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A B S T R A C T

We present a novel confidence refinement scheme that enhances pseudo-labels
in semi-supervised semantic segmentation. Unlike existing methods, which filter
pixels with low-confidence predictions in isolation, our approach leverages the
spatial correlation of labels in segmentation maps by grouping neighboring pixels
and considering their pseudo-labels collectively. With this contextual information,
our method, named S4MC, increases the amount of unlabeled data used during
training while maintaining the quality of the pseudo-labels, all with negligible
computational overhead. Through extensive experiments on standard benchmarks,
we demonstrate that S4MC outperforms existing state-of-the-art semi-supervised
learning approaches, offering a promising solution for reducing the cost of acquiring
dense annotations. For example, S4MC achieves a 1.39 mIoU improvement over the
prior art on PASCAL VOC 12 with 366 annotated images. The code to reproduce
our experiments is available at https://s4mcontext.github.io/.

1 I N T R O D U C T I O N

Supervised learning has been the driving force behind advancements in modern computer vision,
including classification (Krizhevsky et al., 2012; Dai et al., 2021), object detection (Girshick, 2015;
Zong et al., 2022), and segmentation (Zagoruyko et al., 2016; Chen et al., 2018a; Li et al., 2022;
Kirillov et al., 2023). However, it requires extensive amounts of labeled data, which can be costly
and time-consuming to obtain. In many practical scenarios, there is no shortage of available data, but
only a fraction can be labeled due to resource constraints. This challenge has led to the development
of semi-supervised learning (SSL; Rasmus et al., 2015; Berthelot et al., 2019; Sohn et al., 2020a;
Yang et al., 2022a), a methodology that leverages both labeled and unlabeled data for model training.

This paper focuses on applying SSL to semantic segmentation, which has applications in various
areas such as perception for autonomous vehicles (Bartolomei et al., 2020), mapping (Van Etten et al.,
2018) and agriculture (Milioto et al., 2018). SSL is particularly appealing for segmentation tasks, as
manual labeling can be prohibitively expensive.

A widely adopted approach for SSL is pseudo-labeling (Lee, 2013; Arazo et al., 2020). This
technique dynamically assigns supervision targets to unlabeled data during training based on the
model’s predictions. To generate a meaningful training signal, it is essential to adapt the predictions
before integrating them into the learning process. Several techniques have been proposed, such as
using a teacher network to generate supervision to a student network (Hinton et al., 2015). The
teacher network can be made more powerful during training by applying a moving average to the
student network’s weights (Tarvainen & Valpola, 2017). Additionally, the teacher may undergo
weaker augmentations than the student (Berthelot et al., 2019), simplifying the teacher’s task.

However, pseudo-labeling is intrinsically susceptible to confirmation bias, which tends to reinforce
the model predictions instead of improving the student model. Mitigating confirmation bias becomes
particularly important when dealing with erroneous predictions made by the teacher network.

Confidence-based filtering is a popular technique to address this issue (Sohn et al., 2020a). This
approach assigns pseudo-labels only when the model’s confidence surpasses a specified threshold,
reducing the number of incorrect pseudo-labels. Though simple, this strategy was proven effective
and inspired multiple improvements in semi-supervised classification (Zhang et al., 2021; Rizve et al.,
2021), segmentation (Wang et al., 2022), and object detection (Sohn et al., 2020b; Liu et al., 2021;
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Figure 1: Confidence refinement. Left: pseudo-labels generated without refinement. Middle:
pseudo-labels obtained from the same model after refinement with marginal contextual information.
Right Top: predicted probabilities of the top two classes of the pixel highlighted by the red square
before, and Bottom: after refinement. S4MC allows additional correct pseudo labels to propagate.

Zhao et al., 2020; Wang et al., 2021). However, the strict filtering of the supervision signal leads to
extended training periods and, potentially, to overfitting when the labeled instances are insufficient
to represent the entire sample distribution. Lowering the threshold would allow for higher training
volumes at the cost of reduced quality, further hindering the performance (Sohn et al., 2020a).

In response to these challenges, we introduce a novel confidence refinement scheme for the teacher
network predictions in segmentation tasks designed to increase the availability of pseudo-labels
without sacrificing their accuracy. Drawing on the observation that labels in segmentation maps
exhibit strong spatial correlation, we propose to group neighboring pixels and collectively consider
their pseudo-labels. When considering pixels in spatial groups, we asses the event-union probability,
which is the probability that at least one pixel belongs to a given class. We assign a pseudo-label if
this probability is sufficiently larger than the event-union probability of any other class. By taking
context into account, our approach Semi-Supervised Semantic Segmentation via Marginal Contextual
Information (S4MC), enables a relaxed filtering criterion which increases the number of unlabeled
pixels utilized for learning while maintaining high-quality labeling, as demonstrated in Fig. 1.

We evaluated S4MC on multiple benchmarks. S4MC achieves significant improvements in
performance over previous state-of-the-art methods. In particular, we observed an increase of
+1.39 mIoU on PASCAL VOC 12 (Everingham et al., 2010) using 366 annotated images, +1.01
mIoU on Cityscapes (Cordts et al., 2016) using only 186 annotated images, and increase +1.5 mIoU
on COCO (Lin et al., 2014) using 463 annotated images. These findings highlight the effectiveness
of S4MC in producing high-quality segmentation results with minimal labeled data.

