result for distributional OPE problems when p > 1. However, N−1/(2p)

is comparable to the optimal convergence rate of empirical probability measure (Theorem 1 of [18]).

Table 1: Comparison of different FDE methods under tabular setting. See Appendix A for definitions
of the suggested examples of d = m2 and η∞, and the corresponding probability space P , such that
MΘ ⊆ PS×A. p ≥ 1 is an integer, and r > p is such that supθ∈Θ sups,a EZ∼Υθ(s,a){∥Z∥r} <∞.

d(= m2) η∞ c δ ϵ0

Cramér : l22 Wp,∞ 1 1/p 0
MMD-Energy : MMD2

β MMDβ,∞ β/2 1 0
PDF-L2 : d2L2

Wp,∞ 1 2(r−p)
(d+2r)p 0

MMD-Matern : MMD2
ν Wp,∞ 1 r−p

(d+2r)p 0

MMD-RBF : MMD2
σRBF

Wp,∞ 1 2(r−p)
(d+2r)p 23/2 · Γ((p+d)/2)Γ(p/2)

MMD-RBF-transformed : MMD2
σ,f Wp,∞ 1 1/p 23/2 · Γ((p+d)/2)Γ(p/2)

MMD-Coulomb : MMD2
cou Wp,∞ 1 1/p 0
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3.2 General divergence under possibly non-tabular setting

In this subsection, we will discuss general state-action spaces that can be either tabular or non-tabular.
As explained in Section 2.3, controlling η∞-error (like Theorem Theorem 3.3) by an expectation-
based objective function is challenging and requires strong assumptions for non-tabular settings. We
now shift our focus to the more compatible (expectation-based) η̄dπ,q-bound. In this subsection,
we move beyond squared IPS metrics discussed in Section 3.1 and allow d to be more general
functional Bregman divergence. Some standard conditions are needed to establish the convergence.
Specifically, we assume that the data distribution (ρ) sufficiently covers the target distribution (dπ)
(see Assumption C.4), and that the model class satisfies an entropy condition characterized by a
complexity coefficient α ∈ (0, 2) (see (23) of Assumption C.3). The larger the α, the more complex
the model class.

Table 2 summarizes the theoretical guarantee for a broad class of d based on our theorems. All error
bounds are developed using empirical process theory for M-estimation (see Theorem D.1). However,
different classes of d require separate ways to verify the required modulus condition (Condition 2 of
Theorem D.1), resulting in different convergence rates. To apply the empirical process theory, we
introduce a surrogate metric for the construction of entropy conditions (e.g., see m in Appendices
C.8 and C.15). Informally, this surrogate metric is required to be able to control the differences in the
objective function. However, unlike Theorem 3.3, we do not require the divergence to be explicitly
constructed from the metric, hence accommodating a broader class of divergences. Based on this,
we present two general theorems. Theorem C.5 assumes that the surrogate metric is induced by a
normed space, while Theorem C.11 applies to general surrogate metrics. Although Theorem C.5
supports a more limited set of divergences, it provides stronger convergence rate guarantees compared
to Theorem C.11. In terms of the scope of applicable divergence choices, we have the following
inclusion relationships:

Theorem 3.3 (tabular) ⊆ Theorem C.5 (general) ⊆ Theorem C.11 (general).

However, the strength of the convergence rate guarantees follows the reverse order. Note that Theorem
3.3 only applies to the tabular case. We remark that some important divergences (e.g., KL divergence)
are not covered in the aforementioned theorems, requiring separate analysis (see Corollary B.9).

Due to space limitation, we only present a simplified version of Theorem C.5 for reference. The error
bound in Theorem C.11 shares a similar form.

Theorem 3.4 (Simplified version of Theorem C.5). Let η be a probability metric that satisfies
(S-L-C) with q ≥ 1 and c > 1/(2q). Suppose Assumptions 3.1, 3.2, C.3 and C.4 hold. By letting
T = ⌊ 1

c− 1
2q

· δ′

2(l−1)+α · log1/γ N⌋ with δ′ = min{δ, 1/q}, the corresponding FDE achieves

η̄dπ,q(ΥθT ,Υπ) ≤
1

1− γc−
1
2q

·OP
{(

N

log1/γ N

) −δ′
2(l−1)+α

}
+

1

1− γc−
1
2q

· 21−
1
2q · ϵ0.

We now turn to Table 2, which provides several examples of divergences d. (See Appendix A for
definitions and Corollaries B.1–B.9 in Appendix B for detailed bounds.) The table summarizes the
pairs (d, η̄dπ,q) in Columns 1–2, along with their ability to handle unbounded return distributions,
distributions without densities, and their associated return dimensionality considerations (Columns
3–5). If convergence cannot be guaranteed due to a nonzero ϵ0, the corresponding convergence rate
is omitted. To the best of our knowledge, [63] is the only existing work that provides a statistical
convergence analysis for distributional OPE in non-tabular settings. In comparison, our FDE method
using d = l22 (the first row of Table 2) consistently achieves faster convergence rates, as compared to
the rate of their FLE method obtained in [63], across all degrees of Wasserstein metric p ≥ 1 and
model complexities α ∈ (0, 2). See (12) of Appendix B.1 for details.

4 Experiments

We evaluate our FDE methods with baselines through two experiments3: linear quadratic regulator
(LQR) and Atari games. LQR is a parametric setting widely studied in RL literature [e.g., 9, 63, 37].

3Codes are available at https://github.com/hse1223/Fitted-Distributional-Evaluation.git
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Table 2: Comparison of different FDE methods under general state-action space. See Ap-
pendix A for definitions of examples of d and η̄dπ,q. p ≥ 1 is an integer, and r > p satisfies
supθ∈Θ sups,a EZ∼Υθ(s,a){∥Z∥r} <∞. Convergence rates are displayed up to a logarithmic order.

d η̄dπ,q unbounded density-free d rate reference

l22 Wp,dπ,p ✗ ✓ 1 N
−1
p · 1

2+α Theorem 3.4

MMD2
β=1 W1,dπ,1 ✓ ✓ ≥ 1 N

−1
4(d+1)r

r−1
+α Theorem 3.4

MMD2
β>1 MMDβ,dπ,1 ✗ ✓ ≥ 1 N

−1
2+α Theorem C.11

d2L2
Wp,dπ,p ✓ ✗ ≥ 1 N

−2(r−p)
(d+2r)p

· 1
2+α Theorem 3.4

MMD2
ν Wp,dπ,p ✓ ✗ ≥ 1 N

−(r−p)
(d+2r)p

· 1
2+α Theorem 3.4

MMD2
σRBF

Wp,dπ,p ✓ ✓ ≥ 1 – Theorem 3.4
MMD2

σ,f Wp,dπ,p ✗ ✓ ≥ 1 – Theorem 3.4

MMD2
cou Wp,dπ,p ✗ ✗ ̸= 1 N

−1
p · (6−α)

16 Theorem C.11
KL Wp,dπ,p ✗ ✗ ≥ 1 N

−1
p · 1

2+α Corollary B.9

For the LQR experiment, we have compared FDE methods (PDFL2, RBF, Matern, Energy, KL). All
of these FDE methods outperformed the baseline FLE [63]. Due to space limitations, we defer the
details to Appendix E.1.

Atari games are common testbeds for distributional RL methods [e.g., 5, 15, 40, 52, 65]. We compared
the proposed FDE methods with FLE [63], QRDQN [15] and IQN [14]. Among these methods,
QRDQN and IQN rely on quantile-based modeling, and we adopted Gaussian mixture modeling
(GMM, see details in Appendix E.2.1) to model distributions for all other methods. In our experiments,
we tested different numbers of mixtures / quantiles (M = 10, 100, 200) and considered multiple
Atari games: Atlantis, Breakout, Enduro, KunfuMaster, Pong, Qbert, SpaceInvader. We estimated
Υπ ∈ PS×A in two different environments (deterministic / random reward), each having different
target policies. For each environment, we collected offline data from two different behavior policies
(representing strong and weak coverage), with three different sample sizes (N = 2K, 5K, 10K). See
Appendices E.2.2 and E.2.4 for algorithmic details.

In our simulations, we have included the following methods: (i) baseline methods (FLE, QRDQN,
IQN), (ii) our FDE methods (KL, Energy, PDF-L2, RBF), (iii) non-functional Bregman divergence
(TVD) that we did not study. Figure 1, which contains these methods in order from left to right
for four different games, shows the inaccuracy comparison with N = 10K and M = 200 under a
specific environment and behavior policy. TVD shows no improvement of accuracy through iterations,
corroborating our proposal to build the objective functions based on functional Bregman divergence
in Section 2.4. On the contrary, our FDE methods (particularly, KL and Energy) not only decrease the
inaccuracy, but also outperform the baseline methods in most games with respect to mean inaccuracy
and variance.

Figure 1: Mean (dots) and confidence region (mean± STD) for 5 seeds based on N = 10K samples:
W1-inaccuracy (Y-axis) for each method (X-axis) for the games with M = 200. See Figures 3–5 for
simulation results in all seven games.
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Besides the four settings of Figure 1, we have more results for a wide range of different settings
(i.e., seven games, two environments, two behavior policies, three mixture sizes and three sample
sizes). Overall, FDE methods outperformed the baseline methods. More details can be found in
Appendix E.2. Moveover, we also demonstrated that another functional Bregman divergence—the
Hyvärinen divergence, which was not part of our main study—performs well in practice, supporting
our discussion in Section 2.4. See Figures 3–5 and Tables 6–33 of Appendix E.2.5.

5 Discussion

A central goal of this work is to explore how to choose d for constructing a theoretically sound
FDE method. At a high level, different d respond differently to deviation between Υ and Ψπ in (5),
much like how various loss functions behave differently in empirical risk minimization. Therefore,
the choice of divergence should be tailored to the specific problem at hand. To move toward a
principled framework for choosing d in specific applications, we believe the first step is to identify
what constitutes a valid candidate. To date, this question remains largely unaddressed in the literature,
and only a few valid choices have been identified - let alone systematically compared. Our work
makes substantial progress on this front. While comparative analyses of certain functional Bregman
divergences do exist and may provide practical guidance, we acknowledge that this work does not yet
offer a comprehensive guide for selecting among them in practice.

Besides, we acknowledge several other technical limitations of our study. First, while our framework
establishes the sufficiency of using functional Bregman divergence to ensure the property (9) (The-
orem 2.4), the necessity remains an open question. Second, for simplicity, our theoretical analysis
assumes data splitting, leading to independent samples at each iteration. It would be valuable to
extend the analysis to scenarios where data are reused across iterations. Finally, our theorems rely on
the completeness assumption (Assumption 3.1), which may be overly restrictive in practical settings.
We could introduce a term that quantifies violations of this assumption via the inherent Bellman error
[38] and incorporate it into our final bound. We leave such an extension for future work.
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• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract contains the summary of the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned limitations of our research in the last section of our main text.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Every theorems and lemmas explicitly mention the necessary assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have elaborated the algorithmic details used in constructing experiment
settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data that we used are either simulated on our own, or already made public
by OpenAI. All the simulation details are in Appendices E.1 and E.2. After acceptance of
the paper, we disclosed the URL to the github repository that contains our Python codes
(that we have created) which are used for simulations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the algorithmic details including hyperparameters in
Appendices E.1 and E.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The simulation results contain the mean inaccuracy and standard deviation,
thereby providing an error bar.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specified all the computation details in Appendix E.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our research is purely about methodology of machine learning. Our goal lies
in presenting methods and proving their theoretical convergences.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research does not contain any data or models that could be risky. We have
used only public open-source data that is available from OpenAI.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The data that we use are open-source data, available from OpenAI.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
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Justification: The data that we use are open-source data, available from OpenAI. There are
new assets whose documentations are needed. After acceptance, we only added URL to the
github repository that contains our Python codes (that we have created) which are used in
simulations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not contain any crowdsourcing or study over human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: In our study, there was no participation of human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]

Justification: LLM is not used in developing the core methodology.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Definitions of metrics and divergences

Following is the generalized algorithm of FDE methods.

Algorithm 1 Fitted distributional evaluation
Input: Functional Bregman divergence d (Tables 1–2), ModelM, Initial Υ0 ∈M, Data D
Output: ΥT
for t = 1 to T do

Perform the minimization (5) to obtain Υt.
end for

For Tables 1 and 2 of Section 3, we shall define the necessary concepts needed to understand the
objective functions and contraction-inducing metrics.

A.1 Contraction-inducing metrics

Following are the individual metrics that satisfy (S-L-C) and their supremum (7) and expectation-
extensions (8) (which are contraction-inducing metrics (Definition 2.2)) that we used in Tables 1 and
2.

Wasserstein-p metric is defined as follows, with J(µ1, µ2) being the possible joint distributions of
X ∼ µ1 and Y ∼ µ2:

Wp(µ1, µ2) := inf
J(µ1,µ2)

(
E∥X−Y∥p

)1/p

(p ≥ 1).

Its supremum and expectation extensions are defined as follows, with their contractive factors (ζ of
Definition 2.2)

Wp,∞(Υ1,Υ2) := sup
s,a

Wp(Υ1(s, a),Υ2(s, a)) with ζ = γ,

Wp,dπ,p(Υ1,Υ2) :=

[
E
{
W2p
p (Υ1(s, a),Υ2(s, a))

}] 1
2p

with ζ = γ1− 1
2p .

MMD-Energy is defined as the square-rooted form of following MMD-squared (with X,X ′ ∼ µ1

and Y, Y ′ ∼ µ2 all being indepenent)

MMD2
β(µ1, µ2) := E{kβ(X,X ′)}+ E{kβ(Y, Y ′)} − 2 · E{kβ(X,Y )},

with kβ(x, y) := ∥x∥β + ∥y∥β − ∥x− y∥β (0 < β < 2).

Its supremum and expectation extensions are defined as follows, with

MMDβ,∞(Υ1,Υ2) := sup
s,a

MMDβ(Υ1(s, a),Υ2(s, a)) (0 < β < 2) with ζ = γ
β
2 ,

MMDβ,dπ,1(Υ1,Υ2) :=

[
Es,a∼dπ

{
MMD2

β(Υ1(s, a),Υ2(s.a)
}] 1

2

(1 < β < 2) with ζ = γ
β−1
2 .

A.2 Divergences

Functional Bregman divergences (choices suggested in Tables 1 and 2) are what determine the
objective functions and their corresponding choices of P , whose elements can be used as inputs of d.
Our model should satisfyMΘ ⊆ PS×A.

For Cramér FDE, we use d = l22 and corresponding P:

l22(µ1, µ2) :=

∫ b2

b1

∣∣∣F (z|µ1)− F (z|µ2)
∣∣∣2dz with F (·|µ) being cdf of µ ∈ P,

P = ∆([b1, b2]) := {probability measures of distributions bounded in [b1, b2] ⊊ R}.
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For Energy FDE, we use d = MMD2
β and corresponding P (X,X ′ ∼ µ1 and Y, Y ′ ∼ µ2 being

mutually independent):

MMD2
β(µ1, µ2) := E{kβ(X,X ′)}+ E{kβ(Y, Y ′)} − 2 · E{kβ(X,Y )},

with kβ(x, y) := ∥x∥β + ∥y∥β − ∥x− y∥β (0 < β < 2),

P = {µ ∈ ∆(Rd) (d ≥ 1) : ∥EX∼µ{kβ(X, ·)}∥H <∞} withHβ being the RKHS of kernel kβ .

For PDF-L2 FDE, we use d = d2L2
and corresponding P:

d2L2
(µ1, µ2) :=

∫
Rd

∣∣∣f(z|µ1)− f(z|µ2)
∣∣∣2dz with f(·|µ) being pdf of µ ∈ P,

P =

{
µ ∈ ∆(Rd) (d ≥ 1) :

∫
Rd

f2(z|µ)dz <∞
}
.

For MMD-Matern FDE, we use d = MMD2
ν and corresponding P (X,X ′ ∼ µ1 and Y, Y ′ ∼ µ2

being mutually independent):

MMD2
ν(µ1, µ2) := E{kν(X,X ′)}+ E{kν(Y, Y ′)} − 2 · E{kν(X,Y )},

with kν(x,y) :=
21−ν

Γ(ν)
·
(√

2ν∥x− y∥
σMat

)ν
·Kν

(√
2ν · ∥x− y∥

σMat

)
for some σMat > 0, ν > 0,

P = {µ ∈ ∆(Rd) (d ≥ 1) : ∥EX∼µ{kν(X, ·)}∥H <∞}
withHν being the RKHS of kernel kν .

For MMD-RBF FDE, we use d = MMD2
σRBF

and corresponding P (X,X ′ ∼ µ1 and Y, Y ′ ∼ µ2

being mutually independent):

MMD2
σRBF

(µ1, µ2) := E{kσRBF
(X,X ′)}+ E{kσRBF

(Y, Y ′)} − 2 · E{kσRBF
(X,Y )},

with kσRBF
(x,y) =

1

(2
√
π)d
· σRBF

−d · exp
(
−1

4σRBF
2
∥x− y∥2

)
,

P = {µ ∈ ∆(Rd) (d ≥ 1) : ∥EX∼µ{kσRBF
(X, ·)}∥H <∞}

withHσRBF
being the RKHS of kσRBF

.

For MMD-RBF-transformed FDE, we use d = MMD2
(σ,f) and corresponding P (with conditions

of function f and definition of If are mentioned in Equations 8 and 10 of [70]) (X,X ′ ∼ µ1 and
Y, Y ′ ∼ µ2 being mutually independent):

MMD2
(σ,f)(µ1, µ2) := E{k(σ,f)(X,X ′)}+ E{k(σ,f)(Y, Y ′)} − 2 · E{k(σ,f)(X,Y )},

with k(σ,f)(x,y) := exp

(
− ∥x− y∥2

4σ2

)
· If

(
∥x+ y∥√

2σ

)
,

P = {µ ∈ ∆(Rd) (d ≥ 1) : ∥EX∼µ{k(σ,f)(X, ·)}∥H <∞}
withH(σ,f) being the RKHS of k(σ,f).

For MMD-Coulomb FDE, we use d = MMD2
cou and corresponding P (X,X ′ ∼ µ1 and Y, Y ′ ∼ µ2

being mutually independent):

MMD2
cou(µ1, µ2) := E{kcou(X,X ′)}+ E{kcou(Y, Y ′)} − 2 · E{kcou(X,Y )},

with kcou(x,y) = κ
(cou)
0 (x− y) :=

{
− log ∥x− y∥ if d = 2

∥x− y∥2−d if d ≥ 3

P = {µ ∈ ∆(Rd) (d ≥ 2) : ∥EX∼µ{kcou(X, ·)}∥H <∞} withHcou being the RKHS of kcou.

For KL FDE, we use d(µ1, µ2) = KL(µ2, µ1) and corresponding P:

KL(µ2∥µ1) :=

∫
Rd

f(z|µ2) · log
f(z|µ2)

f(z|µ1)
dz,with f(·|µ) being pdf of µ ∈ P

P = {µ ∈ ∆(X ) with X ⊆ Rd (d ≥ 1) : µ has a density f(·|µ) > 0 on X .}.
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B FDE methods for general state-action space

B.1 Cramér FDE

We construct our objective function (10) based on Cramér distance d = l22, and refer to this as Cramér
FDE. Assuming bounded variables in R, i.e., Z(s, a; θ) ∈ [a, b] for all s, a ∈ S ×A and θ ∈ Θ, we
obtain the following based on Theorem C.5, with proof and detailed bound in Appendix C.10.

Corollary B.1. Under Assumptions 3.1, C.4, our estimator (10) based on d = l22 achieves the
following in bounded support in R, say [a, b].

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

·OP
{(

N

log1/γ N

)−1/p
2+α

}
.

Here, ≲ means upper-bounded by RHS multiplied by some constant that does not depend on γ and
N .

Although Cramér FDE is limited in bounded uni-dimensional distributions, we can provide direct
comparison with FLE under exactly the same conditions, at least for d = 1. Assuming bounded
return distribution with the same model complexity logN[ ](F̃Θ, ∥ · ∥L1,∞, ϵ) ≲ ϵ−α (where F̃Θ

represents the conditional pdf family modeled by Θ), Cramér FDE achieves faster convergence rate
than FLE uniformly for all p ≥ 1 and α ∈ (0, 2). See Appendix C.17.1 for its proof.

FLE : Wp,dπ,p(ΥθT ,Υπ) ≲ ÕP
(
N

−1
2p (1−α)) VS Cramér : Wp,dπ,p(ΥθT ,Υπ) ≲ ÕP

(
N

−1
p(2+α)

)
.

(12)

Here, ÕP indicating the convergence rate, allowing up to logarithmic difference from the conventional
OP . We have suggested two examples for Cramér FDE, in which FLE cannot provide a valid
bound due to no conditional densities. The first example is linear MDP (Appendix C.17.2) that is
frequently assumed in both traditional and distributional RL [e.g., 62, 46, 61]. Cramér FDE achieves
Wp,dπ,p-convergence rate of ÕP (N−1/(3p)). The second example is Linear Quadratic Regulator
(Appendix C.17.3), which has been also been frequently mentioned in traditional RL [e.g., 9, 37],
and was recently applied in distributional RL under finite-horizontal setting [63]. We extended this
towards the infinite-horizontal setting. For bounded distributional families, Cramér FDE achieves
Wp,dπ,p-convergence rate of ÕP (N−1/(2p)). For unbounded distributional families, its generalized
extension Energy FDE (introduced in the following subsection) achieves W1,dπ,1-convergence rate
of ÕP (N−1/8).

B.2 Energy FDE

Now, we will assume multi-dimensional return (d ≥ 1), but still bounded. Here, we use d = MMD2
β

with β ∈ (1, 2), which we name as Energy FDE. MMDβ is the MMD (17) with the following

kβ(x, y) := ∥x∥β + ∥y∥β − ∥x− y∥β (1 < β < 2).

Unlike the tabular setting (supported by Theorem 3.3) where we could apply β ∈ (0, 1), we have
to limit to β ∈ (0, 1). But we can extend the result into β = 1 (second statement of Corollary B.2).
Considering that l22 = 1

2MMD2
β=1 for d = 1 [7], Energy FDE can be viewed as an extension of

Cramér FDE. Proofs and detailed bounds are in Appendix C.11.

Corollary B.2. Under Assumptions 3.1, C.4, our estimator (10) based on d = MMD2
β with β ≥ 1

can achieve the following bound in bounded support of Rd,

MMDβ,dπ,1(ΥθT ,Υπ) ≲
1

1− γ
β−1
2

·OP
{(

N

log1/γ N

) −1
2+α

}
(1 < β < 2),

MMD1,dπ,1(ΥθT ,Υπ) ≲

(
1

log(1/γ)

)1+ 1
2+α

·OP
{
(logN)1+

2
2+α ·N

−1
2+α

}
(β = 1).
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This result can further be used to bound W1,dπ,1-inaccuracy based on the relationship between MMDβ

and W1 based on (36), which is introduced by [36]. Based on Wp(µ, ν) ≤ D1− 1
p ·W1/p

1 (µ, ν)
(suggested by [44]) where D ∈ (0,∞) represents the diameter of support of bounded distributions,

we can further bound Wp,dπ,p(ΥθT ,Υπ) ≤ D2(1− 1
p ) ·W1/p

1,dπ,1(ΥθT ,Υπ). However, these are still
restricted in bounded distributions.

Therefore, let us introduce the case where Energy FDE can bound the inaccuracy for unbounded
distributions even without s, a-conditional densities, based on W1,dπ,1-inaccuracy. Towards that
end, we assume that the r-th moment (r > 1) of the distributions are uniformly bounded, i.e.,
Mr := supθ∈Θ(E∥Z(s, a; θ)∥r)1/r < ∞. See Appendix C.15.3 for proof, which is based on the
alternative Theorem C.11.
Corollary B.3. Under Assumptions 3.1, C.4, our estimator (10) based on d = MMD2

β (β = 1),
we have following. Assuming that supθ∈Θ sups,a E∥Z(s, a; θ)∥ <∞ and sups,a ∥R(s, a)∥ψ2 <∞
where R(s, a) indicates the reward vector conditioned on s, a, we have

W1,dπ,1(ΥθT ,Υπ) ≲
1

1− γ1/2
·OP

{(
1

log(1/γ)
· (logN)2

N

) 1
2(l−1)+α

}
with l =

r(2d+ 3)− 1

r − 1
.

Here, having finite values of higher moments (i.e., larger r > 1) leads to tighter convergence rate.
Bounded variables (r =∞) will give us l = 2d+3, leading to W1,dπ,1(ΥθT ,Υπ) = ÕP (N

−1
4(d+1)+α ).

In case of d = 1 and r =∞, it does not degenerate into that of Corollary B.1, since they are based
upon different proof structures.

B.3 PDF-L2 FDE

Now let us construct the objective function (10) with d = d2L2
, namely PDF-L2 method. By assuming

existence of conditional densities, PDF-L2 method can achieve faster convergence rate for unbounded
distributions than Energy FDE (Corollary B.3). Proof and detailed bound are in Appendix C.12.
Corollary B.4. Under Assumptions 3.1, C.4, our estimator (10) based on d = d2L2

can achieve the
following bound in Rd. Assuming Mr := supθ∈Θ sups,a(E∥Z(s, a; θ)∥r)1/r <∞ with r > p and
supθ∈Θ supz,s,a |fθ(z|s, a)| <∞.

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

·OP
{(

N

log1/γ N

) −1
2+α · 2(r−p)

(d+2r)p
}

We can see that PDF-L2 method not only provides Wp,dπ,p-bound for all p ≥ 1, but also provides
faster convergence rate than Energy FDE (Corollary B.3) in the case of p = 1, for all r ≥ 1, d ≥ 1,
and α ∈ (0, 2).

B.4 MMD-Matern FDE

[56] has shown that MMD based on translation invariant kernels, i.e., k(x,y) = κ0(x−y), can bound
Wasserstein metrics when the distributions have smooth enough densities (see their Theorem 15).
One such example is MMD-Matern, which is the MMD (17) with following kernel with parameters
ν > 0 and σMat > 0 (assumed to be fixed) and Kν being modified Bessel function,

kν(x,y) :=
21−ν

Γ(ν)
·
(√

2ν∥x− y∥
σMat

)ν
·Kν

(√
2ν · ∥x− y∥

σMat

)
.

We will treat σMat > 0 as a fixed constant since we are more interested in ν. It is well-known that
ν = 1 corresponds to Laplace kernel and ν →∞ corresponds to RBF kernel. It leads to following
result (proof and detailed bound in Appendix C.13).
Corollary B.5. Under Assumptions 3.1, C.4, our estimator (10) based on d = MMD2

ν can achieve
the following bound in Rd. Assuming Mr := supθ∈Θ sups,a(E∥Z(s, a; θ)∥r)1/r < ∞ with r > p
and its conditional densities having Sobolev norms ∥fθ(·|s, a)∥Hν+d/2(Rd) ≤ B(<∞), we have

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

·OP
{(

N

log1/γ N

) −1
2+α · r−p

(d+2r)p
}
.
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Although this can be applied for unbounded distributions as PDF-L2 method (Corollary B.4), its
bound is always looser than that of PDF-L2 method, as shown in its convergence rate which is
half times that of PDF-L2 method. This is since the proof of bounding Wasserstein metric by
MMD-Matern is based on the following logic.

Wp(µ1, µ2) ≲ d
2(r−p)
(d+2r)p

L2
(µ1, µ2) ≲ MMD

r−p
(d+2r)p
ν (µ1, µ2).

See Section 2.4 of [56] for details. This applies for all possible MMD’s associated with translation-
invariant kernels, other than MMD-Matern.

B.5 MMD-RBF FDE

Since MMD-Matern that is shown above covers the case of 0 < ν <∞ and requires smooth enough
densities. MMD-RBF (corresponding to MMD-Matern with ν =∞) is used a lot in many machine
learning areas (e.g., kernel support vector machine).

kσRBF(x,y) =
1

(2
√
π)d
· σRBF

−d · exp
(
−1

4σRBF
2
∥x− y∥2

)
with σRBF > 0.

It is also used in distributional reinforcement learning (MMDRL by [40]). They only used it in
simulations, without any theoretical justification due to their failure to provide a contraction-inducing
metric based on MMD-RBF. Following lemma can provide justification of its practice (proof and
detailed bound in Appendix C.14.2), not requiring the existence of conditional densities.

Corollary B.6. Under Assumptions 3.1, C.4, assuming Mr := supθ∈Θ sups,a(E∥Z(s, a; θ)∥r)1/r <
∞ with r > p, our estimator (10) based on d = MMD2

σRBF
with σRBF

let
= σN > 0 can achieve the

following bound in Rd,

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

· C(p, d, σN , p) ·
(
Cbrack(σN )

σdN

) 1
1+α/2

· r−p
(d+2r)p

×OP

{(
N

log1/γ N

) −1
2+α · 2(r−p)

(d+2r)p
}
+

2
5
2−

1
2p

1− γ1− 1
2p

· Γ((p+ d)/2)

Γ(p/2)
· σN︸ ︷︷ ︸

non-random quantity decreasing by σN→0.

.

Fixing σN = σRBF > 0 leads to an irreducible term at the end. Of course, we can shrink it by letting
σN → 0. However, other terms (e.g., C(p, d, σN , p), Cbrack(σN )/σdN ) can increase with σN → 0,
leaving the optimal rate of σN to be intractable.

