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ABSTRACT

Multimodal large language models (MLLMs) have made significant progress in
recent years, yet the interaction between vision and language representations re-
mains underexplored. Prior work has primarily relied on empirical heuristics to
guide architecture design. While effective, this approach can lead to sub-optimal
designs and computational redundancy. In this work, we examine the fusion pro-
cess between visual and textual data. Our findings indicate that in auto-regressive
MLLMs, fine-grained interactions between visual and text tokens primarily occur
in the middle layers. This leads to redundancy in the shallow and deep layers,
where modeling only selected visual representations is sufficient. Based on these
insights, we introduce eRAM-V, an MLLM that balances computational efficiency
and performance. eRAM-V models selected visual features across all layers and
integrates fine-grained visual features at specific layers, as needed. Extensive ex-
periments show that eERAM-V outperforms baseline models with equivalent com-
putational budgets, achieving superior results across various benchmarks.
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Figure 1: Left: Comparison of model performance under the same training budget. For ablation, we
use the same dataset as ERAM-V to train LLaVA, VILA, and Flamingo. Although Flamingo operates
with the smallest training budget, it struggles to perform on par with the others due to its reliance on
a larger data scale. We report average accuracy across four benchmarks (TextVQA, GQA, MME,
and Science-QA). Right: Auto-regressive models like LLaVA show strong performance and data
efficiency in training, while the cross-attention-based Flamingo model offers faster inference but
requires a notoriously large dataset for training. Our model strikes a balance between data efficiency,
computational efficiency, and performance.

1 INTRODUCTION

Recent advancements in Multimodal Large Language Models (MLLMs) (Han et al., [2023; Wang
et al., 2024; Han et al.| 2024bj [Liu et al., |2024c) have been driven by the successful integration
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of pretrained vision encoders with LLMs, as seen in models like Flamingo (Alayrac et al. [2022),
BLIP-2 (Liet al.L[2023a)), LLaVA (Liu et al.,|2023)), and MiniGPT-4 (Zhu et al.}|2023)), among others,
marking a significant leap in the field. These MLLMs demonstrate a wide range of vision-language
capabilities. For example, they can generate code from images, convert plots into Markdown tables,
and even perform web browsing (Yang et al.| 2023} [Liu et al., 2024b; Hong et al., [2024)). Despite
their notable performance, the interactions between different modalities in MLLMs remain under-
explored. Recent MLLM designs typically follow auto-regressive architectures (Lin et al., [2024),
or incorporate modifications guided by empirical intuition (Wang et al., [2023). While these models
achieve strong results, the lack of detailed investigation into modality interactions may result in
unnecessary computational overhead, as we demonstrate in Section 3]

To address the limited exploration of modality interactions, recent approaches like FastV (Chen
et al [2024b) have focused on improving MLLM efficiency by refining vision-language interac-
tions. FastV reduces up to 50% of visual tokens while maintaining overall performance. Another
study leverages an “information flow” framework (Zhang et al.,|2024) to analyze these interactions,
revealing that most occur in the shallow layers. They propose token truncation in these layers based
on attention scores, demonstrating improvements in reasoning capabilities. While these studies offer
valuable insights, they lack comprehensive analyses. For instance, they do not evaluate performance
across a broader range of perception tasks and overlook the exploration of more efficient learning
modules that could better balance computational efficiency and performance.

In this paper, we present a comprehensive investigation of the vision-language interaction process,
focusing on the analysis of cosine similarity between visual and text tokens, attention maps, and
entropy (details in Section[3). Specifically, we study the impact of each input token on generating the
final answer with given prompts. To achieve this, we visualize attention scores at each layer, tracking
how attention scores contribute to the token generation. Our investigation of MLLMs focuses on
two key perspectives: (1) the transformation of visual tokens, and (2) the interaction between visual
and textual features. Through this analysis, we observe that redundancy in current MLLMs (e.g.,
LLaVA) largely arises from modeling every fine-grained visual token across both the shallow and
deep layers. Based on these insights, we propose eRAM—V[T_], a model that balances data efficiency,
computational efficiency, and performance (see Figure T|for a comparative analysis).

The architecture of eERAM-V is designed with computational efficiency as its core principle. Rather
than modeling all visual features as input embeddings, only selected tokens, identified through our
analysis, are propagated throughout the entire MLLM. This significantly reduces the number of
visual tokens and, consequently, the context length, aligning with our goal of optimizing computa-
tional efficiency. We define these selected tokens as pseudo-global tokens, since they originate from
local regions but exhibit higher norms, capturing coarse global information, similar to the tokens ob-
served in Vision Transformers (ViTs) (Darcet et al.,|2023). As retaining only pseudo-global tokens
may result in a loss of visual details, fine-grained visual tokens are selectively injected at critical
layers, primarily in the mid-layers where interactions are most essential.

eRAM-V features a hierarchical design, employing different strategies for integrating visual infor-
mation at various levels of granularity. Experimental results show that, under the same training bud-
get, e(RAM-V consistently outperforms LLaVA, VILA, and Flamingo in both inference efficiency
and performance (see Figure[I] Lef?).

