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Abstract

Diffusion models, such as Stable Diffusion (Rombach et al., 2022a), have shown incredible
performance on text-to-image generation. Since text-to-image generation often requires
models to generate visual concepts with fine-grained details and attributes specified in
text prompts, can we leverage the powerful representations learned by pre-trained diffusion
models for discriminative tasks such as image-text matching? To answer this question, we
propose a novel approach, Discriminative Stable Diffusion (Discffusion), which turns pre-
trained text-to-image diffusion models into few-shot discriminative learners. Our approach
uses the cross-attention score of a Stable Diffusion model to capture the mutual influence
between visual and textual information and fine-tune the model via a new attention-based
prompt learning to perform image-text matching. By comparing Discffusion with state-
of-the-art methods on several benchmark datasets, we demonstrate the potential of using
pre-trained diffusion models for discriminative tasks with superior results on few-shot image-
text matching.

1 Introduction

“What I Cannot Create, I Do Not Understand.”

Richard Feynman

This quote by Richard Feynman perfectly captures the essence of human learning techniques. In the context
of machine learning, it can be interpreted as the ability to generate images given text prompts is a strong
indicator of understanding and matching between visual and textual information. Despite the success of
various methods in the image-text matching task (Karpathy & Fei-Fei, 2015; Lee et al., 2018), there is still a
need for more advanced models that can better capture the fine-grained details, spatial relationships, and
compositionality. Meanwhile, diffusion models (Sohl-Dickstein et al., 2015a; Rombach et al., 2022a) have
been shown to produce high-quality and diverse images from text descriptions. Therefore, in this paper, we
investigate the idea of leveraging the power of pre-trained Diffusion Models, specifically the state-of-the-art
text-to-image generative model—Stable Diffusion (Rombach et al., 2022a), for the discriminative image-text
matching task, as shown in Figure 1. The success of Stable Diffusion in generative tasks suggests that it has
a strong understanding of the relationship between visual and textual information, and we aim to harness
this understanding for image-text matching tasks.

The key advantages of using Stable Diffusion for image-text matching are two folds: first, Stable Diffusion
uses a VQVAE (Kingma & Welling, 2013; Van DenOord et al., 2017) and cross-attention layers in its
architecture, which provides strong compressed representations and shed information about the alignment
of data from different modalities. Second, Stable Diffusion, through proper adaptations, demonstrates a
capacity to comprehend spatial relations (Wu et al., 2023; Derakhshani et al., 2023) and to discern fine-grained,
disentangled concepts (Matsunaga et al., 2022; Rambhatla & Misra, 2023). It can generate images that closely
align with the specifics of textual prompts, while traditional vision and language model such as CLIP (Radford
et al., 2021), which are pre-trained on discriminative tasks, predominantly facilitate coarse-grained, contextual
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Figure 1: The upper subfigure in the teaser image illustrates the ability of Stable Diffusion to generate
realistic images given a text prompt. The bottom subfigure illustrates the process of our proposed method,
Discriminative Stable Diffusion (Discffusion), for utilizing Stable Diffusion for the image-text matching task.
Discffusion can output a matching score for a given text prompt and image, with a higher score indicating a
stronger match.

image-text alignment. Such models lack the capability to perform compositional matching at finer granularity,
specifically failing to achieve detailed cross-modal alignment at the region-word level (Jiang et al., 2022).

However, to efficiently adapt Stable Diffusion to the image-text matching task, two key challenges need to
be addressed: (1) how to disentangle the degree of alignment between the image and text from the latent
space of Stable Diffusion? In text-to-image generation, the model is trained to generate an image that is
semantically consistent with a given text prompt. However, in image-text matching, the task is to determine
the degree of alignment between a given image and text. Therefore, it is important to disentangle the degree
of alignment between the image and text in the latent space of Stable Diffusion, to effectively use it for
image-text matching; (2) How to efficiently adapt the model in a few-shot setting. Adapting a text-to-image
generation model such as Stable Diffusion for image-text matching involves transitioning the model from a
generative to a discriminative task. This shift presents significant challenges due to the differences in task
requirements and underlying model architectures.

To address these challenges, we propose the Discriminative Stable Diffusion (Discffusion) method, which
includes two key ideas: (1) identifying and leveraging attention scores from the selected cross-attention
maps as the matching score and (2) employing attention-based prompt learning for model fine-tuning.
Discffusion outperforms the CLIP-based methods by 5.4% on the Compositional Visual Genome and 9.3% on
the RefCOCOg datasets in terms of accuracy under the few-shot setting. This approach underscores the
versatility of diffusion models, highlighting their expanded applicability to discriminative tasks.

