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ABSTRACT

We present a novel machine learning architecture that uses a single high-
dimensional nonlinearity consisting of the exponential of a single input-dependent
matrix. The mathematical simplicity of this architecture allows a detailed analy-
sis of its behaviour, providing robustness guarantees via Lipschitz bounds. De-
spite its simplicity, a single matrix exponential layer already provides universal
approximation properties and can learn and extrapolate fundamental functions of
the input, such as periodic structure or geometric invariants. This architecture out-
performs other general-purpose architectures on benchmark problems, including
CIFAR-10, using fewer parameters.

1 INTRODUCTION

Deep neural networks (DNNs) synthesize highly complex functions by composing a large num-
ber of neuronal units, each featuring a basic and usually 1-dimensional nonlinear activation func-
tion f : R1 → R1. While highly successful in practice, this approach also has disadvantages. In a
conventional DNN, any two activations only ever get combined through summation. This means that
such a network requires an increasing number of parameters to approximate more complex functions
even as simple as multiplication. Parameter-wise, this approach of composing simple functions does
not scale efficiently.

An alternative to the composition of many 1-dimensional functions is using a simple higher-
dimensional nonlinear function f : Rm → Rn. A single multidimensional nonlinearity may be
desirable because it could express more complex relationships between input features with poten-
tially fewer parameters and fewer mathematical operations.

The matrix exponential stands out as a promising but overlooked candidate for a higher-dimensional
nonlinearity for machine learning models. The matrix exponential is a smooth function that appears
in the solution to one of the simplest differential equations that can yield desirable mathematical
properties: d/dty(t) = My(t), with the solution y(t) = exp(Mt)y(0), where M is a constant
matrix. The matrix exponential plays a prominent role in the theory of Lie groups, an algebraic
structure widely used throughout many branches of mathematics and science.

A unique advantage of the matrix exponential is its natural ability to represent oscillations and
exponential decay, which becomes apparent if we decompose the matrix to be exponentiated
into a symmetric and an antisymmetric component. The exponential of an antisymmetric matrix,
whose nonzero eigenvalues are always imaginary, generates a superposition of periodic oscillations,
whereas the exponential of a symmetric matrix, which has real eigenvalues, expresses an exponential
growth or decay. This fact, especially the ability to represent periodic functions, gives the M-layer
the possibility to extrapolate beyond its training domain. Many real-world phenomena contain some
degree of periodicity and can therefore benefit from this feature. In contrast, the functions typically
used in conventional DNNs approximate the target function locally and are therefore unable to scale
well outside the boundaries of the training data for such problems.

Based on these insights, we propose a novel architecture for supervised learning whose core element
is a single layer (henceforth referred to as “M-layer”), that computes a single matrix exponential,
where the matrix to be exponentiated is an affine function of the input features. We show that the
M-layer has universal approximator properties and allows closed-form per-example bounds for ro-
bustness. We demonstrate the ability of this architecture to learn multivariate polynomials, such as
matrix determinants, and to generalize periodic functions beyond the domain of the input without
any feature engineering. Furthermore, the M-layer achieves results comparable to recently-proposed
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non-specialized architectures on image recognition datasets. We provide TensorFlow code that im-
plements the M-layer in the Supplementary Material.

2 RELATED WORK

Neuronal units with more complex activation functions have been proposed. One such example are
sigma-pi units (Rumelhart et al., 1986), whose activation function is the weighted sum of products
of its inputs. More recently, neural arithmetic logic units have been introduced (Trask et al., 2018),
which can combine inputs using multiple arithmetic operators and generalize outside the domain of
the training data. In contrast with these architectures, the M-layer is not based on neuronal units with
multiple inputs, but uses a single matrix exponential as its nonlinear mapping function. Through
the matrix exponential, the M-layer can easily learn mathematical operations more complex than
addition, but with simpler architecture. In fact, as shown in Section 3.3, the M-layer can be regarded
as a generalized sigma-pi network with built-in architecture search, in the sense that it learns by
itself which arithmetic graph should be used for the computation.

Architectures with higher-dimensional nonlinearities are also already used. The softmax function
is an example of a widely-used such nonlinear activation function that, like the M-layer, has extra
mathematical structure. For example, a permutation of the softmax inputs produces a corresponding
permutation of the outputs. Maxout networks also act on multiple units and have been successful
in combination with dropout (Goodfellow et al., 2013). In radial basis networks (Park & Sandberg,
1991), each hidden unit computes a nonlinear function of the distance between its own learned cen-
troid and a single point represented by a vector of input coordinates. Capsule networks (Sabour
et al., 2017) are another recent example of multidimensional nonlinearities. Similarly, the M-layer
uses the matrix exponential as a single high-dimensional nonlinearity. This mapping satisfies non-
trivial mathematical identities, for some of which we here elucidate their application potential in
a machine learning context. Feature crosses of second and higher order have also been explored
on top of convolutional layers ((Lin et al., 2015; Lin & Maji, 2017; Li et al., 2017; Engin et al.,
2018; Koniusz et al., 2018). In this line of research, (Li et al., 2017) introduces the use of a matrix
operation (either matrix logarithm or matrix square root) on top of a convolutional layer with higher
order feature crosses. The M-Layer differs from this kind of approach in two ways: first, it uses ma-
trix exponentiation to produce feature crosses, and not to improve trainability on top of other ones;
secondly, it computes a matrix operation of an arbitrary matrix (not necessarily symmetric positive
semidefinite), which allows more expressibility, as seen for example in Section 3.3.

