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Abstract
Adjoint-based inverse design yields compact, high-
performance nanophotonic devices, but the mapping from
pixel-level layouts to optical figures of merit remains hard
to interpret. We present a simple pipeline that (i) generates
a large set of wavelength demultiplexers (WDMs) with
SPINS-B, (ii) records each final 2D layout and its spectral
metrics (e.g., transmitted power at 1310 nm and 1550
nm), and (iii) trains a lightweight convolutional surro-
gate to predict these metrics from layouts, enabling (iv)
gradient-based attribution via Integrated Gradients (IG) to
highlight specific regions most responsible for performance.
On a corpus of sampled WDMs, IG saliency consistently
localizes to physically meaningful features (e.g., tapers and
splitter hubs), offering design intuition that complements
adjoint optimization. Our contribution is an end-to-end,
data-driven workflow—SPINS-B dataset, CNN surrogate,
and IG analysis—that turns inverse-designed layouts into
interpretable attributions without modifying the physics
solver or objective, and that can be reused for other photonic
components.

Introduction
Adjoint-based inverse design has produced compact
nanophotonic components for filtering, coupling, and rout-
ing, but design interpretability lags behind performance. As
search spaces grow (binary or continuous pixel patterns,
topology and shape parameters), the resulting devices can
appear unintuitive even to experts. We aim to reveal attribu-
tions, or which substructures of an inverse-designed layout
most influence key metrics such as transmitted power at C-
band (1550 nm).

We suggest a workflow for interpretability-based analy-
sis: generate many demultiplexers with SPINS-B (Stanford
Photonic INverse design Software), learn a predictive surro-
gate from layouts to metrics, then apply Integrated Gradients
(IG) to attribute predictions back to pixels. Our contributions
are:
• A scalable data pipeline that exports final SPINS-B lay-

outs as 2D NumPy arrays, paired with simulated spectral
responses, such as power at C-band (Su et al. 2019; spi
2022).
*These authors contributed equally.
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Figure 1: Inverse Designed WDM: 1300nm wave is routed
to right port and 1550nm wave is routed to left port.

• A CNN surrogate that reaches useful layout→metric ac-
curacy, enabling pixel-wise IG attribution.

• A visual analysis mapping IG “hotspots” (critical design
region) onto the inverse designed layout, offering physi-
cal intuition about which region influence power outputs.

Background: Inverse Design & Explainable AI
Wave Demultiplexer
A wavelength demultiplexer (WDM) is a photonic inte-
grated circuit component, specifically an on-chip optical
splitter: one input carries multiple wavelengths, and each
wavelength exits a different port (e.g., 1310 nm → Port A,
1550 nm → Port B). Figure 1 illustrates inverse-designed
WDM, successfully splitting two different wavelength in-
puts. Key performance terms include: Power—transmitted
light power from input to the correct output (higher is bet-
ter); Insertion Loss (IL)—loss from input to the correct out-
put (lower dB is better).

Inverse Design of Photonics
We synthesize WDMs with an adjoint, density-based topol-
ogy optimization design tool (SPINS-B). The design vari-
able is a continuous field

u ∈ [0, 1]H×W .

It is mapped to a permittivity distribution via filtering and a
smoothed projection

ε(u) = εmin +Πβ,η

(
Fr ∗ u

) (
εmax − εmin

)
,

where Fr enforces minimum feature size and Πβ,η (Heavi-
side with continuation) promotes binarization.



Figure 2: End-to-end pipeline: SPINS-B → dataset → CNN surrogate → IG → Feature Importance.

For each frequency ωk (wavelength λk), we solve the
frequency-domain Maxwell system

A
(
ε(u), ωk

)
Ek = bk,

and evaluate power-overlap transmissions into target/output
modes m,

Tk,m(u) ∈ [0, 1].

The objective aggregates multiple wavelengths and ports
(throughput vs. crosstalk):

J(u) =
∑
k

wk ϕ
(
Tk,des(u)

)
−

∑
k

∑
m ̸=des

αk,m ψ
(
Tk,m(u)

)
.

Adjoint solves yield sensitivities w.r.t. permittivity, which
are chained to the design field:

∇uJ =
∂J

∂ε

∂ε

∂u
.

Related Work and Motivation
Explainable artificial intelligence (XAI) methods such as
LIME (Ribeiro, Singh, and Guestrin 2016) and Integrated
Gradients (IG) (Sundararajan, Taly, and Yan 2017) have
been developed to provide post-hoc interpretability for
neural networks by attributing model predictions to input
features. Beyond these, SHAP provides a game-theoretic
framework for attributions (Lundberg and Lee 2017), while
Grad-CAM and SmoothGrad offer gradient-based visual
explanations complementary to IG (Selvaraju et al. 2017;
Smilkov et al. 2017).