Our contributions in this paper are threefold:

• We conduct a pioneering study that repurposes latent text-to-image generation diffusion mod-
els—originally designed for generative tasks—for discriminative tasks such as image-text matching.

• We introduce a novel method that leverages cross-attention maps from Stable Diffusion across multiple
layers, combined with attention-based prompt learning, to address the image-text matching task.

• We demonstrate the effectiveness of our approach through experimental evaluation under the few-shot
setting on both the Compositional Visual Genome (Jiang et al., 2022) and the RefCOCOg (Yu et al.,
2016) datasets for image-text matching, and zero-shot setting on Winoground (Thrush et al., 2022)
and VL-checklist (Zhao et al., 2022) datasets. We further demonstrate the adaptability of our method
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by applying it to the visual question answering task, where it excels on the VQAv2 (Antol et al.,
2015) dataset.

2 Related Work

Diffusion Probabilistic Models (DPMs) Diffusion probabilistic models (DPMs) have been widely used
as generative models for images in recent years. These models, which include diffusion (Sohl-Dickstein et al.,
2015b) and score-based generative models (Song & Ermon, 2019), have been shown to outperform generative
adversarial networks (GANs) (Goodfellow et al., 2014) in many cases (Baranchuk et al., 2021). In the past two
years, significant progress has been made in the development of DPMs, with a focus on improving sampling
techniques such as classifier-free guidance (Ho & Salimans, 2021). DPMs are typically implemented using
convolutional U-Net architectures (Ronneberger et al., 2015a) which contain cross-attention layers. Hertz
et al. (2022a) finds that replacing attention maps in the cross-attention module of text-to-image generation
diffusion models can edit image attributes. Just scaling the attention maps of the respective word can adjust
the effect of a particular word in the prompt. Feng et al. (2022) demonstrates that one can retain the
compositional semantics in the generated image by manipulating the cross-attention. Kumari et al. (2022)
proposes to fine-tune the key and value mapping from text to latent features in the cross-attention layers of
text-to-image diffusion model to compose multiple new concepts in the image. In the context of image-text
matching, the attention scores between the text and image representations in the DPMs can reflect the degree
of alignment between them.

Few-shot Learning for Vision and Language Tasks Vision and Language discriminative models
pre-trained on large-scale image-text pairs have demonstrated great potential in multimodal representation
learning (Jia et al., 2021; Yao et al., 2021; Yuan et al., 2021; Radford et al., 2021; Liu et al., 2024). Among
them, CLIP (Radford et al., 2021) benefits from 400M curated data and defines various prompt templates
to carry out zero-shot image classification. Like CLIP, several different few-shot learners were proposed.
GPT (Brown et al., 2020), as a strong few-shot learner, is capable of performing a new language task by
learning from only a few training instances. Frozen (Tsimpoukelli et al., 2021) is developed based on GPT
and made into a multimodal few-shot learner by expanding the soft prompting to include a collection of
images and text. The concept of prompt learning (Schick & Schütze, 2020) has been widely explored in
natural language processing (NLP) and computer vision. It allows pre-trained models to adapt to various
downstream tasks with minimal number of data by introducing a small prompt layer (Schick & Schütze,
2020; Liu et al., 2021). In the context of image-text matching, prompt learning has been used to fine-tune
pre-trained models for the task (He et al., 2022b). In our work, instead of adding learnable prompts over the
inputs or between transformer layers (Jia et al., 2022), we introduce learnable prompts over the attention
layers. In our paper, our primary research question is the adaptation of pre-trained generative diffusion
models into discriminative models for specific tasks. This focus is driven by the challenges and opportunities
presented by utilizing diffusion-based processes in a discriminative setting, specifically for the image-text
matching task, which has distinct characteristics compared to the modeling approaches mentioned above.