The main differences between the M-layer and other architectures that can utilize feature-crosses are
the M-layer’s ability to also model non-polynomial dependencies (such as a cosine) and the built-
in competition-for-total-complexity regularization, which we will explain in Section 3.3 through a
“circuit breadboard” analogy.

Matrix exponentiation has a natural alternative interpretation in terms of an ordinary differential
equation (ODE). As such, the M-layer can be compared to other novel ODE-related architectures,
such as neural ordinary differential equations (NODE) (Chen et al., 2018) and their augmented
extensions (ANODE) (Dupont et al., 2019). We discuss this in Section 3.6.

Existing approaches to certifying the robustness of neural networks can be split into two different
categories. Some approaches (Peck et al., 2017) mathematically analyze a network layer by layer,
providing bounds on the robustness of each layer, that then get multiplied together. This kind of
approach tends to give fairly loose bounds, due to the inherent tightness loss from composing upper
bounds. Other approaches (Singh et al., 2018; 2019) use abstract interpretation on the evaluation
of the network to provide empirical robustness bounds. In contrast, using the fact that the M-layer
architecture has a single layer, in Section 3.7 we obtain a direct bound on the robustness on the
whole network by analyzing the explicit formulation of the computation.

3 ARCHITECTURE

We start this section by refreshing the definition of the matrix exponential. We then define the pro-
posed M-layer architecture and explain its ability to learn particular functions such as polynomials
and periodic functions. Finally, we provide closed-form per-example robustness guarantees.
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3.1 MATRIX EXPONENTIATION

The exponential of a square matrixM is defined as: exp(M) =
∑∞
k=0

1
k!M

k. The matrix powerMk

is defined inductively as M0 = I , Mk+1 = M ·Mk, using the associativity of the matrix product;
it is not an element-wise matrix operation. Note that the expansion of exp(M) in Eq. (3.1) is finite
for nilpotent matrices. A matrix M is called nilpotent if there exists a positive integer k such that
Mk = 0. Strictly upper triangular matrices are a canonical example.

Multiple algorithms for computing the matrix exponential efficiently have been proposed (Moler &
Van Loan, 2003). We provide an implementation of the M-layer that employs either the TensorFlow
function tf.linalg.expm, which uses the scaling and squaring method combined with the Padé
approximation (Higham, 2005), or a simpler and faster approximation of the matrix exponential that
only squares a fixed number of times, using the formula exp(M) ≈ (I+ M

2k
)2

k

. This approximation
follows from the equivalent definition of exp(M) = limn→∞(I + M

n )n, and has O(kn1.5) time
complexity, where n is the total number of elements in M .

3.2 M-LAYER DEFINITION

At the core of the proposed architecture (Figure 1) is an M-layer that computes a single matrix
exponential, where the matrix to be exponentiated is an affine function of all of the input features.
In other words, an M-layer replaces an entire stack of hidden layers in a DNN.

U T

exp(·)
S

x Ux TUx exp(TUx) S exp(TUx)

Figure 1: M-layer architecture diagram.

We exemplify the architecture as applied to a standard im-
age recognition dataset, but this formulation is applicable
to any other type of problem by adapting the relevant in-
put indices. In the following equations, generalized Ein-
stein summation is performed over all right-hand side in-
dices not seen on the left-hand side.

Consider an example input image, encoded as a 3-index
array Xyxc, where y, x and c are the row index, column
index and color channel index, respectively. The matrix
M to be exponentiated is obtained as follows, using the
trainable parameters T̃ajk, Ũaxyc and B̃jk:

Mjk = B̃jk + T̃ajkŨayxcXyxc (1)

First, X is projected linearly to a d-dimensional latent feature embedding space by Ũayxc. Then, the
3-index tensor T̃ajk maps each such latent feature to an n × n matrix. Finally, a bias matrix B̃jk is
added to the feature-weighted sum of matrices. The result is a matrix indexed by row and column
indices j and k. In order to allow for exponentiation, M must be a square matrix. It is possible
to contract the tensors T̃ and Ũ in order to simplify the architecture formula, but partial tensor
factorization provides regularization by reducing the parameter count. An output pm is obtained as
follows, using the trainable parameters S̃mjk and Ṽm:

pm = Ṽm + S̃mjk exp(M)jk (2)

The matrix exp(M), indexed by row and column indices j and k in the same way asM , is projected
linearly by the 3-index tensor S̃mjk, to obtain a h-dimensional output vector. The bias-vector Ṽm
turns this linear mapping into an affine mapping. The resulting vector may be interpreted as accu-
mulated per-class evidence and may then be mapped to a vector of probabilities via softmax.