Our contributions can be summarized as follows:

* We conduct a comprehensive analysis of current multimodal large language models
(MLLMs) by examining cosine similarity during vision transformations. We also ana-
lyzing token contributions via attention maps, and entropy in vision-language interactions.
Our findings highlight significant computational redundancies in existing MLLMs (e.g.,
LLaVA).

* Based on these insights, we propose eRAM-V, a novel MLLM architecture that models
different levels of granularity, achieving a balance between data efficiency, computational
efficiency, and performance.

"Why eRAM-V? Our model architecture efficiently injects Visual features into MLLMs through an “high-
way RAMp”, optimizing both computational and data efficiency.
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* We perform extensive experiments and ablations across a diverse range of tasks to empiri-
cally validate the effectiveness and robustness of eRAM-V.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal Large Language Models (MLLMs) have significantly benefited from the advancements
in Large Language Models (LLMs). MLLM:s inherit the extensive world knowledge of LLMs
while gaining cross-modal understanding through modality alignment. Notable examples include
Flamingo (Alayrac et al.,[2022)), LLaVA (Liu et al.} 2023} 2024¢), Qwen-VL (Bai et al.,|2023)), and
Idefics (Laurencon et al.|[2024; [Laurencon et al.,[2024)). These models can process images at various
resolutions, from low to high, with increased accuracy and excel at complex reasoning tasks, such
as image-conditioned code generation.

Althouth many MLLMs have been proposed, they generally fall into two structural categories. The
first, cross-attention-based models, includes examples like Flamingo, Ideficsl (Laurencon et al.,
2024), InfiMM-HD (Liu et al.l 2024b), and EVLM |Chen et al.| (2024a). These models integrate
visual information into textual inputs via gated cross-attention between the decoder layers of the
LLM, offering high computational efficiency during inference. However, the introduction of cross-
attention layers adds a substantial number of learnable parameters and disrupts the LLM’s alignment,
requiring substantially more data for re-alignment.

The second type is based on auto-regressive models, with LLaVA being a representative example.
These models project input visual features into soft embeddings via a simple MLP, which are then
concatenated with textual embeddings before being fed into the LLM. In addition to the simple MLP
vision-language projection, various connectors have been proposed (Li et al.l 2023a; [Cha et al.
2024; Jian et al.l [2024; [Lin et al.| 2024). This approach is typically more data-efficient, achieving
competitive performance even with smaller datasets. However, it introduces higher computational
complexity, as computation scales quadratically with input sequence length.

2.2  EXPLORATION OF MODALITY INTERACTIONS

Current research on MLLMs primarily focuses on enhancing perceptual capabilities by increasing
input resolution and creating more diverse instruction-tuning datasets (L1 et al., 2024; |Chen et al.,
2023b; [Liu et al., |2023; |Han et al.| [2024a). However, considerably less attention has been given to
understanding the contributions of individual tokens or features within these models, leaving many
architectural decisions driven by empirical results rather than more systematic exploration. OPERA
(Huang et al.,2024) is the first study to analyze the attention maps of MLLMs and identify potential
causes of hallucinations. Their findings reveal that hallucinations during inference can occur when
the model processes specific tokens, such as “-” and “?”. To address this, they propose introducing
penalty constraints on attention scores. Similarly, FastV (Chen et al., |2024b) examines attention
mechanisms in MLLMs, highlighting inefficiencies in deeper layers where attention to visual tokens
becomes sparse, leading to significant redundancy. To accelerate inference, they propose pruning
visual tokens at specific layers, improving throughput while maintaining comparable performance.
Another study (Zhang et al., 2024) introduces the concept of “information flow” to analyze interac-
tions between visual and textual modalities during complex reasoning tasks. The authors also note
that deeper layers suffer from redundancy and propose visual token pruning to help the model focus
on the most important aspects of the input image. Their experimental results show that this approach
enhances performance on reasoning tasks.

Although previous studies have investigate vision-language interactions in MLLMs to reduce com-
putational costs, they have primarily focused on token pruning, a relatively simple approach that
lacks deeper investigation into more complex strategies. In this work, we conduct a comprehensive
analysis and, based on our findings, propose a novel architecture that provides balanced, holistic
improvements in both efficiency and performance across a wide range of tasks.
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Figure 2: Left: Average cosine similarity (ACS) of visual features across layers in various MLLMs.
The variation of visual features in MLLMs is minimal in both shallow and deep layers, as indicated
by ACS scores approaching 1.0. In comparison, Right: ACS scores for text tokens in Vicuna typi-
cally range from 0.2 to 0.9.

3 METHODS

In this section, we begin with a comprehensive analysis of existing MLLMs, highlighting the key
findings that inform our approach. Drawing from these insights, we present the eERAM-V architec-
ture, which is specifically crafted to tackle the challenges identified in our analysis.