2 R E L AT E D W O R K

2 . 1 S E M I - S U P E RV I S E D L E A R N I N G

Pseudo-labeling (Lee, 2013) is an effective technique in SSL, where labels are assigned to unlabeled
data based on model predictions. To make the most of these labels during training, it is essential to
refine them (Laine & Aila, 2016; Berthelot et al., 2019; 2020; Xie et al., 2020). This can be done
through consistency regularization (Laine & Aila, 2016; Tarvainen & Valpola, 2017; Miyato et al.,
2018), which ensures consistent predictions between different views or different models’ prediction
of the unlabeled data. To ensure that the pseudo-labels are helpful, the temperature of the prediction
(soft pseudo-labels; Berthelot et al., 2019) can be increased, or the label can be assigned to samples
with high confidence (hard pseudo-labels; Xie et al., 2020; Sohn et al., 2020a; Zhang et al., 2021).

2 . 2 S E M I - S U P E RV I S E D S E M A N T I C S E G M E N TAT I O N

In semantic segmentation, most SSL methods rely on consistency regularization and developing
augmentation strategies compatible with segmentation tasks (French et al., 2020; Ke et al., 2020;
Chen et al., 2021; Zhong et al., 2021; Xu et al., 2022). Given the uneven distribution of labels
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Figure 2: Left: S4MC employs a teacher–student paradigm for semi-supervised segmentation.
Labeled images are used to supervise the student network directly; both networks process unlabeled
images. Teacher predictions are refined and used to evaluate the margin value, which is then
thresholded to produce pseudo-labels that guide the student network. The threshold, denoted as γt, is
dynamically adjusted based on the teacher network’s predictions. Right: Our confidence refinement
module exploits neighboring pixels to adjust per-class predictions, as detailed in Section 3.2.1. The
class distribution of the pixel marked by the yellow circle on the left is changed. Before refinement,
the margin surpasses the threshold and erroneously assigns the blue class (dog) as a pseudo-label.
After refinement, the margin reduces, thereby preventing error propagation.

typically encountered in segmentation maps, techniques such as adaptive sampling, augmentation,
and loss re-weighting are commonly employed (Hu et al., 2021). Feature perturbations (FP) on
unlabeled data (Ouali et al., 2020; Zou et al., 2021; Liu et al., 2022b; Yang et al., 2023b) are also used
to enhance consistency and the virtual adversarial training (Liu et al., 2022b). Curriculum learning
strategies that incrementally increase the proportion of data used over time are beneficial in exploiting
more unlabeled data (Yang et al., 2022b; Wang et al., 2022). A recent approach introduced by Wang
et al. (2022) included unreliable pseudo-labels into training by employing contrastive loss with the
least confident classes predicted by the model. Unimatch (Yang et al., 2023b) combined SSL (Sohn
et al., 2020a) with several self-supervision signals, i.e., two strong augmentations and one more with
FP, obtained good results without complex losses or class-level heuristics. However, most existing
works primarily focus on individual pixel label predictions. In contrast, we delve into the contextual
information offered by spatial predictions on unlabeled data.

2 . 3 C O N T E X T U A L I N F O R M AT I O N

Contextual information encompasses environmental cues that assist in interpreting and extracting
meaningful insights from visual perception (Toussaint, 1978; Elliman & Lancaster, 1990).
Incorporating spatial context explicitly has been proven beneficial in segmentation tasks, for example,
by encouraging smoothness like in the Conditional Random Fields method (Chen et al., 2018a) and
attention mechanisms (Vaswani et al., 2017; Dosovitskiy et al., 2021; Wang et al., 2020). Combating
dependence on context has shown to be helpful by Nekrasov et al. (2021). This work uses the context
from neighboring pixel predictions to enhance pseudo-label propagation.

3 M E T H O D

This section describes the proposed method using the teacher–student paradigm with teacher averaging
(Tarvainen & Valpola, 2017). Adjustments for image-level consistency are described in Appendix G.

3 . 1 OV E RV I E W

In semi-supervised semantic segmentation, we are given a labeled training set Dℓ =
{
(xℓi ,yi)

}Nℓ

i=1
,

and an unlabeled set Du = {xui }
Nu

i=1 sampled from the same distribution, i.e.,
{
xℓi ,x

u
i

}
∼ Dx. Here,
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y are 2D tensors of shape H ×W , assigning a semantic label to each pixel of x. We aim to train a
neural network fθ to predict the semantic segmentation of unseen images sampled from Dx.

We follow a teacher-averaging approach and train two networks fθs and fθt that share the same
architecture but update their parameters separately. The student network fθs is trained using
supervision from the labeled samples and pseudo-labels created by the teacher’s predictions for
unlabeled ones. The teacher model fθt is updated as an exponential moving average (EMA) of the
student weights. fθs(xi) and fθt(xi) denote the predictions of the student and teacher models for the
xi sample, respectively. At each training step, a batch of Bℓ and Bu images is sampled from Dℓ and
Du, respectively. The optimization objective can be written as the following loss:

L = Ls + λLu (1)

Ls =
1

Ml

∑
xℓ
i ,yi∈Bl

ℓCE(fθs(x
ℓ
i),yi) (2)

Lu =
1

Mu

∑
xu
i ∈Bu

ℓCE(fθs(x
u
i ), ŷi), (3)

where Ls and Lu are the losses over the labeled and unlabeled data correspondingly, λ is a
hyperparameter controlling their relative weight, and ŷi is the pseudo-label for the i-th unlabeled
image. Not every pixel of xi has a corresponding label or pseudo-label, and Ml and Mu denote the
number of pixels with label and assigned pseudo-label in the image batch, respectively.