Training can thus be done conventionally, by minimizing a loss function such as the L2 norm or
the cross-entropy with softmax, using backpropagation through matrix exponentiation. In general,
there is no simple analytical expression for the derivative of exp(M), but one can instead com-
pute derivatives for each step of the algorithm chosen to compute the exponential. For example,
tf.linalg.expm uses the scaling-and-squaring algorithm with a Padé approximation, whose
steps are all differentiable. We discuss the topic in more detail in Appendix A.2.

The nonlinearity of the M-layer architecture is provided by the Rd → Rh mapping v 7→ Ṽm +
S̃mjk exp(M)jk. The count of trainable parameters of this component is dn2 +n2 +n2h+ h. This
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count comes from summing the dimensions of T̃ajk, B̃jk, S̃mjk, and Ṽm, respectively. We note that
this architecture has some redundancy in its parameters, as one can freely multiply the T and U
tensors by a d× d real matrix and, respectively, its inverse, while preserving the computed function.
Similarly, it is possible to multiply each of the n× n parts of the tensors T̃ and S̃, as well as B, by
both an n × n matrix and its inverse. In other words, any pair of real invertible matrices of sizes
d×d and n×n can be used to produce a new parametrization that still computes the same function.

3.3 FEATURE CROSSES AND UNIVERSAL APPROXIMATION

A key property of the M-layer is its ability to generate arbitrary exponential-polynomial combina-
tions of the input features. For classification problems, M-layer architectures are a superset of mul-
tivariate polynomial classifiers, where the matrix size constrains the complexity of the polynomial
while at the same time not uniformly constraining its degree. In other words, simple multivariate
polynomials of high degree compete against complex multivariate polynomials of low degree.

We provide a universal approximator proof for the M-layer in Appendix A.1, which relies on its
ability to express any multivariate polynomial in the input features if a sufficiently large matrix size
is used. We provide here an example that illustrates how feature crosses can be generated through the
matrix exponential. Consider a dataset with the feature vector (φ0, φ1, φ2) given by the Ũ · x tensor
contraction, where the relevant quantities for the final classification of an example are assumed to be
φ0, φ1, φ2, φ0φ1, and φ1φ22. To learn this dataset, we look for an exponentiated matrix that makes
precisely these quantities available to be weighted by the trainable tensor S̃. To do this, we define
three 7× 7 matrices T0jk, T1jk, and T2jk as T001 = T102 = T203 = 1, T024 = T225 = 2, T256 = 3,
and 0 otherwise. We then define the matrix M as:

M = φ0T0 + φ1T1 + φ2T2 =


0 φ0 φ1 φ2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2φ0 2φ2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 3φ2

0 0 0 0 0 0 0


Note that M is nilpotent, as M4 = 0. Therefore, we obtain the following matrix exponential, which
contains the desired quantities in its leading row:

exp(M) = I +M +
1

2
M2 +

1

6
M3 =


1 φ0 φ1 φ2 φ0φ1 φ1φ2 φ1φ

2
2

0 1 0 0 0 0 0
0 0 1 0 2φ0 2φ2 3φ2

2
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 3φ2

0 0 0 0 0 0 1


The same technique can be employed to encode any polynomial in the input features using a n× n
matrix, where n is one unit larger than the total number of features plus the intermediate and final
products that need to be computed. The matrix size can be seen as regulating the total capacity of
the model for computing different feature crosses. With this intuition, one can read the matrix as a
“circuit breadboard” for wiring up arbitrary polynomials.

3.4 FEATURE PERIODICITY

While the M-layer can express a wide range of functions using the exponential of nilpotent matrices,
non-nilpotent matrices also have important applications, such as learning the periodicity of input
features. This is a problem where conventional DNNs struggle, as they cannot naturally generalize
beyond the distribution of the training data. To illustrate how matrix exponentials can naturally fit
periodic dependency on input features, without requiring an explicit specification of the periodic
nature of the data, consider the matrix Mr =

(
0 −ω
ω 0

)
. We have exp(tMr) =

(
cosωt − sinωt
sinωt cosωt

)
,

which is a 2d rotation by an angle of ωt and thus periodic in t with period 2π/ω. This setup can
fit functions that have an arbitrary period. Moreover, this representation of periodicity naturally
extrapolates well when going beyond the range of the initial numerical data.

3.5 CONNECTION TO LIE GROUPS

The M-layer has a natural connection to Lie groups. Lie groups can be thought of as a model of
continuous symmetries of a system such as rotations. There is a large body of mathematical theory
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and tools available to study the structure and properties of Lie groups (Gilmore, 2008; 2012), which
may ultimately also help for model interpretability.

Every Lie group has associated a Lie algebra, which can be understood as the space of the small
perturbations with which it is possible to generate the elements of the Lie group. As an example,
the set of rotations of 3-dimensional space forms a Lie group; the corresponding algebra can be
understood as the set of rotation axes in 3 dimensions. Lie groups and algebras can be represented
using matrices, and by computing a matrix exponential one can map elements of the algebra to
elements of the group.