In most modern MLLMs, such as LLaVA and Qwen-VL, visual signals are transformed into visual
tokens, which are then concatenated with textual inputs to form multimodal input sequences. As
these inputs pass through the Large Language Model (LLM), attention mechanism can generally be
divided into four categories: (1) text-to-text attention, (2) vision-to-vision interaction, (3) vision-
to-text interaction, and (4) text-to-vision interaction. In this study, we focus on investigating the
interaction between vision and language. To streamline the analysis, we restrict our scope to single-
image scenarios, similar to the approach used in LLaVA-1.5. Specifically, our analysis focuses on
two key areas: text-to-vision interaction and the multi-modal integration of visual and textual to-
kens. By concentrating on single-image scenarios, we streamline the investigation while preserving
a strong focus on the interaction and integration between vision and language.

3.1 REDUNDANCY IN VISUAL TRANSFORMATION

We employ Average Cosine Similarity (ACS) as the primary monitoring metric to assess variations
in visual tokens. Let the input visual tokens to the LLM be denoted as V. € RN¥*P where N
represents the number of visual tokens, and D denotes the feature dimension. At the n-th layer of
the LLM, the input visual tokens are represented as V,, € R¥*Pand the corresponding output
visual tokens are V11 € RV*P_ The ACS at layer n is calculated as follows:

7

1 & A
ACS, = — Yy —n ntl (1)
N; IVill2-[IViiall2

Redundancy in Shallow Layers In Figure 2] we show the ACS values across different layers
for several representative MLLMs. The results indicate that the variation of visual tokens remains
relatively minimal across both shallow and deep layers, with ACS values consistently near 1.0 for vi-
sual tokens, significantly higher than those for text tokens (About the text tokens’ high yet relatively
smaller cosine similarity than Visual tokens, in (Gromov et al.|[2024), the authors highlight a notable
similarity between text tokens within the LLM. Similarly, we observe a comparable phenomenon
in pretrained ViT models, which we attribute to the residual connections inherent in transformers.
These connections enable smoother transformations across layers. Despite this smoothness, e.g.
roughly 0.8, the transformations still play a critical role in shaping the model’s overall performance.),
which range from 0.2 to 0.9. This finding motivates us to eliminate the costly transformations of
visual token in these layers.
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Figure 3: The attention distribution of generated tokens across layers. In shallow layers, the attention
scores are concentrated on visual and text categories, whereas in deeper layers, the focus shifts
toward special tokens.

Redundancy in Middle Layer Self-Attention However, in the middle layers (8-24), the variation
becomes more pronounced. To further investigate, we conduct an ablation study with LLaVA 1.5
where the visual tokens are selectively passed through either the Self-Attention or the Feed-Forward
Network (FFN) in LLM, while text tokens continue to pass through both components. This selective
approach allows us to isolate the contribution of each component for visual tokens. As shown in
Appendix [C} the FFN is primarily responsible for the observed changes, underscoring its critical
role in model performance.

These findings highlight redundancy in both the shallow and middle layers, which inspire our design
adjustments. In Section[3.3] we build on these insights by removing visual token processing in the
shallow layers and refining self-attention in the middle layers, aiming to enhance computational
efficiency without sacrificing performance.

3.2  VISION-TEXT INTERACTION

Strong Attention to Visual Tokens in Shallow Layers To analyze the vision-text interaction
process, we primarily examine the attention scores of each layer in the LLM decoder. In the case
of LLaVA, the input embeddings of the LLM are grouped into three categories: visual tokens,
text tokens, and special tokens (e.g., begin_of_sentence). We investigate the attention score across
different token categories for each layer. We sum the attention scores of the newly generated token
to the prefix tokens from each of the three categories separately, as shown in Figure [3] The result
indicates that attention score distribution concentrates on visual and text categories in shallow layers,
while shifting focus to special tokens in deeper layers. This suggests that visual tokens hold greater
significance in the shallow layers, consistent with the observations made in previous study (Zhang
et al., 2024).

Sparse and Consistent Attention to Visual Tokens in Shallow Layers To better understand
such attention pattern, we visualize the attention map of generated tokens for visual tokens using a
single example, as shown in Figure [d] The visualization indicates that, despite varying questions,
the shallow layers of the LLM exhibit similar visual attention pattern. Specifically, attention is
concentrated on a limited number of visual tokens, highlighted in the attention maps. To quantify
this, we calculate the Jaccard distance of the distributions of the top 25 tokens across different
prompts, resulting in a score of 0.7, which further aligns with our observations. Notably, these
findings align with the visual anchors identified by |[Liu et al.|(2024a)). In the middle layers, attention
shifts to specific image regions according to text prompts. For instance, when asked about the dog,
layer 10 highlights the relevant area. When the question shifts to an object near the dog, the focus
moves to the bike accordingly.



Under review as a conference paper at ICLR 2025

Prompt1: USER: <image>\nWhat is the dog doing?\nAnswer the question with
asingle word or phrase. ASSISTANT:

Replyl: Sleeping (Four tokens: '__S', 'leep', 'ing', '</s>')

Prompt2: USER: <image>\nWhat is next to the dog?\nAnswer the question with
asingle word or phrase. ASSISTANT:

Reply2: Bike (Three tokens: '__Bi', 'ke', '</s>")

Shallow _________________., .
Lavers | Layer 7 Laver 10 Layer 13 Layer 16 Layer 19 Layer 22 Layer 25 !