Although we cannot show that MMD-RBF can shrink Wasserstein inaccuracy to zero, it can bound
gaussian-smoothed Wasserstein metric Wσ

p (µ, ν) := Wp(µ∗ασ, ν∗ασ) where ∗ indicates convolution
and ασ is the probability measure of N(0, σ2Id). This is widely used as an alternative for Wasserstein
metric that is difficult to be computed in high dimensions d > 1 [e.g., 70, 41]. Thus, we have made a
separate lemma (Lemma C.9) that can accommodate many other probability distances that can bound
smoothed gaussain Wasserstein metric, which includes MMD-Two-Moment.

B.6 MMD-RBF-transformed FDE

[70] suggested an MMD (17) with the following kernel which is RBF kernel multiplied with an extra
term. We will refer to its corresponding MMD as MMD-RBF-transformed, denoting it as MMD(σ,f).

k(σ,f)(x,y) := exp

(
− ∥x− y∥2

4σ2

)
· If

(
∥x+ y∥√

2σ

)
.

The conditions of density function f and definition of If are mentioned in Equations 8 and 10 of [70].
Assuming bounded kernel k(σ,f)(·, ·) <∞ for fixed value of σ > 0, we can achieve the following.
Proof and detailed bound are in Appendix C.14.3.
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Corollary B.7. Under Assumptions 3.1, C.4, our estimator (10) based on d = d2L2
can achieve the

following bound in Rd, if we have k(σ,f) <∞ for fixed value of σ > 0.

Wp,dπ,p(ΥθT ,Υπ) ≲
σN

1− γ1− 1
2p

·
(
C(σN ,f)
max · C1/2

brack(σN )

) 1/p
1+α/2

·OP
{(

N

log1/γ N

)−1/p
2+α

}
+

1

1− γ1− 1
2p

· 2
5
2−

1
p · Γ((p+ d)/2)

Γ(p/2)
· σN

We can let σN → 0 as N →∞. However, the optimal rate is intractable.

One example of such f is generalized beta-prime distributions: f(x) = ϵ
2πx · ((

x
λ )

−ϵ+(xλ )
ϵ)−1 with

ϵ ∈ (0, d+ 2p] and λ ∈ (0,∞), which leads to Two-moment kernel (see Definition 1 of [70]). They
have shown that such k(σ,f) is bounded in their Section 3.2 for bounded distributions.

B.7 MMD-Coulomb FDE

MMD-Coulumb is an MMD which corresponds to the following kernel.

kcou(x,y) = κ
(cou)
0 (x− y) :=

{
− log ∥x− y∥ if d = 2

∥x− y∥2−d if d ≥ 3

We can see that k(·, ·) <∞ does not hold, leading to violation of the first statement of (23). Since we
cannot apply Theorem C.5, we should resort to Theorem C.11 instead, which gives us the following
result for MMD-Coulomb. Proof and detailed bound are in Appendix C.15.2.

Corollary B.8. Under Assumptions 3.1, C.4, our estimator (10) based on d = MMD2
cou can achieve

the following bound. Assuming bounded support in Rd (d ≥ 2) and supθ∈Θ sups,a Ecou(Υθ(s, a)) <
∞ with Ecou(µ) := kcou(x,y)µ(dx)µ(dy), we have

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

·OP
{

1

log(1/γ)
·
(
(logN)2

N

) 6−α
16p

}
We can further bound Wp,dπ,p(ΥθT ,Υπ) ≤ D2(1− 1

p ) ·W1/p

1,dπ,1(ΥθT ,Υπ) if we assume bounded con-
ditional distributions. Note that the condition E(Υθ(s, a)) <∞ does not allow nonzero probability
to any points.

B.8 KL FDE

Interestingly enough, convergence of FLE [63] can also be shown by Theorem D.1. However, since it
is based on maximium likelihood, which is not a squared metric, we could fit this into the structure
of neither Theorem C.5 nor C.11. Instead, we developed a method that uses log-likelihood (or
equivalently, KL divergence), based on Theorem D.1. See Appendix C.16 for its proof. Note that this
is different from FLE in the sense that it fully utilizes the closed form density of Υθ̂n,t−1

(s′, a′) and
π(a′|s′) needed for Ψπ(r, s′,Υθ̂n,t−1

) in computing the objective function (10). This is free from
MC error caused by sampling from z ∼ Ψπ(r, s

′,Υθ̂n,t−1
) as [63] did.

Corollary B.9. Under Assumptions 3.1, C.4, our estimator (10) with d = KL (Kullback-Leibler di-
vergence) achieves the following bound. Assuming bounded distributions and existence of conditional
densities, we have following with T = ⌊ 1

1− 1
2p

· 1/p
2+α · log1/γ N⌋,

Wp,dπ,p(ΥθT ,Υπ) ≲
1

1− γ1− 1
2p

·OP
{(

N

log1/γ N

)−1/p
2+α

}
.

Here, we have logN[ ](F̃
1/2
Θ , ∥ · ∥L2,ρ, ϵ) ≤ Cbrack · ϵ−α for some α ∈ (0, 2) with F̃1/2

Θ being the

squared conditional densities, i.e., F̃1/2
Θ := {f1/2

θ (·| · · · ) : θ ∈ Θ}.
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C Technical proofs

C.1 Functional Bregman divergence

C.1.1 Technical definition

Bregman divergence was originally developed to measure discrepancy between two real vectors. It
measures the difference between the value of the convex function ϕ at x ∈ Rd and its first-order
approximation at y ∈ Rd:

Dϕ(x,y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩.

After defining a scalar-valued convex function Φ over a functional inner product space, they can also
be extended to functional objects based on Frechet derivative [19].

DΦ(f, g) = Φ(f)− Φ(g)− ⟨δΦ(g), f − g⟩.

Based on the fact that each probability measure can have its own functional representation (e.g.,
density functions), we can also extend functional Bregman divergence into discrepancy between two
probability measures. Following is the technical definition of a functional Bregman divergence for
two probability measures P,Q ∈ P (Section 3.2 of [43]).

Definition C.1. Linear span of P , namely spanP , is a collection of signed measures, and let
U ⊆ spanP be a convex subset that contains P , i.e., P ⊆ U . Let L(P) be the functional space where
its arbitrary element f satisfies

∫
ΩX

∣∣f ∣∣dµ <∞ for ∀µ ∈ P with ΩX being the support space. Now,
assume a strictly convex function Φ : U → R that has a subgradient Φ∗ : U → L(P) which satisfies
Φ(Q) ≥ Φ∗(P ) · (Q−P ) +Φ(P ) for all P,Q ∈ U , where f ·µ :=

∫
ΩX

fdµ for any f ∈ L(P) and
µ ∈ spanP . Then we can build a functional Bregman divergence d : U × U → R+ on U as follows
(Definition 3.8 of [43]),

d(P,Q) = Φ(Q)− Φ∗(P ) · (Q− P )− Φ(P ).

Since functional Bregman divergence in Definition C.1 is based on a strictly convex function Φ,
equality d(P,Q) = 0 holds only when P = Q. This is needed to ensure that T πΥ becomes the
unique minimizer of (9). Note that this is stronger than general definition of functional Bregman
divergence (e.g., Definition 3.8 of [43]) that is based on standard convex function (which may not be
strictly convex).

C.1.2 Proof of Theorem 2.4

We will treat both S,A ∼ ρ and R,S′ ∼ p̃(· · · |S,A) to be random. Let Υ1,Υ2 ∈ PS×A be arbitrary.
We obtain the following, by using the same logic that [3] used in their Theorem 1,

E
{
d
(
Υ1(S,A),Ψπ(R,S′,Υ2)

)}
= E

{
Φ
(
Ψπ(R,S′,Υ2)

)
− Φ

(
Υ1(S,A)

)
− Φ∗(Υ1(S,A)

)
·
(
Ψπ(R,S′,Υ2)−Υ1(S,A)

)}
.

Letting Υ2 = Υ and Υ1 = T πΥ, we have

E
{
Φ∗(T πΥ(S,A)

)
·
(
Ψπ(R,S′,Υ)− T πΥ(S,A)

)}
=

E
{
Φ∗(T πΥ(S,A)

)
· E

{
Ψπ(R,S′; Υ)− T πΥ(S,A)

∣∣∣∣ S,A}}
= 0,

∴ E
{
d
(
T πΥ(S,A),Ψπ(R,S′,Υ)

)}
= E

{
Φ
(
Ψπ(R,S′,Υ)

)}
− E

{
Φ
(
T πΥ(S,A)

)}
.
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Then, the following holds based on T πΥ2(s, a) = E{Ψπ(R,S′,Υ2)|s, a},

E
{
d
(
Υ1(S,A),Ψπ(R,S′,Υ2)

)}
− E

{
d
(
T πΥ2(S,A),Ψπ(R,S′,Υ2)

)}
= E

{
Φ
(
T πΥ2(S,A)

)}
− E

{
Φ
(
Υ1(S,A)

)}
− E

{
Φ∗(Υ1(S,A)

)
·
(
Ψπ(R,S′,Υ2)−Υ1(S,A)

)}
= E

{
d
(
Υ1(S,A), T πΥ2(S,A)

)}
.

Therefore, we have

E
{
d
(
Υ1(S,A),Ψπ(R,S′,Υ2)

)}
= d̄ρ(Υ1, T πΥ2) + E

{
d
(
T πΥ2(S,A),Ψπ(R,S′,Υ2)

)}
.

(13)

where d̄ρ(Υ1,Υ2) := E{d(Υ1(S,A),Υ2(S,A))}. Note that we definition of our empirical and
population objective functions (5) and (9) already require Ψπ(r, s′; Υ) ∈ P . Otherwise, they will not
be defined. Then, by convexity of P , we have T πΥ(s, a) ∈ P , since it is a convex combination over
r, s′ ∼ p(·|s, a) (see definition (3)). This leads to satisfaction of (9), since P is a convex set.

To ensure Ψπ(r, s
′; Υ) ∈ P , we can assume that P is closed under push-forward mapping with

respect to single-sample Bellman backup functions {gr,γ} for all r ∈ Rd that can be observed.
For a single-sampe Bellman backup function defined as gr,γ(x) := r + γx and X ∼ µ, its result
of push-forward mapping (gr,γ)#µ is defined as the distribution of r + γX . Being closed under
push-forward mapping means that (gr,γ)#µ ∈ P holds for any probability measure µ ∈ P and any
r ∈ Rd that can be observed. Then, for an arbitrary Υ ∈ PS×A, we can ensure that Ψπ(r, s′,Υ) ∈ P
holds for any target policy π : S → ∆(A) and observable (r, s′) ∈ Rd × S , by its definition (4) and
convexity of P . Then, our objective functions (5) and (9) can always be defined.

C.2 How bounding iteration-level error leads to final inaccuracy

By Definition 2.2, we can prove (6) based on Υπ = T πΥπ:

η̃(ΥT ,Υπ) ≤ η̃(ΥT , T πΥT−1) + η̃(T πΥT−1,Υπ) ≤ η̃(ΥT , T πΥT−1) + ζ · η̃(ΥT−1,Υπ)

≤ · · · ≤
T∑
t=1

ζT−t · η̃(Υt, T πΥt−1) + ζT · η̃(Υ0,Υπ).

This leads to (6).

C.3 How extended metrics become contraction-inducing metrics

C.3.1 Expectation-extension

Let us show that the expectation-extended (8) metric satisfies Definition 2.2.

η̄2qdπ,q(T
πΥ1, T πΥ2) = Es,a∼dπ

[{
ηq
(
T πΥ1(s, a), T πΥ2(s, a)

)︸ ︷︷ ︸
(A)

}2]
Here, the (A) part can be bounded as follows based on Properties (15). Letting p̃π(r, s′, a′|s, a) =
p̃(r, s′|s, a) · π(a′|s′) and temporarily using it as a probability measure, we have

(A) = ηq
{∫

(gr,γ)#Υ1(s
′, a′)dp̃π(r, s′, a′|s, a),

∫
(gr,γ)#Υ2(s

′, a′)dp̃π(r, s′, a′|s, a)
}

≤
∫

ηq
{
(gr,γ)#Υ1(s

′, a′), (gr,γ)#Υ2(s
′, a′)

}
dp̃π(r, s′, a′|s, a)

≤ γcq ·
∫

ηq
(
Υ1(s

′, a′),Υ2(s
′, a′)

)
dp̃π(r, s′, a′|s, a), (14)
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where we have used the (C) property of (15) in the second line, and the (S) and (L) properties of (15)
in the last line. Then, we have

η̄2qdπ,q(T
πΥ1, T πΥ2) ≤ γ2cq · Es,a∼dπ

[{
Es′,a′∼p̃π(···|s,a)

(
ηq(Υ1(s

′, a′),Υ2(s
′, a′))

)}2]
≤ γ2cq · Es,a∼dπEs′,a′∼p̃π(···|s,a)

{
η2q

(
Υ1(s

′, a′),Υ2(s
′, a′)

)}
≤ γ2cq−1 · Es,a∼dπ

{
η2q

(
Υ1(s, a),Υ2(s, a)

)}
,

We acknowledge that the last line can be shown by the trick used by [63], i.e., Es̃,ã∼dπ p̃π(s, a|s̃, ã) ≤
γ−1 · dπ(s, a). This finally leads to

∴ η̄dπ,q(T πΥ1, T πΥ2) ≤ γc−
1
2q · η̄dπ,q(Υ1,Υ2).

C.3.2 Supremum-extension

We can apply the same logic to supremum-extension (7). Taking up from (14), we have

(A) ≤ γcq · sup
s,a

η
(
Υ1(s, a),Υ2(s, a)

)
.

Taking supremum over S ×A on the LHS gives us ηq∞(T πΥ1, T πΥ2) ≤ γcq · η∞(Υ1,Υ2), leading
to η∞(T πΥ1, T πΥ2) ≤ γc · η∞(Υ1,Υ2). Although Theorem 4.25 of [6] presented the same
statement, their proof requires an additional assumption, i.e., R and S′ (generated from p̃(· · · |s, a))
being independent. We did not require this assumption.

C.4 Examples of probability metric

To construct a metric η̃ over PS×A that satisfies Definition 2.2, we will assume to have a probability
metric η over P that satisfies the following three properties of (15) with some c > 0 and q ≥ 1. We
copied the terminologies from [6] (see their Definitions 4.22, 4.23, 4.24). In the first two properties,
L(X) denotes the probability measure of random vector X ∈ Rd, and µ1, µ2 : X → P , ν ∈ ∆(X )
for some space X can be arbitrary in the third property.

(S) c-scale-sensitive : η(L(γX),L(γY )) ≤ γc · η(L(X),L(Y )) (15)

(L) location-insensitive : η(L(X + z),L(Y + z)) ≤ η(L(X),L(Y )) for an arbitrary z ∈ Rd

(C) q-convex : ηq
{∫

µ1(x)dν(x),

∫
µ2(x)dν(x)

}
≤

∫
ηq
{
µ1(x), µ2(x)

}
dν(x).

Note that if some q ≥ 1 satisfies the Property-3, then any q′ ≥ q also satisfies it by Jensen’s inequality.

Here are the examples that satisfy the properties in (15). We specify the values of c, q > 0 for each
η. Then, we specify the contractive factor ζ = γc−

1
2q for their corresponding expectation-extended

metrics (8). (Note that the supremum-extension (7) has ζ = γc.)

Wasserstein-p metric (Wp) : c = 1, q ≥ p ⇒ ζ = γ1− 1
2q (16)

MMD-Energy (MMDβ) : c =
β

2
, q ≥ 1 and q >

1

β
⇒ ζ = γ

1
2 (β−

1
q )

CDF Lp −metric (lp) : c =
1

p
, q ≥ p ⇒ ζ = γ

1
p−

1
2q

Here are the definition of above metrics. Wp is the Wasserstein metric, which is defined as follows
with J(µ1, µ2) being the possible joint distributions of X ∼ µ1 and Y ∼ µ2,

Wp(µ1, µ2) := inf
J(µ1,µ2)

(
E∥X−Y∥p

)1/p

.

It is straightforward to see Properties 1 and 2 hold with c = 1. Property 3 is shown to hold by [26]
(see their Appendix A.3.1).
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MMD (maximum-mean discrepancy) [25] associated with a kernel k(·, ·) defined as

MMD2
k(µ1, µ2) := E{k(X,X ′)}+ E{k(Y, Y ′)} − 2 · E{k(X,Y )}, (17)

with X,X′ ∼ µ1 and Y,Y′ ∼ µ2 are all independent. MMDβ is associated with Energy kernel
kβ(x,y) := ∥x∥β + ∥y∥β − ∥x− y∥β (0 < β < 2), Properties 1 and 2 are straightforward t show
with c = β/2. Property 3 can be shown with q = 1, since MMD can be expressed as the norm of
difference between two mean embeddings, i.e., MMDk(µ1, µ2) = ∥κµ1

− κµ2
∥H where κµ is the

mean embedding of µ and ∥ · ∥H is the corresponding RKHS norm of RKHSH.

MMDk

(∫
µ1(x)dν(x),

∫
µ2(x)dν(x)

)
=

∥∥∥∥∫ κµ1(x)dν(x)−
∫

κµ2(x)dν(x)

∥∥∥∥
H

≤
∫
∥κµ1(x) − κµ2(x)∥Hdν(x) =

∫
MMDk(µ1(x), µ2(x))dν(x).

lp is the metric between cdf’s of 1-dimensional random variable. Letting Fi be the cdf of µi, we
define

lp(µ1, µ2) :=

(∫ ∞

−∞
|F1(z)− F2(z)|pdz

) 1
p

.

Properties 1 and 2 are shown with c = 1/p by Proposition 3.2 of [42]. Property 3 can be shown by
using the fact that lp is a functional Lp norm between cdf’s. The same logic holds for dLp .

Table 3 also contains the survey of other well-known probability metrics. We will skip proof for their
satisfaction or non-satisfaction of each property. With fi and Fi being the pdf and cdf of probability
measure µi,

Hellinger metric: h(µ1, µ2) :=

{∫
Rd

(√
f1(z)−

√
f2(z)

)2

dz

}1/2

,

PDF Lp-metric: dLp
(µ1, µ2) :=

(∫
Rd

∣∣∣∣f1(z)− f2(z)

∣∣∣∣pdz)1/p

,

Discrepancy metric: dD(µ1, µ2) := sup
closed ballsB

∣∣µ1(B)− µ2(B)
∣∣,

Kolmogorov metric: dK(µ1, µ2) := sup
x∈R

∣∣F1(x)− F2(x)
∣∣.

Table 3: Survey of metrics: If it satisfies c-scale-sensitive or q-convexity, the corresponding value of
c > 0 or q ≥ 1 are specified.

Location-insensitive Scale-sensitive Convex
Wasserstein-p (Wp) ✓ c = 1 q ≥ p
MMD-Energy (MMDβ with 0 < β < 2) ✓ c = β/2 q ≥ 1
MMD-Matern (MMDν with 0 < ν ≤ ∞) ✓ ✗ q ≥ 1
CDF-Lp (lp) ✓ c = 1/p q ≥ 1
PDF-Lp (dLp

) : p = 1 refers to 2×TVD ✓ ✗ q ≥ 1
Hellinger metric ✓ c = d/4 ✗
Discrepancy metric ✓ ✗ q ≥ 1
Kolmogorov metric ✓ ✗ q ≥ 1

In Table 3, MMD’s associated with any kernel satisfy convexity with q = 1. However, MMD-Energy
was so far the only example that we have found, which satisfies all three properties. In the definitions
of Wasserstein metric and MMD-Energy (Appendix C.4), the Euclidean norm ∥ · ∥ used can be
replaced with another norm on Rd. See Example 11 of [23] and Proposition 3 of [49] for extensions
of MMD-Energy, and [44] for extensions of Wasserstein metrics.

C.5 Functional spaces and corresponding norms

Following are examples of the functional inner product space (G, ⟨·, ·⟩m) and its corresponding
probability space P that we have used for our methods in Section 3.1.
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For m = l2 (only applying for d = 1), the functional representer is the cdf, denoted by F (·|µ). The
functional space is the functional L2 space, that is G := {F : X → R :

∫
|F (z)|2dz < ∞} with

X = [b1, b2] ⊊ R being a bounded support. The equipped inner product ⟨·, ·⟩m = ⟨·, ·⟩L2 is defined
as ⟨F1, F2⟩L2

:=
∫
X F1(z)F2(z)dz. The functional representer of Υθ(s, a) ∈ P , namely Fθ(·|s, a)

will be an element of the following set F :

m = l2 (d = 1) : F let
=

{
F : X → [0, 1]

∣∣ F is a cdf.
}
⊊ G,

: P let
= ∆(X ) :=

{
probability measures that have support in X

}
.

For m = dL2
, the functional representer is the pdf, denoted by f(·|µ). The functional space is the

functional L2 space, that is G := {f : X → R :
∫
|f(z)|2dz <∞} with X ⊆ Rd being the support.

The equipped inner product ⟨·, ·⟩m = ⟨·, ·⟩L2
is defined as ⟨f1, f2⟩L2

:=
∫
X f1(z)f2(z)dz. The

functional representer of Υθ(s, a) ∈ P , namely fθ(·|s, a) will be an element of the following set F̃ :

m = dL2
: F̃ let

=
{
f : X → R+

∣∣ f is a pdf and ∥f(·|µ)∥L2
<∞

}
⊊ G,

: P let
=

{
µ ∈ P

∣∣ µ has a pdf and ∥f(·|µ)∥L2
<∞}.

For m = MMDk (maximum mean discrepancy associated with some kernel), the functional represen-
ter is the kernel mean embedding, κ(·|µ) = EZ∼µ{k(Z, ·)}. The functional space is the RKHS cor-
responding to the given kernel, i.e., G = {

∑n
i=1 αi · k(xi, ·)|αi ∈ R, xi ∈ X , n ∈ N} with X ⊆ Rd

being the support. The equipped inner product is the corresponding RKHS inner product, ⟨·, ·⟩m =
⟨·, ·⟩H that is defined as ⟨

∑n
i=1 αik(xi, ·),

∑m
j=1 βjk(x

′
j , ·)⟩H :=

∑n
i=1

∑m
j=1 αiβjk(xi, x

′
j). The

functional representer of Υθ(s, a) ∈ P , namely κθ(·|s, a) will be an element of the following setH:

m = MMD : H let
= {κ : X → R | κ(·) = EZ∼µ{k(Z, ·)} for some µ ∈ P} ⊊ G,

: P let
=

{
µ ∈ P

∣∣ ∥κ(·|µ)∥H <∞
}
.

C.6 Proof for Theorem 3.3

Definition C.2 (Inner-product-space metric). The probability metric m over P is called an inner-
product-space metric (IPS metric, in short) if there exists an inner product space (G, ⟨·, ·⟩m) where
any element µ ∈ P can be uniquely (up to equivalence under zero induced norm ∥ · ∥m) represented
by the corresponding element G(·|µ) ∈ G such that

(IPS1) The probability m is expressed as the norm of difference between functional representers,
i.e., m(µ1, µ2) := ∥G(·|µ1)−G(·|µ2)∥m, where ∥ · ∥m is the induced norm by the inner
product;

(IPS2) Functional representers of probability measures are unbiased with respect to probabil-
ity mixture. That is, for µ(·) : Z → P and arbitrary probability P over Z , we have
G(·|

∫
µ(z)dP (z)) =

∫
G(·|µ(z))dP (z).

It is possible that there exists an element in G that does not represent any µ ∈ P .

C.6.1 Outline of proof

The first step is to obtain the convergence of single iteration at t-th step, i.e., η∞(Υθ̂n,t
, T πΥθ̂n,t−1

) =

OP (1/
√
n). This is similar to Lemma 10 of [2], which demonstrates that empirical probability mea-

sure converges towards the underlying probability measure in OP (1/
√
n) rate with respect to MMD.

We can generalize the argument to IPS metrics (listed in Appendix C.5) that have corresponding inner
product spaces of functional elements. We can form the analogy to the empirical probability measure
under tabular setting to simplify the arguments.

The second step is to obtain convergence of T different steps’ estimations. Here, there are two things
that play a role in determining t-th estimation, i.e., the previous iterate and the data used in the t-th
iteration (denoted asDt, or the t-th subdataset). Although the previous iterate depends on all previous
datasets, i.e., D1, · · · ,Dt−1, we can utilize the independence among datasets.
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C.6.2 Proof

Assuming |S × A| < ∞, each state-action pair can be observed with probability at least pmin :=
infs,a ρ(s, a) where ρ(s, a) = P{S,A = s, a}. We can always assume pmin > 0 without loss of
generality, since we can exclude s, a with ρ(s, a) > 0 from S ×A. Denoting the empirical estimate
of ρ(s, a) and p̃(r, s′|s, a) as ρ̂(s, a) and p̂(r, s′|s, a), we can copy the logic of (13) to obtain the
following equivalence for θ̂n,t defined in (10),

θ̂n,t = argmin
θ∈Θ

∑
s,a

ρ̂(s, a) · d
{
Υθ(s, a), T̂ πΥθ̂n,t−1

(s, a)

}
.

Here, T̂ π is defined accordingly to (3), only replacing p̃(r, s′|s, a) with p̂(r, s′|s, a).
Now, we restrict d = m2 into squared form of probability metric so that it satisfies relaxed triangular
inequality, that is, m2(P,Q) ≤ 2 · (m2(P,R)+m2(R,Q)). With fixed θ̂n,t−1 and its corresponding
value fo θ∗,t such that Υθ∗,t = T πΥθ̂n,t−1

, we have following,

m̄2
n,1(θ̂n,t.θ∗,t) ≤ 2 · m̄2

n,1(Υθ̂n,t
, T̂ πΥθ̂n,t−1

) + 2 · m̄2
n,1(T̂ πΥθ̂n,t−1

,Υθ∗,t)

≤ 4 · m̄2
n,1(Υθ∗,t , T̂ πΥθ̂n,t−1

) ≤ 4 · sup
s,a

m2

{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)

}
, (18)

where m̄2
n,1(θ1, θ2) :=

1

n

n∑
i=1

m2

{
Υθ1(si, ai),Υθ2(si, ai)

}
. (19)

Given that Υθ∗,t = T πΥθ̂n,t−1
, this comes down to showing T̂ πΥθ̂n,t−1

(s, a) converges in m

towards T πΥθ̂n,t−1
(s, a) for each s, a. Towards that end, we will assume that each s, a is observed

sufficiently many times. We define the following event along with two probability vectors in RS×A,

Ω0 :=

{
ω ∈ Ω

∣∣∣∣ ∥p̂− p∥∞ ≤
1

2
pmin

}
with p :=

(
ρ(s, a)

)
& p̂ :=

(
ρ̂(s, a)

)
.

By Lemma A.3 of [26], we have

P(Ωc0) = P
(
∥p̂− p∥∞ >

1

2
pmin

)
≤ P

(
∥p̂− p∥ > 1

2
pmin

)
≤ exp(

1

4
) · exp

(−n
128
· pmin

2
)
.

Note that conditioning on Ω0 has no effect on the randomness of r, s′ ∼ p̃(· · · |s, a) for each s, a.
Denote its conditional expectation and probability as Ẽ(· · · ) := E(· · · |Ω0) and P̃(· · · ) := P(· · · |Ω0).
Based on the IPS Properties of Definition C.2 and (11), we obtain the following for a fixed s, a,
assuming that we have collected {(s, a, ri, s′i)}

n(s,a)
i=1 for the s, a. We acknowledge that this proof is

highly based on Lemma 10 of [2].

Ẽ
[
m2

{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)

}]
= Ẽ

[
m2

{
Υθ∗,t(s, a),

1

n(s, a)

n(s,a)∑
i=1

Ψπ(ri, s
′
i,Υθ̂n,t−1

)

}]

= Ẽ
[∥∥∥∥G(·|Υθ∗,t(s, a))−G

(
·
∣∣∣∣ 1

n(s, a)

n(s,a)∑
i=1

Ψπ(ri, s
′
i,Υθ̂n,t−1

)∥∥∥∥2
m

]

= Ẽ
[∥∥∥∥ 1

n(s, a)

n(s,a)∑
i=1

{
G
(
·
∣∣Ψπ(ri, s′i,Υθ̂n,t−1

)
)
−G(·|Υθ∗,t(s, a))

}∥∥∥∥2
m

]
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=
1

n(s, a)
2

n(s,a)∑
i=1

Ẽ
[∥∥G(

· |Ψπ(ri, s′i,Υθ̂n,t−1
)
)
−G(·|Υθ∗,t(s, a))

∥∥2
m

]
+

1

n(s, a)
2 ·

∑
i ̸=j

Ẽ
[〈

G
(
· |Ψπ(ri, s′i,Υθ̂n,t−1

)
)
−G(·|Υθ∗,t(s, a)),

G
(
· |Ψπ(rj , s′j ,Υθ̂n,t−1

)
)
−G(·|Υθ∗,t(s, a))

〉
m

]

=
1

n(s, a)
2

n(s,a)∑
i=1

{
Ẽ∥G

(
· |Ψπ(ri, si,Υθ̂n,t−1

)
)
∥2m + E∥G(·|Υθ∗,t(s, a))∥2m

− 2 · Ẽ
{〈

G
(
· |Ψπ(ri, s′i,Υθ̂n,t−1

), G(·|Υθ∗,t(s, a))
)〉
m

}}

≤ 1

n(s, a)
2

n(s,a)∑
i=1

{
Ẽ
∥∥G(

· |Ψπ(ri, s′i,Υθ̂n,t−1
)
)∥∥2
m

}
∵ Υθ∗,t(s, a) = T πΥθ̂n,t−1

(s, a)

≤ Cmax,m
n(s, a)

≤ 1

n
· 2

pmin
· Cmax,m ∵ n(s, a) = n · ρ̂(s, a) > n · pmin

2
under Ω0.