3 . 1 . 1 P S E U D O - L A B E L P R O PA G AT I O N

For a given image xi, we denote by xij,k the pixel in the j-th row and k-th column. We adopt a
thresholding-based criterion inspired by FixMatch (Sohn et al., 2020a). By establishing a score,
denoted as κ, which is based on the class distribution predicted by the teacher network, we assign a
pseudo-label to a pixel if its score exceeds a threshold γt:

ŷij,k =

{
argmaxc{pc(xij,k)} if κ(xij,k; θt) > γt,

ignore otherwise,
, (4)

where pc(xij,k) is the pixel probability of class c. A commonly used score is given by κ(xij,k; θt) =
maxc{pc(xij,k)}. However, using a pixel-wise margin (Scheffer et al., 2001; Shin et al., 2021),
produces more stable results. Denoting by max2 the second-highest value, the margin is given by the
difference between the highest and the second-highest values of the probability vector:

κmargin(x
i
j,k) = max

c
{pc(xij,k)} −max2

c
{pc(xij,k)}, (5)

3 . 1 . 2 DY N A M I C PA R T I T I O N A D J U S T M E N T ( D PA )

Following Wang et al. (2022), we use a decaying threshold γt. DPA replaces the fixed threshold with
a quantile-based threshold that decreases with time. At each iteration, we set γt as the αt-th quantile
of κmargin over all pixels of all images in the batch. αt linearly decreases from α0 to zero during the
training. As the model predictions improve with each iteration, gradually lowering the threshold
increases the number of propagated pseudo-labels without compromising quality.

3 . 2 M A R G I N A L C O N T E X T U A L I N F O R M AT I O N

Utilizing contextual information (Section 2.3), we look at surrounding predictions (predictions on
neighboring pixels) to refine the semantic map at each pixel. We introduce the concept of “Marginal
Contextual Information,” which involves integrating additional information to enhance predictions
across all classes. At the same time, reliability-based pseudo-label methods focus on the dominant
class only (Sohn et al., 2020a; Wang et al., 2023). Section 3.2.1 describes our confidence refinement,
followed by our thresholding strategy and a description of S4MC methodology.

3 . 2 . 1 C O N F I D E N C E M A R G I N R E F I N E M E N T

We refine each pixel’s predicted pseudo-label by considering its neighboring pixels’ predictions.
Given a pixel xij,k with a corresponding per-class prediction pc(xij,k), we examine neighboring pixels
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Figure 3: Qualitative results. The segmentation map predicted by S4MC (ours) is compared to
using no refinement module (baseline) and to the ground truth. Heat map represents the uncertainty
of the model (κ−1), showing more confident predictions in certain areas and smoother segmentation
maps (marked by the red boxes). Additional examples are shown in Appendix B.

xiℓ,m within an N ×N pixel neighborhood surrounding it. We then calculate the probability that at
least one of the two pixels belongs to class c:

p̃c(x
i
j,k) = pc(x

i
j,k) + pc(x

i
ℓ,m)− pc(x

i
j,k, x

i
ℓ,m), (6)

where pc(xij,k, x
i
ℓ,m) denote the joint probability of both xij,k and xiℓ,m belonging to the same class c.

While the model does not predict joint probabilities, assuming a non-negative correlation between the
probabilities of neighboring pixels is reasonable. This is mainly due to the nature of segmentation
maps, which are typically piecewise constant. Consequently, any information regarding the model’s
prediction of neighboring pixels belonging to a specific class should not reduce the posterior
probability of the given pixel falling into that class. The joint probability can thus be bounded
from below by assuming independence: pc(xij,k, x

i
ℓ,m) ⩾ pc(x

i
j,k) · pc(xiℓ,m). By substituting this

into Eq. (6), we obtain an upper bound for the event union probability:
p̃c(x

i
j,k) ≤ pc(x

i
j,k) + pc(x

i
ℓ,m)− pc(x

i
j,k) · pc(xiℓ,m). (7)

For each class c, we select the neighbor with the maximal information utilization using Eq. (7):
p̃Nc (x

i
j,k) = max

ℓ,m
p̃c(x

i
j,k). (8)

Computing the event union over all classes employs neighboring predictions to amplify differences
in ambiguous cases. Similarly, this prediction refinement prevents the creation of over-confident
predictions not supported by additional spatial evidence and helps reduce confirmation bias. The
refinement is visualized in Fig. 1. In our experiments, we used a neighborhood size of 3 × 3.
To determine whether the incorporation of contextual information could be enhanced with larger
neighborhoods, we conducted an ablation study focusing on the neighborhood size and the neighbor
selection criterion, as detailed in Table 5a. For larger neighborhoods, we decrease the probability
contribution of the neighboring pixels with a distance-dependent factor:

p̃c(x
i
j,k) = pc(x

i
j,k) + βℓ,m

[
pc(x

i
ℓ,m)− pc(x

i
j,k, x

i
ℓ,m)

]
, (9)

where βℓ,m = exp
(
− 1

2 (|ℓ− j|+ |m− k|)
)

is a spatial weighting function. Empirically, contextual
information refinement affects mainly the most probable one or two classes. This aligns well with
our choice to use the margin confidence (5).