The iterative and computationally intensive nature of in-
verse design frameworks such as SPINS-B makes their
optimization process difficult to trace or interpret. In re-
sponse, emerging studies have introduced interpretable ma-
chine learning methods to efficienty enhance transparency
within photonic design pipelines. For instance, LIME-
style interpretability for photonic (de)multiplexers under-
scores growing interest in explainable photonic design (Pira
et al. 2025). However, such applications primarily focused
on perturbation-based methods and did not fully leverage
gradient-based attribution techniques for continuous, differ-
entiable analysis. Superpixel perturbations modify regions

of the design at a time. This may blur or distort design fea-
tures, producing inconsistent with fabrication or simulation
constraints. In contrast, IG offers pixel-level, gradient-based
attributions that remain consistent with the trained surrogate
model Fθ and preserve the geometric integrity of the original
structure.

Our approach extends this direction by employing IG to
directly map learned sensitivities in the surrogate model onto
physically meaningful regions, enabling consistent interpre-
tation across wavelengths (1310 and 1550). Specifically, we
overlay the IG maps onto the inverse designs, allowing for
physical validation of the regions highlighted.

Problem Setup & Goals
We focus on interpretability for inverse-designed wave-
length demultiplexers (WDMs). Given a finalized binary
layout ρ ∈ {0, 1}H×W , our aim is to (i) predict scalar
figures of merit (FoMs)—mainly power at 1310 and
1550—and (ii) attribute those predictions back to pixels to
localize the geometry most responsible for performance.

Pipeline overview. Our approach consists of four stages
(Fig. 2):

1. Device generation (SPINS-B). We run SPINS-B with
randomized seeds/hyperparameters to produce a corpus
of WDM layouts ρ and their simulated spectra/FoMs (Su
et al. 2019; spi 2022).

2. Surrogate learning (CNN). We train a lightweight con-
volutional model Fθ(ρ) to regress power from layouts,
enabling fast, differentiable predictions with 2D layout
& FoMs.

3. Attribution (Integrated Gradients). We apply IG to Fθ

to obtain pixel-wise saliency maps (“hotspots” - regions
clipped at high thresholds) that attribute the predicted
power to specific regions of ρ (Sundararajan, Taly, and
Yan 2017).

4. Feature Importance & Analysis. We (a) visualize attri-
bution hotspots overlaid on layouts, and (b) trace across
interpolation steps α ∈ [0, 1] to characterize stable and
emergent sensitivity regions.



Figure 3: Compact CNN surrogate used to regress power
from a binary layout and enable pixel-wise IG.

Setup and Goals We aim to have a surrogate Fθ that
achieves useful accuracy on power, and guide IG attributions
that align with physically meaningful substructures (e.g., ta-
pers, splitter hubs) related to target metrics.

Methods
Data Generation with SPINS-B
We use SPINS-B to synthesize two-channel WDMs with
fixed Input/Output port geometry and randomized seeds/hy-
perparameters to induce layout diversity. Each run outputs:
• final binary mask ρ as a 2D NumPy array,
• simulated spectral responses around 1310 and 1550,
• scalar FoMs (Figure of Merit): power at 1310 nm and

1550 nm.
Our corpus comprises N = 500 designs with various spec-
tral response and power. We follow SPINS/SPINS-B best
practices for architecture and logging (Su et al. 2019; spi
2022).

Surrogate Model
We train a surrogate model that we will perform integrated
gradient on.

Architecture A lightweight CNN following the archi-
tecture (Fig. 3) with a single-output regression head that
predicts the target metrics is used for power@1310 and
power@1550.

Training We optimize mean squared error (MSE)

L(θ) = 1

N

N∑
n=1

(
Fθ(ρ

(n))− y(n)
)2
, (1)

where Fθ(ρ
(n)) denotes the model prediction for the n-th in-

put mask ρ(n), and y(n) is the corresponding target metric.

Here, N is the number of samples in the dataset, and θ rep-
resents all trainable parameters of the CNN. The network is
trained using the Adam optimizer (learning rate 10−3), with
early stopping (patience = 7) and model selection based on
validation MSE. The checkpoint with the lowest validation
loss is restored for final evaluation.

Splits. Indices are shuffled with a fixed random seed (42),
and the dataset is split into training, validation, and test sets
in a 70/15/15 ratio.