Generative Models for Discriminative Tasks There has been a significant amount of research on
using generative models for discriminative tasks in the past decades. Ng & Jordan (2001) compare the
discriminative classifier with generative classifier. Ranzato et al. (2011) apply deep generative models to
the recognition task. For diffusion models, recently, Li et al. (2023a); Clark & Jaini (2023) propose to use
pre-trained diffusion models for zero-shot classification. Wei et al. (2023) formulate diffusion models as
masked autoencoders and achieves state-of-the-art classification accuracy on video tasks. Different from
these works, we are the first to explore the use of cross-attention maps in pre-trained diffusion models for
discriminative tasks, specifically the image-text matching task. Another line of works use diffusion models
as data source and then training a discriminative model on the synthetic data generated from it (He et al.,
2022a; Jahanian et al., 2021; Zhang et al., 2021). Differs from these works, our approach emphasizes the direct
adaptation of generative diffusion models, leveraging their pre-existing structures and knowledge without the
need to generate synthetic data.
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Figure 2: The overview of our Discriminative Stable Diffusion framework, which measures how much the
given images and texts matched use the cross-attention mechanism in the Stable Diffusion. Discriminative
Stable Diffusion added learnable prompt over attention matrices (red boxes). The learnable prompt will
receive gradients during training and updated, while the pretrained weights are fixed. The layer index in m
and n is dropped for simplicity.

3 Preliminaries on Diffusion Models

In this section, we provide a brief overview of the concepts and techniques in denoising diffusion models
that are necessary to understand our proposed method. Diffusion models are a class of generative models
that are particularly effective at generating high-quality images (Sohl-Dickstein et al., 2015b; Nichol et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022b). They aim to model a distribution
pθ (x0) that approximates the data distribution q (x0) and is easy to sample from. DPMs model a "forward
process" in the space of x0 from data to noise by adding noise to real data, and a reverse process that tries to
reconstruct the original data from the noisy version. The forward process is described by the equation

q(xt|x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I), (1)

where x1:T defines a set of noisy images and x0 is the initial image. N denotes a Gaussian distribution, and
ᾱt are hyper-parameters. The reverse process is modeled by a Gaussian distribution

pθ(xt−1|xt) = N (µθ(xt), Σθ(xt)), (2)

where neural networks are used to predict the mean and covariance of the distribution. The parameters of
the model, θ, are learned by optimizing a variational lower bound on the log-likelihood of the real data. Once
trained, new images can be generated by starting from a noise sample and iteratively sampling from the
reverse process distribution until reaching the final time step. In latent diffusion probabilistic models such as
Stable Diffusion, these two processes are similar, while they proceeds in the latent space: x0 is encoded into
z0 in an efficient, low-dimensional latent space first and then do the diffusion process. And in the case where
a DPM is conditioned on additional information, such as text information c, the reverse process becomes
pθ(zt−1|zt, y), where y is the input text.

4 Discriminative Latent Diffusion Models

4.1 Problem Formulation

The problem of image-text matching is formalized as follows: given a text prompt y ∈ Y and a set of images
X , we aim to find the image x∗ ∈ X that is most semantically aligned with the given text prompt y. Formally,
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we define the image-text matching problem as finding the function f : Y × X → [0, 1] that assigns a score to
each image-text pair (y, x) indicating the degree of semantic alignment between the text and image. The goal
is to find the image x that maximizes the score for a given text prompt y, i.e., x∗ = arg maxx∈X f(y, x).

4.2 Method Overview

To learn the function f , the main idea is to leverage the powerful representations learned by a pre-trained
Stable Diffusion model to perform image-text matching. There are three key modules in Discffusion, cross-
attention score computation, LogSumExp pooling, and attention-based prompt learning, as shown in Figure 2.
The cross-attention score computation module extracts the mutual influence between visual and textual
information by computing the attention scores from the cross-attention matrix in U-Nets of the Stable
Diffusion model. The LogSumExp pooling module pools these attention scores over all tokens in the text
description to obtain a single matching score. Finally, the attention-based prompt learning module fine-tunes
the model by updating the key and value mappings from text to latent features in the cross-attention
layers under a few-shot setting. This allows the model to learn new image-text concepts while retaining the
ability to capture complex and nuanced relationships between images and text. The model outputs a score
that measures the alignment between the image and text, which can be used to adapt the model from a
text-to-image generation task to an image-text matching task.

4.3 Cross-attention Score Computation

Cross-attention scores can be a measure of the relevance of an image and a text to each other (Chen et al.,
2020; Li et al., 2019). Prior research (Hertz et al., 2022b) shows that the cross-attention within diffusion
models governs the layout of generated images and the scores in cross-attention maps represent the amount
of information flows from a text token to a latent pixel. They are calculated by taking the dot product of the
representations of the image and text in a latent space, and normalizing by the product of their norms. We
propose to adapt cross-attention scores as a way to better capture the complex relationships between images
and text in the image-text matching task. In the sequel, we elaborate on our strategy in depth.