In the M-layer architecture, the role of the 3-index tensor T̃ is to form a matrix whose entries are
affine functions of the input features. The matrices that compose T̃ can be thought of as generators
of a Lie algebra. Building M corresponds to selecting a Lie algebra element. Matrix exponentiation
then computes the corresponding Lie group element. As rotations are periodic and one of the sim-
plest forms of continuous symmetries, this perspective is useful for understanding the ability of the
M-layer to learn periodicity in input features.

The connection to Lie groups is important because it can provide techniques for the regularization
of the M-layer. It is, for example, possible to impose a constraint on the maximal depth of feature
crosses by taking a generator-matrix tensor T̃ that itself is a tensor product with a nilpotent matrix
algebra. Other Lie-group-inspired regularization techniques will be discussed in future work.

3.6 DYNAMICAL SYSTEMS INTERPRETATION

Recent work has proposed a dynamical systems interpretation of some DNN architectures. The
NODE architecture (Chen et al., 2018) uses a nonlinear and not time-invariant ODE that is provided
by trainable neural units, and computes the time evolution of a vector that is constructed from the
input features. This section discusses a similar interpretation of the M-layer.

Consider an M-layer with T̃ defined as T̃012 = T̃120 = T̃201 = +1, T̃210 = T̃102 = T̃021 = −1,
and 0 otherwise, with Ũ as the 3 × 3 identity matrix, and with B̃ = 0. Given an input vector a,

the corresponding matrix M is then
( 0 a2 −a1
−a2 0 a0
a1 −a0 0

)
. Plugging M into the linear and time invariant

(LTI) ODE d/dt Y (t) = MY (t), we can observe that the ODE describes a rotation around the
axis defined by a. Moreover, a solution to this ODE is given by Y (t) = exp(tM)Y (0). Thus, by
choosing Smjk = Y (0)k ifm = j and 0 otherwise, the above M-layer can be understood as applying
a rotation with input dependent angular velocity to some basis vector over a unit time interval.

More generally, we can consider the input features to provide affine parameters that define a time-
invariant linear ODE, and the output of the M-layer to be an affine function of a vector that has
evolved under the ODE over a unit time interval. In contrast, the NODE architecture uses a non-
linear ODE that is not input dependent, which gets applied to an input-dependent feature vector.

3.7 CERTIFIED ROBUSTNESS

We show that the M-layer allows a novel proof technique to produce closed-form expressions for
guaranteed robustness bounds. For any matrix norm ‖·‖, we have (Roger & Charles, 1994):

‖exp(X + Y )− exp(X)‖ ≤ ‖Y ‖ exp(‖Y ‖) exp(‖X‖)
We also make use of the fact that ‖M‖F ≤

√
n‖M‖2 for any n × n matrix, where ‖·‖F is the

Frobenius norm and ‖·‖2 is the 2-norm of a matrix. We recall that the Frobenius norm of a matrix is
equivalent to the 2-norm of the vector formed from the matrix entries.

Let M be the matrix to be exponentiated corresponding to a given input example x, and let M ′ be
the deviation to this matrix that corresponds to an input deviation of x̃, i.e. M + M ′ is the matrix
corresponding to input example x + x̃. Given that the mapping between x and M is linear, there is
a per-model constant δin such that ‖M ′‖2 ≤ δin‖x̃‖∞. The 2-norm of the difference between the
outputs can be bound as follows:

‖∆o‖2 ≤ ‖S‖2‖exp(M +M ′)− exp(M)‖F ≤
√
n‖S‖2‖exp(M +M ′)− exp(M)‖2 ≤

≤ √n‖S‖2‖M ′‖2 exp(‖M ′‖2) exp(‖M‖2) ≤ √n‖S‖2δin‖x̃‖∞ exp(δin‖x̃‖∞) exp(‖M‖2)
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Figure 2: Classification boundaries, training and test sets on a “Swiss roll” classification task.

where ‖S‖2 is computed by considering S a h × n · n rectangular matrix, and the first inequality
follows from the fact that the tensor multiplication by S can be considered a matrix-vector multipli-
cation between S and the result of matrix exponential seen as a n · n vector.

This inequality allows to compute the minimal L∞ change required in the input given the difference
between the amount of accumulated evidence between the most likely class and other classes. More-
over, considering that ‖x‖∞ is bounded from above, for example by 1 in the case of CIFAR-10, we
can obtain a Lipschitz bound by replacing the exp(δin‖x̃‖∞) term with a exp(δin) term.

An alternative way of studying robustness for a specific example involves the diagonalization of the
matrix that corresponds to that example. In particular, we can use the Baker-Campbell-Hausdorff
(BCH) formula to understand the neighborhood of the example. For example, if we regularize the
tensor T to punish non-commutativity of generator matrices, we expect the terms in the BCH for-
mula to decrease in magnitude according to the number of commutators, so we can obtain an under-
standing of the non-linear effects in the neighborhood of each specific example. To our knowledge,
no equivalent type of analysis exists for ReLU networks.