Then, using E(X) ≤ {E(X2)}1/2, we have

Ẽ
[
m
{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)
}]
≤ 1√

n
·
√

2

pmin
· C1/2

max,m.

Temporarily making notation simplification zi = (ri, s
′
i), we define

ϕ(z1, · · · , zn(s,a)) := m

{
Υθ∗,t(s, a),

1

n(s, a)

n(s,a)∑
i=1

Ψi

}
where Ψi := Ψπ(ri, s

′
i,Υθ̂n,t−1

).

Since we have following where Ψ′
j = Ψj for j ̸= i and Ψ′

i = Ψ(z′i; Υθ̂n,t−1
, π),∣∣ϕ(z1, · · · , zi, · · · , zn(s,a))− ϕ(z1. · · · , z′i, · · · , zn(s,a))

∣∣
=

∣∣∣∣m{
Υθ∗,t(s, a),

1

n(s, a)

n(s,a)∑
i=1

Ψi

}
−m

{
Υθ∗,t(s, a),

1

n(s, a)

n(s,a)∑
i=1

Ψ′
i

}∣∣∣∣
=

∥∥∥∥ 1

n(s, a)

n(s,a)∑
i=1

G(·|Ψi)−
1

n(s, a)

n(s,a)∑
i=1

G(·|Ψ′
i)

∥∥∥∥
m

≤ 1

n(s, a)

n(s,a)∑
i=1

∥∥∥∥G(·|Ψi)−G(·|Ψ′
i)

∥∥∥∥
m

≤ 2

n(s, a)
· Cmax,m.

Then, by McDiarmid’s inequality (e.g., Theorem 2.9.1 of [57]), we obtain

P̃
(∣∣∣∣m{

Υθ∗,t(s, a), T̂ πΥθ∗,t(s.a)
}∣∣∣∣ ≥ t

)
≤ 2 · exp

(
−2t2

1
n(s,a) · 4C2

max,m

)
≤ 2 · exp

(
−n · pmin · t2

4C2
max,m

)
.

Now considering the conditional probabilty for Ω0, we have

sup
s,a

m
{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)
}
≤ 1√

n
·
√

2

pmin
· C1/2

max,m + t with probability larger than

1− exp(
1

4
) · exp(−n

128
· pmin

2)− |S × A| · 2 · exp
(
−n · pmin

2 · t2

4C2
max,m

)
.

Letting t2 =
4C2

max,m

n·pmin
· log( 4|S×A|

δ0
) for arbitrary δ0 ∈ (0, 1), given that we have sufficiently large n

such that

exp(
1

4
) · exp(−n

128
· pmin

2) ≤ 1

2
δ0, (20)
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we have following with probability larger than 1− δ0,

sup
s,a

m
{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)
}
≤ 1
√
pmin

·max{Cmax,m, 1} ·O
{√

1

n
· log

(4|S × A|
δ0

)}
.

Note that we have following under Ω0 that leads to ρ(s, a) ≤ 2ρ̂(s, a),

m2
∞(θ̂n,t, θ∗,t) ≤

∑
s,a

ρ(s, a)

pmin
·m2

{
Υθ̂n,t

(s, a),Υθ∗,t(s, a)
}
=

1

pmin
· m̄2

ρ,1(θ̂n,t, θ∗,t),

m̄2
ρ,1(θ̂n,t, θ∗,t) ≤ Ẽs,a∼ρ

{
m2

(
Υθ̂n,t

(s, a),Υθ∗,t(s, a)
)}

≤ 2 · Ẽs,a,∼ρ̂
{
m2(Υθ̂n,t

(s, a),Υθ∗,t(s, a))
}
= 2 · m̄2

n,1(θ̂n,t, θ∗,t)

≤ 8 · sup
s,a

m2
{
Υθ∗,t(s.a), T̂ πΥθ̂n,t−1

(s, a)
}

by (18),

∴ m∞(θ̂n,t, θ∗,t) ≤
√

8

pmin
· sup
s,a

m
{
Υθ∗,t(s, a), T̂ πΥθ̂n,t−1

(s, a)
}
.

Then, we have following with probability larger than 1− δ0,

m∞(θ̂n,t, θ∗,t) ≤
1

pmin
·max{Cmax,m, 1} ·O

{√
1

n
· log

(4|S × A|
δ0

)}
.

Under Assumption 3.2, we have η∞(θ̂n,t, θ∗,t) ≤ Csurr ·mδ
∞(θ̂n,t, θ∗,t) + ϵ0, which allows us to

bound η∞(Υθt , T πΥθ̂n,t−1
) for all t ∈ [T ]. Now letting n = N

T , we have following with probability
larger than 1− T · δ0, the inaccuracy η∞(ΥθT ,Υπ) can be bounded by following based on (6),

1

1− ζ
· Csurr ·

1

1− ζ
· Csurr ·

{(
1

pmin
·max{Cmax,m, 1}

)δ
×

O

[(
1

N/T
· log

(4|S × A|
δ0

))δ/2}]
+

1

1− ζ
· ϵ0 + ζT · η∞(Υθ0 ,Υπ) with ζ = γc by (7).

under the premise that (20) holds with n = N/T . This is possible since different subdatasets
(D1, · · · ,DT ) are non-overlapping and independently collected.

Now we choose T = ⌊ δ2 ·
1
c · log1/γ(

N
log(4|S×A|/δ0) )⌋, which also leads to ζT ≈ ( 1

N · log(
4|S×A|
δ0

))δ/2.
For sufficiently large N , (20) holds with n = N/T and δ0 replaced with δ0/T for sufficiently large
N . Note that we have

1

N/T
· log

(
4|S × A|
δ0/T

)
≈ δ

2N
· 1
c
· log1/γ

(
N

log(4|S × A|/δ0)

)
·
{
log

(4|S × A|
δ0

)
+ log T

}
≤ δ

2N
· 1
c
· log1/γ N ·

{
log

(4|S × A|
δ0

)
+ log

(δ
2
· 1
c
· log1/γ N

)}
.

Thus, with probability larger than 1− δ0, we have

η∞(ΥθT ,Υπ) ≤
1

1− γc
· Csurr ·

(
1

pmin
·max{Cmax,m, 1}

)δ
× (21)

O

([
δ

N
· 1
c
· log1/γ N ·

{
log

(4|S × A|
δ0

)
+ log

(δ
c
· log1/γ N

)}]δ/2)
+

1

1− γc
· ϵ0.

C.7 Parameters of Examples in Table 1

For all other examples except for the first two examples of Table 1, the values of Csurr and Cmax,m
are the same with what we have derived in the proofs of corollaries of Appendix B. For their values,
refer to the proof of each corollary of its subsections (which are shown in Appendices C.10–C.16).
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Here, we will only present the first two examples of Table 1, whose values of Csurr and Cmax,m are
different from those of Appendix B.

For m = l2, we need to assume that return distributions are 1-dimension and bounded, i.e.,
Z(s, a; θ) ∈ [a, b] for all s, a ∈ S ×A and θ ∈ Θ. By Lemma C.8 and E = 2l22, we have
Csurr = (b− a)1−

1
2p and δ = 1/p,

2

(b− a)2p−1
·W2p

p (P,Q) ≤ 2 · l22(P,Q), ∴

(
1

b− a

)1− 1
2p

·Wp(P,Q) ≤ l
1/p
2 (P,Q).

We also have Cmax,m = C · (b− a)1/2.

For m = MMDβ , we need to assume D <∞ (where D > 0 is the diameter of support). Since the
corresponding kernel can be considered as k(x,y) = −∥x − y∥β , we have Cmax,m = C ·Dβ/2.
We have Csurr = 1 and δ = 1 since η = m.

C.8 Theorem C.5 and its proof

Now we shall present and prove the non-simplified version of Theorem 3.4. For our analysis, we
define the population objective function and the target parameter at each iteration:

Fn,t(θ|θ̂n,t−1) :=
1

n

∑
(s,a)∈Zt

ER,S′∼p̃(·|s,a)

{
d
(
Υθ(s, a),Ψπ(R,S′,Υθ̂n,t−1

)
)}

. (22)

where Zt := {(s, a) | (s, a, r, s′) ∈ Dt}. Note that we have θ∗,t = argminθ∈Θ Fn,t(θ|θ̂n,t−1). Like
Section 3.1, our objective functions should have connection with the surrogate metric m, although
d may not necessarily be the squared form of m (i.e., d ̸= m2). With m being a probability metric
for P and extended metrics m̄ρ,1, m̄n,1,m∞ forM⊆ PS×A (defined in (24)), they should satisfy
following Assumption C.3 with ∥ · ∥ψ2(n) being Zt-conditioned subgaussian norm (defined in (30) of
Appendix C.10).
Assumption C.3 (Norm-space association). The functional Bregman divergence d and probability
metric m over P form a norm-space association (NS association, in short) if there exists an norm
space (G, ∥ · ∥m) where any element µ ∈ P can be uniquely (up to equivalence under zero norm
∥ · ∥m) represented by the corresponding element G(·|µ) ∈ G such that

(NS1) The Zt-conditioned modulus ∆n(θ|θ̂n,t−1) := {F̂n,t(θ|θ̂n,t−1) − Fn,t(θ|θ̂n,t−1)} −
{F̂n,t(θ∗,t|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1)} is a mean-zero sub-gaussian process with respect
to m̄n,1. That is, for any Zt ⊂ S ×A and θ̂n,t−1 ∈ Θ, we have

∥∆n(θ1|θ̂n,t−1)−∆n(θ2|θ̂n,t−1)∥ψ2(n) ≤
1√
n
· Csubg · m̄n,1(θ1, θ2).

(NS2) We have Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1) ≥ λ · m̄l
n,1(θ, θ∗,t) for some l ≥ 2. Here, the

value of λ > 0 does not depend on Zt, θ, θ̂n,t−1 (or θ∗,t such that Υθ∗,t = T πΥθ̂n,t−1
).

(NS3) m̄n,1(θ̂n,t, θ∗,t)→P 0 converges in a rate that does not depend on θ̂n,t−1 (and thereby θ∗,t)
and the deterministic sequence Zt.

(NS4) Elements of MΘ ⊆ PS×A has a corresponding element in GΘ ⊆ GS×A where G is a
functional norm space with ∥ · ∥m, such that ∥Gµ1 − Gµ2∥m := m(µ1, µ2). With the
extended norm ∥ · ∥m,∞ corresponding to m∞ (see (24)) and some α ∈ (0, 2), it satisfies

sup
θ∈Θ

sup
z,s,a
|Gθ(z|s, a)| <∞ & logN[ ](GΘ, ∥ · ∥m,∞, ϵ) ≤ Cbrack · ϵ−α. (23)

It is possible that there exists an element in G that does not represent any µ ∈ P .

Under coverage assumption (Assumption C.4), we can obtain Theorem C.5, with its proof in the
subsections of Appendix C.8.
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Assumption C.4. (Coverage) Ccover := supθ,θ̃∈Θ m̄2
dπ,1

(Υθ, T πΥθ̃)/m̄2
ρ,1(Υθ, T πΥθ̃) <∞.

Theorem C.5. Suppose Assumptions 3.1, 3.2, C.4 hold. Moreover, given a probability metric η that
satisfies (S-L-C) with convexity parameter q ≥ 1 and scale-sensitivity parameter c > 1/(2q) (i.e., (15)
of Appendix C.4), consider the FDE with a functional Bregman divergence d satisfying Assumption
C.3 of Appendix C.8. Then, by letting T = ⌊ 1

c− 1
2q

· δ′

2(l−1)+α · log1/γ N⌋ with δ′ = min{δ, 1/q}, we

have

η̄dπ,q(ΥθT ,Υπ) ≤
1

1− γc−
1
2q

· C0 ·OP
{(

N

log1/γ N

) −δ′
2(l−1)+α

}
+

1

1− γc−
1
2q

· 21−
1
2q · ϵ0,

where C0 > 0 is a constant that contains the effect of the parameters Csurr, Ccover, Cbrack, Csubg,
etc (defined in (27) of Appendix C.8). Note that we need q > 1/(2c) to ensure γc−

1
2q ∈ (0, 1).

C.8.1 Outline of proof

The first step (Appendix C.8.2) is to obtain the convergence of single iteration at t-th step. Temporarily
assuming that the state-action pairsZt are given (i.e., fixed or conditioned), we obtain the convergence
with respect to the semi-metric m̄n,1 (24) that is based on Zt. Towards that end, we resort to standard
M-estimation theory (Theorem D.1) Unlike the tabular case (Theorem 3.3), the model complexity
plays a role in the convergence rate. Then, we can obtain the same convergence rate in (sample-free
metric) m̄ρ,1, based on the fact that the probability metric m has a corresponding functional norm
space (see Theorem 2.3 of [34]).

The second step (Appendix C.8.3) is to combine the convergences of multiple iterations into the final
bound for the T -th iteration, just like we did in Theorem 3.3 (Appendix C.6). So, it shares many
similar ideas. However, unlike the previous Theorem 3.3, this requires us to handle the coverage.
The inaccuracy metric η̄dπ,q is constructed based on dπ, whereas the collected state-action pairs
are generated by ρ. We need to take into account the misalignment between the two underlying
distributions, quantified by Ccover (Assumption C.4).

C.8.2 Convergence in a single step

Lemma C.6. Assume that our objective functions (10) and (22) and η satisfy Assumption C.3.
Conditioning on any given value of θ̂n,t−1 (previous iteration value), under Assumptions 3.1, C.4, we
have

m̄dπ,1(Υθ̂n,t
, T πΥθ̂n,t−1

) ≤ C1/2
cover ·

(
Csubg · C1/2

brack ·
√
2
−α

1− α/2

) 1
l−1+α/2

·OP
(
n

−1
2(l−1)+α

)
.

The proof of Lemma C.6 is as follows. Let Dt : {(si, ai, ri, s′i)}ni=1.

With the norm representation of the surrogate metric m, i.e., m(µ1, µ2) := ∥Gµ1
(·) − Gµ2

(·)∥m,
then we can build its extension as follows:

empirical norm : m̄n,1(θ1, θ2) = ∥Gθ1 −Gθ2∥m,n :=

(
1

n

n∑
i=1

∥Gθ1(·|si, ai)−Gθ2(·|si, ai)∥2m
) 1

2

expectation norm : m̄ρ,1(θ1, θ2) = ∥Gθ1 −Gθ2∥m,ρ =
(
Es,a∼ρ∥Gθ1(·|s, a)−Gθ2(·|s, a)∥2m

) 1
2

supremum norm : m∞(θ1, θ2) = ∥Gθ1 −Gθ2∥m,∞ := sup
s,a
∥Gθ1(·|s, a)−Gθ2(·|s, a)∥m. (24)

Define Θδn := {θ ∈ Θ : m̄n,1(θ, θ∗,t) ≤ δ}. By (NS1), we can apply Theorem 8.1.3 of [57] to
obtain

E
{

sup
θ∈Θδ

n

∣∣∆n(θ|θ̂n,t−1)
∣∣} ≤ C√

n
· Csubg ·

∫ ∞

0

√
logN (Θδn, m̄n,1, ϵ)dϵ

≤ C√
n
· Csubg ·

∫ δ

0

√
logN (Θδn, m̄n,1, ϵ)dϵ ≤

C√
n
· Csubg ·

∫ δ

0

√
logN (Θ,m∞, ϵ)dϵ.
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Let Cbound := supθ∈Θ supz,s,a |Gθ(z|s, a)| ∈ (0,∞). Here, we let G′
θ(·| · · · ) := 1

Cbound
·Gθ(·| · · · )

and G′Θ := {G′
θ|Gθ ∈ GΘ}. Note that we have G′

θ(z|s, a) ≤ 1 and

logN[ ](G′Θ, ∥ · ∥m,∞, ϵ) = logN[ ](GΘ, ∥ · ∥m,∞, Cbound · ϵ) ≤ Cbrack · C−α
bound · ϵ

−α. (25)

Let m̄′
n,1 := 1

Cbound
·m̄n,1, m̄′

ρ,1 = 1
Cbound

·m̄ρ,1, m′
∞ := 1

Cbound
·m∞, and we have m̄′

n,1(θ1, θ2) :=

∥G′
θ1
−G′

θ2
∥m,n, m̄′

ρ,1(θ1, θ2) := ∥G′
θ1
−G′

θ2
∥m,ρ, m′

∞(θ1, θ2) := ∥G′
θ1
−G′

θ2
∥m,∞.

This leads to

logN (Θ,m∞, ϵ) ≤ logN (Θ,m′
∞, ϵ/Cbound) ≤ logN (G′Θ, ∥ · ∥m,∞, ϵ/Cbound)

≤ logN[ ](G′Θ ≤ ∥ · ∥m,∞, 2ϵ/Cbound) ≤ Cbrack · C−α
bound ·

(
2ϵ

Cbound

)−α

≤ Cbrack · 2−α · ϵ−α,

∴ E
{

sup
θ∈Θδ

n

∣∣∆n(θ|θ̂n,t−1)
∣∣} ≤ C√

n
· Csubg · C1/2

brack ·
√
2
−α
· 1

1− α/2
· δ1−α/2.

We have consistency m̄n,1(θ̂n,t, θ∗,t)→P 0 by (NS3). Then, we can apply Theorem D.1 to obtain

m̄n,1(θ̂n,t, θ∗,t) ≤
(
Csubg · C1/2

brack ·
√
2
−α

1− α/2

) 1
l−1+α/2

·OP
(
n

−1
2(l−1)+α

)
.

Using 1
2+α ≥

1
2(l−1)+α due to l ≥ 2, we can apply logic of Theorem 6.3.2 of [54] (or equivalently,

Theorem 2.3 of [34]), based on G′
θ(z|s, a) ≤ 1 and (25). This gives us the same asymptotic bound

for m̄ρ,1(θ̂n,t, θ∗,t), and further applying Assumption C.4 gives us Lemma C.6.

C.8.3 Convergence through multiple steps

Now let us bound η̄dπ,q(θ̂n,t, θ∗,t) with q ≥ 1, with Assumption 3.2. We use (a + b)2q ≤ 22q−1 ·
(a2q + b2q) to obtain the following with q′

let
= qδ:

η̄dπ,q(θ̂n,t, θ∗,t) =
(
E{η2q(Υθ̂n,t

(s, a), T πΥθ̂n,t−1
(s, a))}

) 1
2q

≤ E
[
22q−1 ·

{
C2q
surr ·m2q·δ(Υθ̂n,t

(s, a),Υθ∗,t(s, a)) + ϵ2q0

}] 1
2q

≤ 21−
1
2q · Csurr ·

(
E{m2qδ(Υθ̂n,t

(s, a), T πΥθ̂n,t−1
(s, a))}

) 1
2q + 21−

1
2q · ϵ0

= 2Csurr ·
{
E{m2q′(Υθ̂n,t

(s, a), T πΥθ̂n,t−1
(s, a)}

1
2q′

}δ
+ 21−

1
2q · ϵ0.

Assume a bounded random variable X such that |X| ≤ Cmaxim. Since |X/Cmaxim| ≤ 1, we have
the following if 1 ≤ p1 ≤ p2.(

E
∣∣∣∣ X

Cmaxim

∣∣∣∣p2) 1
p2

≤
(
E
∣∣∣∣ X

Cmaxim

∣∣∣∣p1) 1
p2

=

{(
E
∣∣∣∣ X

Cmaxim

∣∣∣∣p1) 1
p1
} p1

p2

,

∴
(
E|X|p2

)1/p2 ≤ C
1− p1

p2
maxim ·

{
(E|X|p1)1/p1

}p1/p2
.

If we have 1 < q′, letting p1 = 2, p2 = 2q′ gives us

η̄dπ,q(θ̂n,t, θ∗,t) ≤ 2Csurr ·
{
C

1− 2
2q′

maxim ·
(
E{m2(Υθ̂n,t

(s, a), T πΥθ̂n,t−1
(s, a))} 1

2

) 2
2q′

}δ
+ 21−

1
2q · ϵ0

= 2Csurr · C
(1− 1

q′ )δ

maxim · m̄
1
q

dπ,1
(θ̂n,t, θ∗,t) + 21−

1
2q · ϵ0.

If we have q′ ≤ 1, then we have η̄dπ,q(θ̂n,t, θ∗,t) ≤ 2Csurr ·m̄δ
dπ,1

(θ̂n,t, θ∗,t)+21−
1
2q ·ϵ0 by Jensen’s

inequality (even for q′ < 1). Thus, we have following with δ′ = min{δ, 1/q},

η̄dπ,q(θ̂n,t, θ∗,t) ≤ 2Csurr · C
max{(1− 1

qδ )δ,0}
maxim · m̄δ′

dπ,1(θ̂n,t, θ∗,t) + 21−
1
2q · ϵ0. (26)
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Restoring the iteration index t ∈ [T ] (i.e., θt = θ̂n,t), we have following by (6),

η̄dπ,q(ΥθT ,Υπ) ≤
T∑
t=1

ζT−t · η̄dπ,q(Υθt , T πΥθt−1
) + ζT · η̄dπ,q(Υθ0 ,Υπ)

≤ 2Csurr · C
max{(1− 1

qδ )δ,0}
maxim ·

T∑
t=1

ζT−t · m̄δ′

dπ,1(Υθt , T
πΥθt−1) +

1

1− γc−
1
2q

· 21−
1
2q · ϵ0

+ ζT · η̄dπ,q(Υθ0 ,Υπ).

Recall that the data (which are independently collected) are split into non-overlapping subdatasets
D = ∪Tt=1Dt (see Section 3). This ensures that θ̂n,t−1 can be considered as a given constant at each
t-th iteration.

Lemma C.7. With Xn,t = C̃ · OP (n−1/b) for some b > 0 which can be possibly dependent for
different t ∈ N, assuming lim supn→∞ supt∈N E|n1/b·Xn,t| <∞, then we have

∑T
t=1 ζ

T−t·Xn,t =

C̃ ·OP ( 1
1−ζ · n

−1/b). See Appendix D.2 for proof.

In our case, letting Xn,t = m̄δ′

dπ,1
(Υθ̂n,t

, T πΥθ̂n,t−1
) (where n affects θ̂n,t =

argminθ∈Θ F̂n,t(θ|θ̂n,t−1)), we can show that the condition of Lemma C.7 can be satisfied. We will
defer the proof to Appendix C.8.4 for the sake of simplicity. Then, combining with Lemma C.6 and
letting n = N/T with T = ⌊ 1

c− 1
2q

· δ′

2(l−1)+α · log1/γ N⌋, we have

η̄dπ,q(Υθ̂n,T
,Υπ) ≤

1

1− γc−
1
2q

· C0 ·OP
{(

N

log1/γ N

) −δ′
2(l−1)+α

}
+

1

1− γc−
1
2q

· 21−
1
2q · ϵ0,

where

C0 := Csurr · C
max{(1− 1

qδ )δ,0}
maxim · C

δ′
2
cover× (27){

Csubg · C1/2
brack ·

(
1

c− 1
2q

) 1
2

·
√
2
−α

1− α/2
·
(

δ′

2(l − 1) + α

) 1
2
} δ′

l−1+α/2

,

with Cmaxim := supθ,θ̃∈Θ m∞(Υθ, T πΥθ̃). For Cmaxim =∞, we let C0
maxim = 1. This validates

Theorem C.5.

C.8.4 Satisfaction of the condition of Lemma C.7 in Theorem C.5

Stage-1: Apply peeling argument Arbitrarily choose an integer M ∈ N and a sequence (δn)≥1. we
can use the logic of standard proof of convergence in M-estimation (e.g., Section 5.1 of [51]). Define
Zt := {(si, ai) | (si, ai, ri, s′i) ∈ Dt} and Sn,j := {θ ∈ Θ : 2j−1 · δn < m̄n,1(θ, θ∗,t) ≤ 2j · δn},
and we can obtain the following,

P
(
m̄n,1(θ̂n,t, θ∗,t) > 2M−1 · δn

∣∣∣∣Zt) =
∑
j≥M

P
(
2j−1 · δn < m̄n,1(θ̂n,t, θ∗,t) ≤ 2j · δn

∣∣∣∣Zt)

≤
∑
j≥M

P
(

sup
θ∈Sn,j

{
− F̂n,t(θ|θ̂n,t−1) + F̂n,t(θ∗,t|θ̂n,t−1)

}
≥ 0

∣∣∣∣Zt)

≤
∑
j≥M

P
(

sup
m̄n,1(θ,θ∗,t)≤2j ·δn

∣∣∣∆n(θ|θ̂n,t−1)
∣∣∣ ≥ λ · 2l(j−1) · δln

∣∣∣∣Zt) by (NS2)

≤
∑
j≥M

1

λ · 2l(j−1) · δln
· E

{
sup

m̄n,1(θ,θ∗,t)≤2j ·δn

∣∣∣∆n(θ|θ̂n,t−1)
∣∣∣∣∣∣∣Zt}
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≤ C

λ
· Csubg

2−l
· C1/2

brack ·
√
2
−α

1− α/2
· 1√

n
· δ1−α/2−ln ·

∑
j≥M

(2j)1−α/2−l by (NS4)

=
C

λ
· Csubg · C1/2

brack ·
√
2
−α

1− α/2
· 2l

1− 21−α/2−l︸ ︷︷ ︸
let
=C2

· 1√
n
· (2M · δn)1−α/2−l

= C2 ·
1√
n
· (2M · δn)1−α/2−l.

For arbitrary ϵ > 0, we can choose M ∈ N and δn > 0 be such that 2M · δn = ϵ. Then, we have

P(m̄n,1(θ̂n,t, θ∗,t) > ϵ|Zt) ≤ C2 ·
1√
n
· ϵ1−α/2−l.

Now letting ϵ1−α/2−l = 1√
n
· ϵ̃ for arbitrary ϵ̃ > 0, we have following with b = 2(l − 1) + α > 2

and C2 > 0 not depending on θ̂n,t−1 (and thereby θ∗,t),

P
(
n1/b · m̄n,1(θ̂n,t, θ∗,t) > ϵ̃

∣∣∣∣Zt) ≤ C2 · ϵ̃−b/2.

Based on the above tail probability, we can bound the expectation as follows,

E
{
n1/b · m̄n,1(θ̂n,t, θ∗,t)

∣∣∣∣Zt} =

∫ ∞

0

P
(
n1/b · m̄n,1(θ̂n,t, θ∗,t) ≥ t

∣∣∣∣Zt)dt
= 1 +

∫ ∞

1

P
(
n1/b · m̄n,1(θ̂n,t, θ∗,t) ≥ t

∣∣∣∣Zt)dt ≤ 1 +
C2

b/2− 1
. (28)

Note that the bound does not depend on Zt.

Stage-2: Convert the m̄n,1-bound into m̄ρ,1-bound First fix c ∈ (0, 1). Based on Lemma 6.3.4
of [54], we have Lc, αc > 0 (that do not depend on θ̂n,t−1) such that following holds

P
(

sup
∥Gθ1

−Gθ2
∥m,ρ≥Lc·n−1/b

∣∣∣∣∥Gθ1 −Gθ2∥m,n
∥Gθ1 − θ2∥m,ρ

− 1

∣∣∣∣ ≤ c

)
≥ 1− 1

αc
· exp(−αc · L2

c · n
b−2
b ).

Denoting the event as ΩE and note that this only regards to the observation of Zt and not the
ri, s

′
i ∼ p̃(· · · |si, ai). Then, we have

E{m̄ρ,1(θ̂n,t, θ∗,t)} = E
{
m̄ρ,1(θ̂n,t, θ∗,t) · 1

(
m̄ρ,1(θ̂n,t, θ∗,t) ≤ Lc · n−1/b

)}
+ E

{
m̄ρ,1(θ̂n,t, θ∗,t) · 1

(
m̄ρ,1(θ̂n,t, θ∗,t) > Lc · n−1/b

)}
≤ Lc · n−1/b + E

{
m̄ρ,1(θ̂n,t, θ∗,t) · 1

(
m̄ρ,1(θ̂n,t, θ∗,t) > Lc · n−1/b

)∣∣∣∣ΩE} · P(ΩE)
+ E

{
m̄ρ,1(θ̂n,t, θ∗,t) · 1

(
m̄ρ,1(θ̂n,t, θ∗,t) > Lc · n−1/b

)∣∣∣∣ΩcE} · P(ΩcE)
≤ Lc · n−1/b + E

{
1

1− c
· m̄n,1(θ̂n,t, θ∗,t)

∣∣∣∣ΩE}+ Cmaxim · exp(−αc · L2
c · n

b−2
b )

≤
{
Lc +

1

1− c
·
(
1 +

C2

b/2− 1

)
+ C3

}
· n−1/b.

The last line holds due to (28), since ΩE only regards to Zt. Also, C3 > 0 is some large value such
that Cmaxim · exp(−αc · L2

c · n
b−2
b ) ≤ C3 · n−1/b holds for sufficiently large n.
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Stage-3: Showing the satisfaction We can further derive the following.

E
{
m̄δ′

dπ,1(θ̂n,t, θ∗,t)
}
≤ Cδ′/2

cover · E
{
m̄δ′

ρ,1(θ̂n,t, θ∗,t)
}

≤ Cδ′/2
cover ·

{
E
{
m̄ρ,1(θ̂n,t, θ∗,t)

}}δ′
by Jensen’s inequality (∵ δ′ ≤ 1)

≤ C4 · n−δ′/b

for some constant C4 > 0 that does not depend on n or t. Then, the condition of Lemma C.7 is
satisfied with degree b̃ = 2(l−1)+α

δ′ .