Considering multiple neighbors, we can use the formulation for three or more events. In practice, we
calculate it iteratively, starting with two event-union defined by Eq. (9), using it as pc(xij,k), finding
the next desired event using Eq. (8) with the remaining neighbors, and repeating the process.

3 . 2 . 2 T H R E S H O L D S E T T I N G

A high threshold can prevent the teacher model’s wrong “beliefs” transferring to the student model.
However, this comes at the expense of learning from fewer examples, resulting in a less comprehensive
model. To determine the DPA threshold, we use the teacher predictions pre-refinement pc(xij,k), but
we filter values based on p̃c(xij,k). Consequently, more pixels pass the (unchanged) threshold. We
tuned α0 value in Table 5b and set α0 = 0.4, i.e., 60% of raw predictions pass the threshold at t = 0.
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(a) Data fraction that passes the threshold. Our
method increases the number of pseudo-labeled pixels,
mostly in the early stage of the training.
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(b) Accuracy of the pseudo-labels. S4MC produces
more quality pseudo-labels during the training process,
most notably at the early stages.

Figure 4: Pseudo-label quantity and quality on PASCAL VOC 2012 (Everingham et al., 2010) with
366 labeled images using our margin (5) confidence function. The training was performed using
S4MC; at each step, metrics both with and without S4MC were calculated.

3 . 3 P U T T I N G I T A L L T O G E T H E R

We perform semi-supervised learning for semantic segmentation by pseudo-labeling pixels using their
neighbors’ contextual information. Labeled images are only fed into the student model, producing
the supervised loss (2). Unlabeled images are fed into the student and teacher models. We sort the
margin-based κmargin (5) values of teacher predictions and set γt as described in Section 3.2.2. The
per-class teacher predictions are refined using the weighted union event relaxation, as defined in
Eq. (9). Pixels with top class matching original label and margin values higher than γt are assigned
pseudo-labels as described in Eq. (4), producing the unsupervised loss (3). The entire pipeline is
visualized in Fig. 2.

The impact of S4MC is shown in Fig. 4, comparing the fraction of pixels that pass the threshold
with and without refinement. S4MC uses more unlabeled data during most of the training (a), while
the refinement ensures high-quality pseudo-labels (b). We further study true positive (TP) and false
positive (FP) rates, as shown in Fig. F.1 in the Appendix. We show qualitative results in Fig. 3,
including both the confidence heatmap and the pseudo-labels with and without the impact of S4MC.

4 E X P E R I M E N T S

This section presents our experimental results. The setup for the different datasets and partition
protocols is detailed in Section 4.1. Section 4.2 compares our method against existing approaches and
Section 4.3 provides the ablation study. Additional experimental results are presented in Appendix A
and implementation details are given in Appendix D.

4 . 1 S E T U P

Datasets In our experiments, we use PASCAL VOC 2012 (Everingham et al., 2010), Cityscapes
(Cordts et al., 2016), and MS COCO (Lin et al., 2014) datasets.

PASCAL comprises 20 object classes (+ background). 2,913 annotated images are divided into
training and validation sets of 1,464 and 1,449 images, respectively. Zoph et al. (2020) shown that
joint training of PASCAL with training images with augmented annotations (Hariharan et al., 2011)
outperforms joint training with COCO (Lin et al., 2014) or ImageNet (Russakovsky et al., 2015).
Based on this finding, we use extended PASCAL VOC 2012 (Hariharan et al., 2011), which includes
9,118 augmented training images, wherein only a subset of pixels are labeled. Following prior art,
we conducted two sets of experiments: in the first, we used only the original set, while in the second,
“augmented” setup, we also used augmented data.

Cityscapes dataset includes urban scenes from 50 cities with 30 classes, of which only 19 are typically
used for evaluation (Chen et al., 2018a;b).
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Table 1: Comparison between our method and prior art on the PASCAL VOC 2012 val on different
partition protocols. The caption describes the share of the training set used as labeled data and and
the actual number of labeled images. * denotes reproduced results using official implementation, ψ
denotes the use of UniMatch (Yang et al., 2023a) without the use of feature perturbation.± denotes
the standard deviation over three runs.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
CutMix-Seg (French et al., 2020) 52.16 63.47 69.46 73.73 76.54
ReCo (Liu et al., 2022a) 64.80 72.0 73.10 74.70 -
ST++ (Yang et al., 2022b) 65.2 71.0 74.6 77.3 79.1
U2PL (Wang et al., 2022) 67.98 69.15 73.66 76.16 79.49
PS-MT (Liu et al., 2022b) 65.8 69.6 76.6 78.4 80.0
PCR (Xu et al., 2022) 70.06 74.71 77.16 78.49 80.65
FixMatch* (Yang et al., 2023a) 68.07 73.72 76.38 77.97 79.97
Dusperb* (Yang et al., 2023a) 71.96 74.49 77.55 79.04 80.53
UniMatch* (Yang et al., 2023a) 73.75 75.05 77.7 79.9 80.43

CutMix-Seg + S4MC 70.96 71.69 75.41 77.73 80.58
FixMatch + S4MC 73.13 74.72 77.27 79.07 79.6
UniMatchψ + S4MC 74.72± 0.283 75.21± 0.244 79.09± 0.183 80.12± 0.120 81.56± 0.103