4 RESULTS

In this section, we show the performance of the M-layer on multiple benchmarks, in comparison
with more traditional architectures. For each experiment, the hyperparameters are chosen based on
performance. The DNNs use uniform Glorot initialization (Glorot & Bengio, 2010). The M-layers
are initialized using normal distributions (µ = 0) for the spiral, periodicity and determinants exper-
iments (σ = {1, 0.01, 1}, respectively), and uniformly in [−0.05, 0.05] for the image experiments.
A regularization term is used on the M-layer for the spiral (L2 · 10−3), determinants (L2 · 10−4)
and image (L1 · 10−3) experiments. The selected number of epochs, batch size and learning rate
are: 1000, 16, 10−2 (spiral); 1000, 128/16 (M-layer/ReLU), 10−5/−4 (periodicity); 256, 32, 10−3

(determinants); 150, 32, 10−3 (images). The learning rate is reduced on plateaus and early stopping
is used in all experiments except periodicity. RMSprop optimizers are used for all experiments ex-
cept for images, where SGD with momentum 0.9 is used. The loss function is the cross-entropy
with softmax (spiral, images) or the mean squared error (MSE) (periodicity, determinants). We also
used support-vector machines (SVM) with Gaussian radial basis function (RBF) as implemented
by Pedregosa et al. (2011) as a baseline. RBF-SVM can be regarded as a neural network with
one hidden layer. Unless otherwise stated, we report the best performance across SVM parameters
C = {1, 10, 100} and γ = {1/(n features · input variance), 1/n features}.

4.1 LEARNING DOUBLE SPIRALS

To study the extrapolation capability of the classification boundaries generated by the M-layer, we
compare it to a ReLU-DNN and a RBF-SVM on a double spiral (“Swiss roll”) classification task.
The data consist of 2000 randomly generated points along two spirals consisting of 3 rotations with
coordinates in the [−10, 10] range. Uniform random noise in the [−0.5, 0.5] range is added to each
input coordinate. As we are interested in extrapolation beyond the training domain, we generate a
test set containing of the continuation of those spirals, wrapping around the origin one more times.
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The M-layer has a representation size d = 10 and a matrix size n = 10. The DNN has two hidden
layers of size 20. We report the best result out of 5 runs. On the test set, the DNN has an accuracy
of 54%, while the M-Layer achieves an accuracy of 100%. The best RBF-SVM has an accuracy of
52%; similar SVM experiments can be found in (Suykens, 2001). Figure 2 illustrates the distinctive
ability of the M-layer to extrapolate beyond the training domain.

4.2 LEARNING PERIODIC DATA
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Figure 3: Predictions on a periodic dataset.

We compare an M-layer, DNNs and RBF-SVM
on a dataset containing the daily minimum tem-
peratures in Melbourne recorded by the Aus-
tralian Bureau of Meteorology over 10 years
(Datamarket.com, as cited by Kaggle.com).
The data is de-meaned and smoothed using 7-
day windows. The training set consists of the
first 9 years, while the final year is used for test-
ing. We report the best result out of 5 runs.

The M-layer has d = 2 and n = 10, resulting
in a trainable parameter count of 405. During
the initialization of the M-layer, a value of 10 is
subtracted from the matrix diagonal in order to
make it more likely for the initial matrix to be
exponentiated to have negative eigenvalues and
therefore keep outputs small. The first ReLU
DNN has two hidden layers of size 20 each, re-
sulting in a trainable parameter count of 505. The second ReLU DNN has a linear layer followed
by 10 layers of size 100, resulting in a trainable parameter count of 101301, and is trained for 5000
epochs (a minimual configuration that was able to fit the training data). As the aim of this experi-
ment is to show the ability to learn the periodicity of the input without additional engineering, we
do not consider DNNs with special activation functions such as sin(x).

Figure 3 shows the predictions made by the trained M-layer, DNNs and RBF-SVM. The M-layer is
able to pick up the periodic signal, whereas the other models attempt to fit the small-scale structure of
the data, but are unable to extrapolate. Moreover, the DNN with comparable number of parameters
to the M-layer does not have the capacity to learn the whole training set. The RBF-SVM is able
to fit the training data in high detail, but, as expected, is nonetheless unable to extrapolate beyond
the training domain. During training, we observe that the M-layer first searches for an approximate
solution in a high error range, then rapidly decreases the loss once a suitable periodic approximation
is found. We also observe that the results are sensitive to parameter changes. One viable solution
to this, which we have explored but defer to future work, is to add an extra parameter controlling
the ratio of symmetric and antisymmetric components of the matrix to train. The eigenvalues of an
antisymmetric matrix are always imaginary or zero, meaning that the matrix exponential will always
expresses oscillations, whereas the symmetric component will express exponential growth or decay
(see also Section 3.4).