C.9 About IPS metrics

C.9.1 How squared IPS metric becomes a functional Bregman divergence

Assume an IPS metric (Definition C.2) where G(·|P ) can be defined for dirac delta P = δx. This
accommodates (i) G(·|P ) being cdf with ⟨·, ·⟩L2 and (ii) G(·|P ) being kernel mean embedding with
⟨·, ·⟩H. See Appendix C.5 for their detailed explanation. Define the score S(P,x) := −∥G(·|P )−
G(·|δx)∥2m where δx denotes dirac delta at x. Then we have

−
∫

S(P,x)dQ(x) =

∫
∥G(·|P )−G(·|δx)∥2mdQ(x)

= Ex∼Q

{
∥G(·|P )∥2m + ∥G(·|δx)∥2m − 2 · ⟨G(·|P ), G(·|δx)⟩m

}
= ∥G(·|P )∥2m + Ex∼Q∥G(·|δx)∥2m − 2 · ⟨G(·|P ), G(·|Q)⟩m

Since we have −
∫
S(Q,x)dQ(x) = −∥G(·|Q)∥2m + Ex∼Q∥G(·|δx)∥2m, this leads to a valid func-

tional Bregman divergence as follows (based on equivalence stated before (5)),

m2(P,Q) = ∥G(·|P )−G(·|Q)∥2m =

∫
S(Q,x)dQ(x)−

∫
S(P,x)dQ(x).

Of course, there are cases where G(·|P ) does not exist for dirac delta’s, most representatively G(·|P )
being a pdf with ⟨·, ·⟩m. However, this case is shown to make a functional Bregman divergence
(Section 4.1 of [23]).

C.9.2 How IPS Properties imply NS Properties

Under (IPS1), (IPS2) of Definition C.2, and (11), we shall show (d,m) with d = m2 satisfies NS
Properties of Section 3.2 with l = 2, λ = 1, and Csubg = Cmax,m.

(NS1) can be shown as follows. With Aθi = m2(Υθ(si, ai),Ψπ(Ri, S
′
i,Υθ̂n,t−1

)) where
Ψπ(r, s

′,Υ) :=
∫
A(gγ,r)#Υ(s′, a′)π(da′|s′) ∈ P (due to convexity of P , provided that P sat-

isfies the assumption of Theorem 2.4),

∴ |∆n(θ1|θ̂n,t−1)−∆n(θ2|θ̂n,t−1)| =
∣∣∣∣ 1n

n∑
i=1

{Aθ1i − E(Aθ1i )} − 1

n

n∑
i=1

{Aθ2i − E(Aθ2i )}
∣∣∣∣.

Since we have ∥∆n(θ1|θ̂n,t−1)−∆n(θ2|θ̂n,t−1)∥2ψ2(n)
≤ C · 1

n2

∑n
i=1 ∥A

θ1
i −Aθ2i ∥2ψ2(n)

by Propo-

sition 2.6.1 and Lemma 2.6.8 of [57], we shall bound |Aθ1i −Aθ2i |.

|Aθ1i −Aθ2i | =
∣∣∣∣m2

{
Υθ1(si, ai),Ψπ(ri, s

′
i,Υθ̂n,t−1

)

}
−m2

{
Υθ2(si, ai),Ψπ(ri, s

′
i,Υθ̂n,t−1

)

}∣∣∣∣
≤ C · Cmax,m ·m(Υθ1(si, ai),Υθ2(si, ai)).

Here, Cmax,m > 0 is a constant (that depends on the corresponding kernel k) such that

sup
θ,θ̂n,t−1∈Θ

sup
s,a

sup
r,s′

{
m(Υθ(s, a),Ψπ(r, s

′,Υθ̂n,t−1
))

}
≤ Cmax,m,

For m = MMD bounded kernel k(·, ·), we can let Cmax,m
let
= C · sup

x,y∈X
k1/2(x, y) (29)
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Thus we have

∥∆n(θ1|θ̂n,t−1)−∆n(θ2|θ̂n,t−1)∥ψ2(n) ≤
Csubg√

n
·mn,1(θ1, θ2) with Csubg = C · Cmax,m.

(NS2) can be shown as follows,

Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1)

=
1

n

n∑
i=1

E
{
m2

(
Υθ(si, ai),Ψπ(Ri, S

′
i,Υθ̂n,t−1

)
)
−m2

(
Υθ∗,t(si, ai),Ψπ(Ri, S

′
i,Υθ̂n,t−1

)
)}

The terms within the curly bracket can be rewritten as follows with temporarily letting Ψi :=
Ψπ(Ri, S

′
i,Υθ̂n,t−1

),

∥G(·|Υθ(si, ai))−G(·|Ψi)∥2m − ∥G(·|Υθ∗,t(si, ai))−G(·|Ψi)∥2m
= ∥G(·|Υθ(si, ai))∥2m − ∥G(·|Υθ∗,t(si, ai))∥2m

− 2 · ⟨G(·|Υθ(si, ai))−G(·|Υθ∗,t(si, ai)), G(·|Ψi)⟩m.

Taking its expectation so that E(G(·|Ψ)) = G(·|Υθ∗,t(si, ai)), we have λ = 1 as follows,

Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1) =
1

n

n∑
i=1

∥G(·|Υθ(si, ai))∥2m −
1

n

n∑
i=1

∥G(·|Υθ∗,t(si, ai))∥2m

− 2

n

n∑
i=1

⟨G(·|Υθ(si, ai))−G(·|Υθ∗,t(si, ai)), G(·|Υθ∗,t(si, ai))⟩

=
1

n

n∑
i=1

∥G(·|Υθ(si, ai))−G(·|Υθ∗,t(si, ai))∥2m = m̄2
n,1(θ, θ∗,t).

(NS3) can be shown as follows. Let us define the following,

F ′
n,t(θ|θ̂n,t−1) :=

1

n

n∑
i=1

{
∥G(·|Υθ(si, ai))∥2m

− 2 · ⟨G(·|Υθ(si, ai))−G(·|T πΥθ̂n,t−1
(si, ai))⟩m

}
,

F̂ ′
n,t(θ|θ̂n,t−1) :=

1

n

n∑
i=1

{
∥G(·|Υθ(si, ai))∥2m

− 2 · ⟨G(·|Υθ(si, ai))−G(·|Ψπ(ri, s′i,Υθ̂n,t−1
))⟩m

}
.

Based on our derivations for Fn,t(θ|θ̂n,t−1) − Fn,t(θ∗,t|θ̂n,t−1), we can see Fn,t(θ|θ̂n,t−1) −
Fn,t(θ∗,t|θ̂n,t−1) = F ′

n,t(θ|θ̂n,t−1) − F ′
n,t(θ∗,t|θ̂n,t−1). Likewise, we have F̂n,t(θ|θ̂n,t−1) −

F̂n,t(θ∗,t|θ̂n,t−1) = F̂ ′
n,t(θ|θ̂n,t−1) − F̂ ′

n,t(θ∗,t|θ̂n,t−1). Then, we have the following based on
our derivations for (NS2),

m̄2
n,1(θ̂n,t, θ∗,t) = F ′

n,t(θ̂n,t|θ̂n,t−1)− F ′
n,t(θ∗,t|θ̂n,t−1)

=

{
F ′
n,t(θ̂n,t|θ̂n,t−1)− F̂ ′

n,t(θ̂n,t|θ̂n,t−1)

}
+

{
F̂ ′
n,t(θ̂n,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)

}
≤ sup
θ∈Θ

∣∣F ′
n,t(θ|θ̂n,t−1)− F̂ ′

n,t(θ|θ̂n,t−1)
∣∣+ ∣∣F̂ ′

n,t(θ∗,t|θ̂n,t−1)− F ′
n,t(θ∗,t|θ̂n,t−1)

∣∣
≤ sup
θ∈Θ

∣∣∣∣{F ′
n,t(θ|θ̂n,t−1)− F̂ ′

n,t(θ|θ̂n,t−1)
}
−

{
F ′
n,t(θ∗,t|θ̂n,t−1)− F̂ ′

n,t(θ∗,t|θ̂n,t−1)
}∣∣∣∣

+ 2 ·
∣∣∣∣F̂ ′
n,t(θ∗,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)

∣∣∣∣
= sup
θ∈Θ

∣∣∆n(θ|θ̂n,t−1)
∣∣+ 2 ·

∣∣F̂ ′
n,t(θ∗,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)
∣∣.
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Using subgaussianity that we have shown for (NS1), since subgaussian constant does not depend
on θ̂n,t−1, we can apply Theorem 8.1.6 of [57] (probabilistic tail for Dudley’s inequality) to obtain
probabilistic convergence of the term supθ∈Θ |∆n(θ|θ̂n,t−1)|. Regarding the second term, we have

|F̂ ′
n,t(θ∗,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)| = 2 ·
∣∣∣∣ 1n

n∑
i=1

{〈
G(·|Υθ∗,t(si, ai)), G(·|Υθ∗,t(si, ai))

〉
m

−G(·|Υθ∗,t(si, ai)), G(·|Ψπ(Ri, S′
i,Υθ̂n,t−1

))

}∣∣∣∣.
Letting Xi = ⟨G(·|Υθ∗,t(si, ai)), G(·|Υθ∗,t(si, ai))⟩m, we have |Xi| ≤ C2

max,m by Cauchy-
Schwartz inequality. Then, we can apply Hoeffiding’s inequality for bounded random variables
(e.g., Theorem 2.2.6 of [57]) to obtain probabilistic bound that does not depend on θ̂n,t−1.

(NS4) is straightforward. However, the two statements of (23) need to be assumed.

C.10 Proof for Corollary B.1

For the case of (d,m, η) = (l22,W1,Wp), we have q = p, δ = 1
p , l = 2, c = 1, Csubg = C,

Csurr = D1− 1
p , ϵ0 = 0.

Based on the fact that l22 = 1
2E [7] for d = 1, where energy distance E = MMD2

β (17) with β = 1, it
is equivalent to let d = MMD2

β=1.

Let us first verify (NS1). We obtain the following for Fn,t(θ|θ̂n,t−1). Temporarily ignoring θ̂n,t−1,
since we have ∆n(θ1) − ∆n(θ2) = {F̂n,t(θ1|θ̂n,t−1) − Fn,t(θ1|θ̂n,t−1)} − {F̂n,t(θ2|θ̂n,t−1) −
Fn,t(θ2|θ̂n,t−1)}, we can let ∆n(θ) = F̂n,t(θ|θ̂n,t−1)− Fn,t(θ|θ̂n,t−1). We will ignore the notation
θ̂n,t−1 for the sake of convenience.

∆n(θ) = 2 ·∆(1)
n (θ) + ∆(2)

n (θ), where

∆(1)
n (θ) :=

1

n

n∑
i=1

{
fθi − E(fθ1 )

}
, ∆(2)

n (θ) :=
1

n

n∑
i=1

{
gθi − E(gθ1)

}
.

where fθi = E∥Zα(si, ai; θ)−ri−γ ·Zβ(s′i, A′
i; θ̂n,t−1)∥ and gθi = E∥Zα(si, ai; θ)−Zβ(si, ai; θ)∥,

with A′
i ∼ π(·|s′i). Let us only deal with the first term, since the second term can be handled via

analogous approach. Letting xθi := fθi − E(fθi ), we have ∆
(1)
n (θ) = 1

n

∑n
i=1 xi.

In order to derive its probabilistic bound, we shall bound the following term,∥∥∆(1)
n (θ1)−∆(1)

n (θ2)
∥∥2
ψ2(n)

≤ 1

n2

n∑
i=1

∥xθ1i − xθ2i ∥
2
ψ2(n)

, where (30)

∥X∥ψ2(n) := inf

{
t > 0 ; En

{
exp(X2/t2)

}
≤ 2

}
, ∥X∥ψ2(n) := sup

x∈Rd:∥x∥=1

∥⟨X,x⟩∥ψ2(n).

where the inequality holds by Proposition 2.6.1 of [57]. In defining ∥ · ∥ψ2(n), X and x mean random
variable (d = 1) and vector (d ≥ 1). Further using the fact that ∥ · ∥ψ2(n) is a valid norm, we can
derive the following where En := E(· · · |Zt),

∥xθ1i − xθ2i ∥ψ2(n) ≤ ∥f
θ1
i − fθ2i ∥ψ2(n) + En∥fθi − fθ2i ∥ψ2(n),

∴ ∥∆(1)
n (θ1)−∆(1)

n (θ2)∥2ψ2(n)
≤ 2

n2

n∑
i=1

{
∥fθ1i − fθ2i ∥

2
ψ2(n)

+ En
(
∥fθ1i − fθ2i ∥

2
ψ2(n)

)}
,

where the last inequality is based on Proposition 2.6.1 of [57]. Based on technique suggested in
Appendix A.6 of [26], we can derive |fθ11 − fθ21 | ≤W1{Υθ1(s1, a1),Υθ2(s1, a1)}, which leads to
following based on Example 2.5.8 of [57],

∥∆(1)
n (θ1)−∆(1)

n (θ2)∥2ψ2(n)
≤ C

n2
·
n∑
i=1

W2
1(Υθ1(si, ai),Υθ2(si, ai)) =

C

n
·W2

1,n(θ1, θ2).

45



Applying the same logic to ∆
(2)
n (θ), we obtain Csubg = C. It is trivial to show ∆n(θ) is mean-zero.

(NS2) can be shown as follows

Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1) =
1

n

n∑
i=1

E(Υθ(si, ai), T πΥθ̂n,t−1
(si, ai)).

Here, E is energy disance defined as E(P,Q) := 2E∥X − Y ∥ − E∥X − X ′∥ − E∥Y − Y ′∥ for
X,X ′ iid∼ Q and Y, Y ′ iid∼ P . Using the following lemma (proof in Appendix D.3), we obtain the
desired result with λ = 2/(b− a).

Lemma C.8. Assume 1 ≤ p ≤ r, and let P,Q be probability measures for arbitrary random vectors
of d ≥ 1. We have

E(P,Q) ≤ 2 ·Wp(P,Q) ≤ 2 ·Wr(P,Q).

If P,Q ∈ P[a, b], we have

2

(b− a)2r−1
·W2r

r (P,Q) ≤ 2

(b− a)2p−1
·W2p

p (P,Q) ≤ E(P,Q).

(NS3) can be shown by following. θ̂n,t is equivalent to θ̂n,t = argminθ∈Θ F̂ ′
n,t(θ|θ̂n,t−1) where

F̂ ′
n,t(θ|θ̂n,t−1) is defined as follows (instead of what we defined in Appendix C.9.2),

2

n

n∑
i=1

E∥Zα(si, ai; θ)−Ri − γ · Zβ(S′
i, A

′
i; θ̂n,t−1)∥ −

1

n

n∑
i=1

E∥Zα(si, ai; θ)− Zβ(si, ai; θ)∥,

with Ri, S
′
i ∼ p̃(· · · |si, ai). Then we have following with the same logic shown in Appendix C.9.2,

W2

1,n,1(θ̂n,t, θ∗,t) ≲ F ′
n,t(θ̂n,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)

≤ sup
θ∈Θ

∣∣∣∣∆n(θ|θ̂n,t−1)

∣∣∣∣+ 2 ·
∣∣∣∣F̂ ′
n,t(θ∗,t|θ̂n,t−1)− F ′

n,t(θ∗,t|θ̂n,t−1)

∣∣∣∣.
Just as Appendix C.9.2, we can show |∆n(θ|θ̂n,t−1)| →P 0 by applying Dudley’s inequality (Theo-
rem 8.1.6 of [57]) and show |F̂ ′

n,t(θ∗,t|θ̂n,t−1)−F ′
n,t(θ∗,t|θ̂n,t−1)| →P 0 with Hoeffding’s inequality

for bounded random variables (Theorem 2.2.6 of [57]).

Now let us show (NS4). Every µ ∈ ∆([a, b]) has a corresponding function function F ∈ F , where F
represents the cdf family. We let FΘ := {Fθ(·| · · · ) ∈ FS×A | Fθ(s, a) is the cdf of Υθ(s, a)}, and
we have |Fθ(·| · · · )| ≤ 1. Based on W1(µ1, µ2) = ∥F1 − F2∥L1

with functional norm ∥F∥Lp
:=

(
∫
|F (z)|pdz)1/p, we can define extended norms (24) with ∥ · ∥m = ∥ · ∥L1 .

Lastly, by Section 2.3 of [44], we have Wp ≤ D1− 1
p ·W1/p

1 , where D indicates the diameter of the
support of return distribution (D = b−a in 1-dimensional case). This leads to Csurr = (b−a)1−1/p

and δ = 1/p. Then, by applying Theorem C.5. we obtain the following bound for Wp,dπ,p(ΥθT ,Υπ),

(b− a)1−
1
p · C

1
2p
cover

1− γ1− 1
2p

·
{
C

1/2
brack ·

(
1

1− 1
2p

) 1
2

·
√
2
−α

1− α/2
·
(

1/p

2 + α

) 1
2
} 1/p

1+α/2

×OP
{(

N

log1/γ N

)−1/p
2+α

}
.

C.11 Proof of Corollary B.2

For the case of (d,m, η) = (MMD2
β ,MMDβ ,MMDβ), we have q = 1, δ = 1, l = 2,

c = β
2 , Csubg = C · (rmax + zmax)

β/2 let
= C

(β)
max with supθ∈Θ sups,a ∥Z(s, a; θ)∥ ≤ zmax and

sups,a ∥R(s, a)∥ ≤ rmax, Csurr = 1, ϵ0 = 0. We need β > 1 for q = 1 as we mentioned in (16).
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Any pair of (d,m) = (MMD2,MMD) satisfies NS Properties ((NS1)–(NS4)) for bounded ker-
nels (see Appendix C.9.2). Then, we can apply Theorem C.5 to obtain the following bound for
MMDβ,dπ,1(ΥθT ,Υπ).

C
1/2
cover

1− γ
β−1
2

·
{
C(β)
max · C

1
2

brack ·
(

2

β − 1

) 1
2

·
√
2
−α

1− α/2
·
(

1

2 + α

) 1
2
} 1

1+α/2

×OP
{(

N

log1/γ N

) −1
2+α

}
If we want to obtain the result for β = 1, we let c = 1/2, q = 1 + ϵN for some monotonically
decreasing sequence ϵN → 0 as N → ∞, and C

(β=1)
max = C · (rmax + zmax)

1/2. Applying this to
Theorem C.5, we obtain

MMD1,dπ,1(ΥθT ,Υπ) ≤ MMD1,dπ,q(ΥθT ,Υπ)

≤ C
1− 1

1+ϵN
maxim · C

1
2
cover ·

{
C(β=1)
max · C

1/2
brack ·

√
2
−α

1− α/2
·
(
1/(1 + ϵN )

2 + α

)1/2} 1/(1+ϵN )

1+α/2

︸ ︷︷ ︸
constant part

×

1

1− γ
1
2−

1
2(1+ϵN )

·
(

1
1
2 −

1
2(1+ϵN )

) 1
2+α · 1

1+ϵN

·OP
{(

N

log1/γ N

)−1/(1+ϵN )

2+α
}

︸ ︷︷ ︸
convergent part

.

Letting yN := ϵN
2(1+ϵN ) → 0, we have

lim
N→∞

1/yN
1/(1− γyN )

= lim
x→0

1/x

1/(1− γx)
= lim
x→0

1− γx

x
= log(1/γ). (31)

Therefore, the convergent part can be bounded by constant multiplied by following for sufficiently
large N ,

≲
1

log(1/γ)
·
(

1

yN

)1+ 1
2+α · 1

1+ϵN

·OP
{(

N

log1/γ N

) −1
2+α · 1

1+ϵN
}

≤ 1

log(1/γ)
· (logN)

1+ 1
2+α · 1

1+ϵN ·
(

1

log(1/γ)

) 1
2+α · 1

1+ϵN

· (logN)
1

2+α · 1
1+ϵN ·OP (N

−1
2+α · 1

1+ϵN )

≤
(

1

log(1/γ)

)1+ 1
2+α

· (logN)1+
2

2+α ·OP
{(

logN

N

) 1
2+α

}
≤

(
1

log(1/γ)

)1+ 1
2+α

·OP
{
(logN)1+

3
2+α ·N− 1

2+α

}
,

where the second last line holds by following.

N
1

1+1/ log N >
N

logN
if and only if

1

1 + 1/ logN
· logN > logN − log(logN)

if and only if log(logN) >
1

1 + 1/ logN
. (32)

Then, we finally have

MMD1,dπ,1(ΥθT ,Υπ) ≤ C
1
2
cover ·

{
C(β=1)
max · C

1/2
brack ·

√
2
−α

1− α/2
·
(

1

2 + α

)1/2} 1
1+α/2

×
(

1

log(1/γ)

)1+ 1
2+α

·OP
{(

(logN)1+
3

2+α ·N
−1
2+α

)}
.
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C.12 Proof for Corollary B.4

For the case of (d,m, η) = (d2L2
, dL2 ,Wp), we have q = p, δ = 2(r−p)

(d+2r)p , l = 2, c = 1,

Csubg = C · (1 + γ−d/2) · CL2
, Csurr = 2 · (max{Vd, 1})

1
2p · M

(d+2p)r
(d+2r)p
r , ϵ0 = 0. Here, we

have CL2 := sups,a supθ∈Θ ∥fθ(·|s, a)∥L2 , Mr := supθ∈Θ sups,a E{∥Z(s, a; θ)∥r}1/r < ∞ and
Vd is the volume of a unit ball in Rd.

Due to Appendix C.9.2, it suffices to show (IPS1) and (IPS2) of Definition C.2 and (11). IPS
properties are trivial to show.

(11) can be shown as follows. Letting f(·|s, π) :=
∫
a∈A f(·|s, a)dπ(a|s), we have ∥1/γd ·

fθ̂n,t−1
((· − r)/γ|s′, π)∥L2 = 1/γd/2 · supθ∈Θ sups,a ∥fθ(·|s, a)∥L2 . Thus we have Cmax,m = C ·

(1+γ−d/2)·CL2
. We can see CL2

<∞ by following, by letting L := supθ∈Θ supz,s,a |fθ(z|s, a)| <
∞,

1

L2
∥fθ(·|s, a)∥2L2

=

∫
Rd

(
fθ(z|s, a)

L

)2

dz ≤
∫
Rd

fθ(z|s, a)
L

dz =
1

L
, ∴ CL2

≤ L1/2.

Lastly, by Proposition 13 of [56], we have following under 1 ≤ p < r

Wp(µ1, µ2) ≤ 2 · (max{Vd, 1})
1
2p ·M

(d+2p)r
(d+2r)p
r ·

{
dL2(µ1, µ2)

} 2(r−p)
(d+2r)p ,

with EX∼µ1
{∥X∥r}1/r,EX∼µ2

{∥X∥r}1/r ≤ M and Vd being the volume of d-dimensional unit
ball. Thus, we have δ = 2(r−p)

(d+2r)p with

Csurr = 2 · (max{Vd, 1})
1
2p ·M

(d+2p)r
(d+2r)p
r .

Applying Theorem C.5 gives us the following bound for Wp,dπ,p(ΥθT ,Υπ),

1

1− γ1− 1
2p

·
(
max{Vd, 1}

) 1
2p ·M

(d+2p)r
(d+2r)p
r · C

r−p
(d+2r)p
cover ×

{
CL2 · C

1/2
brack ·

(
1

1− 1
2p

)1/2

·
√
2
−α

1− α/2
·
(

2(r − p)

(d+ 2r)p · (2 + α)

)1/2} 1
1+α/2

· 2(r−p)
(d+2r)p

·OP
{(

N

log1/γ N

) −1
2+α · 2(r−p)

(d+2r)p
}

C.13 Proof of Corollary B.5

NS Properties ((NS1)–(NS4) of Assumption C.3) are satisfied by Appendix C.9.2, since kν is
bounded. For the case of (d,m, η) = (MMD2

ν ,MMDν ,Wp), we have q = p, l = 2, c = 1,

Csubg = C
(k)
max

let
= C

(ν)
max. Here, we have C

(ν)
max < ∞ since kν is a bounded function with a fixed

value of σMat > 0. Assuming that ∥fθ(·|s, a)∥Hν+d/2(Rd) < B and Mr < ∞, Theorem 15 and
Example 4 of [56] gives us Csurr = C(B, r,Mr, s, d, p, σMat), ϵ0 = 0, δ = r−p

(d+2r)p in Assumption
3.2. See the detailed form of C(B, r,Mr, s, d, p, σMat) > 0 in their Theorem 15. Then, applying
Theorem C.5 gives us following bound for Wp,dπ,p(ΥθT ,Υπ),

C(B, r,Mr, s, d, p, σMat)

1− γ1− 1
2p

· C
r−p

2(d+2r)p
cover ·

{
C(ν)
max · C

1/2
brack ·

√
2
−α

1− α/2

} 1
1+α/2

· r−p
(d+2r)p

×OP
{(

N

log1/γ N

) −1
2+α · r−p

(d+2r)p
}
.

C.14 Proofs based on Gaussian regularizer

Here, we introduce a method by which we can bound Wp,dπ,p-inaccuracy based on regularizer
ασ(·) (see Definition 20 of [56]). In the following lemma, we use gaussian regularizer ασ due to
its convenience, however it can be extended to other regularizers (see their Lemma 21). Since our
surrogate metric m may depend on the value of σ > 0, we will denote it as mσ .
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Lemma C.9. Let ασ(·) be the density (or probability measure) of N(0, σ2Id) and ∗ indicate
convolution. Assuming Wp(µ ∗ ασ, ν ∗ ασ) ≤ C(σ, p) ·mδ

σ(µ, ν) with p ∈ (0, 1
p ] and mσ satisfies

(NS4), letting d = m2
σ achieves the following bound (with detailed bound in (33)),

Wp,dπ,p(ΥθT ,Υπ) ≲
C(σ, p)

1− γ1− 1
2p

·OP
{(

N

log1/γ N

) −δ′
2+α

}
+

2
5
2−

1
2p

1− γ1− 1
2p

· Γ((p+ d)/2)

Γ(p/2)
· σ︸ ︷︷ ︸

irreducible for fixed σ>0.

.

C.14.1 Proof for Lemma C.9

By Lemma 21 of [56], we have the following,

Wp(µ, ν) ≤W(µ ∗ ασ, ν ∗ ασ) + 2 ·
(∫

∥z∥pασ(z)dz
)1/p

= Wp(µ ∗ ασ, ν ∗ ασ) + 23/2 · Γ((p+ d)/2)

Γ(p/2)
· σ

≤ C(σ, p) · m̄δ
σ,dπ,1(µ, ν) + 23/2 · Γ((p+ d)/2)

Γ(p/2)
· σ.

Then, we can apply Assumption 3.2 with Csurr = C(σ, p), and ϵ0 = 23/2 · Γ((p+d)/2)Γ(p/2) · σ. Further
letting m = mσ , l = 2, q = p, c = 1, we can apply Theorem C.5 to obtain the following,

Wp,dπ,p(ΥθT ,Υπ) ≤
1

1− γ1− 1
2p

· C(σ, p) · C
δ′
2
cover ·

(
Csubg · C1/2

brack ·
√
2
−α

1− α/2

) δ′
1+α/2

·OP
{(

N

log1/γ N

) −δ′
2+α

}
+

1

1− γ1− 1
2p

· 2
5
2−

1
2p · Γ((p+ d)/2)

Γ(p/2)
· σ. (33)

C.14.2 Proof for Corollary B.6

The case (d,m, η) = (MMD2
σRBF

,MMDσRBF ,Wp) satisfies Property (NS4), having δ = 2(r−p)
(d+2r)p ∈

(0, 1
p ), C(σRBF, p) = C(p, d, r,Mr) (see Theorem 24 of [56] for its detailed form). We also have

Csubg = C
(k)
max = C

2d/2·πd/4 · σRBF
−d/2 by (29), and Cbrack = Cbrack(σRBF) whose dependence

on σRBF > 0 is not clear. Further letting σRBF = σN → 0 to a monotonically decreasing sequence,
applying Lemma C.9 gives us

Wp,dπ,p(ΥθT ,Υπ) ≤
C(p, d, σN , p)

1− γ1− 1
2p

· C
r−p
d+2r
cover ·

(
Cbrack(σN )1/2

2d/2 · πd/4 · σd/2N

·
√
2
−α

1− α/2

) 1
1+α/2

· 2(r−p)
(d+2r)p

·OP
{(

N

log1/γ N

) −1
2+α · 2(r−p)

(d+2r)p
}
+

1

1− γ1− 1
2p

· 2
5
2−

1
2p · Γ((p+ d)/2)

Γ(p/2)
· σN .

C.14.3 Proof for Corollary B.7

The case (d,m, η) = (MMD2
(σ,f),MMD(σ,f),Wp) satisfies (NS4), having δ = 1

p , C(σ, p) =

21−
1
p · σ by Theorem 2 of [70], which can be applied since the kernel k(σ,f) is bounded. We also

have Csubg = C
(k)
max

let
= C

(σ,f)
max , which is bounded due to k(σ,f)(·, ·) < ∞ by (29), along with

Cbrack = Cbrack(σ) whose dependence on σ > 0 is not clear. Further letting σ = σN → 0 to a
monotonically decreasing sequence, applying Lemma C.9 gives us

Wp,dπ,p(ΥθT ,Υπ) ≤
σN

1− γ1− 1
2p

· C
1
2p
cover ·

(
C(σN ,f)
max · C1/2

brack(σN ) ·
√
2
−α

1− α/2

) 1/p
1+α/2

·OP
{(

N

log1/γ N

)−1/p
2+α

}
+

1

1− γ1− 1
2p

· 2
5
2−

1
p · Γ((p+ d)/2)

Γ(p/2)
· σN .