Entropy:

Deep
Layers

Figure 4: Examples of the attention map on visual tokens for each generated text token. Two differ-
ent questions are asked based on the same image, with the model generating the outputs “sleeping”
and “bike”, respectively. The corresponding attention maps for the tokens “sleeping” and “bike”
are shown in the upper three rows and the bottom two rows. Despite the different questions, the
shallow layers of the LLM display similar visual attention patterns. In the middle layers, attention
shifts to specific image regions based on the different questions. We also calculate the entropy of the
attention patterns. In the shallow and deep layers (excluding the first layer), the entropy is relatively
low, indicating simpler attention distributions. In contrast, the entropy is significantly higher in the
middle layers, reflecting more complex attention patterns.

We also compute the entropy of the attention maps for each layer. Let the attention for the generated
token in layer n be A, € RI*N we calculate the entropy as:

N
Entropy,, = — Z A,ilog Ay 2)

i=1

In the shallow and deep layers (excluding the first layer, where the attention pattern is deemed
ineffective), the entropy is relatively low, indicating a simpler attention pattern. While in the middle
layers, the entropy is large, align with the complex attention pattern. This is also aligned with the
observation in Figure ] that visual tokens change most in middle layers.

Based on these observations, we conclude that text to visual attention focus on general pattern of the
image in shallow layers, while shifting to fine-grained patterns in the middle layers. Only a small
subset of visual tokens is utilized across all decoder layers.

3.3 MULTIMODAL INTEGRATION

Based on the observations outlined above, we propose eERAM-V. From Section [3.1)and Section
we derive the following conclusions: (1) Only a small subset of visual tokens is engaged across all
decoder layers (from shallow to deep), and these tokens demonstrate limited relevance to the pro-
vided instruction. (2) Fine-grained vision-text interactions are predominantly concentrated within
the middle layers. (3) Retaining Feed-Forward computations for fine-grained visual features in the
middle layers of the MLLM yields significant benefits, whereas such transformations are less critical
in the shallow and deep layers. Given conclusion (1), we opt to retain a small portion of visual tokens
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Figure 5: Architecture of eERAM-V.

as LLMs’ input, to reduce computation redundancy. We extract the visual anchors as the pseudo-
global feature representations, which are then concatenated with text tokens and fed into LLMs. In
line with conclusion (2), we insert cross-attention between every two LLM decoder layers, from lay-
ers 8 to 22 (i.e., 8, 10, 12, etc.). Unlike Flamingo, we reuse the LLM decoder layers’ self-attention
weights for cross-attention avoiding the need for extra parameters. This parameter reuse not only re-
duces model parameters, but also improves model convergence, requiring less training data. Finally,
based on conclusion (3), we introduce Post-Projection layers to facilitate further adjustments to the
visual tokens. By building on the strengths of both Flamingo and LLaVA, we develop eRAM-V.

The architecture of eRAM-V is depicted in Figure [S| Given an input image I € RE*H*W and a
visual encoder F,,, where C', H, and W represent the image channels, height, and width respectively,
we can obtain the visual features V. € R¥*P and the corresponding attention map of the [CLS]
token A € R"*1*N ysing the following equation:

V,A = F,(I), 3)

where N, D, and h denote the total number of visual tokens, the dimension of the visual tokens, and
the number of attention heads, respectively. To identify the visual anchors, we first rank the visual
tokens based on their associated attention weights. The top-k visual tokens are selected and then
sorted according to their original index (in ascending order). This process yields the visual anchors
Va € RMXD where M denotes the number of visual anchors. Next, a shared MLP module is
used to project both V and V5 to the dimensionality required by the LLM, resulting in V' and
V', . Following LLaVA’s approach, the visual anchors V', are concatenated with the text embed-
dings to form the multimodal input for the LLM. The detailed visual features V' are used within
the LLM’s decoder layers to enhance fine-grained understanding. For example, in decoder layers
[8,10,12,14, 16, 18, 20, 22], these fine-grained features provide more detailed visual information.

Let the multimodal input embeddings be denoted as Fy,, € R(M+T)xD where T represents the
number of text tokens. For decoder layers that do not leverage fine-grained visual information, the
computation proceeds as follows:

(03 :Fm+Attn(q:mek:Fm>U:Fm)a 4)

0, = Oy + FF(0,), (5)

where Attn refers to the causal attention mechanism within the LLM decoder layer, and FF repre-
sents the Feed-Forward module within the same layer.