Stable Diffusion (Rombach et al., 2022a) is trained to generate images from text prompts, and as such,
it has learned strong compressed representations of both text and images. This enables us to use these
representations to learn the function f for image-text matching.

More specifically, a text prompt y is first encoded into an intermediate representation ry = τθ(y) ∈ Rm×dτ

using a domain-specific encoder τθ, where m represents the number of text tokens. We then encode each
image x ∈ X where x ∈ RH×W ×3 in RGB space into a latent image representation z = E(x), where E(x) is
the image encoder. The noisy version of the input z is obtained by:

zt =
√

ᾱtz +
√

1− ᾱtϵ for ϵ ∼ N (0, I), (3)

where constants ᾱt are hyper-parameters inherited from Song et al. (2020), which will control the level of
noises applied to the latent representation. The encoder ϵθ in the U-Net (Ronneberger et al., 2015b) of the
pre-trained text-to-image generation model then encode zt into rx = φi (zt), where φi (zt) ∈ Rn×di

ϵ , n and i
denote the number of image feature tokens and index of layers respectively (we dropped the superscript i
for n for notation simplicity). This forms a (flattened) intermediate depiction within the U-Net that uses
ϵθ, which are subsequently integrated into intermediate layers of the U-Net via a cross-attention mechanism
defined as Attention(Q, K, V ) = softmax

(
QKT

√
d

)
· V , with Q = rx ·W q(i)

, K = ry ·W k(i)
, V = ry ·W v(i)

.

Here, W q(i) ∈ Rdi
ϵ×d, W k(i) ∈ Rdτ ×d, W v(i) ∈ Rdτ ×d are learnable projection matrices (Jaegle et al., 2021;

Vaswani et al., 2017). These matrices map the inputs to query, key, and value matrices, respectively, where d
is the output dimension of the projection operations in the attention computation.

4.4 LogSumExp Pooling (LSE)

To compute the function g and assess the semantic alignment between an image and a text prompt quan-
titatively, we leverage LogSumExp (LSE) pooling (Blanchard et al., 2021) as a means of aggregating the
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attention maps generated by the cross-attention mechanism in our model. Rather than simply averaging
or summing all elements in the map, we use LSE pooling to take into account the relative importance of
different image and text tokens in the attention map. This has several benefits. Firstly, LSE pooling is able
to handle large values and outliers in the attention map more robustly than other pooling methods, such
as average or sum pooling. Secondly, LSE pooling is able to better preserve the ordering of values in the
attention map, allowing for more interpretable and accurate matching scores.

The attention map matrix is denoted as A ∈ Rn×m, where n represents the number of image feature tokens
and m represents the number of text tokens. To compute the image-text pair matching score, we utilize
the LogSumExp (LSE) pooling operator, which is applied directly to each row of the attention matrix A,
resulting in a vector of length m, and then averaged to produce the final score:

f(A) = Ave
(

1
λ

log
(

n∑
i=1

exp (λAi,:)
))

(4)

Here, Ai,: represents the i-th row of the matrix A, Ave is the average operator, and λ is a scaling factor that
magnifies the importance of the most relevant pairs of image region features and attended text sentence vectors.
By default, we set λ = 1. This operation computes the log-sum-exponential over each row, summarizing
the contribution of each text token to the image features, and then averages these values across different
timesteps to produce a single scalar score for the image-text pair (y, x). We further enhance the model’s
capability for image-text matching through attention-based prompt learning, which we will introduce in the
next section

4.5 Attention-based Prompt Learning for Stable Diffusion

We aim to adapt the latent diffusion probabilistic model to the image-text matching task leveraging only a
few examples, that is, under the few-shot setting. The task of fine-tuning aims at updating the mapping
from the given text to the aligned image distribution, and the text features are only input to W k and W v

projection matrix in the cross-attention block. Inspired by Liu et al. (2021); Lester et al. (2021); Li & Liang
(2021), we propose the use of learnable prompts, which are added to the attention matrices in our model.
Specifically, as shown in Figure 2, we introduce learnable prompt embedding matrices, which are added
element-wise to the key and value attention matrices at the identified layer of the Stable Diffusion model. We
keep the original W k and W v frozen, and only update the learnable prompt weights added to them. As our
addition operation applies to all layers and sampled timesteps, we will omit superscripts t and layer l for
notational clarity and obtains:

W k′
= W k + pk, W v′

= W v + pv. (5)