Table 2: Comparison between our method and prior art on the augmented PASCAL VOC 2012 val
dataset under different partitions, using additional unlabeled data from Hariharan et al. (2011). We
included the number of labeled images in parentheses for each partition ratio. * denotes reproduced
results using official implementation, ψ denotes the use of UniMatch (Yang et al., 2023a) without the
use of feature perturbation.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
CutMix-Seg (French et al., 2020) 71.66 75.51 77.33 78.21
AEL (Hu et al., 2021) 77.20 77.57 78.06 80.29
PS-MT (Liu et al., 2022b) 75.5 78.2 78.7 -
U2PL (Wang et al., 2022) 77.21 79.01 79.3 80.50
PCR (Xu et al., 2022) 78.6 80.71 80.78 80.91
FixMatch* (Yang et al., 2023a) 74.35 76.33 76.87 77.46
UniMatch* (Yang et al., 2023a) 76.6 77.0 77.32 77.9

CutMix-Seg + S4MC 78.49 79.67 79.85 81.11
FixMatch + S4MC 75.19 76.56 77.11 78.07
UniMatchψ + S4MC 76.95 77.54 77.62 78.08

MS COCO dataset is a challenging segmentation benchmark with 80 object classes (+ background).
123k images are split into 118k and 5k for training and validation, respectively.

Implementation details We implement S4MC with teacher–student paradigm of consistency
regularization, both with teacher averaging (Tarvainen & Valpola, 2017; French et al., 2020) and
augmentation variation (Sohn et al., 2020a; Yang et al., 2023b) frameworks. All variations use
DeepLabv3+ (Chen et al., 2018b), while for feature extraction, we use ResNet-101 (He et al., 2016)
for PASCAL VOC and Cityscapes, and Xception-65 (Chollet, 2016) for MS COCO. For the teacher
averaging setup, the teacher parameters θt are updated via an exponential moving average (EMA) of
the student parameters: θηt = τθη−1

t + (1− τ)θηs , where 0 ≤ τ ≤ 1 defines how close the teacher is
to the student and η denotes the training iteration. We used τ = 0.99. In the augmentation variation
approach, pseudo-labels are generated through weak augmentations, and optimization is performed
using strong augmentations. Additional details are provided in Appendix D.

Evaluation We compare S4MC with state-of-the-art methods and baselines under the standard
partition protocols – using 1/2, 1/4, 1/8, and 1/16 of the training set as labeled data. For the ’classic’
setting of the PASCAL experiment, we additionally compare using all the finely annotated images.
We follow standard protocols and use mean Intersection over Union (mIoU) as our evaluation metric.
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Table 3: Comparison between our method and prior art on the Cityscapes val dataset under different
partition protocols. Labeled and unlabeled images are selected from the Cityscapes training
dataset. For each partition protocol, the caption gives the share of the training set used as labeled data
and the number of labeled images. * denotes reproduced results using official implementation, ψ
denotes the use of UniMatch (Yang et al., 2023a) without the use of feature perturbation.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
CutMix-Seg (French et al., 2020) 69.03 72.06 74.20 78.15
AEL (Hu et al., 2021) 74.45 75.55 77.48 79.01
U2PL (Wang et al., 2022) 70.30 74.37 76.47 79.05
PS-MT (Liu et al., 2022b) - 76.89 77.6 79.09
PCR (Xu et al., 2022) 73.41 76.31 78.4 79.11
FixMatch* (Yang et al., 2023a) 74.17 76.2 77.14 78.43
UniMatch* (Yang et al., 2023a) 75.99 77.55 78.54 79.22

CutMix-Seg + S4MC 75.03 77.02 78.78 78.86
FixMatch + S4MC 75.2 77.61 79.04 79.74
UniMatchψ + S4MC 77.0 77.78 79.52 79.76

We use the data split published by Wang et al. (2022) when available to ensure a fair comparison. We
use PASCAL VOC 2012 val with 1/4 partition for the ablation studies.

4 . 2 R E S U LT S

PASCAL VOC 2012. Table 1 compares our method with state-of-the-art baselines on the PASCAL
VOC 2012 dataset. While Table 2 shows the comparison results on the PASCAL VOC 2012 dataset
with additional coarsely annotated data from SBD (Hariharan et al., 2011). S4MC outperforms all
the compared methods in standard partition protocols, both when using labels only for the original
PASCAL VOC 12 dataset and when using SBD annotations. More significant improvement can be
observed for partitions of extremely low annotated data, where other methods suffer from starvation
due to poor teacher generalization. Qualitative results are shown in Fig. 3. Our refinement procedure
aids in adding falsely filtered pseudo-labels and removing erroneous ones.

Cityscapes. Table 3 presents the comparison with state-of-the-art methods on the Cityscapes val
(Cordts et al., 2016) dataset under various partition protocols. S4MC outperforms the compared
methods in most partitions, except for the 1/2 setting, and combined with the FixMatch scheme,
S4MC outperforms compared approaches across all partitions.

MS COCO. Table 4 presents the comparison with state-of-the-art methods on the MS COCO val
(Lin et al., 2014) dataset. S4MC outperforms the compared methods mostly in low annotated regimes,
where we believe that high-quality learning signals are crucial.

Contextual information at inference. Given that our margin refinement scheme operates through
prediction adjustments, we explored whether it could be employed at inference time to enhance
performance. The results reveal a negligible improvement in the DeepLab-V3-plus model, from an
85.7 mIOU to 85.71. This underlines that the performance advantage of S4MC primarily derives
from the adjusted margin, as the most confident class is rarely swapped. A heatmap of the prediction
over several samples is presented in Fig. 3 and Fig. B.1.