In contrast, for decoder layers utilizing fine-grained visual features, the computation is as follows:

K = Concat(V',Fy,), (6)



Under review as a conference paper at ICLR 2025

V = Concat(V’,Fp,), )

O, =F,, +Attn(¢ =Fp, k=K, v =V). )

In this framework, no additional cross-attention layers are introduced, maintaining data efficiency
without significantly increasing the number of parameters. Furthermore, by concatenating the visual
anchors directly into the multimodal input embeddings, we significantly reduce the computational
overhead. Consequently, this design allows our eERAM-V architecture to achieve a balanced integra-
tion of data efficiency and computational cost.

4 EXPERIMENTS

4.1 SETTINGS

Benchmarks We employ a diverse set of seven benchmarks to thoroughly evaluate the overall
performance of our proposed model. Our evaluation primarily emphasizes two key aspects: rea-
soning ability and perception ability. For instance, Science-QA, which includes questions related
to scientific knowledge, measures the model’s capacity for complex reasoning. In contrast, bench-
marks such as TextVQA assess the model’s ability to perform fine-grained visual perception tasks.
A detailed overview of these benchmarks is provided in Appendix [A]

Implementation Details In our main experiments, we use the Vicuna-v1.5 model as the LLM
(Chiang et al.| [2023) (Ablations on different LLMs are shown in Appendix D). Following LLaVA-
1.5, CLIP ViT-L/14, pre-trained at 336 x 336 resolution is used as the visual encoder, and we use
the penultimate layer’s output as the vision feature. Our training dataset is based on LLaVA-1.5 (Liu
et al.l [2024d), consisting of 558k samples for pre-training and 665k samples for instruction tuning.
We also incorporate a multi-task training phase with data sampled from various QA benchmarks
(details on training data are provided in Appendix [B). We adopt a three-stage training framework
(see Appendix [H| for visualizations). In the pretraining stage, only the MLP layers are trainable. In
the subsequent continued pretraining phase, both the vision encoder and MLP layers are unfrozen.
Finally, during the instruction fine-tuning stage, the vision encoder is frozen while the remaining
modules are trainable. Despite the additional training stages, our approach results in lower compu-
tational costs compared to LLaVA for both training and inference.

4.2 MAIN RESULTS

The main results are presented in Table [I| and Table Our model exhibits strong performance,
achieving results comparable to the original LLaVA-1.5 model while significantly reducing infer-
ence FLOPs, despite being trained on a limited dataset. This performance is consistent across vari-
ous benchmarks, including those requiring advanced visual perception (e.g., TextVQA) and overall
capability (e.g., MME). However, our model shows slightly lower performance on specific bench-
marks like GQA compared with LLaVA-1.5. Given the substantial reduction in computational costs,
this minor decline is expected, and the performance gap remains small and negligible relative to the
significant improvements in efficiency and speed. Additionally, we validate the effectiveness of
eRAM-V using other LLMs, with the results presented in Appendix D).

Additionally, we compare the performance of four architectures, eRAM-V, VILA, Flamingo, and
LLaVA, under varying training budgets (measured in TFLOPs). In this comparison, all models uti-
lize ViT-L as the vision encoder and Vicuna-7b as the LLM. We report the average accuracy across
four benchmarks: TextVQA, GQA, MME, and Science-QA. eRAM-V’s redundancy reduction strat-
egy enables it to achieve significantly better performance under the same training budgets (as shown
in Figure 1] left).

4.3 ABLATION STUDIES

In this module, we mainly analyse the performance on accuracy. We also add ablation study on
efficiency in Appendix [{
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Table 1: Evaluation results for general MLLM benchmarks show that eERAM-V achieves equal or
superior performance compared to other models, while significantly reducing computational costs
(measured in TFLOPs).

Model | LLM | Res | POPE  MMEP’ MME® SQA;,, | TFLOPs ()
Approaches using 7B Large Language Models

InstructBLIP(Dai et al.,[2023) LLaMA2-7B | 224 | 78.9 - - 60.5 -
Qwen-VL-Chat(Bai et al.||2023) Qwen-7B 448 | 85.9 1487.5 - 68.2 -
LLaVA-1.5 (Liu et al.||2024d) Vicuna-7B 336 | 859 1510.7 2603 66.8 13.32
eRAM-V | Vicuna-7B | 336 | 86.8 1490.8  315.3 69.1 | 4.43
Approaches using 13B Large Language Models

InstructBLIP(Dai et al.|[2023) Vicuna-13B | 224 78.9 1504.6 - 63.1 -
BLIP-2(Li et al.[[2023a) Vicuna-13B | 224 | 853  1293.8 290.0 61.0 -
LLaVA-1.5 (Liu et al.[[2024d) Vicuna-13B | 336 | 859 15313 295.1 71.6 25.14
eRAM-V | Vicuna-13B | 336 | 86.8 1533.6 330.3 71.6 | 8.17

Table 2: Results on VQA benchmarks. eRAM-V demonstrates strong performance on TextVQA and
slightly underperforms on GQA, while significantly reducing computational resources. f: Image-
only input.