Attribution via Integrated Gradients
Given baseline ρ0 and input ρ, IG attributes

IGi(ρ; ρ0) = (ρi − ρ0,i)

∫ 1

0

∂Fθ(ρ0 + α(ρ− ρ0))

∂ρi
dα.

(2)
This allows us to interpolate each feature of ρ(n) and obtain
the contribution to the FoMs. We approximate the integral
with K=64 steps. Attributions are visualized as magnitude
maps, thresholded overlays, and binary “hotspot” masks.

Visualization. IG magnitudes are clipped at the 99th per-
centile; top-q hotspots (default q=0.5%) are overlaid on ρ.
For representative previews, test samples are stratified by
power quantiles, with up to three per bin.

Results

Figure 4: Training and validation MSE loss curves (values
×10−4).

Model Convergence
The model exhibits convergence within ten epochs, as shown
by the training and validation MSE loss curves (Fig. 4).
Early stopping was triggered at epoch 8, indicating that the
model reached an optimal fit without signs of overfitting or
divergence. The reported MSE values (on the order of 10−4)
reflect the small numerical scale of the target values.

Tracing the α-Path
To interpret the model’s learned response, we trace the in-
terpolation path α∈ [0, 1] between the baseline and the input
using Integrated Gradients (IG). Figure 6 illustrates how the
IG attributions accumulate as α increases. Regions that con-
sistently retain high IG intensity correspond to stable, high-
sensitivity features within the photonic structure, showing



Figure 5: Tracing of α along the Integrated Gradients path. IG activations accumulate progressively, highlighting regions along
the α.

Figure 6: Visualization of the Integrated Gradients (IG) path
tracing while interpolation parameter α ∈ [0, 1] transitions
the layout.

how the model’s prediction emerges along the interpolation
path.

IG Hotspots and Physical Correspondence
Integrated Gradients (IG) maps concentrate on a small set of
geometrically distinctive regions of the WDM mask. Across
test devices (and along the α-path visualizations in Fig. 5
and the IG overlays), three patterns recur:

1. High-curvature edges and sharp corners. Inside cor-
ners, notches, and edges exhibit strong IG magnitude.
These locations coincide with large index gradients ∇ε
where mode mismatch and radiation are most sensitive
to pixel-scale edits.

2. Abrupt width transitions. Interfaces between narrow
and wide segments (micro-steps) are repeatedly high-
lighted. Small changes there alter local impedance and
reflection, shifting the phase that determines how power
divides at the splitter.

3. Splitter/taper hub. The central junction lights up early
along the path (α≈0.25–0.55) and remains salient, con-

sistent with a converter–distributor role: the junction sets
the phase and mode shape that downstream geometry
then routes.

These hotspots may be spatially corresponding to high
field intensity and strong Poynting flow gradients in full-
wave snapshots: regions with large IG magnitude tend to
co-localize with (i) field compression at tapers, (ii) interfer-
ence nodes/antinodes near the hub, and (iii) leakage bands
along jagged outer edges. Taken together, the maps suggests
that a small set of curvature- and width-controlled features
dominantly regulates transmitted power.

Potential Application
The IG analysis pipeline can be adapted for practical edits
and design-loop integrations aimed at increasing transmitted
power:

Design loop integration.
• Hotspot-aware constraints: enforce larger filter radii or

minimum-width constraints guided by IG mask during
adjoint updates.

• Counterfactual checks: in simulation, compare identical
edit budgets applied to (a) top-q% IG highlighted regions
vs. (b) IG de-prioritized regions matched in size/location;
expect larger power gains for (a).

• Fabrication validation (future work): Experimentally
A/B test whether IG hotspots can meaningfully guide and
improve measured throughput.

Limitations & Future Work
In summary, we suggest a potential framework of using
IG maps to provide pixel-level guidance on photonics de-
vice design. The motivation of this work is to present a
methodology that integrates explainable methods into in-
verse photonic design to improve upon the traditionally
time-consuming process by guiding specific features. How-
ever, several limitations should be noted.

(i) Surrogate vs. physics. IG explanations describe sen-
sitivities of the learned surrogate model Fθ and should not



be interpreted as direct physical ground truth. As this is an
on-going work, we plan to validate these insights experi-
mentally, assessing whether design modifications guided by
IG correspond to measurable improvements in fabricated de-
vices.

(ii) Data scale and coverage. The current dataset (N=500
layouts) is relatively small and structurally narrow, which
may lead to overfitting and limit attribution stability. Fu-
ture work will expand the dataset to 103–104 layouts with
broader geometric diversity, allowing for more robust and
generalizable feature interpretations.
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