4 . 3 A B L AT I O N S T U D Y

Neighborhood size and neighbor selection criterion. Our prediction refinement scheme employs
event-union probability with neighboring pixels. We tested varying neighborhood sizes (N = 3, 5, 7)
and criteria for selecting the neighboring pixel: (a) random, (b) maximal class probability, (c) minimal
class probability, and (d) two neighbors, as described in Section 3.2.1. We also compare with 1× 1
neighborhood, corresponding to not using S4MC. As shown in Table 5a, a small 3× 3 neighborhood
with one neighboring pixel of the highest class probability proved most efficient in our experiments.
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Table 4: Comparison between our method and prior art on COCO (Lin et al., 2014) val on different
partition protocols. For each partition protocol, the caption gives the share of the training set used
as labeled data and the number of labeled images. * denotes reproduced results using official
implementation.

Method 1/512 (232) 1/256 (463) 1/128 (925) 1/64 (1849) 1/32 (3697)
Supervised Baseline 22.9 28.0 33.6 37.8 42.2
PseudoSeg (Zou et al., 2021) 29.8 37.1 39.1 41.8 43.6
PC2Seg (Zhong et al., 2021) 29.9 37.5 40.1 43.7 46.1
UniMatch* (Yang et al., 2023a) 31.9 38.9 43.86 47.8 49.8

UniMatchψ + S4MC 32.9 40.4 43.78 47.98 50.58

Table 5: The effect of neighborhood size and neighbor selection criterion on CutMix-Seg+S4MC for
the Pascal VOC 12 with 1/4 labeled data.

(a) Neighborhood choice.

Selection criterion Neighborhood size N

1× 1 3× 3 5× 5 7× 7

Random neighbor

69.46

73.25 71.1 70.41
Max neighbor 75.41 75.18 74.89
Min neighbor 74.54 74.11 70.28
Two max neighbors 74.14 75.15 74.36

(b) α0, the initial proportion of confidence pixels

20% 30% 40% 50% 60%

74.45 73.85 75.41 74.56 74.31

Table 6: Ablation study on the different components of S4MC on top of FixMatch for the augmented
Pascal VOC 12 with 1/2 labeled data. PLR is the pseudo-label refinement module and DPA is
dynamic partition adjustment.

PLR DPA mIoU
77.46

✓ 76.2
✓ 77.89

✓ ✓ 78.07

We also examine the contribution of the proposed pseudo-label refinement (PLR) and DPA. Results
in Table 6 show that the PLR improves the mask mIoU by 1.09%, while DPA alone harms the
performance. This indicates that PLR helps semi-supervised learning mainly because it enforces
more spatial dependence on the pseudo-labels.

Threshold parameter tuning We utilize a dynamic threshold that depends on an initial value, α0.
In Table 5b, we examine the effect of different initial values to establish this threshold. A smaller α0

propagates too many errors, leading to significant confirmation bias. In contrast, a larger α0 would
mask most of the data, rendering the semi-supervised learning process lengthy and inefficient.

5 C O N C L U S I O N

In this paper, we introduce S4MC, a novel approach for incorporating spatial contextual information
in semi-supervised segmentation. This strategy refines confidence levels and enables us to leverage
more unlabeled data. S4MC outperforms existing approaches and achieves state-of-the-art results on
multiple popular benchmarks under various data partition protocols, such as MS COCO, Cityscapes,
and Pascal VOC 12. Despite its effectiveness in lowering the annotation requirement, there are several
limitations to using S4MC. First, its reliance on event-union relaxation is applicable only in cases
involving spatial coherency. As a result, using our framework for other dense prediction tasks would
require an examination of this relaxation’s applicability. Furthermore, our method uses a fixed-shape
neighborhood without considering the object’s structure. It would be interesting to investigate the use
of segmented regions to define new neighborhoods; this is a future direction we plan to explore.
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Table A.1: Comparison between our method and prior art on the PASCAL VOC 2012 val on
different partition protocols using ResNet-50 as backbone model. The caption describes the share of
the training set used as labeled data and, in parentheses, the actual number of labeled images.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
Supervised Baseline 44.0 52.3 61.7 66.7 72.9
PseudoSeg (Zou et al., 2021) 54.89 61.88 64.85 70.42 71.00
PC2Seg (Zhong et al., 2021) 56.9 64.6 67.6 70.9 72.3
UniMatch (Yang et al., 2023a) 71.9 72.5 76.0 77.4 78.7

UniMatchψ + S4MC 72.62 72.83 76.44 77.83 79.41

Table A.2: Ablation study on the different neighbor selection regimes on Pascal VOC 2012 with 366
labeled examples.

1-NN features 1-NN probability Highest Probability
78.04 77.48 79.09± 0.183

Table A.3: Evaluation of Boundary IoU (Cheng et al., 2021) comparing models trained with
FixMatch+S4MC and with FixMatch using 183 annotated images on PASCAL VOC 12. The
model is based on Xception-65 as in Table 4.

FixMatch FixMatch+S4MC
31.1 29.9

A A D D I T I O N A L E X P E R I M E N T S

In this section, we present additional experimental results. Table A.1 presents results using ResNet-50
backbone on PASCAL. Table A.3 compares boundary IoU (Cheng et al., 2021) to baseline.