Both pk and pv are updated during training. This allows the model to adapt to new instances by attending
to relevant information in the intermediate representation of the text inputs, τθ(y). With the learned prompt
embeddings in the few-shot scenario, we can effectively adapt the Stable Diffusion to image-text matching
performance. The overall algorithm is shown in Algorithm 1. For optimization, we use the margin-based
triplet loss function between the predicted match score and the true match score. Let L be the loss, we have:

L =
∑

i

max (0, f(xneg, y)− f(xpos, y) + M) , (6)

where f(·, ·) represents the score function defined in Eq. (4) computed from the cross-attention map A with
image x and text y, i denotes the sample index, xpos is the groundtruth image corresponding to the i-th text
y, xneg is the negative image, and M is a predefined margin where we use 0.2 in our experiments.

Dynamic Attention Head Weighting We propose a method for adjusting the weights of different
attention heads in the cross-attention of our model. The classifier guidance (Dhariwal & Nichol, 2021) is a
technique that encourages the DPM to sample images that are likely to belong to a certain class by using
the gradient of the log probability of the class given the image. This is done by training an additional
classifier, and adding a term that is proportional to the gradient of the log probability of the class given the
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Algorithm 1 Image-Text Matching with Discriminative Stable Diffusion
1: x: Image, y: Text
2: ϵ: Noise
3: z: Latent representation, zt: Noisy latent representation
4: E : Encoder
5: τ : Domain-specific encoder
6: φ: Intermediate representation of the U-Net
7: for (x, y) in the batch do
8: Image latent representation z ← E(x)
9: Noisy image latent representation zt ← z Eq. 3

10: Text latent representation ry ← τ(y)
11: Intermediate representation rx ← φ(zt)
12: Compute attention maps A← ry, rx

13: Update attention maps with attributed attention maps A← Attrh(A) Eq. 7
14: Compute matching score f(A) Eq. 4
15: Compute loss L← y Eq. 6
16: Update W k′ ←W k, W v′ ←W v Eq. 5
17: end for

image during the inference time: ∇xt log p (y | xt, t), where xt is a noisy image. Inspired by the the classifier
guidance and Ho & Salimans (2022), which demonstrate the possibility of guiding the learning of diffusion
models by using a representation, that is learned to maximize the mutual information between the input and
the output, we compute the gradient of the output of each attention head with respect to the input, and use
this gradient to weight the contribution of each head to the final output of the model as follows:

Attrh(A) = Ah ⊙
H∑

k=1

∂f(A)
∂Ah

, (7)

where ⊙ is element-wise multiplication, Ah ∈ Rn×m denotes the h-th head’s attention weight matrix, and
∂f(A)
∂Ah

computes the gradient along Ah. The (i, j)-th element of Attrh(A) computes the interaction in terms
of the h-th attention head. The gradient weights are detached and utilized solely as scalar multipliers during
training. By adjusting these weights during training, we are able to estimate the gradient flow, keep the most
essential token alignment, guide the matching process between text and image and achieve better performance
in our task.

5 Experiments

5.1 Datasets

We use the Compositional Visual Genome (ComVG) (Krishna et al., 2017) and RefCOCOg (Yu et al., 2016)
datasets to do image-text matching, which requires model’s ability to understand fine-grained details, spatial
relationships, and compositionality of image and text pairs. Additionally, we include the VQAv2 dataset,
which we have adapted for image-text matching by concatenating questions with their corresponding answers
to form unique text prompts for matching with images, to demonstrate the versatility and robustness of our
model across different vision and language tasks.

Compositional Visual Genome (ComVG) (Krishna et al., 2017) is a reconstructed dataset of the
Visual Genome (Krishna et al., 2017) dataset, which contains 108,007 images annotated with 2.3 million
relationships. These relationships are represented as subject-predicate-object triplets and include both action
and spatial relationships. ComVG was created by selecting a subset of 542 images from Visual Genome
that contain clear relationships, and generating mutated images by changing a single value in the subject,
predicate, or object of each image, resulting in a total of 5400 data points.
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Table 1: Comparison of accuracy (%) with 5% training data. Discffusion outperforms CLIP based baselines,
demonstrating the superiority of our approach compared with traditional vision and language models pre-
trained for discriminative tasks, such as CLIP.