Note that for fixed σ > 0, we have C
(σ,f)
max <∞ as long as k(σ,f)(·, ·) <∞ holds.
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C.15 Alternative for violation of (NS4)

In Theorem C.5, (NS4) may not hold. There may not be a corresponding functional norm
space (e.g., Wasserstein for d ≥ 2) or the functional element may be unbounded, that is,
supθ∈Θ supz,s,aGθ(z|s, a) = ∞. For such examples, we should replace (NS3) and (NS4) of
Section 3.2 with the following (MS3) and (MS4). We can maintain (NS1) and (NS2) from NS
properties, renaming them (MS1) and (MS2).
Assumption C.10 (Metric-space association). The functional Bregman divergence d and probability
metric m over P form metric-space association (MS association, in short) if there exists an metric
space (G,m) where any element µ ∈ P can be uniquely (up to equivalence under zero metric m)
represented by the corresponding element G(·|µ) ∈ G such that

(MS1) The Zt-conditioned modulus ∆n(θ|θ̂n,t−1) := {F̂n,t(θ|θ̂n,t−1) − Fn,t(θ|θ̂n,t−1)} −
{F̂n,t(θ∗,t|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1)} is a mean-zero sub-gaussian process with respect
to m̄n,1. That is, for any Zt ⊂ S ×A and θ̂n,t−1 ∈ Θ, we have

∥∆n(θ1|θ̂n,t−1)−∆n(θ2|θ̂n,t−1)∥ψ2(n) ≤
1√
n
· Csubg · m̄n,1(θ1, θ2).

(MS2) We have Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1) ≥ λ · m̄l
n,1(θ, θ∗,t) for some l ≥ 2. Here, the

value of λ > 0 does not depend on Zt, θ, θ̂n,t−1 (or θ∗,t such that Υθ∗,t = T πΥθ̂n,t−1
).

(MS3) m̄ρ,1(θ̂n,t, θ∗,t)→P 0 converges in a rate that does not depend on θ̂n,t−1 (or θ∗,t).

(MS4) There exists a constant Cmet ∈ (0,∞) and α ∈ (0, 2) such that
diam(Θ,m∞) <∞ & logN (Θ,m∞, ϵ) ≤ Cmet · ϵ−α.

It is possible that there exists an element in G that does not represent any µ ∈ P .

Under these alternative conditions, we can obtain the following theorem, which is proved in Appendix
C.15.1.
Theorem C.11. Suppose Assumptions 3.1, 3.2, C.4, and C3 <∞ for Lemma C.12. Moreover, given
a probability metric η that satisfies (S-L-C) with convexity parameter q ≥ 1 and scale-sensitivity
parameter c > 1/(2q) (i.e., (15) of Appendix C.4), consider the FDE with a functional Bregman
divergence d satisfying Assumption C.10 of Appendix C.15. Then, by letting T = ⌊ 1

c− 1
2q

· δ′

2β1
·

log1/γ N⌋ with δ′ = min{δ, 1/q}, we have

η̄dπ,q(ΥθT ,Υπ) ≤
1

1− γc−
1
2q

· C0 ·OP
{(

1

log(1/γ)
· (logN)2

N

) δ′
2β1

}
+

21−
1
2q · ϵ0

1− γc−
1
2q

,

C0 := Csurr · C
max{(1− 1

qδ )δ,0}
maxim · C

δ′
2
cover · C ′

B & β1 = max

{
l

3
2 −

1
4α

, l − 1 +
α

2

}
where C ′

B is specified in (35). Note that we need q > 1/(2c) to ensure γc−
1
2q ∈ (0, 1).

The outline of the proof is very similar to that of Theorem C.5, which is shown in Appendix C.8.1.
We first derive the convergence of single iteration, and then later combine multiple convergences
altogether. However, the important difference is that we cannot employ the same technique that
ensures the same convergence rate for m̄n,1 and m̄ρ,1, since it can violate (23) that is required by
Theorem C.5. That is, the functional representation may not be bounded or there may not be a
corresponding functional norm space. Therefore, we resort to an alternative theoretical tool (Lemma
C.12, with its proof in Appendix D.4) that can possibly lead to a slower convergence rate.
Lemma C.12. Assume Assumption 3.1 and C3 > 0 defined below has finite value. For any β > 0,
we have some sequence δn = max{δ(1)n , δ

(2)
n } such that δn → 0 as n → ∞ and following ϕ(·)

mentioned in Theorem D.1. Here, δ(1)n and δ
(2)
n are defined as follows:

δ(1)n :=

(
2C1√
n

)1/β

& δ ≥ δ(2)n implies
C√
n
· Csubg · Cent · δ

α0
2 β

′
≥ C3 · exp

(
−n · δ2β

4C2
2

)
,

ϕ(δ) := Cϕ · δ
α0
2 β

′
with Cϕ := C · Csubg · Cent & β′ = min{β, 2},
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Here are the constants:

Cent = C
1/2
met/(1− α/2) & α0 = 1− α/2 ∈ (0, 1),

C1 :=
C

1− α/2
· C1/2

met · diam(Θ;m∞)2−α/2 & C2 := C · diam(Θ;m∞)2.

C3 > 0 is the finite constant that uniformly bounds the modulus ∆̃n(θ|θ̂n,t−1) with F (θ|θ̂n,t−1) :=
ES,A∼ρ,R,S′∼p̃(···|S,A)(d{Υθ(S,A),Ψπ(R,S′,Υθ̂n,t−1

)})

∆̃n(θ|θ̂n,t−1) := {F̂n,t(θ|θ̂n,t−1)− F (θ|θ̂n,t−1)} − {F̂n,t(θ∗,t|θ̂n,t−1)− F (θ∗,t|θ̂n,t−1)},
C3 := sup

θ,θ̂n,t−1∈Θ

sup
s,a,r,s′

|∆̃n(θ|θ̂n,t−1)| <∞.

C.15.1 Proof for Theorem C.11

In (MS2), we take expectation on both sides. Then, the LHS becomes F (θ|θ̂n,t−1)− F (θ∗,t|θ̂n,t−1),
where the unconditioned (not conditioned on Zt unlike (22)) objective function is defined as follows:

F (θ|θ̂n,t−1) := E
(
d
{
Υθ(S,A),Ψπ(R,S′,Υθ̂n,t−1

)
})

& θ∗,t = argmin
θ∈Θ

F (θ|θ̂n,t−1).

For the RHS, we have following,

E
(
m̄l
n,1(θ, θ∗,t)

)
= E

{(
m̄2
n,1(θ, θ∗,t)

)l/2} ≥ {
E
(
m̄2
n,1(θ, θ∗,t)

)}l/2
by Jensen’s inequality

=

{
E
(
1

n

n∑
i=1

m2
(
Υθ(si, ai),Υθ∗,t(si, ai)

))}l/2
=

{
m̄2
ρ,1(θ, θ∗,t)

}l/2
= m̄l

ρ,1(θ, θ∗,t).

Thus we have F (θ|θ̂n,t−1)− F (θ∗,t|θ̂n,t−1) ≥ λ · m̄l
ρ,1(θ, θ∗,t), by which we can replace (MS2).

Now, we shall combine this with (MS3) and Lemma C.12 to apply Theorem D.1. We should find δn
and β > 0 that satisfies following with β′ = min{β, 2},

Cϕ · δ
α0
2 β

′

n ≤
√
n · δln, δn ≥

(
2C1√
n

)1/β

,
C√
n
· Csubg · Cent · δ

α0
2 β

′

n ≥ C3 · exp
(
−n · δ2βn
4C2

2

)
.

(34)

The first condition of (34) can be rewritten as follows,

δn ≥
(
Cϕ√
n

) 1
l−α0β′/2

⇒ requires to confirm α0β
′ < 2l.

Remember that β > 0 is a free variable that we choose. There can be two cases: (i) l ≤ 2 + α0 and
(ii) l > 2 + α0. We will select β differently for each case (based on the first two conditions of (34)),
and we will hereafter denote its selected value as β0.

Let us consider the first case. To meet the first two conditions, we solve l = α0β
′/2 = β.

Temporarily asuming β ≤ 2 (which also needs to be confirmed later), we obtain β0 = l/(1 + α0/2).
We can confirm that l ≤ 2 + α0 implies β0 ≤ 2, and can see α0β

′ = α0β0 < 2l.

In the second case, we let β0 = 2. This leads to β′ = 2, and the first two conditions of (34) can be
summarized as follows,

δn ≥
(
Cϕ√
n

) 1
l−α0

& δn ≥
(
2C1√
n

)1/2

⇒ ∴ δn ≥
(
Cϕ√
n

) 1
l−α0

.

We confirm that α0β
′ = 2α0 < 2(l − 2) < 2l holds. Incorporating Cases (i) and (ii), we let

β0 = min

{
l

1 + α0/2
, 2

}
≤ 2.
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With the selected β0, the first two conditions of (34) become following,

Case (i) l ≤ 2 + α0 : δn ≥ max
{
Cϕ, 2C1

}1/β0 ·
(

1√
n

)1/β0

with β0 =
l

1 + α0/2
,

Case (ii) l > 2 + α0 : δn ≥
(
Cϕ√
n

) 1
l−α0

for sufficiently large n ∈ N.

Since l ≤ 2 + α0 is equivalent to l − α0 ≤ l
1+α0/2

, we have

δn ≥
(
max{Cϕ, 2C1} ·

1√
n

)1/β1

with β1 = max

{
l

1 + α0/2
, l − α0

}
.

Now we select δn as follows,

δn =

(
max

{
Cϕ, 2C1, (2C2)

β1/β0

})1/β1

︸ ︷︷ ︸
let
=CA

·
(√

log n

n

)1/β1

,

and we can confirm that third statement of (34) holds as follows. Note that the selected value of β is
β0, not β1. Using some constant CLHS > 0 and β0 ≤ β1 along with C2β0

A ≥ 4C2
2 , we have

LHS =
CLHS√

n
· δ

α0β0
2

n =
CLHS√

n
·
(√

log n

n

) 1
β1

·α0β0
2

≥ CLHS · (log n)α0/4 ·
(

1√
n

)1+
α0
2

,

RHS = C3 · exp
(
−n · δ2β0

n

4C2
2

)
= C3 · exp

{
−n · C2β0

A

4C2
2

·
(
log n

n

)β0/β1
}

≤ C3 · exp(− log n) =
C3

n
.

Since α0 ∈ (0, 1) as specified in Lemma C.12, we can see that LHS is larger than RHS for sufficiently
large n, satisfying the third statement of (34).

Now we can apply peeling argument (Theorem D.1) to obtain the following,

m̄ρ,1(θ̂n,t, θ∗,t) = OP (δn) = C
1

l−1+α

ϕ · CA ·OP
{(

log n

n

)} 1
2β1

,

∴ m̄dπ,1(θ̂n,t, θ∗,t) = C1/2
cover ·max

{
Cϕ, 2C1, (2C2)

β1/β0

}1/β1

·OP
{(

log n

n

) 1
2β1

}
.

We can copy the logic of Appendix C.8.3 that we used to prove Theorem C.5. We can apply Lemma
C.7 (with satisfaction of its condition deferred in Appendix D.5). We can let

δ′ = min{δ, 1
q
} & C ′

B := max

{
Cϕ, 2C1, (2C2)

β1/β0

}δ′/β1

,

and further let

T =

⌊
1

c− 1
2q

· δ′

2β1
· log1/γ N

⌋
⇒

(
1

N

) δ′
2β1

≈ ζT .

Ignoring the flooring effect, this leads to

log n

n
=

log(N/T )

N/T
≤ T

N
· logN =

1

c− 1
2q

· δ′

2β1
· 1

log(1/γ)
· (logN)2

N
.
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Then, applying the same logic as Appendix C.8.3 (extending towards multiple iterations), we finally
obtain bound η̄dπ,q(ΥθT ,Υπ) by following,

1

1− γc−
1
2q

· Csurr · C
max{(1− 1

qδ )δ,0}
maxim · C

δ′
2
cover · C ′

B ·OP
{(

1

log(1/γ)
· (logN)2

N

) δ′
2β1

}
+

1

1− γc−
1
2q

· 21−
1
2q · ϵ0,

with β1 = max

{
l

3
2 −

1
4α

, l − 1 +
α

2

}
& β0 = min

{
l

3
2 −

1
4α

, 2

}
,

and C ′
B := max

{
Cϕ, 2C1, (2C2)

β1/β0

}δ′/β1

·
{

1

c− 1
2q

· δ′

2β1

} δ′
2β1

. (35)

where Cϕ, C1, C2 are defined in Lemma C.12.

C.15.2 Proof for Corollary B.8

For the case of (d,m, η) = (MMD2
cou,MMDcou,Wp), we have q = p, δ = 1/p, l = 2, c = 1,

Csubg = C
(k)
max = C(1 + γ1−d/2) · supθ∈Θ sups,a E

1/2
cou (Υθ(s, a))

let
= C

(cou)
max , Csurr = C ·D1− 1

2p ·

V
1
2p

d .

(MS1) and (MS2) are straightforward from Appendix C.9.2. Note that C(k)
max = C

(cou)
max (29) can be

derived as follows (for unbounded kernel kcou). Based on ∥κµ∥2H = ⟨κµ, κµ⟩H = E{kcou(X,X′)}
with X,X′ iid∼ µ, we can use ∥κµ∥H = E1/2cou (µ) to obtain the following,

MMDcou

{
Υθ(s, a),Ψπ(r, s

′,Υθ̂n,t−1
)

}
≤ C ·

{
E1/2cou (Υθ(s, a)) + E1/2cou

{
Ψπ(r, s

′,Υθ̂n,t−1
)
}}

,

E1/2cou (Ψπ(r, s
′,Υθ̂n,t−1

)) ≤
∑
a′∈A

π(a′|s′) · ∥κ(gr,γ)#Υθ̂n,t−1
(s′,a′)∥H

=
∑
a′∈A

π(a′|s′) · E1/2cou ((gr,γ)#Υθ̂n,t−1
(s′, a′)).

Since we have the following based on definition of κ(cou)
0 ,

Ecou
{
(gr,γ)#Υθ̂n,t−1

(s′, a′))

}
= E

{
κ
(cou)
0 (γZα(s

′, a′; θ̂n,t−1)− γZβ(s
′, a′; θ̂n,t−1))

}
= γ2−d · Ecou(Υθ̂n,t−1

(s′, a′)).

This gives us C(k)
max = C

(cou)
max .

(MS3) can be shown analogously with Section C.10. (MS4) regards the model complexity that we
assume. C3 > 0 can be shown to be bounded by using supθ∈Θ sups,a Ecou(Υθ(s, a)) <∞, which
is assumed in Corollary B.8.

We also obtain Csurr = C ·D1− 1
2p · V

1
2p

d where Vd is the volume of a unit ball in Rd, by Theorem
1.1 of [11] as follows,

W1(µ, ν) ≤ C ·D1/2 · V 1/2
d ·MMDcou(µ, ν),

Wp(µ, ν) ≤ D1− 1
p ·W1/p

1 (µ, ν) ≤ C ·D1− 1
2p · V

1
2p

d ·MMD1/p
cou(µ, ν).

Then applying this into Theorem C.11 gives us following bound, since we have β1 = 2/( 32 −
1
4α),

Wp,dπ,p(ΥθT ,Υπ) ≤
D1− 1

2p · V
1
2p

d

1− γ1− 1
2p

· C
1
2p
cover · C ′

B ·OP
{

1

log(1/γ)
·
(
(logN)2

N

) 6−α
16p

}
,

C ′
B :=

1

1− α/2
·
(
max

{
C(cou)
max · C

1/2
met, C

1/2
met · diam(Θ;Wp,∞)2−α/2,diam(Θ;Wp,∞)2

}) 6−α
8p

,

where C ′
B is defined accordingly to (35).
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C.15.3 Proof for Corollary B.3

For the case of (d,m, η) = (MMD2
β=1,W1,W1), we have q = 1, δ = 1, l = r(2d+3)−1

r−1 , c = 1,
Csubg = C, Csurr = 1, ϵ0 = 0. We need β > 1 for q = 1 as we mentioned in (16).

(MS1) holds, as we have already shown in Appendix C.10. This can be copied since l22 is a special
case of MMD2

β=1 for d = 1. However, (MS2) should be changed as follows, based on Proposition
17 of [36]: when Mr <∞, we have

C(d, r, β,Mr) ·MMDρ
′

β (µ, ν) ≥W1(µ, ν) with ρ′ =
r − 1

r(d+ β/2 + 1)− β/2
. (36)

Refer to their Proposition 17 for the definition of constant C(d, r, β,Mr) > 0. This can be developed
into

Fn,t(θ|θ̂n,t−1)− Fn,t(θ∗,t|θ̂n,t−1) = MMD
2

β,n,1(θ, θ∗,t)

=
1

n

n∑
i=1

MMD2
β(Υθ(si, ai),Υθ∗,t(si, ai))

≥ C(d, r, β,Mr)
−2/ρ′ · 1

n

n∑
i=1

{
W2

1(Υθ(si, ai),Υθ∗,t(si, ai))

}1/ρ′

≥ C(d, r, β,Mr)
−2/ρ′ ·

{
1

n

n∑
i=1

W2
1(Υθ(si, ai),Υθ∗,t(si, ai))

}1/ρ′

∵
1

ρ′
> 2

= C(d, r, β,Mr)
−2/ρ′ ·W2/ρ′

1,n,1(θ, θ∗,t).

Since we are limiting to β = 1, (MS2) is satisfied with λ = C(d, r, β,Mr)
−2/ρ′ and l = 2

ρ′ =
r(2d+3)−1

r−1 ≥ 2d+ 3.

(MS3) can be shown analogously to C.10. In the part of applying Hoeffding’s inequal-
ity (generalized version for unbounded distributions, e.g., Theorem 2.6.2), we should assume
supθ∈Θ sups,a E∥Z(s, a; θ)∥ <∞ and sups,a ∥R(s, a)∥ψ2

<∞.

(MS4) is what we assume. Finiteness of C3 > 0 can be shown by using the same trick that holds
between energy distance and Wassertein-1 metric (as we mentioned in Appendix C.10),

|∆̃n(θ|θ̂n,t−1)| ≤ |F̂n,t(θ|θ̂n,t−1)− F̂n,t(θ∗,t|θ̂n,t−1)|+ |F (θ|θ̂n,t−1)− F (θ∗,t|θ̂n,t−1)|

≤
∣∣∣∣ 2n

n∑
i=1

(fθi − f
θ∗,t
i )− 1

n

n∑
i=1

(gθi − g
θ∗,t
i )

∣∣∣∣+ ∣∣∣∣2 · E(fθ1 − f
θ∗,t
1 )− E(gθ1 − g

θ∗,t
1 )

∣∣∣∣
≤ 8 · sup

θ∈Θ
W(θ; θ∗,t) ≤ 8 · diam(Θ;W1,∞) <∞ by (MS4).

Then, we can apply Theorem C.11 to obtain the following bound, since β1 = l − 1 + α/2.

W1,dπ,1(ΥθT ,Υπ) ≤
1

1− γ1/2
· C1/2

cover ·OP
{(

1

log(1/γ)
· (logN)2

N

) 1
2(l−1)+α

}
,

C ′
B :=

(
1

1− α/2
max

{
1, C

1/2
met · diam(Θ;W1,∞)2−α/2,diam(Θ;W1,∞)

l−1+α/2
2

}) 1
l−1+α/2

.

C.16 Proof for Corollary B.9

We acknowledge that the following proof is based upon Chapter 7 of [20] and Section 6.4 of [51].
Throughout this proof, we will resort to the following trick shown by [51],

|
√
2s−

√
s+ t| ≤ |

√
s−
√
t| ≤ (1 +

√
2) · |
√
2s−

√
s+ t| for ∀s, t ≥ 0.

Now, let us define the following functions. Define Es,a to be expectation taken with respect to s, a ∼ ρ,
Er,s′ to be expectation taken with respect to r, s′ ∼ p̃(· · · |s, a), Ez′∼fθ̂n,t−1

(···|s′,π) to be expectation
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taken with respect to z′ ∼ fθ̂n,t−1
(s′, π), where fθ̂n,t−1

(·|s′, π) :=
∫
fθ̂n,t−1

(·|s′, a′)dπ(a′|s′).

M(θ) := Es,aEr,s′Ez∼fθ̂n,t−1
(···|s′,π)

{
− log

(
fθ(r + γz′|s, a) + fθ∗,t(r + γz′|s, a)

2 · fθ∗,t(r + γ|s, a)

× 1
(
fθ∗,t(r + γz′|s, a) > 0

))}
,

M̂n(θ) :=
1

n

n∑
i=1

Ezi∼fθ̂n,t−1
(·|s′i,π)

{
− log

fθ(ri + γz′i|si, ai) + fθ∗,t(ri + γz′i|si, ai)
2 · fθ∗,t(ri + γz′i|si, ai)

}
.

Note that it is more appropriate to write it as M(θ|θ̂n,t−1) and M̂n(θ|θ̂n,t−1). However, we
will take θ̂n,t−1 ∈ Θ (along with the corresponding θ∗,t) as given, and simplify it as M(θ) =

M(θ|θ̂n,t−1) and M̂n(θ) = M̂n(θ|θ̂n,t−1). Since the inner part of Es,a of M(θ) is equivalent to

KLD(fθ∗,t(·|s, a)∥
fθ(·|s,a)+fθ∗,t (·|s,a)

2 ) ≥ 0 where equality holds under θ = θ∗,t, θ∗,t becomes the
minimizer of M(θ) with M(θ∗,t) = 0.

C.16.1 Quadratic lower bound

For fixed s, a, denote p0(·) = fθ∗,t(·|s, a) and p(·) = fθ(·|s, a). Then, the terms inside Es,a is
simplified as follows with q = 1

2 (p+ p0),

Ez∼p0
{
− log

p(z) + p0(z)

2p0(z)
· 1

(
p0(z) > 0

)}
= Ez∼p0

{
− log

q(z)

p0(z)
· 1

(
p0(z) > 0

)}
≥ 2 ·

∫
p0>0

(
1−

√
q(z)

p0(z)

)
p0(z)dz ∵

1

2
log x <

√
x− 1

= 2 ·
(
1−

∫
p0>0

√
p0(z) ·

√
q(z)dz

)
≥

∫
p0>0

(
p0(z) + q(z)− 2 ·

√
p0(z) ·

√
q(z)

)
dz

=

∫
p0>0

(√
p0(z)−

√
q(z)

)2
dz =

1

2
·
∫
p0>0

(√
2p0(z)−

√
(p0 + p)(z)

)2
dz

≥ 1

2
· 1

(1 +
√
2)2
·
∫
p0>0

(√
p0(z)−

√
p(z)

)2
dz =

1

(1 +
√
2)2
· h2

0(p0, p),

where h2
0(µ1, µ2) := 1

2

∫
p0>0

(
√
f1(z) −

√
f2(z))

2dz where f1, f2 are corresponding pdf’s of
µ1, µ2 ∈ P . Allowing abuse of notation, we will allow putting densities instead of probabilty
measures for the inputs.

Then, since M(θ∗,t) = 0, we have the following where h̄0,ρ,1 is defined accordingly to (8),

M(θ)−M(θ∗,t) = Es,aEz∼fθ∗,t (·|s,a)
{
− log

fθ(z|s, a) + fθ∗,t(z|s, a)
2 · fθ∗,t(z|s, a)

· 1
(
fθ∗,t(z|s, a) > 0

)}
≥ Es,a∼ρ

{
1

(1 +
√
2)2
· h2

0

(
fθ∗,t(·|s, a), fθ(·|s, a)

)}
=

1

(1 +
√
2)2
· h̄2

0,ρ,1(θ∗,t, θ).

Here we have h̄2
0,ρ,1(θ1, θ2) := Es,a∼ρ{h2

0(Υθ1(s, a),Υθ2(s, a))} with h2
0(Υθ1(s, a),Υθ2(s, a))

takes the integral over the support of Υθ∗,t(s, a), or fθ∗,t(·|s, a) > 0.

C.16.2 Convergence of modulus

We recall the following Theorem 6.13 of [51].
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Theorem C.13. For any class F of measurable functions f : X → R with ∥f∥P0,B ≤ δ, with

Xi
iid∼ P0, we have following with ≲ indicating “bounded by some multiplicative constant,”

E
{
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣} ≲
1√
n
· J[ ](δ,F , ∥ · ∥P0,B) ·

(
1 +

J[ ](δ,F , ∥ · ∥P0,B)

δ2
√
n

)
,

J[ ](δ,F , ∥ · ∥) :=
∫ δ

0

√
logN[ ](ϵ,F ∪ {0}, ∥ · ∥)dϵ ≤

∫ δ

0

√
1 + logN[ ](ϵ,F , ∥ · ∥)dϵ,

∥f∥2P0,B := 2 · EX∼P0

{
exp(|f(X)|)− 1− |f(X)|

}
.

Let us define the following.

mθ(s, a, r, s
′) := Ez′∼fθ̂n,t−1

(·|s′,π)

{
− log

(
fθ(r + γz′|s, a) + fθ∗,t(r + γz′|s, a)

2 · fθ∗,t(r + γz′|s, a)

× 1
(
fθ∗,t(r + γz′|s, a) > 0

))}
,

∴ M̂n(θ) =
1

n

n∑
i=1

mθ(si, ai, ri, s
′
i) =

1

n

n∑
i=1

{
mθ(si, ai, ri, s

′
i)−mθ∗,t(si, ai, ri, s

′
i)
}
,

M(θ) = Es,a,r,s′
{
mθ(s, a, r, s

′)
}
= E

{
mθ(s, a, r, s

′)−mθ∗,t(s, a, r, s
′)
}
.

We also define MΘ := {mθ(· · · ) : θ ∈ Θ} = {mθ(· · · ) − mθ∗,t(· · · ) : θ ∈ Θ}, since we
have mθ∗,t(· · · ) = 0. Since mθ(s, a, r, s

′) ≤ log 2 and x < log 2 implies exp(|x|) − 1 − |x| ≤
4 · (exp(−x/2)− 1)2, we have the following,

∥mθ∥2P0,B ≤ 2 · Es,aEr,s′
{
4 ·

(
exp

(
−mθ(s, a, r, s

′)/2
)
− 1

)2}
= 8 · Es,a∼ρEr,s′Ez′∼fθ̂n,t−1

(·|s,a)

{(√
fθ(r + γz′|s, a) + fθ∗,t(r + γz′|s, a)

fθ∗,t(r + γz′|s, a)

)2

× 1
(
fθ∗,t(z|s, a) > 0

)}
.

Note that Er,s′∼p̃(···|s,a)Ez′∼fθ̂n,t−1
(·|s,a) can be reduced into Ez∼fθ∗,t (·|s,a). Again, letting p0(·) =

fθ∗,t(·|s, a) and p(·) = fθ(·|s, a) for fixed s, a, along with q = (p+ p0)/2, the term within Es,a can
be rewritten as follows,

Ez∼p0
{(√

q(z)

p0(z)
− 1

)2

· 1
(
p0(z) > 0

)}
=

∫
p0>0

(√
q(z)

p0(z)
− 1

)2

p0(z)dz

=

∫
p0>0

(√
q(z)−

√
p0(z)

)2
dz =

∫
p0>0

(√
p0 + p

2
(z)−

√
p0(z)

)2

dz

=
1

2
·
∫
p0>0

(√
p0 + p(z)−

√
2p0(z)

)2
dz ≤ 1

2

∫
p0>0

(√
p(z)−

√
p0(z)

)2
dz = h2

0(p0, p).

Then, this leads to ∥mθ∥P0,B ≤ 2
√
2 · h̄0,ρ,1(θ∗,t, θ), meaning that h̄0,ρ,1(θ∗,t, θ) ≤ δ

2
√
2

implies
∥mθ∥P0,B ≤ δ. Then, applying Theorem C.13 gives us the following with modulus constructed as
∆n(θ|θ̂n,t−1) = (M̂n(θ)−M(θ))− (M̂n(θ∗,t)−M(θ∗,t)),

E
{

sup
θ∈Θ:h̄0,ρ,1(θ∗,t,θ)<

δ
2
√

2

∣∣(M̂n(θ)−M(θ))− (M̂n(θ∗,t)−M(θ∗,t))
∣∣}

≤ C√
n
· J[ ](δ,MΘ, ∥ · ∥P0,B) ·

(
1 +

J[ ](δ,MΘ, ∥ · ∥P0,B)

δ2
√
n

)
. (37)
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Now let us simplify the term J[ ](δ,MΘ, ∥ · ∥P0,B). Assume a bracketing pair mp(· · · ) ≤ mq(· · · ),
which may not be elements ofMΘ. That is, we have p(·| · · · ) ≥ q(·| · · · ) (where we can assume
q(·| · · · ) ≥ 0 but not necessarily conditional probability densities), and

mp(s, a, r, s
′) = Ez′∼fθ̂n,t−1

(·|s,a)

{
− log

(
p(z|s, a) + fθ∗,t(z|s, a)

2 · fθ∗,t(z|s, a)
· 1

(
fθ∗,t(z|s, a) > 0

))}
,

mq(s, a, r, s
′) = Ez′∼fθ̂n,t−1

(·|s,a)

{
− log

(
q(z|s, a) + fθ∗,t(z|s, a)

2 · fθ∗,t(z|s, a)
· 1

(
fθ∗,t(z|s, a) > 0

))}
.

The term ∥mp(· · · )−mq(· · · )∥P0,B is defined as follows,

Es,aEr,s′
[{

exp
(
|mp(s, a, r, s

′)−mq(s, a, r, s
′)|
)
− 1− |mp(s, a, r, s

′)−mq(s, a, r, s
′)|
}2]

.