4.3 LEARNING DETERMINANTS

To demonstrate the ability of the M-layer to learn polynomials, we train M-layers, DNNs and RBF-
SVMs to predict the determinant of 3× 3 and 5× 5 matrices. Learning the determinant of a matrix
with a small network is challenging due to the size of the search space: a 5 × 5 determinant is a
polynomial with 120 monomials of degree 5 in 25 variables; the generic inhomogeneous polynomial
of this degree has

(
25+5

5

)
= 142506 monomials. We do not explicitly encode any special property

of the determinant. From Section 3.3, we know that it is possible to express this multivariate poly-
nomial with a single strictly upper-triangular and therefore nilpotent matrix; here we demonstrate
that an unconstrained M-layer is equally capable of learning polynomials.

The data consist of n × n matrices with entries sampled uniformly between −1 and 1. With this
sampling, the expected value of the square of the determinant is n!

3n . So, we expect the square of
the determinant to be 2

9 for a 3× 3 matrix, and 40
81 for a 5× 5 matrix. This means that an estimator
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Figure 5: Learning the 5 × 5 determinant. Each
scatter plot shows 5000 points.

constantly guessing 0 would have a MSE of ≈ 0.2222 and ≈ 0.4938 for the two matrix sizes,
respectively, which provides an error baseline for the results. The size of the training set is between
210 and 217 examples for the 3 × 3 matrices, and 220 for the 5 × 5 matrices. The validation set is
25% of the training set size, in addition to it. Test sets consist of 106 matrices.

The M-layer has d = 9 and n between 6 and 12 for 3 × 3 determinants, and n = 24 for 5 × 5
determinants. The DNNs has 2 to 4 equally-sized hidden layers, each consisting of 5, 10, 15, 20, 25
or 30 neurons, for the 3× 3 matrices, and 5 hidden layers of size 100 for the 5× 5 matrices.

Figure 4 shows the results of learning the determinant of 3×3 matrices. The M-layer architecture is
able to learn from fewer examples compared to the DNN. The best M-layer model learning on 217

examples achieves a MSE of ≈ 2 · 10−4 with 811 parameters, while the best DNN has a MSE of ≈
0.003 with 3121 parameters. Figure 5 shows the results of learning the determinant of 5×5 matrices.
An M-layer with 14977 parameters outperformed a DNN with 43101 parameters, achieving a MSE
of 0.279 compared to 0.0012. We observe equivalent results for the matrix permanent.

Table 1: Comparison of classification performance on image recognition datasets. We compare
the M-layer to fully-connected ReLU nets, RBF-SVM, NODE (Chen et al., 2018), and ANODE
(Dupont et al., 2019). The ReLU net has 2 hidden layers of size (100, 50) for MNIST and (50, 50)
for CIFAR-10 and SVHN. For NODE and ANODE, we report numbers from Dupont et al. (2019).

ARCHITECTURE CONVOLUTIONAL? PROBLEM ACCURACY % (MEAN ± S.D.) PARAMETERS

M-LAYER NO MNIST 97.99 ± 0.12 68 885
RELU (F.C.) NO MNIST 97.58 ± 0.10 84 060
RBF-SVM NO MNIST 98.37
NODE YES MNIST 96.40 ± 0.50 84 000
ANODE YES MNIST 98.20 ± 0.10 84 000

M-LAYER NO CIFAR-10 54.17 ± 0.36 148 965
RELU (F.C.) NO CIFAR-10 51.07 ± 0.62 156 710
RBF-SVM NO CIFAR-10 56.86
NODE YES CIFAR-10 53.70 ± 0.20 172 000
ANODE YES CIFAR-10 60.60 ± 0.40 172 000

M-LAYER NO SVHN 81.19 ± 0.23 148 965
RELU (F.C.) NO SVHN 77.83 ± 1.23 156 710
RBF-SVM NO SVHN 74.45
NODE YES SVHN 81.00 ± 0.60 172 000
ANODE YES SVHN 83.50 ± 0.50 172 000
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4.4 LEARNING IMAGE DATASETS

We train M-layers on three image classification tasks: MNIST (Lecun et al., 1998), CIFAR10
(Krizhevsky, 2009), and SVHN (Netzer et al., 2011). The training set is shuffled and 10% of it
is used for validation. Here, for RBF-SVM only, due to the long training times, we run the clas-
sification on CIFAR10 and SVHN only with the parameters that performed best on MNIST. The
M-layer dimensions are always d = 35 and n = 30. The M-layer can be combined with convolu-
tional layers for better performance, but we limit the scope of this work to the basics of the M-layer
architecture. All accuracy values are averaged over at least 30 runs.

We compare the performance of the M-layer with three general-purpose architectures. As the M-
layer is a novel architecture and no additional engineering is performed to obtain the results in
addition to the regularization process described above, we only compare it to other generic archi-
tectures. As shown in Table 1, the M-layer outperforms the fully-connected ReLU network and the
convolutional NODE architecture while using fewer parameters. Only ANODE, an improved ver-
sion of NODE, outperforms the M-layer for all datasets. RBF-SVM performs better than all other
models on MNIST and worse than all other models on SVHN.