Model | LLM | Res | TextVQAT GQA OKVQA
Approaches using 7B Large Language Models

InstructBLIP(Dai et al., [2023) Vicuna-7B | 224 50.7 49.2 -
Shikra (Chen et al., [2023a) Vicuna-7B | 224 - - 47.2
IDEFICS-9B (Laurencgon et al.,[2024) | LLaMA-7B | 224 - 384 49.6
BLIP-2(Li et al.,[2023al) Vicuna-7B | 224 40.1 38.6 -
Qwen-VL(Bai et al .| [2023)) Qwen-7B 448 - 59.3 58.6
Qwen-VL-Chat(Bai et al., [2023)) Qwen-7B | 448 - 57.5 56.6
LLaVA-1.5 (Liu et al.,|2024d) \ Vicuna-7B \ 336 \ 47.1 62.0 57.1
eRAM-V | Vicuna-7B | 336 | 52.1 61.3 58.7
Approaches using 13B Large Language Models

InstructBLIP(Dai et al., [2023) Vicuna-13B | 224 - 334 -
BLIP-2(Li et al.,[2023al) Vicuna-13B | 224 42.5 41.0 59.3
LLaVA-1.5 (Liu et al.,|2024d) | Vicuna-13B | 336 | 50.2 63.3 60.0
eRAM-V \ Vicuna-13B \ 336 \ 52.6 62.0 60.4

Ablations on Layers with Visual Injection In Flamingo, cross-attention layers are typically
inserted uniformly across the model’s decoder layers. However, our findings suggest that most
fine-grained vision-text interactions occur in the middle layers of MLLMs. In this ablation study,
we compare our default eRAM-V configuration, which inserts cross-attention in the middle layers
(Layer ID: [8, 10, .., 20, 22], as shown in row 4 of Table E]), against uniform insertion across the
model (Layer ID: [4, 8, .., 28, 32], as shown in row 1 of Table . The results show that incorporating
fine-grained information in the middle layers leads to improved performance.

Ablations on Visual Anchors and Fine-Grained Visual Information We present a detailed com-
parison of the impact of retaining or removing visual anchors from the input, as well as the perfor-
mance differences between using only visual anchors and integrating them with fine-grained visual
information. The results, shown by comparing row 2 and row 4 in Table [3] indicates that includ-
ing visual anchors significantly boosts the model’s performance in both cognitive and perceptual
tasks. Moreover, when fine-grained visual information is combined with visual anchors, the model
demonstrates notable improvement in perception, especially in tasks that require more detailed vi-
sual comprehension, as evidenced by the comparison between row 3 and row 4 in Table
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These findings highlight the critical role of visual anchors in providing a strong foundation for cog-
nitive tasks, while the addition of fine-grained information further refines and enhances the model’s
perceptual capabilities. The combination of both visual anchors and fine-grained visual details is
therefore essential for maximizing the model’s performance across a diverse range of benchmarks.
This comprehensive analysis highlights the necessity of preserving both types of visual information
to achieve stronger results in multimodal large language models.

Table 3: “With AR” refers to the approach where visual anchors are selected and concatenated with
the text embeddings to create the multimodal input embedding. “With CA” denotes the use of fine-
grained visual information as additional key and value inputs in specific layers. “Layer Id” indicates
the index of the layers where this occurs. When “With CA” is X, it indicates that no fine-grained
visual information is used, and therefore “Layer Id” is marked as “-”.

Model | With AR | With CA | Layer Id | TextVQA  MME? POPE  SQAjp,
eRAM-V v v [4,8, .., 28, 32] 50.7 14604  86.3 67.4
eRAM-V X v [8, 10,.., 20, 22] 44.8 1378.2  85.0 67.2
eRAM-V v X - 50.0 1438.0  84.7 66.5
eRAM-V v v [8, 10,.., 20, 22] 52.1 1490.8  86.8 69.1

Ablations on ViT Post-Projection In eRAM-V, we apply post-projection layers to the output of
the ViT (two vertical MLP modules shown in Figure[5). In this ablation, we compare our default de-
sign with a variant that excludes the ViT post-projection. The results, shown in Table[d] demonstrate
that this module consistently enhances the MLLM’s performance across the given tasks.

Table 4: Ablation on ViT post-projection. eRAM-V with ViT post-projection consistently outper-
forms the variant without this module.

Model | With Post-Proj | TextVQA | MME? POPE  SQA;,,,
eRAM-V X ‘ 50.3 ‘ 1431.6  86.2 64.6

eRAM-V v 52.1 1490.8  86.8 69.1

5 CONCLUSIONS

In this paper, we present a comprehensive analysis of common MLLM:s, identifying architectural
redundancies. Our findings lead to two key conclusions: (1) In both shallow and deep layers,
the transformation of visual tokens within the LLM is largely redundant, with the Feed-Forward
transformations in the middle layers being sufficient to capture the necessary information; (2) the
integration of fine-grained vision and text features predominantly takes place in the middle layers
of MLLMs. Building on these insights, we introduce eRAM-V, a novel MLLM architecture that
achieves a balance between performance, computational cost, and training data efficiency. eRAM-V
reduces redundancy through the use of visual anchors and sparse fine-grained vision-text integration.
Extensive experiments show that, with the same training budget, our approach outperforms VILA,
Flamingo, and LLaVA, while also offering lower inference latency compared to LLaVA.
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A DETAILS ON CHOSEN BENCHMARKS

Below, we provide descriptions of tasks and metrics of the benchmarks used in this study. The
chosen benchmarks are designed to evaluate both the general world knowledge of our models and
their perceptual capabilities.