Method Compositional Visual Genome RefCOCOg VQAv2
Subjects Objects Predicate Average Top-1 Acc. Top-5 Acc. Binary Other All

CLIP (Fine-tuning) 80.77 82.49 60.50 76.10 69.88 84.57 66.94 5.10 17.86
CLIP (Prompt Learning) 78.88 79.51 60.41 74.24 69.40 84.48 67.32 5.16 18.03
Diffusion Classifier 80.48 82.52 63.42 77.50 73.41 90.98 68.94 6.78 19.88
Discffusion (Ours) 80.78 84.90 63.43 78.27 75.87 91.96 70.60 6.91 20.52

RefCOCOg (Yu et al., 2016) is a reconstructed dataset of the MS-COCO (Lin et al., 2014) dataset,
including 85,474 referring expressions for 54,822 objects in 26,711 images, with a focus on images containing
between 2 and 4 objects of the same category.

VQAv2 (Goyal et al., 2017) The VQAv2 dataset (Goyal et al., 2017) is commonly converted to a
classification task with 3,129 answer classes with frequency large than 9. In our setting, we modify the
candidate text to be the concatenation of question and answer pair for each question and perform matching
with images.

5.2 Experimental Setup

We use Stable Diffusion v2 with the xFormer (Lefaudeux et al., 2022) and flash attention (Dao et al.,
2022) implementation, which utilizes the LAION (Schuhmann et al., 2022) dataset for pre-training. On the
RefCOCOg dataset, we sample 10 text prompts from the pool each time, and the model is asked to do the
correct matching given the image and the 10 sampled text prompts. We first evaluate our method under
the zero-shot setting and select the variant with the best performance (using attention maps with dynamic
attention head weighting, averaged across all U-Net layers, and using the LogSumExp, see the ablation
studies section for details). We then test our Discriminative Stable Diffusion under the setting where we
train the model with only 5% of the dataset (Yoo et al., 2021), demonstrating its adaptation capability using
limited data.

5.3 Baselines

In order to provide a comprehensive evaluation of our Discriminative Stable Diffusion method, we establish
two baselines for comparison under the few-shot setting. We use the CLIP-ViT/H-14 with the OpenCLIP
variant as the baseline for fair comparison.

• Fine-tuning (Radford et al., 2021): The first baseline involves fine-tuning the CLIP model, with the
last layer being the only component subject to tuning.

• Prompt learning: The second baseline is based on the prompt learning strategy applied to CLIP,
incorporating learnable prompts to the textual inputs that are conditioned on individual input images,
as described in Zhou et al. (2022).

5.4 Experiments: Comparison with CLIP under the Few-shot Setting

To compare the performance of our method to other approaches, we conducted fine-tuning on CLIP and
prompt learning on CLIP, in addition to our method. The results of these experiments are summarized in
Table 1 on the Compositional Visual Genome dataset and RefCOCOg dataset. In order to facilitate a fair
comparison, we adapt the use of the Discffusion model to two distinct settings on ComVG, given the different
resolutions of Stable Diffusion and CLIP. The first setting involves resizing all images in the dataset to a
resolution of 224x224 first, and then upsampling and resizing to 512x512 for the use of Discffusion, so that
Discffusion will not take advantage of its higher input resolution. The results are shown in Table 1. The
other setting involves directly resizing all images to 224x224 and 512x512 base resolution, which is employed
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Table 2: Comparison of accuracy (%) on Winoground and VL-checklist of CLIP, BLIP2, and Discffusion
fine-tuned on MS-COCO. For BLIP2’s evaluation on Winoground, it is approached as an image-text matching
task to ensure a fair comparison, rather than prompt the model to answer the rewritten question from
captions (Yarom et al., 2024).

Method Winoground VL-checklist
Text Image Group Attribute Object Relation Average

CLIP 31.50 12.00 9.25 67.90 75.75 68.15 70.73
BLIP2 28.25 13.00 9.09 79.64 84.70 73.95 79.97
Diffusion Classifier 26.76 10.00 8.75 65.90 76.81 67.14 68.94
Discffusion (Ours) 34.00 13.75 10.50 79.80 85.90 74.58 80.52

by CLIP and Stable Diffusion, with the results shown in the Appendix. We also show the results on the
VQAv2 dataset in Table 1. These results demonstrate the extentiveness of our method to other vision and
language tasks.