Employing the same trick that we have used before, the term inside Es,a can be bounded as follows
with p0(z) = fθ∗,t(·|s, a) for fixed s, a,

≤ 4 · Ez∼p0
{(√

p(z) + p0(z)

q(z) + p0(z)
− 1

)2

· 1
(
p0(z) > 0

)}

= 4 · Ez∼p0
{(√

p1(z)

p2(z)
− 1

)2

· 1
(
p0(z) > 0

)}
with p1 = p+ p0, p2 = q + p0

= 4 ·
∫
p0>0

(√
p1(z)

p2(z)
− 1

)2

p0(z)dz ≤ 4 ·
∫
p0>0

(√
p1(z)

p2(z)
− 1

)2

· p2(z)dz

= 8 ·
∫
p0>0

(√
p+ p0

2
(z)−

√
q + p0

2
(z)

)2

dz

≤ 8 ·
∫
p0>0

(√
p(z)−

√
q(z)

)2
dz = 16 · h2

0(p, q)

Then, we have ∥mp(· · · )−mq(· · · )∥P0,B ≤ 4 · ∥
√
p(·| · · · )−

√
q(·| · · · )∥L2,ρ. ∥ · ∥L2,ρ is defined

accordingly to (24). Thus we have the following,

logN[ ](MΘ, ∥ · ∥P0,B , ϵ) ≤ logN[ ](F̃
1/2
Θ , ∥ · ∥L2,ρ, 4/ϵ).

Then, this leads to following by assumption,

J[ ](δ,MΘ, ∥ · ∥P0,B) ≤
∫ δ

0

√
logN[ ](F̃

1/2
Θ , ∥ · ∥L2,ρ, ϵ/2)dϵ ≤ C · C1/2

brack ·
1

1− α/2
· δ1−α/2.

We will later select δn such that C · C1/2
brack ·

1
1−α/2 · δ

1−α/2
n =

√
n · δ2n and apply Theorem D.1.

C.16.3 Consistence

Before we apply Theorem D.1, let us show h̄0,ρ,1(θ̂n,t, θ∗,t)→P 0. By Lemma 4.2 of [20], we have
following,

h̄2
0,ρ,1(θ̂n,t, θ∗,t) = Es,a∼ρ

{
h2
0

(
fθ̂n,t

(·|s, a), fθ∗,t(·|s, a)
)}

≤ 2(1 +
√
2)2 · Es,a∼ρ

{
h2
0

(fθ̂n,t
+ fθ∗,t

2
(·|s, a), fθ∗,t(·|s, a)

)}
≤ (1 +

√
2)2 ·

∣∣M(θ̂n,t)− M̂n(θ̂n,t)
∣∣.

The first inequality holds by following. Letting p be an arbitrary density and p̄ = 1
2 (p+ p0), we have

h2
0(p̄, p0) =

1

2

∫
p0>0

(√
p+ p0

2
(z)−

√
p0(z)

)2

dz =
1

4

∫
p0>0

(
√
(p+ p0)(z)−

√
2p0(z))

2dz

≥ 1

4(1 +
√
2)2
·
∫
p0>0

(
√
p(z)−

√
p0(z))

2dz =
1

2(1 +
√
2)2
· h2

0(p, p0).
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The second inequality above holds due to following. Note that θ̂n,t is defined as follows by (10)
with d(P,Q) = KLD(Q∥P ) and we have following based on concavity of logarithm function, i.e.,
log x+y

2 ≥ 1
2 log x+ 1

2 log y for x, y > 0.

θ̂n,t := argmin
θ∈Θ

1

n

n∑
i=1

Ez′i∼fθ̂n,t−1
(·|s′i,π)

{
− log fθ(ri + γz′i|si, ai)

}
,

log
fθ̂n,t

(z|s, a) + fθ∗,t(z|s, a)
2 · fθ∗,t(z|s, a)

· 1
(
fθ∗,t(z|s, a) > 0

)
≥ 1

2
log

fθ̂n,t
(z|s, a)

fθ∗,t(z|s, a)
· 1

(
fθ∗,t(z|s, a) > 0

)
.

Then this leads to following which justifies the inequality,

0 ≤ 1

n

n∑
i=1

Ez′i∼fθ̂n,t−1
(·|s′i,π)

{
log fθ̂n,t

(ri + γz′i|si, ai)− log fθ∗,t(ri + γz′i|si, ai)
}

≤ 2

n

n∑
i=1

Ez′i∼fθ̂n,t−1
(·|s′i,π)

{
log

(fθ̂n,t
(ri + γz′i|si, ai) + fθ∗,t(ri + γz′i|si, ai)

2 · fθ∗,t(ri + γz′i|si, ai)

× 1
(
fθ∗,t(ri + γz′i|si, ai) > 0

))}
≤ 2 · (−M̂n(θ̂n,t) +M(θ̂n,t)) + 2 · Es,a,r,s′

{
−mθ̂n,t

(s, a, r, s′)
}

≤ 2 · (−M̂n(θ̂n,t) +M(θ̂n,t))− 4 · Es,a
{
h2
0

(fθ∗,t(·|s, a) + fθ̂n,t
(·|s, a)

2
, fθ∗,t(·|s, a)

)}
.

The last line above holds, since the term Es,a,r,s′{−mθ̂n,t
(s, a, r, s′)} can be bounded using the

following fact,∫
log

p̄(z)

p0(z)
· 1

(
p0(z) > 0

)
· p0(z)dz ≤ 2 ·

∫ (√
p̄(z)

p0(z)
− 1

)
p0(z)dz ∵

1

2
log x ≤

√
x− 1

= 2 ·
∫
p0>0

(
√
p̄(z) ·

√
p0(z))dz − 2 ≤ −

∫
p0>0

(√
p0(z)−

√
p̄(z)

)2
dz = −2 · h2

0(p̄, p0).

Using |M(θ̂n,t) − M̂n(θ̂n,t)| = ∆n(θ|θ̂n,t−1) since M̂n(θ∗,t) = M(θ∗,t) = 0, we can show the
following by Markov’s inequality and (37), with probability bound not depending on θ̂n,t−1,

P
(
|∆n(θ|θ̂n,t−1)| ≥ ϵ

)
≤ 1

ϵ
· E

{
sup
θ∈Θ

∣∣∆n(θ|θ̂n,t−1)
∣∣}→P 0,

as long as diam(F̃1/2
Θ , ∥ · ∥L2,ρ) <∞.

C.16.4 Finalization

As we mentioned at the end of Appendix C.16.2, we let

δn =

(
C2

0

n

) 1
2+α

where C0 = C · C1/2
brack ·

1

1− α/2
,

∴ h̄0,ρ,1(θ̂n,t, θ∗,t) = C
1

2+α

brack ·
(

1

1− α/2

) 1
1+α/2

·OP
(
n

−1
2+α

)
.

Now let us bound further bound Wasserstein metric by h0. Considering two densities p and p0, we
have ∫

p0>0

|p0(z)− p(z)|dz =

∫
p0>0

|
√

p0(z)−
√
p(z)| · |

√
p0(z) +

√
p(z)|dz

≤
(∫

p0>0

|
√
p0(z)−

√
p(z)|2

)1/2

·
(∫

p0>0

|
√
p0(z) +

√
p(z)|2

)1/2

≤ 4 · h0(p0, p).
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This allows us to bound TVD metric as follows,∫
|p0(z)− p(z)|dz ≤

∫
p0>0

|p0(z)− p(z)|dz +
∫
p>0

|p0(z)− p(z)|dz

≤ 3 ·
∫
p0>0

|p0(z)− p(z)|dz ≤ 12 · h0(p0, p).

Based on Wp(P,Q) ≤ D · TVD1/p(P,Q) shown in Lemma C.6 of [63], this leads to Wp(p0, p) ≤
C ·D · h1/p

0 (p0, p). This leads to following,

Wp,dπ,p(θ̂n,t, θ∗,t) ≤ C ·D · C
1
2p
cover · h̄1/p

0,ρ,1(θ̂n,t, θ∗,t)

≤ C ·D · C
1
2p
cover · C

1/p
2+α

brack ·
(

1

1− α/2

) 1/p
1+α/2

·OP
(
n

−1/p
2+α

)
.

Letting T = ⌊ 1
1− 1

2p

· 1/p
2+α · log1/γ N⌋, we apply n = N/T based on (6), and we obtain the following

bound for Wp,dπ,p(ΥθT ,Υπ),

D

1− γ1− 1
2p

· C
1
2p
cover · C

1/p
2+α

brack ·
(

1

1− α/2

) 1/p
1+α/2

·
(

1/p

2 + α
· 1

1− 1
2p

) 1/p
2+α

×OP
{(

N

log1/γ N

)−1/p
2+α

}
.

Of course, we should show that condition of Lemma C.7 is satisfied before we apply (6). Its proof is
analogous to Appendix D.5 that we used in proving Theorem C.11.

C.17 Comparison and examples on Cramér FDE

C.17.1 Comparison between Cramér FDE and FLE

Although FLE [63] did not suggest a probability bound for Wp,dπ,p-inaccuracy, we can utilize their
key results (e.g., their Lemma 4.9) to build such bound. With probability larger than 1− δ, we have
the following with in a single iteration based on Dt with |Dt| = n:

Wp,dπ,p(Υθt , T πΥθ̂n,t−1
) ≤ C1/2p

cover ·
√
d

1− γ
·
[
10

n
· log

{
N[ ]

(
F̃Θ, ∥ · ∥, (n|Y|)−1

)/
δ

}]1/2p
.

Here, ∥ · ∥ can be any norm that can be defined on F̃Θ. For fair comparison, let us use

∥f(·| · · · )∥L1,∞ := sup
s,a

∫ ∞

−∞
|f(z|s, a)|dz,

which is what we already defined in (NS4) (or Appendix C.10). Skipping algebraic details, this leads
to following with appropriate choice of T with respect to the size of whole data N = |D|,

Wp,dπ,p(ΥθT ,Υπ) ≲ ÕP
(
N

−1
2p (1−α)) under logN[ ](F̃Θ, ∥ · ∥L1,∞, ϵ) ≲ ϵ−α.

Assuming the same condition, we can also bound logN[ ](FΘ, ∥ · ∥L1,∞, ϵ), where FΘ represents
the conditional cdf family, as we have mentioned in Appendix C.10. Letting M = logN[ ](F̃Θ, ∥ ·
∥L1,∞, ϵ), there exists pairs of functions {[li(·| · · · ), ui(·| · · · )]}Mi=1 that serve as ϵ-bracketing of F̃Θ.
Then, let us define

Li(y|s, a) :=
∫ y

a

li(z|s, a)dz & Ui(y|s, a) :=
∫ y

a

ui(z|s, a)dz.

Now arbitrarily pick Fθ(·| · · · ) ∈ FΘ, and let its corresponding conditional pdf as fθ(·| · · · ). There
exists a bracketing pair [lk(·| · · · ), uk(·| · · · )] such that lk(·| · · · ) ≤ fθ(·| · · · ) ≤ uk(·| · · · ) and
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∥lk(·| · · · )− uk(·| · · · )∥L1,∞ ≤ ϵ. Then, not only do we have Lk(·| · · · ) ≤ Fθ(·| · · · ) ≤ Uk(·| · · · ),
but also

∥Lk(·| · · · )− Uk(·| · · · )∥L1,∞ = sup
s,a

∫ b

a

∣∣∣∣Lk(y|s, a)− Uk(y|s, a)
∣∣∣∣dy ≤

sup
s,a

∫ b

a

∫ y

a

∣∣∣∣lk(z|s, a)− uk(z|s, a)
∣∣∣∣dzdy ≤ (b− a) · ∥lk(·| · · · )− uk(·| · · · )∥L1,∞ ≤ (b− a) · ϵ.

This further implies logN[ ](FΘ, ∥ · ∥L1,∞, (b − a) · ϵ) ≤ logN[ ](F̃Θ, ∥ · ∥L1,∞, ϵ) ≲ ϵ−α,
thereby satisfying the condition of (NS4). This allows us to apply Corollary B.1, yielding
Wp,dπ,p(ΥθT ,Υπ) = ÕP (N

− 1
p(2+α) ).

C.17.2 Example 1: Linear MDP

Let us assume the following model with Θ = (F)K , where F is a collection of cdf’s of random
variables bounded in [a, b]. Here, we can see θ as an element H(·) = (H1(·), · · · , HK(·))⊺ with
each Hk ∈ F .

MΘ :=

{
Υθ ∈ (P[a, b])S×A with Υθ(s, a) has cdf Fθ(z|s, a) = ⟨ϕ(s, a),H(z)⟩

∣∣∣∣ H ∈ (F)K
}
,

where ⟨ϕ(s, a),1K⟩ = 1 & ϕk(s, a) ≥ 0 for ∀s, a ∈ S ×A,
Σϕ := Es,a∼ρ

{
ϕ(s, a),ϕ⊺(s, a)

}
is non-singular. (38)

Note that tabular setting (|S × A| <∞) is a special case of linear MDP model. This is the case with
ϕk(s, a) = 1(s, a = (s, a)k) with k = 1, · · · , |S × A|.
Assumption 3.1 is satisfied when the transition is expressed as a linear combination of features
p̃(r, s′|s, a) = ⟨ϕ(s, a),θ(r, s′)⟩ with θ(r, s′) = (θ1(r, s

′), · · · , θK(r, s′))⊺ being valid densities
over R× S . Also assume Assumption C.4.

For (NS4), we can use Theorem 2.7.5 of [55] to bound logN[ ](FΘ, ∥ · ∥∞,L1
, ϵ). Letting Q =

Unif[a, b], we have the following,

logN[ ](F , ∥ · ∥L1
, ϵ) = logN[ ](F , ∥ · ∥L1(Q),

ϵ

b− a
) ≤ C(b− a) · ϵ−1.

where we have used ∥F1 − F2∥L1
= (b− a) · ∥F1 − F2∥L1(Q) in the first equality.

Arbitrarily choose ΥH1
,ΥH2

∈MΘ and their corresponding cdf’s FH1
(·|s, a) = ⟨ϕ(s, a),H1(·)⟩

and FH2
(·|s, a) = ⟨ϕ(s, a),H2(·)⟩. Then, we can derive the following with F [a, b] being the cdf’s

of bounded random variables in [a, b],

logN[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≤ K · logN[ ](F [a, b], ∥ · ∥L1
, ϵ) ≤ CK(b− a) · ϵ−1.

The first inequality can be verified as follows. Let the bracketing pairs of F be
[l1(·), u1(·)], · · · [lM (·), uM (·)] where M = log[ ](F , ∥ · ∥1, ϵ). Make K copies for each pair, so that

we have [l
(k)
1 (·), u(k)

1 (·)], · · · [l(k)M (·), u(k)
M (·)] for each k ∈ [K]. This means that we can construct

MK tuples of (
[l
(1)
j1

, u
(1)
j1

], · · · , [l(K)
jK

, u
(K)
j1

]

)
where j1, · · · , jK ∈ [M ].

Pick an arbitrary F (·| · · · ) ∈ FΘ, and it has corresponding H = (H1, · · · , HK) such that F (·|s, a) =
⟨ϕ(s, a),H(·)⟩. Since H1(·) ∈ [l

(1)
j1

, u
(1)
j1

], · · · , HK(·) ∈ [l
(K)
jK

, u
(K)
jK

] for some j1, · · · , jK ∈ [M ].

Then, letting Fl(·|s, a) =
∑
k ϕk(s, a)l

(k)
jk

(·) and Fu(·|s, a) =
∑
k ϕk(s, a)u

(k)
jk

(·), we have
F (·| · · · ) ∈ [Fl(·| · · · ), Fu(·| · · · )]. We eventually have

∥Fl(·| · · · )− Fu(·| · · · )∥L1,∞ = sup
s,a

∫ b

a

∣∣∣∣Fu(z|s, a)− Fl(z|s, a)
∣∣∣∣dz

≤ sup
s,a

∫ b

a

K∑
k=1

ϕk(s, a) ·
∣∣∣∣u(k)
jk

(z)− l
(k)
jk

(z)

∣∣∣∣dz ≤ sup
k∈[K]

∥ujk − ljk∥L1
≤ ϵ,
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which leads to N[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≤ {N[ ](F , ∥ · ∥L1 , ϵ)}K . Note that we have
supθ∈Θ sups,a supz |Fθ(z|s, a)| ≤ 1 and can let Cbrack = CK(b − a), α = 1 in (NS4). Even-
tually this leads to ÕP (N

−1/(3p)) Wp,dπ,p-convergence in Corollary B.1. However, FLE cannot
suggest a meaningful bound since they assume the existence of conditional densities, which may not
hold in our cdf-based model.

C.17.3 Example 2: Linear Quadratic Regulator

We will denote state-action pairs as x, a ∈ S ×A = Rdx × Rda , its conditional reward as R(x, a),
and subsequent stater as x′ = x′(x, a). We assume the following setting

x′(x, a) = Ax+Ba & R(x, a) = x⊺Qx+ a⊺Ra+ ϵR & π(x) = Kx,

where ϵR can follow any fixed distribution. (39)
Temporarily, we will assume bounded distribution for ϵR (although this can be relaxed for Energy
FDE). Letting ϵret :=

∑
t≥1 γ

t−1ϵR,t with ϵR,t being iid copies of ϵR, we assume the following
model,

MΘ :=

{
Υθ ∈

(
P(R)

)S×A
where Υθ(x, a) is the probability for Zθ(x, a) = (40)

x⊺M1x+ a⊺M2x+ a⊺M3a+ ϵret with θ = (M1,M2,M3) ∈ Rdx×dx × Rda×dx × Rda×da
}
.

Throughout the proof, we shall assume the analogous statements that [63] suggested in their Lemma
B.3, bounding ∥x∥, ∥a∥, ∥M1∥F , ∥M2∥F , ∥M3∥F .

Assumption 3.1 can be satisfied with appropriate modeling of Θ ⊆ Rdx×dx ×Rda×dx ×Rda×da . By
following the same logic shown in D.9 of [63], we can present an example. Skipping all calculations,
T πZθ(x, a) ∼ T πΥθ(x, a) follows a distribution T πZθ(x, a) = E{T πZθ(x, a)}+ ϵret with,

E
{
T πZθ(x, a)

}
= x⊺

{
Q+ γ(A⊺M1A+A⊺K⊺M2A+A⊺K⊺M3KA)

}
x

+ x⊺

{
γ ·

(
A⊺(M1 +M⊺

1 )B +A⊺(K⊺M2 +M⊺
2 K)B +A⊺K⊺(M3 +M⊺

3 )KB

)}
a

+ a⊺
{
R+ γ ·

(
B⊺

1M1B +B⊺K⊺M2B +B⊺K⊺M3KB

)}
a

Let our model be Θ = {(M1,M2,M3) : ∥M∥F , ∥M2∥F , ∥M3∥F ≤ m}, T πΥθ ∈MΘ holds if the
following conditions are satisfied,

∥Q∥F + γ · ∥A∥2F · (1 + ∥K∥F + ∥K∥2F ) ·m ≤ m

γ · ∥A∥F · ∥B∥F ·
{
1 + 2∥K∥F + ∥K∥2F

}
· 2m ≤ m

∥R∥F + γ · ∥B∥2F ·
{
1 + ∥K∥F + ∥K∥2F

}
·m ≤ m.

Assumption C.4 can be simplified as follows. For X = µx + ϵret and Y = µy + ϵret, we have the
following with PX , PY being their probability measures and FX , FY being their cdf’s,

W1(PX , PY ) =

∫ ∞

−∞
|FX(z)− FY (z)|dz = |µy − µx| · 1 = |µy − µx|.

Note that the second equality holds, since FY is only a location shift of FX , i.e., FY (·) = FX(·−(µy−
µx)). This leads to the following with θA = (M

(A)
1 ,M

(A)
2 ,M

(A)
3 ) and θB = (M

(B)
1 ,M

(B)
2 ,M

(B)
3 ),

W1

{
ΥθA(x, a),ΥθB (x, a)

}
=

x⊺(M
(A)
1 −M

(B)
1 )x+ a⊺(M

(A)
2 −M

(B)
2 )x+ a⊺(M

(A)
3 −M

(B)
3 )a = ⟨ϕ(x, a),θAB⟩,

where ϕ(x, a) := (x⊺, a⊺)⊺ ⊗ (x⊺, a⊺)⊺ and some θ ∈ R(dx+da)
2

. Using the fact that
W1{ΥθA(x, a),ΥθB (x, a)} = θ⊺

ABϕ(x, a)ϕ(x, a)
⊺θAB , we obtain

sup
θ1,θ2∈Θ

W2

1,dπ,1(Υθ1 , T
πΥθ2)

W2

1,ρ,1(Υθ1 , T πΥθ2)
≤ sup

θAB∈R(dx+da)2 ,θAB ̸=0

θ⊺
ABΣϕ,dπθAB
θ⊺
ABΣϕ,ρθAB

,

where Σϕ,dπ := Ex,a∼dπ
{
ϕ(x, a)ϕ(x, a)⊺

}
& Σϕ,ρ := Ex,a∼ρ

{
ϕ(x, a)ϕ(x, a)⊺

}
.
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This is the same result that [63] provided in their Lemma B.2.

Lastly, let us bound the term logN[ ](FΘ, ∥ · ∥∞,1, ϵ) for (NS4). First, we define

FµΘ :=

{
µθ : S ×A → R

∣∣∣∣ µθ(x, a) = EZθ(x,a)∼Υθ(x,a)

{
Zθ(x, a)

}}
,

with ∥µθ1 − µθ2∥∞ := sup
x,a∈S×A

∣∣∣∣µθ1(x, a)− µθ2(x, a)

∣∣∣∣
We can see N[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≤ N[ ](FµΘ, ∥ · ∥∞, ϵ) for the following reason. Letting M =

N[ ](FµΘ, ∥ · ∥∞, ϵ), there exist bracketing pairs {[li(·), ui(·)]}Mi=1 such that

∀µθ ∈ FµΘ ∃i ∈ [M ] such that ∥li(·)− ui(·)∥∞ ≤ ϵ.

Now consider the bracketing pairs [Fli(·| · · · ), Fui(·| · · · )] (i = 1, · · · ,M). For an arbitrary
Fθ(·| · · · ) ∈ FΘ, its corresponding expectation function satisfies li(x, a) ≤ µθ(x, a) ≤ ui(x, a) for
some i ∈ [M ]. As we have previously mentioned, all Fθ(·|x, a) are results of location-shifts of the
cdf of ϵret. This leads to Fθ(·| · · · ) ∈ [Fli(·| · · · ), Fui

(·| · · · )] for some i ∈ [M ], and it satisfies

∥Fli(·| · · · )− Fui
(·| · · · )∥L1,∞ = ∥li(·)− ui(·)∥∞ ≤ ϵ.

Thus, we have N[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≤ N[ ](FµΘ, ∥ · ∥∞, ϵ). Further assuming ∥x∥ ≤ Dx and
∥a∥ ≤ Da, we have

∥µθA − µθB∥∞ = sup
x,a

∣∣∣∣x⊺(M
(A)
1 −M

(B)
2 )x+ a⊺(M

(A)
2 −M

(B)
2 )x+ a⊺(M

(A)
3 −M

(B)
3 )a

∣∣∣∣
≤ max{Dx, Da}2 ·

{
∥M (A)

1 −M
(B)
1 ∥op + ∥M (A)

2 −M
(B)
2 ∥op + ∥M (A)

3 −M
(B)
3 ∥op

}
≤ 3D2

0 · d3(θA, θB),

where d3(θA, θB) := max{∥M (A)
1 −M

(B)
1 ∥F , ∥M (A)

2 −M
(B)
2 ∥F , ∥M (A)

3 −M
(B)
3 ∥F } and D0 :=

max{Dx, Da}. Then, we can bound our target as follows,

N[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≤ N[ ](FµΘ, ∥ · ∥∞, ϵ) = N (FµΘ, ∥ · ∥∞,
ϵ

2
) ≤ N (Θ, d3,

ϵ

6D2
0

)

≤ N (Θ1, ∥ · ∥F ,
ϵ

6D2
0

)×N (Θ2, ∥ · ∥F ,
ϵ

6D2
0

)×N (Θ3, ∥ · ∥F ,
ϵ

6D2
0

),

where Θi := {Mi : ∥Mi∥F ≤ m}. Since Θ1,Θ2,Θ3 with ∥ · ∥F can be perceived as subsets of
Euclidean spaces Rdxdx ,Rdadx ,Rdada with Euclidean norms ∥ · ∥, we can use volume comparison
lemma

logN (A, ∥ · ∥, ϵ) ≤ p · log
(
3 · diam(A, ∥ · ∥)

ϵ

)
for A ∈ Rp, ∀ϵ ∈ (0,diam(A, ∥ · ∥)).

This leads to the following,

logN[ ](FΘ, ∥ · ∥L1,∞,, ϵ) ≤ d3xd
3
a · log

(
18 ·D2

0 ·m
ϵ

)
.

Since our term can be bounded by inverse of polynomial N[ ](FΘ, ∥ · ∥L1,∞, ϵ) ≲ ϵ−α with any
α > 0, we can let αN = 1/ logN .

If we assume bounded distributions of ϵrew, then we can apply Corollary B.1 with the same trick (32),
Cramér FDE obtains ÕP (N−1/(2p)) of Wp,dπ,p-convergence. If we assume unbounded distributions,
then Energy FDE obtain ÕP (N

−1/8) of W1,dπ,1-inaccuracy by Corollary B.3. For FLE [63], unless
we have a standard parametric distribution for ϵret (e.g., truncated gaussian), we cannot obtain the
bound, since we cannot relate ∥fθA(·| · · · )− fθB (·| · · · )∥L1,∞ and d3(θA, θB).
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D Auxiliary proofs for Appendix C

D.1 Supporting theorem

Following is a standard convergence theorem in M-estimation. We slightly adapted it from Theorem
6.1 of [51], only modifying l = 2 into generalized l ≥ 2. So we will skip the proof.
Theorem D.1. (Adapted version of Theorem 6.1 of [51]) Assume that Fn,t(·) : Θ → R has a
minimizer θ∗. Let δ̃n ≥ 0 be a sequence that satisfies the following for δ ≥ δ̃n:

1. If dn(θ, θ∗) ∈ ( δ2 , δ], then Fn,t(θ)− Fn,t(θ∗) ≥ λ · δl.

2. We have ϕ(δ) = C0 · δα0 with some α0 ∈ (0, l) such that following holds,

E
[

sup
θ∈Θ:dn(θ,θ∗)≤δ

∣∣∣∣{F̂n,t(θ|θ̂n,t−1)− Fn,t(θ|θ̂n,t−1)
}

−
{
F̂n,t(θ∗|θ̂n,t−1)− Fn,t(θ∗|θ̂n,t−1)

}∣∣∣∣] ≤ ϕ(δ)√
n
.

Further assume that we have δn and some estimator such that

ϕ(δn) ≤
√
n · δln & δn ≥ δ̃n & θ̂n →P θ∗ in dn.

Then, we have dn(θ̂n, θ∗) = OP (δn). If δ̃n = 0, then we have δn = C
1

l−α0
0 · n

−1
2(l−α0) .

D.2 Proof of Lemma C.7

Without loss of generality, we can assume C̃ = 1. We let Zn,t := n1/b · Xn,t, and C =

lim supn→∞ supt∈N E|n1/b ·Xn,t| <∞,

P
( T∑
t=1

ζT−t · Zn,t ≥ ϵ

)
≤

E|
∑T
t=1 ζ

T−t · Zn,t|
ϵ

≤ 1

1− ζ
· 1
ϵ
· sup
t∈[T ]

E|Zn,t|.

Then, letting ϵ = C
1−ζ · ϵ̃, we have

P
( T∑
t=1

ζT−t · Zn,t ≥
C

1− ζ
· ϵ̃
)
≤ 1

ϵ̃
.

Thus we have
∑T
t=1 ζ

T−t ·Xn,t = OP (
1

1−ζ ·n
−1/b). More generally, we have

∑T
t=1 ζ

T−t ·Xn,t =

C̃ ·OP ( 1
1−ζ · n

−1/b).

D.3 Proof of Lemma C.8

Showing the upper bound is easy. Let X,X ′ iid∼ Q and Y, Y ′ iid∼ P . Based on technique shown in
Appendix A.6 of [26], we can derive

E(P,Q) =
{
E∥X − Y ∥ − E∥X −X ′∥

}
+

{
E∥X − Y ∥ − E∥Y − Y ′∥

}
≤W1(P,Q) +W1(P,Q) = 2 ·W1(P,Q).

Due to Jensen’s inequality, it is straightforward to see Wp(P,Q) ≤Wr(P,Q) for p < r.

Now let us show the lower bound. We assume that X ∼ P and Y ∼ Q have bounded support [a, b],
and we denote their cdf’s as FP and FQ. Letting U ∼ Unif[a, b], we have

W1(P,Q) = (b− a) · ∥FP (U)− FQ(U)∥L1(P) where ∥X∥Lp(P) := (E|X|p)
1
p

≤ (b− a) · ∥FP (U)− FQ(U)∥L2(P) by Jensen’s inequality

= (b− a)1/2 · l2(P,Q),
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where l22(P,Q) :=
∫∞
∞ |FP (x) − FQ(x)|2dx denotes Cramér distance. Since Energy distance is

equivalent to Cramér distance in 1D domain [7], that is 1
2E(P,Q) = l22(P,Q), this leads to

E(P,Q) = 2 · l22(P,Q) ≥ 2

b− a
·W2

1(P,Q).

Using Wp
p(P,Q) ≥= (b− a)p−r ·Wr

r(P,Q) that was shown by [44] (see their Section 2.3), we can
show the lower bound.