To assess the performance of computing a matrix exponential, we recorded training times on the
CIFAR-10 task on an NVIDIA V100 GPU. The training time per epoch for the M-layer is 5.28s ±
0.34 using the tf.linalg.expm implementation and 2.8s ± 0.18 using the fast approximation
described in Section 3.1 with k = 3, compared to 2.41s ± 0.05 for the ReLU network, where all
models are trained with batch size 32. The approximation using k ≥ 3 does not affect the accuracy.
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Figure 6: Maximum L∞ perturbation
on the correctly classified CIFAR-10
test samples that is guaranteed not to
produce a misclassification.

We also compute the robustness bounds of the M-layer
trained on CIFAR-10, as described in Section 3.7. We
train n = 20 models with δin ≈ 200, ‖S‖2 ≈ 3, and
‖M‖2 typically a value between 3 and 4. The maximum
L2 variation of the vector of accumulated evidences is
≈ 1. This results in a typical L∞ bound for robustness of
≈ 10−5 on the whole set of correctly classified CIFAR-
10 test samples. In comparison, an analytical approach to
robustness similar to ours (Peck et al., 2017), which uses
a layer-by-layer analysis of a traditional DNN, achieves
L2 bounds of ≈ 10−9. Figure 6 shows the distribution of
L∞ bounds obtained for the M-layer.

5 CONCLUSION

This paper introduces a novel model for supervised ma-
chine learning based on a single matrix exponential,
where the matrix to be exponentiated depends linearly on the input. The M-layer is a powerful
yet mathematically elegant architecture that has universal approximator properties and that can be
used to learn and extrapolate several problems that traditional DNNs have difficulty with.

The M-layer architecture has a natural ability to learn input feature crosses, multivariate polynomials
and periodic functions. This allows it to extrapolate learning to domains outside the training data
with no additional engineering. Its performance is similar to that of non-specialized architectures,
with competitive training times. Thanks to its powerful but relatively simple mathematical structure,
the M-layer also allows closed-form robustness bounds.

We provide TensorFlow source code for the M-layer in the from of a Keras layer.

5.1 FUTURE WORK

In future work, we will focus on larger experiments involving advanced regularization techniques
inspired by the connection between the M-layer and Lie groups. We will also show how the M-
layer can be combined with convolutional layers into hybrid architectures for image recognition and
regression.
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Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certifica-
tion of neural networks. 2018.
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A APPENDIX

A.1 UNIVERSAL APPROXIMATION THEOREM

We show that a single M-layer model that uses sufficiently large matrix size is able to express any
polynomial in the input features. This is true even when we restrict the matrix to be exponentiated to
be nilpotent or, more specifically, strictly upper triangular. So, for classification problems, M-layer
architectures are a superset of multivariate polynomial classifiers, where matrix size constrains the
complexity of the polynomial.

Theorem 1 (Expressibility of polynomials). Given a polynomial p(x1, . . . , xn) in n variables, we
can choose weight tensors for the M-layer such that it computes p exactly.

Proof. The tensor contraction applied to the result of matrix exponentiation can form arbitrary linear
combinations, and is therefore able to compute any polynomial given a matrix that contains the
constituent monomials up to constant factors. Thus, it suffices to prove that we can produce arbitrary
monomials in the exponentiated matrix.
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Given a monomial m of degree d− 1, we consider the d× d matrix U , that has the d− 1 (possibly
repeated) factors of the monomial on the first upper diagonal and zeros elsewhere. Let us consider
powers of U . It can be shown that all elements of U i are equal to 0, except for the i-th upper
diagonal, and that the value in the (d − 1)-th upper diagonal of Ud−1, which contains only one
element, is the product of the entries of the first upper diagonal of U . This is precisely the monomial
m we started with. By the definition of the exponential of the matrix, exp(U) then contains m

(d−1)! ,
which is the monomial up a constant factor.

Given a polynomial p constiting of t monomials, for each 1 ≤ i ≤ t, we form matrices Ui for the
corresponding monomial mi of p, as described above. Then we build the diagonal block matrix
U = diag(U1, . . . , Ut). It is clear that exp(U) = diag(exp(U1), . . . , exp(Uk)), so we can find all
monomials of p in exp(U).

To illustrate the proof, we look at a monomial m = abcd.

U =


0 a 0 0 0

0 0 b 0 0

0 0 0 c 0

0 0 0 0 d

0 0 0 0 0



exp(U) =


1 a 1

2ab
1
6abc

1
24abcd

0 1 b 1
2bc

1
6bcd

0 0 1 c 1
2cd

0 0 0 1 d

0 0 0 0 1


The M-layers constructed here only make use of nilpotent matrices. When using this property as a
constraint, the size of the M-layer can be effectively halved in the implementation.

The construction from Theorem 1 can be adapted to express not only a multivariate polynomial, i.e.
a function to R1, but also functions to Rk, which restrict to a polynomial in each coordinate. This,
together with the Stone-Weierstrass theorem (Stone, 1948), implies the following:

Corollary 2. For any continuous function f : [a, b]n → Rm and any ε > 0, there exists an M-layer
model that computes a function g such that |f(x0, . . . , xn−1)j − g(x0, . . . , xn−1)j | < ε for all
0 ≤ j ≤ m.