Table 5: Details on the chosen benchmark.

Benchmark | Description of the task \ Metric
OKVQA (Marino et al.{[2019) QAs about prior knowledge VQA score (1)
TextVQA (Singh et al.|[2019) QAs about text in image (Visual Perception) VQA score (1)
GQA (Hudson & Manning[[2019) | QAs of real world comprehension and complex reasoning EM (1)
POPE (L1 et al.[[2023b) QA for Object Hallucination evaluation F1 Score (1)
Sci-QA(Img) (Lu et al.|[2022) QAs about Science Accuracy (1)
MME (Fu et al.][2023) Comprehensive Evaluation Benchmark for MLLMs Accuracy (1)

B DETAILS ON TRAINING DATA

We present the details of the continue pretrain dataset below. All datasets are sourced from pub-
licly available collections, reformatted to fit the instruction fine-tuning paradigm. In total, there
are approximately 707k samples, each representing a single round of question-and-answer interac-
tion. We mainly choose the dataset to enhance the visual perception ability as we finetuning Vision
Transformer at this stage.

Table 6: Details on the training data of Continue Pretrain.

Task \ Dataset | Samples

VQAV2 (Antol et al.,|2015) 221k

OKVQA (Marino et al.,[2019) 9k

General VQA VizWiz VQA (Gurari et al }2018) | 20k
GQA (Hudson & Manning, 2019) 235k

TextVQA (Singh et al., 2019) 34k

. OCRVQA (Mishra et al., 2019) 83k
Text-oriented VQA | 1 VA (Mathew et al, 2021) | 63k
ChartQA (Masry et al.,|[2022) 42k
Total | - | 707k

C ABLATION STUDIES ON THE SELF-ATTENTION MECHANISM IN MLLMS

Table[7]illustrates the effects of separately removing the self-attention and feedforward computations
for visual tokens in MLLMs. The results indicate that the feedforward computation is more critical
than the self-attention mechanism for visual tokens, suggesting a degree of potential redundancy.

Table 7: Ablation studies on self-attention and feed-forward layers in LLaVA: We conduct these
experiments using Openllama-3b as the LLM. “With SA” indicates retaining self-attention compu-
tation for visual tokens in the LLM, while “With FF” refers to retaining feed-forward computation
for visual tokens.

Model | With SA | With FF | TextVQA MME? POPE  SQA;y,
LLaVA 1.5
LLaVA 1.5 | v X 4431 13982 854  59.1

X 4 45.98 14203  86.6 59.3

LLaVA 1.5 v v 46.15 1440.4  86.7 59.1
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D ABLATION STUDIES ON LLMS WITHIN MLLMS

To evaluate the robustness of eRAM-V, we conduct experiments using a variety of LLMs. Specif-
ically, we test e(RAM-V with both LLaMA3-8b and Mistral-7b to assess its adaptability across dif-
ferent architectures. The results, shown in Table demonstrate that eERAM-V consistently delivers
comparable performance across both models. This suggests that the model’s efficiency and effec-
tiveness are not dependent on a specific LLM but are broadly applicable.

eRAM-V’s ability to maintain strong performance across different configurations highlights its ver-
satility and robustness.

Table 8: Ablation studies on various LL.Ms are conducted, with all models utilizing the CLIP-ViT-L-
336 as the Vision Encoder. RAM-V demonstrates comparable performance across all three models.

Model | LLM | TextVQA OKVQA GQA MME? MME® POPE SQA;.,
eRAM-V | Vicuna-7b 52.1 58.7 61.3 1490.8 3153 86.8 69.1
eRAM-V | LLaMA3-8b 49.4 58.7 62.0 1533.6 3303 86.8 69.3
eRAM-V | Mistral-7b 48.9 56.4 61.6 1406.5 320.1 86.4 69.1

E ADDITIONAL QUALITATIVE VISUALIZATIONS

> ) Prompt1: USER: <image>\nWhat is the man wearing?\nAnswer the question with a
" \ single word or phrase. ASSISTANT:
y . Replyl: Shirt (Three tokens: '__Sh', "irt', '</s>')
/ Prompt2: USER: <image>\nWhat is the color of the T-Shirt?\nAnswer the question
/ | with asingle word or phrase. ASSISTANT:
‘ Reply2: White (Two tokens: '_White', '</s>")

Layer | Layer4  Layer7 Layer 10 Layer13  Layer16  Layer19  Layer22  Layer25  Layer28  Layer3l

”_Sh”: ...........

”_White”: .......-...