D.4 Proof of Lemma C.12

D.4.1 Conditioned event

Let θ̂n,t−1 ∈ Θ be fixed. Then, we have a unique value of θ∗,t = argminθ∈Θ F (θ|θ̂n,t−1). Based
on this, we define the following:

Xθ
i := m2

{
Υθ(si, ai),Υθ∗,t(si, ai)

}
where si, ai

iid∼ ρ, & Y θ
i := Xθ

i − E(Xθ
i ),

Θδ = Nm̄ρ,1
(θ∗,t, δ) :=

{
θ ∈ Θ : m̄ρ,1(θ, θ∗,t) < δ

}
.

With Ω being the probability space, we define the following event based on β ∈ (0, 2] whose exact
value will later be determined,

Ωδ :=

{
ω ∈ Ω : sup

θ∈Θδ

∣∣∣∣ 1n
n∑
i=1

Xθ
i (ω)− E(Xθ

1 )

∣∣∣∣ ≤ δβ
}

(41)

=

{
ω ∈ Ω : sup

θ∈Θδ

∣∣∣∣ 1n
n∑
i=1

Y θ
i (ω)− Y

θ∗,t
i (ω)

∣∣∣∣ ≤ δβ
}

(∵ Y
θ∗,t
i = 0).

Prior to calculating its probability P(Ωδ), let us first show its sub-gaussianity. Since ∥ · ∥ψ2 is a norm
(Example 2.5.7 of [57]), we can use its convexity to derive

∥Y θ1
1 − Y θ2

1 ∥ψ2
≤ ∥Xθ1

1 −Xθ2
1 ∥ψ2

+ E∥Xθ1
1 −Xθ2

1 ∥ψ2
.

Assume that θ1, θ2 ∈ Θδ . Then, we have

|Xθ1
1 −Xθ2

1 | =
∣∣∣∣m2

{
Υθ1(s1, a1),Υθ∗,t(s1, a1)

}
−m2

{
Υθ2(s1, a1),Υθ∗,t(s1, a1)

}∣∣∣∣
=

∣∣∣∣m{
Υθ1(s1, a1),Υθ∗,t(s1, a1)

}
−m

{
Υθ2(s1, a1),Υθ∗,t(s1, a1)

}∣∣∣∣
×
∣∣∣∣m{

Υθ1(s1, a1),Υθ∗,t(s1, a1)
}
+m

{
Υθ2(s1, a1),Υθ∗,t(s1, a1)

}∣∣∣∣
≤ 2 · diam(Θδ;m∞) ·m∞(θ1, θ2),

where diam(Θδ;m∞) := supθ1,θ2∈Θδ
m∞(θ1, θ2). This leads to ∥Y θ1

1 − Y θ2
1 ∥ψ2 ≤ C ·

diam(Θδ;m∞) · m∞(θ1, θ2). Then, by applying Theorem 8.1.6 of [57], we have the following
bound for arbitrary u > 0,

sup
θ∈Θδ

∣∣∣∣ 1n
n∑
i=1

(Y θ
i − Y

θ∗,t
i )

∣∣∣∣ ≤ C√
n
· diam(Θδ;m∞) ·

{∫ ∞

0

√
logN (Θδ,m∞, ϵ)dϵ

+u · diam(Θδ;m∞)

}
with probability larger than 1− 2 · exp(−u2).

Using the constants defined in Lemma C.12, we can let u = 1
2 ·
√
n ·δβ/C2 to show that the following

holds with probability larger than 1− 2 · exp(−n · δ2β/4C2
2 ),

sup
θ∈Θδ

∣∣∣∣ 1n
n∑
i=1

(Y θ
i − Y

θ∗,t
i )

∣∣∣∣ ≤ C1√
n
+

1

2
δβ for ∀δ > 0.
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Now, we assume the following:

Criterion-1: δ ≥ δ(1)n :=

(
2C1√
n

)1/β

. (42)

Since we have 1
2δ
β ≥ C1√

n
, we have

P(Ωδ) = P
{
sup
θ∈Θδ

∣∣∣∣ 1n
n∑
i=1

(Y θ
i − Y

θ∗,t
i )

∣∣∣∣ ≤ δβ
}
≥ 1− 2 · exp(−n · δ2β/4C2

2 ). (43)

Under Ωδ, we have the following. Suppose θ ∈ Θδ. In other words, m̄ρ,1(θ, θ∗,t) < δ. Then, we
have ∣∣m̄2

n,1(θ, θ∗,t)− m̄2
ρ,1(θ, θ∗,t)

∣∣ = ∣∣∣∣ 1n
n∑
i=1

Xθ
i − E(Xθ

1 )

∣∣∣∣ ≤ δβ , where

m̄n,1(θ1, θ2) :=

[
1

n

n∑
i=1

m2
{
Υθ1(si, ai),Υθ2(si, ai)

}]1/2
.

This leads to the following with β′ = min{β, 2},

m̄2
n,1(θ, θ∗,t) ≤ m̄2

ρ,1(θ, θ∗,t) +
∣∣m̄2

n,1(θ, θ∗,t)− m̄2
ρ,1(θ, θ∗,t)

∣∣ ≤ δ2 + δβ ≤ 2 · δβ
′
,

where we assumed δ ∈ (0, 1) without loss of generality. Then, we have the following,

Under Ωδ, for ∀θ ∈ Θδ, m̄n,1(θ, θ∗,t) ≤
√
2 · δβ

′/2 holds.

D.4.2 Concentration of modulus

Assume that Zt := {(si, ai)}ni=1 is given (fixed). However, there still exists randomness in the
transition ri, s

′
i ∼ p̃(· · · |si, ai). For this conditional probability, denote its corresponding conditional

expectation as EZt(· · · ) := E(· · · |Zt) and its corresponding sub-gaussian norm as ∥ · ∥ψ2(n). Then,
by Dudley’s inequality (Theorem 8.1.3 of [57]) and (MS1), we obtain following,

EZt

{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
}
≤ EZt

{
sup

θ∈Θ:m̄n,1(θ,θ∗,t)≤
√
2·δβ′/2

|∆̃n(θ|θ̂n,t−1)|
}

under Ωδ (41)

≤ C · Csubg√
n

·
∫ ∞

0

√
logN (Nm̄n,1

(θ∗,t,
√
2 · δβ′/2), m̄n,1, ϵ)dϵ

≤ C · Csubg√
n

·
∫ √

2·δβ
′/2

0

√
logN (Nm̄n,1(θ∗,t,

√
2 · δβ′/2), m̄n,1, ϵ)dϵ

≤ C · Csubg√
n

·
∫ √

2·δβ
′/2

0

√
logN (Θ,m∞, ϵ)dϵ.

By Assumption of Lemma C.12, we have 0 < C3 <∞. Then, we have the following,

E
{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
}

= E
{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
∣∣∣∣ Ωδ} · P(Ωδ) + E

{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
∣∣∣∣ Ωcδ} · P(Ωcδ)

≤ E
{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
∣∣∣∣ Ωδ}+ E

{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
∣∣∣∣ Ωcδ} · 2 exp(−n · δ2β4C2

2

)
by (43)

≤ C · Csubg√
n

·
∫ √

2·δβ
′/2

0

√
logN (Θ,m∞, ϵ)dϵ+ C3 · exp

(
−n · δ2β

4C2
2

)
≤ C · Csubg√

n
· Cent · δ

α0
2 β

′
+ C3 · exp

(
−n · δ2β

4C2
2

)
.
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Then, we set another criterion as below,

Criterion-2: δ ≥ δ(2)n , where δ(2)n is such that δ > δ(2)n implies

C√
n
· Csubg · Cent · δ

α0
2 β

′
≥ C3 · exp

(
−n · δ2β

4C2
2

)
. (44)

This leads to following bound, whose RHS does not depend on θ̂n,t−1 ∈ Θ,

E
{
sup
θ∈Θδ

|∆̃n(θ|θ̂n,t−1)|
}
≤ 2C√

n
· Csubg · Cent · δ

α0
2 β

′
. (45)

D.5 Satisfaction of the condition of Lemma C.7 in Theorem C.11

Before bounding η̄dπ,q(ΥθT ,Υπ) based on (6), we first apply Lemma C.7 by letting Xn,t =

m̄δ′

dπ,1
(Υθt , T πΥθ̂n,t−1

). Proving lim supn→∞ supt∈N E|n1/b · Xn,t| < ∞ is the analogous to
Appendix C.8.4. We do not need Stage 2 of Appendix C.8.4. Skipping the details, we can repeat
Stage 1 of Appendix C.8.4 to obtain the following, with ∆̃n(θ|θ̂n,t−1) defined in Lemma C.12:

P
{
m̄ρ,1(θ̂n,t, θ∗,t) ≥ 2M−1δn

}
≤

∑
j≥M

1

λ · 2l(j−1) · δln
· E

{
sup

m̄ρ,1(θ,θ∗,t)≤2j ·δn

∣∣∣∆̃n(θ|θ̂n,t−1)
∣∣∣}.

Using (45) and letting β′ = min{ l
1+α0/2

, 2} with α0 = 1− α/2 (as we chose within the proof of
Theorem C.11 of Appendix C.15.1), we can take up the above inequality as

P
{
m̄ρ,1(θ̂n,t, θ∗,t) ≥ 2M−1δn

}
≤ C√

n
· Csubg · Cent ·

2l

1− 2
α0β′

2 −l
· (2M · δn)

α0β′
2 −l.

After that, copying the remaining logic of Appendix C.8.4 will give us the desired result.
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E Experiment Details

E.1 Details in Linear Quadratic Regulator

LQR is a parametric environment with deterministic transitions and Gaussian noise in the rewards.
It can be verified that Assumption C.4 holds given the chosen behavior policy, and Assumptions
3.1 is satisfied under the appropriate model space, both of which we will present. We will compare
the performance of the baseline method FLE [63] with our proposed FDE method using different
functional Bregman divergences: Energy (β = 1), Laplace (Matern with ν = 1), RBF, PDF-L2, KL.
The evaluation is based on the W1,dπ,1-inaccuracy.

The proposed FDE methods using different functional Bregman divergences outperform FLE in
terms of both mean inaccuracy and stability (as measured by standard deviation), as visualized in the
inaccuracy graphs of Figure 2. This performance gap is expected, as FLE does not make use of the
closed-form density of Ψπ(r, s′,Υθ̂n,t−1

), making it suffer from large Monte Carlo errors. See Table
4 in Appendix E.1.4 for detailed inaccuracy results.

E.1.1 Data collection and model

Our offline data are collected as follows. States x = (r · cos θx, r · sin θx)⊺ are generated
with r ∼ Unif[0, 1], θx ∼ Unif[0, 2π]. Given the state, action is generated by behavior policy
b(a|x) = 1/5 with a = Rot(θa)x where Rot(θa) is the (counter-clockwise) rotation matrix with
angle θa ∼ Unif{0, 2π

5 , 4π
5 , 6π

5 , 8π
5 }. Since the all x within the unit circle has positive density value

and Rot(θa) = K holds with positive probability, Assumption C.4 is satisfied.

We assume deterministic target policy (which, for the time being, can be regarded as π : S → A with
abuse of notation). With Gaussian noise added to the reward ϵR ∼ N(0, σ2

0), our goal is to estimate
Υπ ∈ PS×A. States x ∈ S and actions a ∈ A are both generated from a continuous subset of R2 (i.e.,
S,A ⊆ R2). Matrices A,B,Q,R ∈ R2×2 that control the environment dynamics (corresponding to
p̃(r, s′|s, a)) are as follows (but unknown in the simulations).

x′(x, a) = Ax+Ba & R(x, a) = x⊺Qx+ a⊺Ra+ ϵR & π(x) = Kx,

A =

[
0.6 0
0 0.8

]
& B =

[
0.2 0
0 0.1

]
& Q =

[
4 1
1 4

]
& R =

[
2 1
1 2

]
.

Letting K be the identity matrix, we assumed γ = 0.99 and σ0 = 1.

Return distribution model based on (40) of Appendix C.17.3 can be written as follows,

MΘ :=

{
Υθ ∈

(
P(R)

)S×A
where Υθ(x, a) is the probability for Zθ(x, a) =

x⊺M1x+ a⊺M2x+ a⊺M3a+N
(
0,

σ2
0

1− γ2

)
with θ = (M1,M2,M3) ∈ R2×2×3

}
.

Note that this setup satisfies Assumption 3.1 (proof in Appendix C.17.3).

E.1.2 Data splitting

We applied the same splitting rule of dataD = ∪Tt=1Dt by selecting the following T . We acknowledge
that we did not strictly apply the rule of Theorem C.5 that will lead to asymptotic convergence with
the suggested rate.

1. We used the rule of Theorem C.5 with the parameters of Energy FDE with inaccuracy
measured with Wasserstein-1 metric (l = 5, δ = 1, c = 1, q = 1). We also used α = 0 since
it is a parametric model.

2. We divided it with a constant Cdivide > 0 and then choose the floored integer as follows.
Since larger discount rate shall require bigger subdatasets (i.e., larger |Dt|), we let Cdivide =
5 for γ = 0.99.

T =

⌊
1

Cdivide
× 1

c− 1
2q

· min{δ, 1/q}
2(l − 1) + α

· log1/γ N
⌋

3. Allocate the same number of samples into each of the T subdatasets, and then put all the
remaining samples to the last one DT .
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E.1.3 Closed form for gaussian distributions

Since we have gaussian conditional densities, we have used the following closed form. For MMD
that we have used (Energy, Laplace, RBF), we have the following with k(x, y) = k0(x − y) with
mutually independent X,X ′ ∼ P and Y, Y ′ ∼ Q,

MMDk(P,Q) := E{k0(X −X ′)}+ E{k0(Y − Y ′)} − 2 · E{k0(X − Y )}.

Defining K0(µ, σ
2) := EZ∼N(µ,σ2){k0(Z)}, we have following for Energy distance which has

k0(y) = −|y|,

K0(µ, σ
2) = −

[
σ

√
2

π
exp

(
− µ2

2σ2

)
+ |µ|

(
1− 2Φ

(
−|µ|

σ

))]
.

RBF kernel with k0(y) = exp(−y2/4σRBF
2) have the following.

K0(µ, σ
2) = exp

(
− µ2

4σRBF
2 + 2σ2

)/√
1 +

σ2

2σRBF
2

Laplace kernel with k0(y) = exp(−|y|/σLap) has

K0(µ, σ
2) = exp

(
σ2

2σLap
2
− µ

σexp

)
· Φ

(
µ

σ
− σ

σLap

)
+ exp

(
σ2

2σLap
2
+

µ

σLap

)
· Φ

(
−µ

σ
− σ

σLap

)
.

For PDF-L2, we used the following formula for ϕ(·|µ, σ2) represents the density function of
N(µ, σ2),∥∥ϕ(·|µ1, σ

2
1)− ϕ(·|µ2, σ

2
2)
∥∥2
L2

=
1√
4πσ2

1

+
1√
4πσ2

2

− 2√
2π(σ2

1 + σ2
2)
· exp

(
− (µ1 − µ2)

2

2(σ2
1 + σ2

2)

)
.

For KL Divergence, we have

KL(N(µ1, σ
2
1) ∥ N(µ2, σ

2
2)) = log

σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.

Within our simulations, we have used fixed values of σLap = σRBF = 1.

E.1.4 Simulation results

We have applied L-BFGS-B algorithm in solving the minimization problem of (5) at each iteration
t ∈ [T ]. For the initial value of L-BFGS-B algorithm, we always used the previous iterate θ̂n,t−1.
Simulation results are visualized in Figure 2, with details in Table 4.
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Figure 2: W1,dπ,1-inaccuracy (Y-axis: logarithmic scale) for different sample sizes N (X-axis)
through 50 simulations. Shaded areas are (mean± STD/

√
50) regions for each method, with thick

lines being the means.

Table 4: Mean W1,dπ,1-inaccuracy over 50 simulations (standard deviation in parentheses)

N Energy Laplace RBF PDF-L2 KL FLE
300 0.627 0.3361 0.3074 0.2643 0.6302 1.5668

(0.5522) (0.2142) (0.1776) (0.1493) (0.5493) (0.2838)
350 0.3453 0.2648 0.2471 0.2105 0.3453 1.5537

(0.2095) (0.1396) (0.1287) (0.1096) (0.2093) (0.2734)
400 0.3082 0.2557 0.2261 0.2128 0.3078 1.5348

(0.1758) (0.1294) (0.1056) (0.1025) (0.1755) (0.2568)
450 0.2221 0.1771 0.1773 0.1710 0.2222 1.5293

(0.1268) (0.0782) (0.0765) (0.0744) (0.1269) (0.2485)
500 0.2143 0.1962 0.1747 0.1480 0.2143 1.5597

(0.1037) (0.0946) (0.0723) (0.0574) (0.1037) (0.3352)
550 0.2114 0.1821 0.1686 0.1577 0.2115 1.4932

(0.1250) (0.0951) (0.0913) (0.0841) (0.1251) (0.2865)
600 0.1896 0.1766 0.1658 0.1466 0.1897 1.5288

(0.0889) (0.0890) (0.0829) (0.0759) (0.0891) (0.2571)
650 0.1683 0.1518 0.1496 0.1392 0.1684 1.4921

(0.0936) (0.0809) (0.0780) (0.0749) (0.0936) (0.3214)
700 0.1507 0.1459 0.1424 0.1358 0.1506 1.5143

(0.0733) (0.0628) (0.0611) (0.0517) (0.0733) (0.3056)
750 0.1343 0.1313 0.1297 0.1215 0.1343 1.4949

(0.0702) (0.0682) (0.0656) (0.0585) (0.0702) (0.3226)
800 0.1198 0.1177 0.1146 0.1091 0.1198 1.5040

(0.0512) (0.0553) (0.0576) (0.0517) (0.0512) (0.3862)
850 0.1199 0.1150 0.1100 0.1047 0.1199 1.5714

(0.0479) (0.0470) (0.0476) (0.0484) (0.0479) (0.3766)
900 0.1136 0.1098 0.1072 0.1059 0.1136 1.5689

(0.0493) (0.0450) (0.0448) (0.0429) (0.0494) (0.3886)
950 0.1113 0.1063 0.1010 0.0940 0.1113 1.5502

(0.0448) (0.0405) (0.0404) (0.0381) (0.0448) (0.3319)
1000 0.1003 0.0983 0.0947 0.0944 0.1003 1.4774

(0.0438) (0.0467) (0.0452) (0.0463) (0.0438) (0.2979)
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E.2 Details in Atari games

E.2.1 Deep Neural Network structure

Our model consists of two parts: (i) CNN layers that reduce 4× 84× 84 image into 512 features, (ii)
multiple layers that transform 512 features into |A| ×M × 3. Part (i) is identical to the structure of
[35] that first applied DQN in Atari games. After training the optimal model via DQN (with the same
network structure with [35]) for ourselves, we copied this part to (i), and then freezed it, assuming
that this part already performs good recognition of the image. Part (ii) contains the components that
we trained in our methods. To make the model sufficiently complex, we included multiple hidden
layers that reduce the 512 features into 512→ 450→ 400→ 350→ 300→ 250→ 200→ 150→
128→ |A|× (M × 3), with each layer containing ReLU. For a given input image, the model outputs
three parameters (weight, mean, variance) for each gaussian mixture component, for every action as
follows,

Υθ(s, a) =

M∑
m=1

wm(s, a; θ) ·N(µm(s, a; θ), σ2
m(s, a; θ)) where M = 10, 100, 200.

Here, wm represents gaussian component for the GMM model, which together sum up to 1, i.e.,∑M
m=1 wm(s, a; θ) = 1.

For quantile-based methods, we preserve the same layers, except that the output distribution has M
quantiles instead of (M × 3) parameters. That is, this consists of multiple hidden layers that reduce
the 512 features into 512→ 450→ 400→ 350→ 300→ 250→ 200→ 150→ 128→ |A| ×M ,
to form the following distributions based on dirac-delta’s δm.

Υθ(s, a) =
1

m

M∑
m=1

δm(s, a; θ) where M = 10, 100, 200.

Note that GMM modeling can (asymptotically) accommodate dirac delta based modeling with
sufficiantly small variance values σ2

m(s, a; θ) ≈ 0 and equal weights wm(s, a; θ) = 1/M .

E.2.2 Algorithmic details

Our goal is to estimate Υπ ∈ PS×A. Here, the target policy is π = π∗
ϵtar , which is the epsilon-greedy

variant (e.g., see Section 2.2 of [53]) of DQN-trained policy π∗ [35] with ϵ = ϵtar. We collected
offline data (N = 2K, 5K, 10K) through the trajectory of an agent following a behavior policy
b = π∗

ϵbeh
with ϵbeh. For most cases, we let ϵbeh > ϵtar so as to satisfy Assumption C.4. In all

simulations, we applied FDE methods based on Algorithm 1 with T = 50. Minimization of (5) of
Algorithm 1 is done stochastically by Adam. In each t-th iteration (t = 1, · · · , T ), we ran 1000
stochastic gradient updates, each based on a batch of 32 randomly selected samples. For practicality,
unlike LQR simulations shown in Appendix E.1.2, we did not use data splitting for each iteration, but
instead reused samples throughout multiple iterations.

When measuring the inaccuracy, instead of W1,dπ,1(ΥθT ,Υπ) that requires heavy computation to
approximate, we computed W1(Υ

dπ
θT
,Υdππ ), where Υdπ :=

∫
S×A Υ(s, a)ddπ(s, a) ∈ P . Here,

dπ is approximated with 1000 pre-sampled observations of state-action pairs. These are sampled
by Algorithm 2, which is a commonly used strategy of sampling s, a ∼ dπ (e.g., see Algorithm
1 of [1]). Using the pre-sampled state-action pairs s(m), a(m) (m = 1, · · · , 1000), we sample
z(m) ∼ ΥθT (s

(m), a(m)) for each m, by which we approximate ΥdπθT . Based on the same s(m), a(m),
we can also sample z(m) ∼ Υπ(s

(m), a(m)) by forming a long enough trajectory starting from initial
state-action pair s(m), a(m) and adding the consecutive rewards. This gives us approximation of Υdππ .

Although our theorems (Theorems 3.4, C.11) give us bounds for η̄dπ,q(ΥθT ,Υπ), this can also lead
to bound for η(ΥdπθT ,Υ

dπ
π ). This is due to the following inequality based on convexity of (15) and

(16) in Appendix C.4,

W1(Υ
dπ
θT
,Υdππ ) ≤W1,dπ,1(ΥθT ,Υπ).
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Algorithm 2 Sampling m state–action pairs from dπ

1: Input: Initial state distribution µ, target policy π, discount rate γ, transition P (·|s, a)
2: Output: State-action pairs {(s(m), a(m))}1000m=1
3: for m = 1 to 1000 do
4: Sample scur ∼ µ and acur ∼ π(· | scur)
5: Accept← False
6: while not Accept do
7: Sample U ∼ Unif(0, 1)
8: if U < 1− γ then
9: Accept← True

10: else
11: Sample s′ ∼ P (· | scur, acur)
12: Sample a′ ∼ π(· | s′)
13: (scur, acur)← (s′, a′)
14: end if
15: end while
16: (s(m), a(m))← (scur, acur)
17: output (s(m), a(m))
18: end for

E.2.3 Closed / approximated form

Based on the formula of Appendix E.1.3, we computed a single term in (10), i.e.,
d(Υθ(s, a),Ψπ(r, s

′,Υθ̂n,t−1
)), for MMD methods and PDF-L2. Since Laplace FDE had ill per-

formance due to its numerical difficulties that we aforementioned, we excluded it. For other
methods (i.e., KL, TVD, Hyvärinen divergences), we do not have a closed form objective func-
tion for GMM. Therefore, we approximated it with Monte Carlo approximation by z′j2,b ∼

iid

N(r + γ · µj2(s′, a′; θ−1), γ2 · σ2
j2
(s′, a′; θ−1)) with j2 = 1, · · · ,M and b = 1, · · · , B, which

represents a single mixture component of Ψπ(r, s′,Υθ̂n,t−1
).

For KL FDE, we can convert it to maximizing the expected log-likelihood, with individual term being
as follows. Here, f(·|P ) is the density of the probability measure P and ϕ(·|µ, σ2) means the density
of N(µ, σ2). When computing the density of Ψπ(r, s′,Υθ̂n,t−1

), we sampled a′ ∼ π(·|s′) instead of
making use of π(a′|s′) for all a′ ∈ A in every method, for the sake of computational convenience.

EZ′∼Ψπ(r,s′,Υθ̂n,t−1
)

{
log f(Z ′|Υθ(s, a))

}
≈

M∑
j2=1

wj2(s
′, a′; θ−1) ·

1

B

B∑
b=1

log

{ M∑
j1=1

wj1(s, a; θ) · ϕ(z′j2,b ; µj1(s, a; θ), σ
2
j1(s, a; θ))

}
.

For Hyvärinen divergence, we instead maximized Hyvärinen score with individual term being
EZ′∼Ψπ(r,s′,Υθ̂n,t−1

){SH
(
Z ′,Υθ(s, a)

)
} as follows, which is computed by MC approximation in

the same way (assuming GMM for P ),

SH(z, P ) :=
∂2

∂z2
log f(z|P ) +

1

2
·
(

∂

∂z
log f(z|P )

)2

=

=

∑M
j=1 wj ·

{
(z−µj)

2

σ4
j
− 1

σ2
j

}
· ϕ(z;µj ;σ2

j )∑M
j=1 wj · ϕ(z;µj , σ2

j )
− 1

2
·
{∑M

j=1 wj ·
(−(z−µj)

σ2
j

)
· ϕ(z;µj , σ2

j )∑M
j=1 wj · ϕ(z;µj , σ2

j )

}2

.
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For TVD, we approximated ∥f(·|Υθ(si, ai))− f(·|Ψπ(ri, s′i,Υθ̂n,t−1
, a′i))∥L1 by using the density

ratio as follows,

EZ′∼Ψπ(r,s′,Υθ̂n,t−1
)

{∣∣∣∣1− f(Z ′|Υθ(s, a))
f(Z ′|Ψπ(r, s′,Υθ̂n,t−1

))

∣∣∣∣} =

M∑
j2=1

wj2(s
′, a′; θ−1)×

1

B

B∑
b=1

∣∣∣∣1−
∑M
j1=1 wj1(s, a; θ) · ϕ(z′j2,b|µj1(s, a; θ), σ

2
j1
(s, a; θ))∑M

j2=1 wj2(s
′, a′; θ−1) · ϕ(z′j2,b|r + γ · µj2(s′, a′; θ−1), γ2 · σ2

j2
(s′, a′; θ−1))

∣∣∣∣.
We let B = 100 and B = 50 for deterministic transition and stochastic transition, respectively,
which we will explain in the following subsection (Appendix E.2.4). We added a term ϵvar = 1.0
to the variance σ2

j (s, a; θ) in PDF-L2, KL, TVD, to prevent explosion of density values, thereby
mitigating numerical instability, and used the same value for the tuning parameter of RBF FDE, i.e.,
σRBF = 1.0. For Hyvärinen, we put ϵvar = 10.0 since it was more prone to numerical instabilities.
Even so, we could not run simulations for M = 200 due to numerical instabilities. The good thing
about Energy FDE is that it does not require any tuning parameter, which makes it more user-friendly
(and performance was good as well).

E.2.4 Simulation settings

In our simulations, we always assumed γ = 0.95. Every time a reward is observed, we clipped it
between −10 and 10, and then multiplied it by a fixed constant (20 in our case). Then, we tried
two different settings: (i) deterministic transition p̃(r, s′|s, a) as the original Atari games, (ii) added
small noise N(0, 1) to every reward to make it more random (which makes it a better environment to
apply distributional RL). We also tried two behavior policies for each setting, which leads to different
coverage.

First, let us start with Setting-1, deterministic transition. Here, the target policy is π∗
ϵtar (ϵtar-greedy

version of DQN-trained optimal policy π∗) with ϵtar = 0.3. The behavior policy is ϵbeh = 0.4, 0.8
(but ϵbeh = 0.4, 0.5 for Enduro and Pong to prevent sparse observation of rewards). Of course, weak
coverage (i.e., ϵbeh being a lot bigger than ϵtar) leads to worse performance. Results are visualized
in the first two rows of Figures 3–5 for N = 10K (Tables 6–19 for N = 2K, 5K, 10K). In the
simulations, M refers to the number of gaussian mixtures in GMM model and the number of quantiles
in quantile-based models (QRDQN, IQN).

Second, we ran simulations on Setting-2, random transition (or reward). Here, the target policy is
π = π∗ (deterministic policy learned by DQN) in all games except Breakout. In Breakout, we let
π = π∗

ϵtar with ϵtar = 0.3 to prevent the agent from being stuck at certain point (not proceeding
with the game and repeating the same actions). The behavior policy has ϵbeh = 0.1, 0.5 for all
games (ϵbeh = 0.1, 0.3 for Pong only). Results are visualized in the last two rows of Figures 3–5 for
N = 10K (Tables 20–33 for N = 2K, 5K, 10K).

In our simulations, we have tried 7 games, 3 different sample sizes (N = 2K, 5K, 10K), 3 different
number of mixtures (M = 10, 100, 200), 2 different environments (random / deterministic reward),
2 different behavior policies (good or bad coverage). These amount to 7 × 3 × 3 × 2 × 2 = 252
different settings, each leading to various shapes of return distributions. In each setting, we have
applied different methodologies (FLE, QRDQN, IQM, KL, Energy, PDF-L2, RBF, TVD, Hyvärinen)
under 5 different seeds. In Figures 3–5, we plotted (mean± STD) area for each method.