5.5 Experiments: Comparison with BLIP2 and OFA under the few-shot setting

We present a comprehensive comparison with other state-of-the-art methods: BLIP2 (Li et al., 2023b) and
OFA (base) (Wang et al., 2022), specifically under the few-shot scenario using only 5% of the data, as shown in
Table 3. Our results show that our method is competitive, trailing BLIP2 closely, which is the state-of-the-art
across numerous vision and language tasks. It’s worth noting that OFA’s pre-training datasets include Visual
Genome (VG), RefCOCOg, and VQAv2, and BLIP2’s pre-training datasets also include Visual Genome (VG)
and COCO (Lin et al., 2014) (whose images are the sources images for RefCOCOg and VQAv2). Therefore,
for a fair comparison, CLIP should be the baseline to evaluate the effectiveness of our approach for few-shot
learning. As shown in Table 1, Discffusion can beat CLIP consistently across all these datasets.

5.6 Experiments: Zero-shot Transfer from Training on the MS-COCO Dataset

In this set of experiments, we focus on assessing the zero-shot transfer capabilities of the Discffusion model
and its comparison with notable baselines such as CLIP, BLIP2, Diffusion Classifier (Li et al., 2023a). We
fine-tuned all these models on the MS-COCO dataset, and then performed the evaluation on downstream
datasets. Given that BLIP2’s pre-training datasets include Visual Genome (VG) and COCO (Lin et al.,
2014), and considering the overlap of MS-COCO images with those in ComVG and RefCOCOg, we selected
two commonly used evaluation benchmarks: Winoground (Thrush et al., 2022) and VL-checklist (Zhao et al.,
2022). The evaluation results, as depicted in Table 2, offer insightful comparisons across various metrics.
Discffusion outperforms CLIP and BLIP2 on Winoground and VL-checklist, showcasing its superior ability to
generalize the learned visual-linguistic representations to datasets beyond the ones used during its fine-tuning.
This is particularly notable in the ‘Group’ category of Winoground and across all categories of VL-checklist,
where Discffusion demonstrates a substantial margin of improvement.

5.7 Experiments: Zero-shot Evaluation on the Winoground Dataset

We conduct additional experiments evaluating our approach on the entire Winoground (Thrush et al., 2022)
dataset under the zero-shot setting. The performance across categories <relation, object, both> in the format
(text score, image score, group score) is shown in Table 4.

As can be seen, Discffusion excels notably in the ‘relation’ category, demonstrating proficiency in discerning
shuffled elements like verbs, adjectives, prepositions, and adverbs. This suggests that Discffusion, with its
generative-task-oriented pre-training and our adaptation strategy, offers enhanced capability for handling
fine-grained nuances, spatial interrelationships, and intricate compositionalities compared to conventional
discriminative vision and language models.
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Table 3: Comparison of accuracy (%) against SOTA pre-trained vision-and-language models. Note that
evaluation datasets during pre-training. Note that OFA’s pre-training datasets include Visual Genome
(VG), RefCOCOg, and VQAv2, and BLIP2’s pre-training datasets also include Visual Genome (VG) and
COCO (Lin et al., 2014) (whose images are the sources images for RefCOCOg and VQAv2). Therefore, for
a fair comparison, CLIP should be the baseline to evaluate the effectiveness of our approach for few-shot
learning and Discffusion can beat CLIP consistently across all these datasets.

Model ComVG RefCOCOg VQAv2
CLIP 76.10 69.88 17.86
BLIP2* 80.81 76.43 20.99
OFA* 76.29 73.31 20.01
Discffusion (w/o pre-training) 78.11 73.07 20.43
Discffusion (w/ pre-training) 80.89 76.91 20.83
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Figure 3: Ablation study on the number of attention
maps used from layers of the U-Net (x-axis). The y-
axis represents the accuracy on the ComVG dataset.
Tests on two variants of Stable-Diffusion v2: trained
as a standard noise-prediction model on 512x512
images and 768x768 images.
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Figure 4: Ablation study on the number of attention
heads (five in total within the Stable Diffusion) in
the U-Net (x-axis) with few-shot performance on the
ComVG dataset (y-axis) under the two scenarios:
using the average of all attention maps and using
our dynamic attention head weighting method. The
results illustrate the superiority of our weighting
method.

5.8 Discussion about Inference Efficiency of Discffusion

The inference memory cost of Discffusion is approximately 9.8GB when using the batch size of one. We use
DDIM sampling to get the sampling timesteps. The inference speed is heavily dependent on the number
of sampling timesteps. We demonstrate the trade-off between the number of sampling timesteps and the
inference time on the RefCOCOg dataset with a batch size of 16. The inference was executed in a distributed
manner on a NVIDIA workstation equipped with 4 A6000 GPUs, leveraging the capabilities of the Accelerate
library 1 as shown in Figure 6. We observe that the Top-1 Accuracy tends to stabilize when the number of
sampling timesteps approaches approximately 100.