Figure 6: Additional qualitative visualizations of the attention maps during token generation. Two
different questions (Promptl and Prompt2) are asked based on the same image, with the model
generating the outputs “shirt” and “white”, respectively. The corresponding attention maps for the
tokens “shirt” and “white” are shown in the upper 2 rows and the bottom 1 rows. Despite the
different questions, the shallow layers of the LLM display similar visual attention patterns. In the
middle layers, attention shifts to specific image regions based on the different questions.

In this section, we provide additional qualitative visualizations of the attention maps during token
generation. This analysis is based on LLaVA-1.5, evaluated on text-oriented tasks. As shown in
Figures [6] and [7] fine-grained vision-text interactions predominantly occur in the middle layers.
Specifically, for different prompts, the attention in the mid-layers focuses on distinct regions relevant
to the given prompts.

F EFFICIENCY ANALYSE

In this module, we add more analyses on the efficiency. We first add FLOPs for other MLLM like
BLIP2 or IDEFICS-9B. From Table [9] and Table [} it can be found that our model achieves best
balance considering the computing efficiency and accuracy. We also add the ablation on CA and AR
here in Table[I0]to individually test their influence on the final computation cost.

15



Under review as a conference paper at ICLR 2025

ifamhello/john language decoderionly Prompt: USER: <image>\nRead out the text in the image.\nASSISTANT:

del outputs python Traini ith .. .
LTsoe ﬁeneo'L;%uesdztyas;r; ARG Reply: I am hello John language decoder only model output python training with use

i am hello john language decoder only ~ fine large datasets. ('_I','_am', '__hello', '__John', '__language', '__dec', 'oder’,
j guag y & guag

model outputs python Training with '__only','_model','_output','_python', '__training', '__with', '__use', '__fine',

use fine large datasets '__large', '__datasets', "', '</s>")

dsalkdh dalkflka hhvkjbcjgw jshkjdKJ
el @5 IpSIhjhdsakjda kjsakjdsahdsa

Layer | Layer 4 Layer 7 Layer 10 Layer13  Layer16  Layer 19  Layer22  Layer25  Layer28  Layer3l

"_"lm”: ...........
”_he]l‘)”: .... .'.-.-.
”_Jl)hn”: .....---...

Figure 7: Additional qualitative visualizations of the attention maps during token generation.

Table 9: Flops for other MLLMs.

Model \ TFLOPs ({)
BLIP2-7b 3.12
IDEFICS-9B 2.78
Qwen-VL-Chat 7b 7.23
LLaVAL1.57b 13.32
eRAM-V 7b 4.43

G RESULT FOR CAPTION

We add result for image caption here, which typically require richer visual information beyond just
the main objects in the scene. Through Table[TT} it can be found that our method also performs well
in image caption task.

H VISUALIZATION OF OUR TRAINING STAGES

We adapt a three-stage training framework for eRAM-V, shown in Figure[8] During the pretraining
stage, only the MLP layers are kept trainable. In the following continued pretraining phase, both
the vision encoder and MLP layers are unfrozen. Lastly, during the instruction fine-tuning stage, the
vision encoder is frozen, and the remaining modules are trained.

LLM LLM
LLLLK] Decoder Decoder

f MLP \
CLIP Vision
Encoder

CLIP Vision
Encoder

Continue Instruction
Pretrain Finetuning

CLIP Vision
Encoder

Pretrain

Figure 8: Visualization of our three-stage training framework.
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Table 10: Flops with ablation on modules.

Model | TFLOPs ({)
eRAM-V 7b w/o CA 3.54
eRAM-V 7b w/o AR 2.56
eRAM-V 7b 4.43

Table 11: Results for image caption task

Model | NoCaps  Flickr30k
LLaVAL1.5 7b 99.8 67.9
eRAM-V 7b 100.1 68.2
LLaVA 13b 102.8 73.0

eRAM-V 13b | 103.0 73.6

I NUMBER OF VISUAL TOKENS CHOSEN AS ANCHORS AND SELECTION
CRITERIA

In this study, we select 65 visual anchors based on the weighted attention of the [CLS] token in
the Vision Transformer (ViT). Specifically, visual tokens are ranked by their attention scores to the
[CLS] token, where the attention values are averaged across the attention heads (reducing from
dimensions b X h x 1 x nto b x 1 x n). The top 64 visual tokens, together with the [CLS] token,
are then chosen to construct a final set of 65 visual anchors.

We explore three configurations of visual anchors in our experiments: 65, 145, and 257. These con-
figurations yield comparable performance when fine-grained interaction is enabled through cross-
attention. However, when the fine-grained interaction is removed, performance consistently im-
proves as the number of visual anchors increases from 65 to 257. Despite this trend, we adopt
the 65-anchor configuration as it provides a more efficient solution while leveraging the benefits of
cross-attention.

J MORE VISUALIZATION ON VISION TRANSFORMATION PROCESS

We validate the transformation of visual tokens within LLMs is largely redundant in both shallow
and deep layers with more dataset in Figure J]

Layer ndex

Sl Gap)

OCR-VQA GQA €oco

Figure 9: We show visual transformation process of some famous dataset.
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