In Table A.2, we ablate alternative neighbor selection strategy. The highest probability is the method
presented in our paper. Alternatively, we consider nearest neighbor strategies when we choose the
closest neighbor according to some metric, either from the probability vector (1-NN probability) or
the latent features obtained from the model (1-NN features). The probability distance yields the worst
results. The method in the paper yields the best result.

B M O R E V I S U A L R E S U LT S

We present in Figs. B.1 and B.2 an extension of Fig. 3, showing more instances from the unlabeled
data and the corresponding pseudo-labeled with the baseline model and S4MC.

Our method can achieve more accurate predictions during the inference phase without refinements.
This results in more seamless and continuous predictions, which accurately depict objects’ spatial
configuration.

C C O M P U TAT I O N A L C O S T

Let us denote the image size by H ×W and the number of classes by C.

First, the predicted map of dimension H ×W × C is stacked with the padded-shifted versions,
creating a tensor of shape [n,H,W,C]. K top neighbors are picked via top-k operation and calculate
the union event as presented in Eq. (9). (The pseudo label refinement pytorch-like pseudo-code can
be obtained in Algorithm 1 for N = 4 and k max neighbors.)

The overall space (memory) complexity of the calculation is O(n×H×W ×C), which is negligible
considering all parameters and gradients of the model. Time complexity adds three tensor operations

16



Figure B.1: Example of refined pseudo-labels, the structure is as in Fig. 3, and the numbers under
the predictions show the pixel-wise accuracy of the prediction map.

(stack, topk, and multiplication) over the H ×W × C tensor, where the multiplication operates k
times, which means O(k ×H ×W × C). This is again negligible for any reasonable number of
classes compared to tens of convolutional layers with hundreds of channels.

To verify that, we conducted a training time analysis comparing FixMatch and FixMatch + S4MC
over PASCAL with 366 labeled examples, using distributed training with 8 Nvidia RTX 3090 GPUs.
FixMatch average epoch takes 28:15 minutes, and FixMatch + S4MC average epoch takes 28:18
minutes, an increase of about 0.2% in runtime.
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Algorithm 1: Pseudocode: Pseudo label refinement of S4MC, PyTorch-like style.

# X: predict prob of unlabeled data B x C x H x W
# k: number of neigbors

#create neighborhood tensor
neigborhood=[]
X = X.unsqueeze(1)
X = torch.nn.functional.pad(X, (1, 1, 1, 1, 0, 0, 0, 0))
for i,j in [(None,-2),(1,-1),(2,None)]:

for k,l in [(None,-2),(1,-1),(2,None)]:
if i==k and i==1:

continue
neighborhood.append(X[:,:,i:j, k:l])

neighborhood = torch.stack(neighborhood)

#pick k neighbors for union event
ktop_neighbors,neigbor_idx=torch.topk(neighborhood, k=k,axis=0)
for nbr in ktop_neighbors:

beta = torch.exp((-1/2) * neigbor_idx)
X = X + beta*nbr - (X*nbr*beta)

D I M P L E M E N TAT I O N D E TA I L S

All experiments were conducted for 80 training epochs with the stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and learning rate policy of lr = lrbase ·

(
1− iter

total iter

)power
.

For the teacher averaging consistency, we apply resize, crop, horizontal flip, GaussianBlur, and with
a probability of 0.5, we use Cutmix (Yun et al., 2019) on the unlabeled data.

For the augmentation variation consistency (Sohn et al., 2020a; Yang et al., 2023b), we apply resize,
crop, and horizontal flip for weak and strong augmentations as well as ColorJitter, RandomGrayscale,
and Cutmix for strong augmentations.

For PASCAL VOC 2012 lrbase = 0.001 and the decoder only lrbase = 0.01, the weight decay is set
to 0.0001 and all images are cropped to 513× 513 and Bl = Bu = 3.

For Cityscapes, all parameters use lrbase = 0.01, and the weight decay is set to 0.0005. The learning
rate decay parameter is set to power = 0.9. Due to memory constraints, all images are cropped
to 769 × 769 and Bℓ = Bu = 2. All experiments are conducted on a machine with 8 Nvidia RTX
A5000 GPUs.

E L I M I TAT I O N S A N D P O T E N T I A L N E G AT I V E S O C I A L I M PA C T S

Limitations. The constraint imposed by the spatial coherence assumption also restricts the
applicability of this work to dense prediction tasks. Improving pseudo-labels’ quality for overarching
tasks such as classification might necessitate reliance on data distribution and the exploitation of
inter-sample relationships. We are currently exploring this avenue of research.

Societal impact. Similar to most semi-supervised models, we utilize a small subset of annotated
data, which can potentially introduce biases from the data into the model. Further, our PLR module
assumes spatial coherence. While that holds for natural images, it may yield adverse effects in other
domains, such as medical imaging. It is important to consider these potential impacts before choosing
to use our proposed method.

F P S E U D O - L A B E L S Q U A L I T Y A N A LY S I S

The quality improvement and the quantity increase of pseudo-labels are shown in Fig. 4. Further
analysis of the quality improvement of our method is demonstrated in Fig. F.1 by separating the true
positive and false positive.
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Table G.1: Ablation study on the confidence function κ, over Pascal VOC 12 with partition protocols

Function 1/4 (366) 1/2 (732) Full (1464)
κmax 74.29 76.16 79.49
κent 75.18 77.55 79.89
κmargin 75.41 77.73 80.58

Within the initial phase of the learning process, the enhancement in the quality of pseudo-labels can
be primarily attributed to the advancement in true positive labels. In our method, the refinement not
only facilitates the inclusion of a larger number of pixels surpassing the threshold but also ensures
that a significant majority of these pixels are high quality.