E.2.5 Simulation results

Simulation results for each of the aforementioned 252 settings are shown in Figures 3–5 and Tables
6–33. As we have stronger coverage (i.e., ϵbeh being closer to ϵtar), we achieve lower inaccuracy
levels. In many cases, we could see that the inaccuracy levels generally became lower with larger
sample sizes. We could also see that density modeling (based on gaussian mixture models) helps
improving the accuracy, even when the reward is deterministic. This can be seen by comparing our
methods (KL, Energy, PDF-L2, RBF) with quantile-based methods (QRDQN, IQN) that use the same
number of M (number of gaussian components in GMM or number of quantiles). Moreover, TVD
does not improve the accuracy throughout iterations. This corroborates our claim in Theorem 2.4,
since TVD is not a functional Bregman divergence.
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Since it is difficult to compare the performances for every single setting, we summarized the perfor-
mances of each method in Table 5. We have grouped the 252 settings into four categories based on (i)
deterministic / random reward and (ii) strong / weak coverage. In each category (which consists of 84
settings), we measured the rank values of nine methods (with 1 being the best and 9 being the worst)
based on their mean inaccuracy in each setting, and then recorded the mean of rank values. Our FDE
methods (KL, Energy, Hyvärinen) showed the highest three accuracies in most categories. Although
KL FDE recorded the highest mean of rank in all four categories, it does not mean that we should
always resort to KL FDE. There have been well-known criticism on KL divergence (e.g., unbounded
divergence value, high sensitivity to the tails of distributions, necessity that one probability measure is
absolutely continuous to the other, inability to consider closeness in outcome values) [e.g., 28, 50, 7].

Table 5: Mean of rank values of inaccuracy under all settings of each category. Three methods with
best accuracies are boldfaced in each category.

Category Method

Reward Cover FLE QRD IQN KL Energy PDF RBF TVD Hyv

Deterministic Strong 3.60 6.19 8.25 1.77 3.36 4.38 5.03 8.11 2.78
Deterministic Weak 3.00 6.39 8.30 1.84 3.14 4.69 5.47 8.09 2.42
Random Strong 4.42 5.30 7.00 3.03 3.15 4.07 4.07 8.63 3.59
Random Weak 3.76 6.09 7.31 2.34 3.61 4.46 4.23 8.61 2.40

Figure 3: (Mean ± STD) of W1(Υ
dπ
θ ,Υdππ )-inaccuracy in each games (columns) for different

methods with M = 10, N = 10K: (row1) deterministic transition with strong coverage (ϵbeh = 0.4),
(row2) deterministic transition with weak coverage (ϵbeh > 0.4), (row3) random transition with
strong coverage (ϵbeh = 0.1), (row4) random transition with weak coverage (ϵbeh > 0.1).
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Figure 4: (Mean± STD) of W1(Υ
dπ
θ ,Υdππ )-inaccuracy in each games (columns) for different methods

with M = 100, N = 10K: (row1) deterministic transition with strong coverage (ϵbeh = 0.4), (row2)
deterministic transition with weak coverage (ϵbeh > 0.4), (row3) random transition with strong
coverage (ϵbeh = 0.1), (row4) random transition with weak coverage (ϵbeh > 0.1).

74



Figure 5: (Mean± STD) of W1(Υ
dπ
θ ,Υdππ )-inaccuracy in each games (columns) for different methods

with M = 200, N = 10K: (row1) deterministic transition with strong coverage (ϵbeh = 0.4), (row2)
deterministic transition with weak coverage (ϵbeh > 0.4), (row3) random transition with strong
coverage (ϵbeh = 0.1), (row4) random transition with weak coverage (ϵbeh > 0.1).
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Table 6: Reward-variance=0, Eps=Small, Game=AtlantisNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.02 9.84 9.86 2.13 2.54 3.54 3.7 9.85 1.3
5K 1.87 9.84 9.86 1.51 2.31 3.6 3.73 9.85 1.29
10K 1.73 9.84 9.86 1.8 2.54 3.59 3.72 9.86 1.34

100
2K 2.22 4.13 9.85 1.71 2.28 3.54 3.77 9.87 1.77
5K 1.88 3.87 9.85 1.67 2.29 3.65 3.44 9.85 1.77
10K 1.85 3.93 9.85 1.93 2.26 3.87 3.42 9.87 1.88

200
2K 2.27 2.84 9.85 1.93 2.4 3.76 3.63 9.85 NA
5K 1.69 2.88 9.38 1.61 2.33 3.34 3.16 9.85 NA
10K 2.39 2.83 9.85 1.68 2.35 3.56 3.24 9.86 NA

Table 7: Reward-variance=0, Eps=Small, Game=BreakoutNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 3.63 10.87 10.89 6.68 3.37 4.48 4.81 10.89 2.81
5K 3.21 10.87 10.9 2.78 3.22 4.39 4.37 10.89 2.58
10K 3.44 10.87 10.89 2.29 3.25 4.18 4.36 10.89 2.91

100
2K 3.51 4.93 10.89 2.7 3.49 4.56 4.43 10.88 2.91
5K 3.47 4.58 10.89 2.9 3.29 4.38 4.22 10.88 3.19
10K 3.24 4.24 10.88 2.37 3.1 4.28 4.29 >100 2.32

200
2K 3.28 3.88 10.88 3.15 3.41 4.49 4.21 10.9 NA
5K 3.39 3.65 10.9 3.02 3.26 4.11 3.92 10.9 NA
10K 4.06 3.19 8.34 2.9 3.23 3.74 3.97 10.9 NA

Table 8: Reward-variance=0, Eps=Small, Game=EnduroNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 12.69 19.25 19.25 12.68 13.0 12.37 12.36 19.25 14.1
5K >100 19.25 19.25 9.42 11.17 10.89 10.81 19.25 11.32
10K 11.28 19.25 19.25 11.67 11.72 10.98 10.98 19.24 12.17

100
2K 12.52 15.33 19.26 11.08 12.83 12.31 12.4 19.25 12.99
5K 11.51 13.51 19.25 10.64 10.91 10.84 10.93 19.24 10.65
10K 10.95 12.15 19.25 11.46 11.61 10.99 11.0 19.25 12.43

200
2K 12.6 14.31 19.25 12.24 12.9 12.51 12.57 19.25 NA
5K 10.47 12.5 19.26 10.58 11.1 10.89 10.85 19.24 NA
10K 12.11 12.55 19.26 11.65 11.71 10.92 11.0 19.24 NA
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Table 9: Reward-variance=0, Eps=Small, Game=KungFuMasterNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.83 9.04 9.25 1.84 2.66 3.61 4.12 9.23 1.91
5K 2.82 9.09 9.25 2.85 3.38 4.3 6.7 9.24 2.6
10K 3.1 9.1 9.26 2.57 3.36 4.09 7.8 9.26 2.72

100
2K 2.53 4.1 9.22 1.42 2.52 3.3 3.62 9.26 2.17
5K 2.89 4.8 9.23 2.85 3.38 4.05 4.52 9.25 3.65
10K >100 4.26 9.23 2.29 3.02 3.94 4.7 9.23 3.03

200
2K 2.74 3.16 9.24 2.0 2.63 3.38 3.49 9.26 NA
5K 3.73 4.19 9.24 2.77 3.43 4.19 4.44 9.24 NA
10K 3.01 3.79 9.23 1.97 3.17 4.43 4.2 9.24 NA

Table 10: Reward-variance=0, Eps=Small, Game=PongNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 1.79 4.99 4.99 1.66 1.79 2.42 3.93 4.98 3.2
5K 1.57 4.99 4.99 92.04 1.64 2.53 3.92 4.98 2.8
10K 1.92 4.99 4.99 2.05 2.05 2.81 4.22 4.98 3.02

100
2K 1.53 4.71 4.99 1.76 1.62 2.38 2.41 4.98 2.74
5K 1.62 4.61 4.99 1.77 1.65 2.5 2.62 4.98 2.61
10K >100 4.59 4.99 1.91 2.12 2.81 2.96 4.98 2.92

200
2K 1.62 2.75 4.99 1.87 1.6 2.32 2.39 4.98 NA
5K 4.84 2.62 4.99 1.76 1.63 2.42 2.52 4.99 NA
10K >100 2.67 4.99 2.04 2.04 2.73 2.99 4.98 NA

Table 11: Reward-variance=0, Eps=Small, Game=QbertNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K >100 21.74 21.82 10.8 11.82 12.74 12.9 21.81 10.87
5K 10.96 21.76 21.81 10.79 11.52 12.5 12.09 21.83 10.74
10K 11.2 21.76 21.81 10.29 11.29 11.55 11.45 21.81 10.51

100
2K 23.68 12.79 21.8 10.69 11.47 12.0 12.29 21.8 10.08
5K 10.71 11.94 18.76 10.34 11.26 10.7 11.42 21.81 10.63
10K 10.47 11.65 21.8 9.83 10.65 10.46 10.95 21.79 10.49

200
2K 11.67 11.88 21.81 10.74 11.37 11.76 11.79 21.81 NA
5K 11.19 11.13 21.81 10.22 10.93 10.68 10.81 21.81 NA
10K >100 10.9 21.8 9.98 10.59 10.21 10.29 21.8 NA

Table 12: Reward-variance=0, Eps=Small, Game=SpaceInvadersNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 3.02 15.35 15.37 2.73 3.55 5.76 5.82 15.38 2.73
5K 2.87 15.35 15.37 2.16 3.72 5.79 5.71 >100 2.2
10K 2.79 15.35 15.37 2.17 3.66 5.63 5.54 15.36 2.88

100
2K 3.03 4.53 15.37 2.42 3.07 3.73 4.8 15.37 2.38
5K 2.58 4.23 14.07 2.15 3.22 3.6 4.31 15.38 2.31
10K 2.43 4.24 15.37 1.93 3.12 3.09 3.91 15.38 2.06

200
2K 3.39 3.5 15.36 2.54 3.1 3.58 4.06 15.36 NA
5K 2.92 3.04 11.07 2.58 3.07 3.22 3.74 15.38 NA
10K 2.43 3.14 15.37 2.07 2.67 2.82 2.88 15.37 NA
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Table 13: Reward-variance=0, Eps=Big, Game=AtlantisNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.31 9.84 9.86 2.34 3.09 3.82 3.91 9.86 1.5
5K 1.87 9.84 9.86 1.67 2.53 3.5 3.56 9.87 1.88
10K 2.55 9.84 9.86 1.98 2.87 3.82 3.78 9.85 1.58

100
2K 2.25 4.5 9.85 2.18 2.81 3.9 3.91 9.87 1.46
5K 2.42 4.17 9.86 1.97 2.36 3.22 3.46 9.85 1.49
10K 2.02 4.54 9.85 2.14 2.51 3.88 3.92 9.85 1.74

200
2K 2.65 3.32 9.86 2.2 2.77 4.21 3.92 9.84 NA
5K 1.8 3.06 9.86 1.7 2.39 3.78 3.78 9.85 NA
10K 1.81 3.26 9.85 2.12 2.7 4.27 3.84 9.86 NA

Table 14: Reward-variance=0, Eps=Big, Game=BreakoutNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 7.14 10.88 10.9 6.66 7.29 9.31 7.95 10.9 6.72
5K 6.13 10.88 10.9 5.6 6.87 8.25 8.39 10.89 6.02
10K 6.45 10.88 10.9 5.09 6.74 8.17 8.01 10.88 5.98

100
2K 6.66 8.97 10.89 6.73 7.08 7.13 7.37 10.89 6.28
5K 6.8 8.24 10.89 6.13 6.6 7.15 7.09 10.9 6.18
10K 6.56 8.37 10.89 6.08 6.55 6.82 6.83 >100 6.07

200
2K 7.25 7.98 10.9 6.75 7.03 7.21 7.45 10.88 NA
5K 6.67 7.51 10.85 6.42 6.82 7.09 6.92 10.9 NA
10K 6.63 7.57 10.9 6.17 6.54 6.94 6.99 10.87 NA

Table 15: Reward-variance=0, Eps=Big, Game=EnduroNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 16.85 19.26 19.25 16.72 16.65 16.97 17.78 19.24 17.6
5K 15.46 19.26 19.26 15.33 15.29 15.34 16.22 19.24 16.8
10K 15.68 19.26 19.26 15.85 15.7 17.29 17.59 19.25 17.12

100
2K 16.79 18.53 19.25 16.7 16.7 16.42 16.88 19.24 17.2
5K 15.69 18.5 19.26 15.42 15.34 14.79 15.9 19.24 16.25
10K 15.23 19.14 19.25 15.89 15.65 15.19 15.89 19.25 16.81

200
2K 16.99 17.94 19.25 16.58 16.73 16.48 16.75 19.25 NA
5K 15.6 17.13 19.25 15.28 15.27 14.89 15.8 19.25 NA
10K 15.5 17.53 19.26 15.81 15.65 14.88 15.39 19.25 NA

Table 16: Reward-variance=0, Eps=Big, Game=KungFuMasterNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 8.37 9.24 9.24 8.02 8.19 9.12 9.21 9.24 8.23
5K 8.07 9.24 9.25 7.73 8.03 9.15 9.22 9.25 7.75
10K 7.86 9.24 9.24 7.6 7.95 9.13 9.21 9.24 7.71

100
2K 8.16 9.2 9.24 8.05 8.16 8.11 8.76 9.22 8.06
5K 7.94 9.2 9.23 7.67 7.92 8.44 8.94 9.26 7.67
10K 7.89 9.2 9.24 7.55 7.77 7.75 8.98 9.23 7.6

200
2K 8.29 9.09 9.23 8.05 8.1 8.2 8.86 9.25 NA
5K 8.0 9.0 9.24 7.64 7.94 8.25 8.75 9.23 NA
10K 7.71 8.93 9.24 7.52 7.73 8.07 8.88 9.23 NA
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Table 17: Reward-variance=0, Eps=Big, Game=PongNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.36 4.99 4.99 2.33 2.51 2.95 3.35 4.98 3.1
5K >100 4.99 4.99 2.26 2.66 3.51 3.78 4.98 3.05
10K 2.13 4.99 4.99 2.18 2.32 3.19 3.54 4.98 2.9

100
2K 2.16 3.86 4.6 2.41 2.4 3.57 >100 4.98 2.57
5K 2.23 3.78 4.99 2.46 2.76 3.71 3.71 4.98 3.16
10K 2.24 4.11 4.99 2.25 2.34 3.22 3.49 4.98 3.0

200
2K 2.43 2.54 4.99 2.58 2.44 3.13 3.51 4.98 NA
5K 2.43 2.58 4.99 2.57 2.55 3.56 3.71 4.98 NA
10K 2.19 2.59 4.99 2.19 2.42 3.0 3.74 4.99 NA

Table 18: Reward-variance=0, Eps=Big, Game=QbertNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 14.35 21.8 21.81 12.08 14.59 15.56 15.6 21.81 13.04
5K 14.27 21.8 21.82 12.62 14.72 15.8 15.63 21.82 12.88
10K 14.75 21.8 21.81 13.96 15.1 15.91 15.89 21.8 13.06

100
2K >100 15.4 21.81 14.24 14.31 15.64 15.43 >100 12.68
5K 13.95 15.84 21.81 13.91 14.7 15.81 15.7 21.82 13.22
10K 15.8 16.35 21.81 13.99 14.93 15.79 15.79 21.79 13.03

200
2K 14.03 14.72 20.51 12.97 14.14 15.45 15.57 21.81 NA
5K 13.71 14.69 21.82 13.69 14.7 16.06 15.9 21.8 NA
10K 14.79 15.22 21.13 13.9 14.87 16.16 16.17 21.82 NA

Table 19: Reward-variance=0, Eps=Big, Game=SpaceInvadersNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 7.26 15.36 15.38 7.39 8.12 9.22 9.34 >100 5.95
5K 7.24 15.36 15.37 6.91 7.81 8.88 8.94 15.37 5.8
10K 6.33 15.36 15.37 6.17 7.45 8.69 8.58 15.37 4.72

100
2K 7.87 9.29 14.73 7.45 7.85 8.95 8.91 15.39 5.89
5K 7.26 9.09 15.37 6.78 7.59 9.1 8.65 >100 5.47
10K 6.64 8.06 15.38 6.19 6.8 8.79 8.48 >100 5.04

200
2K 7.5 8.13 15.37 7.41 7.92 9.0 8.5 15.38 NA
5K 6.98 7.92 15.37 6.7 7.45 8.68 8.59 15.37 NA
10K 6.55 6.88 15.36 6.18 7.11 8.09 8.43 15.38 NA

Table 20: Reward-variance=1, Eps=Small, Game=AtlantisNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 9.3 15.58 16.0 8.67 9.79 10.64 10.86 >100 8.66
5K 7.43 15.34 16.37 6.61 8.23 9.8 9.69 16.96 6.88
10K 8.01 15.47 16.14 7.46 8.78 9.98 10.01 16.95 7.09

100
2K 8.96 10.37 16.05 8.52 9.81 10.71 10.78 16.89 8.14
5K 7.87 8.96 13.8 6.38 7.73 9.28 9.13 16.95 6.47
10K 7.27 8.35 15.89 7.39 8.34 9.87 9.68 16.95 7.31

200
2K 8.04 9.62 12.89 8.71 9.66 10.34 10.34 16.89 NA
5K 7.51 8.09 16.08 6.91 7.73 8.47 8.4 16.95 NA
10K 7.67 7.87 14.63 7.41 8.44 9.3 9.33 16.95 NA
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Table 21: Reward-variance=1, Eps=Small, Game=BreakoutNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 7.94 7.45 8.91 7.96 6.21 4.47 4.66 >100 8.2
5K 7.75 7.23 8.26 6.41 6.88 4.97 4.88 10.89 8.56
10K 7.57 7.35 8.45 6.27 5.76 3.84 3.6 10.9 8.29

100
2K 7.62 4.8 7.58 7.65 6.48 3.94 5.52 >100 7.87
5K 8.17 6.02 7.09 7.15 6.34 6.49 6.32 10.89 9.81
10K 6.8 4.72 6.58 6.52 6.88 5.72 5.66 >100 7.92

200
2K 7.14 5.58 9.33 7.51 6.38 5.43 5.9 >100 NA
5K 8.37 6.77 6.52 7.14 7.37 6.28 6.35 10.88 NA
10K 7.67 5.37 7.97 6.84 5.62 5.62 6.03 10.9 NA

Table 22: Reward-variance=1, Eps=Small, Game=EnduroNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 16.47 30.61 28.15 16.11 15.65 19.27 20.04 35.43 16.65
5K 12.88 28.69 27.79 14.16 13.99 17.56 17.3 35.44 13.75
10K 12.94 28.97 34.49 13.01 15.23 17.04 17.01 35.42 13.94

100
2K 15.29 20.12 29.65 17.63 17.02 18.45 18.9 35.43 16.91
5K 13.21 17.4 25.74 14.44 13.07 15.42 14.12 35.43 14.17
10K 19.26 17.35 33.79 14.46 12.57 15.89 16.2 35.42 14.24

200
2K 16.47 18.94 28.05 17.57 16.25 18.12 18.14 35.43 NA
5K 13.48 16.46 32.63 12.04 14.91 14.96 15.53 35.43 NA
10K 23.39 14.49 33.97 14.49 13.34 15.79 15.63 35.42 NA

Table 23: Reward-variance=1, Eps=Small, Game=KungFuMasterNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 5.28 13.84 14.28 4.71 5.38 6.15 5.67 16.35 4.47
5K 5.18 13.79 15.45 4.53 6.39 6.74 6.99 16.21 4.91
10K 5.47 13.67 11.28 4.08 5.7 6.41 6.78 16.26 4.91

100
2K 5.06 6.52 14.1 4.27 4.64 5.45 5.17 16.36 3.94
5K 5.04 6.82 15.51 4.39 6.12 6.36 5.82 16.23 3.86
10K 5.57 6.61 15.33 4.4 5.02 5.61 5.95 16.25 3.8

200
2K 4.43 5.73 15.26 3.51 4.7 5.17 5.2 16.37 NA
5K 5.29 5.44 14.88 5.34 5.33 6.4 6.19 16.23 NA
10K 7.53 5.85 15.38 4.3 4.99 5.71 5.54 16.24 NA

Table 24: Reward-variance=1, Eps=Small, Game=PongNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.07 4.4 3.98 1.57 1.62 1.54 1.58 5.82 1.66
5K 2.23 4.91 5.4 1.84 1.87 1.71 1.64 5.94 1.87
10K 2.29 4.97 4.01 1.83 1.89 1.65 1.74 5.98 1.99

100
2K 1.85 2.4 3.32 1.63 1.59 1.3 1.36 5.82 1.67
5K 2.11 2.52 3.16 1.87 1.8 1.38 1.4 5.93 1.94
10K 2.74 2.8 3.48 1.97 1.84 1.46 1.56 5.98 1.74

200
2K 1.75 1.64 3.03 1.64 1.54 1.39 1.35 5.82 NA
5K 2.35 1.78 3.39 1.79 1.86 1.38 1.4 5.93 NA
10K 2.2 2.06 4.84 1.86 1.8 1.59 1.46 5.99 NA
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Table 25: Reward-variance=1, Eps=Small, Game=QbertNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 55.54 20.34 18.33 17.53 16.87 19.14 19.07 30.08 21.31
5K 20.71 18.41 10.83 20.86 17.7 >100 19.07 30.23 22.11
10K 20.08 23.4 29.16 19.75 17.04 19.03 18.54 30.31 20.86

100
2K >100 21.99 17.19 21.47 18.71 19.38 19.61 >100 21.05
5K 21.43 11.46 28.83 21.11 14.68 19.5 19.5 30.22 21.13
10K 44.06 16.0 29.07 17.35 19.83 19.44 19.15 >100 20.9

200
2K 20.54 21.43 24.77 21.07 17.79 19.62 19.48 30.07 NA
5K 20.55 18.94 24.2 21.18 17.11 19.36 19.94 >100 NA
10K 19.93 16.07 28.88 17.77 13.27 19.67 19.39 30.3 NA

Table 26: Reward-variance=1, Eps=Small, Game=SpaceInvadersNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 2.45 15.31 7.41 1.79 2.75 4.52 4.17 >100 1.53
5K 2.7 15.73 10.72 2.65 3.91 4.95 5.39 19.05 2.16
10K 2.63 15.6 11.07 2.02 2.98 4.44 4.6 >100 1.56

100
2K 6.26 3.75 13.67 1.88 2.38 2.79 2.98 18.93 1.54
5K 3.1 4.07 8.68 2.39 2.81 3.91 4.18 19.05 1.68
10K 3.89 3.94 12.68 1.77 2.93 3.05 3.2 19.2 1.5

200
2K 2.44 2.62 13.69 1.86 2.46 2.66 2.83 18.93 NA
5K 3.53 2.86 8.45 2.27 3.4 3.44 3.77 >100 NA
10K 2.7 2.81 6.55 2.27 2.67 2.71 2.44 19.2 NA

Table 27: Reward-variance=1, Eps=Big, Game=AtlantisNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 8.59 15.19 15.67 8.08 9.23 10.4 10.41 16.47 7.87
5K 8.62 15.5 14.08 8.41 9.38 10.5 10.42 >100 7.95
10K 8.47 15.57 15.11 8.35 9.41 10.62 10.54 16.81 8.23

100
2K 8.02 9.79 15.67 7.99 9.06 10.31 10.17 16.47 8.11
5K 8.85 9.95 13.83 8.42 9.06 10.38 10.33 16.63 8.57
10K 8.49 10.13 15.36 8.24 9.06 10.49 10.64 16.8 7.76

200
2K 8.29 9.0 14.87 8.04 8.86 9.82 10.08 16.47 NA
5K 8.99 8.29 15.71 7.82 9.09 9.95 10.09 16.63 NA
10K 8.54 9.32 13.2 8.18 9.28 10.29 9.96 16.8 NA

Table 28: Reward-variance=1, Eps=Big, Game=BreakoutNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 3.22 9.3 7.43 2.58 3.24 4.47 4.47 10.52 2.94
5K 3.8 9.44 10.19 2.72 3.66 4.87 4.85 >100 3.27
10K 3.57 9.64 10.28 3.0 3.93 4.8 4.79 10.81 3.07

100
2K >100 4.23 7.17 2.44 3.39 4.13 4.15 10.52 2.79
5K 3.49 4.67 8.32 3.32 3.68 4.27 4.71 10.73 3.07
10K 3.98 4.97 7.5 3.21 3.65 4.89 4.77 10.83 3.21

200
2K 3.73 3.55 8.33 2.45 3.25 4.13 3.65 10.52 NA
5K 4.11 3.98 9.21 2.66 3.67 4.28 4.22 10.72 NA
10K 3.58 4.27 10.09 3.22 3.75 4.54 4.44 10.82 NA
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Table 29: Reward-variance=1, Eps=Big, Game=EnduroNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 32.27 34.71 32.87 32.4 32.41 32.06 32.08 35.28 32.38
5K 31.56 34.54 34.43 31.49 31.36 31.01 30.99 35.24 31.42
10K 31.51 34.7 34.37 31.46 31.41 31.18 31.1 35.39 31.46

100
2K 32.27 33.53 32.97 32.33 32.29 31.98 32.01 35.26 32.32
5K 31.47 33.19 32.92 31.32 31.37 30.72 30.86 35.24 31.38
10K 31.65 33.67 35.27 31.52 31.56 31.18 31.07 35.39 31.59

200
2K 32.19 33.08 34.61 32.37 32.28 32.0 32.06 35.27 NA
5K 31.37 32.5 34.32 31.13 31.32 32.18 30.89 35.24 NA
10K 31.52 32.86 35.26 31.46 31.47 31.12 31.01 35.38 NA

Table 30: Reward-variance=1, Eps=Big, Game=KungFuMasterNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 12.89 15.41 14.16 12.92 13.21 13.4 13.69 16.17 12.75
5K 12.76 15.31 13.43 12.53 11.82 13.05 13.13 16.08 12.63
10K 12.86 15.4 15.97 12.54 12.97 13.14 13.12 16.06 12.26

100
2K 13.05 14.31 15.68 12.89 13.15 13.16 13.08 16.16 12.77
5K 12.52 14.06 15.89 12.6 12.95 13.0 12.98 16.07 12.67
10K 12.92 14.05 15.99 12.67 12.82 12.92 12.9 16.06 12.35

200
2K 12.8 13.64 15.63 12.85 13.06 13.16 13.21 16.17 NA
5K 12.94 13.37 15.89 12.55 12.96 13.06 12.93 16.07 NA
10K 13.17 13.36 15.75 12.59 12.84 13.08 13.0 16.06 NA

Table 31: Reward-variance=1, Eps=Big, Game=PongNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 3.26 4.99 3.71 3.08 3.07 2.8 2.86 5.94 3.15
5K 3.98 5.17 5.95 3.9 3.72 3.7 3.66 5.92 3.82
10K 4.25 5.24 12.39 4.03 3.9 3.83 3.82 5.97 4.01

100
2K 3.38 3.44 4.14 3.1 3.01 2.31 2.44 5.95 3.27
5K 4.9 4.1 3.79 3.87 3.73 3.14 3.12 5.92 3.68
10K 4.17 4.16 5.52 3.9 3.88 3.39 3.23 5.98 3.84

200
2K 3.42 2.91 1.73 3.06 2.98 2.36 2.37 5.94 NA
5K 3.91 3.67 4.7 3.64 3.74 3.1 3.19 5.92 NA
10K 4.29 3.68 5.33 4.0 3.85 3.34 3.36 5.98 NA

Table 32: Reward-variance=1, Eps=Big, Game=QbertNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 20.91 28.59 29.96 19.67 21.92 22.96 23.01 30.16 20.76
5K 20.15 28.36 29.58 18.3 20.7 21.67 21.93 30.11 19.52
10K 19.81 28.37 29.8 19.19 20.87 21.84 21.81 30.24 18.97

100
2K 20.77 22.46 29.32 19.01 21.59 22.53 22.69 30.17 20.81
5K 20.26 21.62 29.26 19.7 20.14 21.3 21.35 30.11 19.38
10K 19.68 21.31 28.75 19.83 20.11 20.8 20.65 >100 18.92

200
2K 21.34 20.79 29.01 20.68 21.54 22.19 22.05 30.16 NA
5K 19.63 20.54 29.7 19.52 20.04 20.73 21.01 30.11 NA
10K 19.67 20.24 27.25 19.54 20.26 20.19 20.52 30.23 NA
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Table 33: Reward-variance=1, Eps=Big, Game=SpaceInvadersNoFrameskip-v4

M N FLE QRD IQN KLD ENE PDF RBF TVD HYV

10
2K 6.15 16.76 11.54 5.91 7.54 9.86 9.78 18.89 5.33
5K 6.76 16.75 9.79 5.61 7.38 9.4 9.62 18.91 5.02
10K 5.1 16.81 16.36 5.81 6.92 9.34 9.21 19.06 5.41

100
2K 6.35 7.91 12.26 5.56 6.25 8.23 7.71 18.88 5.98
5K 6.55 7.94 16.3 5.57 6.61 7.59 7.86 18.9 5.14
10K 6.14 7.67 12.07 4.86 6.07 7.3 7.18 19.05 5.41

200
2K 6.21 6.8 10.59 5.4 6.95 7.87 7.43 18.88 NA
5K 6.2 6.87 13.29 5.31 6.38 7.1 7.14 18.91 NA
10K 5.83 6.43 10.75 4.86 6.33 6.95 6.78 19.05 NA
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E.3 Computation resources

Our simulations are extensive. We used high performance computing system. For LQR simulation
(Appendix E.1), we have used CPU, 2GB memory. A single run of a single method under a fixed
setting takes approximately 20 seconds. For Atari games’ simulation (Appendix E.2), we have used
GPU, 10GB memory. A single run of a single method under a fixed setting takes approximately 700
seconds.
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