A.1.1 OPTIMALITY OF CONSTRUCTION

While our proof is constructive, we make no claim that the size of the matrix used in the proof is
optimal and cannot be decreased. Given a multivariate polynomial of degree dwith tmonomials, the
size of the matrix we construct would be t(d+ 1)2. In fact, by slightly adapting the construction, we
can obtain a size of matrix that is td2 + 1. Given that the total number of monomials in polynomials
of n variables up to degree d is

(
n+d
d

)
, it seems likely possible to construct much smaller M-layers

for many polynomials. Thus, one wonders what is, for a given polynomial, the minimum matrix size
to represent it with an M-layer.

As an example, we look at the determinant of a 3× 3-Matrix. If the matrix is a b c

d e f

g h i

 ,

then the determinant is the polynomial aei− afh− bdi+ bfg + cdh− ceg. From Theorem 1, we
know that it is possible to express this polynomial perfectly with a single M-layer. However, already
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an M-layer of size 8 is sufficient to represent the determinant of a 3× 3 matrix: If

M =



0 0 i f 0 0 0 0

0 0 h e 0 0 0 0

0 0 0 0 2d −2f 0 0

0 0 0 0 −2g 2i 0 0

0 0 0 0 0 0 3c −3b

0 0 0 0 0 0 3a 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(3)

then exp(M) is 
1 0 i f −fg+di 0 −cfg+cdi bfg−bdi
0 1 h e −eg+dh −fh+ei −ceg+aei+cdh−afh beg−bdh
0 0 1 0 2d −2f 3cd−3af −3bd
0 0 0 1 −2g 2i −3cg+3ai 3bg
0 0 0 0 1 0 3c −3b
0 0 0 0 0 1 3a 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

the sum of exp(M)0,7 and exp(M)1,6 is exactly this determinant. The permanent of a 3× 3 matrix
can be computed with an almost identical matrix, by removing all minus signs.

A.2 GRADIENT BACKPROPAGATION THROUGH A MATRIX EXPONENTIAL

As shown by Speelpenning (1980) in his PhD thesis, which first formalized reverse mode automatic
differentiation as an algorithm, we can backpropagate through any computational algorithm that
satisfies some basic constraints. The computation needs to be executed in such a way that all in-
termediate quantities are retained alongside zero-initialized accumulators. These accumulators will,
on the backward pass, collect contributions of the sensitivity of the end result with respect to the
associated intermediate quantity. The total effort needed for the computation of the full gradient
then is a bounded small integer multiple (typically around 5, and never above 8) of the effort needed
to compute the function.

A basic efficient numerical algorithm that computes accurate matrix exponentials and is
backpropagation-friendly in this sense uses these steps:

1. Compute some norm, such as the 2-norm, of the elements of the input matrix M0 (on finite
dimensional vector spaces, all norms are topologically equivalent).

2. Find an integer k such that (1/2k) ·M0 has norm smaller than some threshold N such that
matrices with norm not exceeding this threshold can be computed with reasonable accuracy
by evaluating some matrix rational function.

3. Compute Q0 := expm(M0/2
k) by using this matrix rational function. A simple choice

here would be the Taylor polynomial, expm(M) ≈ I+M+(1/2!)MM+(1/3!)MMM+
. . ., truncated at some moderate power. (Many numerical implementations of matrix expo-
nentiation instead use a Padé Approximation here.)

4. Compute the sequence‘Q0, Q1 := Q0Q0, Q2 := Q1Q1, . . . , Qk = Qk−1Qk−1 (i.e.
square k times, retaining intermediate results). Then, expmM0 ≈ Qk, due to Qk =
expm(M0/2

k)2·2···2.

As all intermediate quantities are retained, backpropagation is straightforward. If uses Taylor ap-
proximation for small-norm matrices, the only steps involved are re-scalings and matrix addition
and multiplications. With the Padé approximation, which uses a matrix rational function, there also
is an effective matrix inversion step, i.e. the need to backpropagate through a linear solver.

Notably, the number of matrix multiplications executed by this algorithm is input data dependent,
and in the context of this work, this enables the M-layer architecture to fit oscillatory data even
for a large number of oscillations. If one instead were to e.g. approximate matrix exponentiation
with a Taylor series alone, this would easily become infeasible. The reason for this can be most
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easily seen when trying to compute Y := sin(310 ≈ 2π · 50) by Taylor-expanding the matrix
exponential expm(xG) for

G :=

(
0 −1

+1 0

)
.

For x = 310, the xn/n! terms in the (alternating) Taylor series become < 0.01 only as late as n ≥
843, whereas ten halving-steps and Taylor expansion to only n = 5 gives us expm(xG)1,0 ≈ 0.8509
(whereas sin 310 ≈ 0.8519).

This data-adjustable-depth property is what allows the M-Layer to successfully fit and extrapolate
oscillatory signals over many oscillations.
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