As the learning process progresses, most improvements are obtained from a decrease in false positives
pseudo-labels. This analysis shows that our method effectively minimizes the occurrence of incorrect
pseudo-labeled, particularly when the threshold is set to a lower value. In other words, our approach
reduces confirmation bias from decaying the threshold as the learning process progresses.

G W E A K – S T R O N G C O N S I S T E N C Y

We need to redefine the supervision branch to adjust the method to augmentation level consistency
framework (Sohn et al., 2020a; Zhang et al., 2021; Wang et al., 2023). Recall that within the teacher
averaging framework, we denote fθs(xi) and fθt(xi) as the predictions made by the student and
teacher models for input xi, where the teacher serves as the source for generating confidence-based
pseudo-labels. In the context of image-level consistency, both branches differ by augmented versions
xwi , xsi and share identical weights fθ. Here, xwi and xsi represent the weak and strong augmented
renditions of the input xi, respectively. Following the framework above, the branch associated with
weak augmentation generates the pseudo-labels.

G . 1 C O N F I D E N C E F U N C T I O N A LT E R N AT I V E S

In this paper, we introduce a confidence function to determine pseudo-label propagation. We
introduced κmargin(xi,j) and mentioned other alternatives have been examined.

Here, we define several options for the confidence function.

The simplest option is to look at the probability of the dominant class,

κmax(x
i
j,k) = max

c
pc(x

i
j,k), (G.1)

which is commonly used to generate pseudo-labels.

The second alternative is negative entropy, defined as

κent(x
i
j,k) =

∑
c∈C

pc(x
i
j,k) log

(
pci,j

)
. (G.2)

Note that this is indeed a confidence function since high entropy corresponds to high uncertainty, and
low entropy corresponds to high confidence.

The third option is for us to define the margin function (Scheffer et al., 2001; Shin et al., 2021) as the
difference between the first and second maximal values of the probability vector and also described
in the main paper:

κmargin(xi,j) = max
c

(pc(x
i
j,k))−max2c(pc(x

i
j,k)), (G.3)

where max2 denotes the vector’s second maximum value. All alternatives are compared in Table G.1.

Table G.1 studies the impact of different confidence functions on pseudo-label refinement. We found
that using a margin to describe confidence is a suitable way when there is a contradiction in smooth
regions.
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G . 2 D E C O M P O S I T I O N A N D A N A LY S I S O F U N I M AT C H

Unimatch (Yang et al., 2023b) investigating the consistency and suggest using FixMatch (Sohn et al.,
2020a) and a strong baseline for semi-supervised semantic segmentation. Moreover, they provide
analysis that shows that combining three students for each supervision signal, one feature level
augmentation, feature perturbation, denoted by FP, and two strong augmentations, denoted by S1 and
S2. Fusing Unimatch and our method did not provide significant improvements, and we examined the
contribution of different components of Unimatch. We measured the pixel agreement as described in
Eq. (9) and showed that the feature perturbation branch has the same effect on pixel agreement as
S4MC. Appendix G.2 present the distribution of agreement using FixMatch (S1), DusPerb (S1,S2),
Unimatch (S1, S2, FP) and S4MC (S1, S2).

H B O U N D I N G T H E J O I N T P R O B A B I L I T Y

In this paper, we had the union event estimation with the independence assumption, defined as

p1c(x
i
j,k, x

i
ℓ,m) ≈ pc(x

i
j,k) · pc(xiℓ,m) (H.1)

In addition to the independence approximation, it is possible to estimate the unconditional expectation
of two neighboring pixels belonging to the same class based on labeled data:

p2c(x
i
j,k, x

i
ℓ,m) =

1

|Nl| ·H ·W · |N|
∑
i∈Nl

∑
j,k∈H×W

∑
ℓ,m∈Nj,k

1{yij,k = yiℓ,m}. (H.2)

To avoid overestimating that could lead to overconfidence, we set

pc(x
i
j,k, x

i
ℓ,m) = max(p1c(x

i
j,k, x

i
ℓ,m), p2c(x

i
j,k, x

i
ℓ,m)) (H.3)

That upper bound of joint probability ensures that the independence assumption does not
underestimate the joint probability, preventing overestimating the union event probability. Using
Eq. (H.3) increase the mIoU by 0.22 on average, compared to non use of S4MC refinement, using
366 annotated images from PASCAL VOC 12 Using only Eq. (H.2) reduced the mIoU by -14.11
compared to the non-use of S4MC refinement and harmed the model capabilities to produce quality
pseudo-labels.
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Figure B.2: Visual examples of our method on COCO. Model trained with S4MC on COCO with
1/32 of the labeled data
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Figure F.1: Quality of pseudo-labels, on PASCAL VOC 2012 (Everingham et al., 2010) over training
iterations. Fig. 4 separated to True positive and False positive analysis. True positive are the bigger
part of improvement at the early stage of the training process, while reduction of false positive is the
main contribution late in the training process
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(a) The spatial agreement as we define in in 9 compared
between different variations of Unimatch and S4MC,
on PASCAL VOC 12 dataset.
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(b) The spatial agreement, compared between different
variations of Unimatch (Yang et al., 2023b) and S4MC,
on PASCAL over time.
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