5.9 Ablation Studies

In this section, we delve deeper into the nuances of our experimental findings in a zero-shot setting on the
ComVG dataset. ComVG’s complexity allows us to examine the finer-grained cross-modal alignment at
the entity level, showcasing how each design aspect of our method impacts the compositional matching of
disentangled concepts.

1https://huggingface.co/docs/accelerate/index
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Figure 5: Ablation study on using cosine similarity, maximum value from each column of the attention map,
and the smoothed maximum (LogSumExp pooling); and the amount of noise added during the diffusion
process: using consistent noise levels of 0.4, 0.8 and using ensembling.

Table 4: Zero-shot results on the Winoground dataset in accuracy with 95% confidence intervals. Discffusion
excels notably in the ‘relation’ category, demonstrating proficiency in discerning shuffled elements like verbs,
adjectives, prepositions, and adverbs.

Relation Object Both
Category Text Image Group Text Image Group Text Image Group
CLIP 0.22±0.02 0.08±0.02 0.05±0.02 0.36±0.01 0.12±0.02 0.08±0.02 0.81±0.03 0.45±0.03 0.42±0.04

BLIP2 0.22±0.01 0.05±0.01 0.04±0.01 0.35±0.01 0.20±0.01 0.13±0.01 0.62±0.04 0.37±0.02 0.37±0.03

Discffusion 0.25±0.01 0.10±0.02 0.07±0.03 0.40±0.01 0.13±0.01 0.12±0.02 0.80±0.02 0.46±0.02 0.42±0.03

Effect of Attention Maps from Different Sets of U-Net Layers This study examines the effect of
different layer configurations in the U-Net architecture of Stable Diffusion v2 on the computation of attention
maps. We use two variants of Stable Diffusion v2 and take the average of the attention maps from different
layers of U-Net. Following insights from Kwon et al. (2022); Tang et al. (2022)—which suggest that deeper
layers capture more semantically relevant information, we consider the last one, the last two, the last eight,
and all layers. The results, shown in Figure 3, demonstrate that incorporating all layers yields the highest
accuracy, indicate that a comprehensive integration of both high-level and low-level features is crucial for tasks
like image-text matching, maintaining both coarse and detailed aspects of image representation. Interestingly,
focusing solely on the last two layers also results in performance closely mirroring that of using just the final
layer, indicating a potential redundancy in the task-specific information contained within these later stages.

Cosine Similarity vs. Maximum vs. LogSumExp Pooling for Score Computation We compare the
overall accuracy of using Cosine Similarity, Maximum value from the attention map, and LogSumExp Pooling
for score computation in Figure 5. For cosine similarity, the dimensionality of the latent representations
for images and texts differs. Therefore, we employ projection layers to project the representations from
both modalities into a common dimensionality. For experiments of using the maximum value, we take the
maximum value from each column of the attention map. As can be seen, using LogSumExp performs the
best, followed by the maximum value, and finally the cosine similarity. This may be because LogSumExp can
smooth out the influence of individual noisy elements, resulting in more robust and accurate matching scores.
Additionally, LogSumExp can effectively capture the overall importance of each element in the attention
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Figure 6: Inference time and accuracy versus sampling steps on RefCOCOg with Discffusion, conducted on a
4 GPU setup.

map, rather than relying solely on the maximum value. Overall, these results highlight the effectiveness of
LogSumExp as a method for computing the matching score in image-text matching tasks.

Effect of Dynamic Attention Head Weighting We investigate the effect of using varying numbers of
attention heads in Stable Diffusion on image-text matching performance, specifically, the attention heads
in the cross-attention layer of the spatial transformer. To do this, we randomly sample a subset of heads
and leave the rest unused. The results, as shown in Figure 4, indicate that using all heads (five in total in
our evaluated model version) from the Spatial Transformer (Jaderberg et al., 2015) located in the U-Net of
Stable Diffusion performs the best. Additionally, we compare the results of using dynamic attention head
weighting versus averaging across selected heads (few-shot) to evaluate the impact of attention head selection
on performance, and dynamic attention head weighting performs better.

Ensembling over Noise Levels In diffusion models, the level of noise controls the variance of the Gaussian
noise added during the diffusion process, which can affect the degree of change in the generated image. Our
study, illustrated on the right side of Figure 5, explores the effects of varying noise levels in the diffusion
process. To further improve the performance of our method, we use an ensemble technique inspired by Wolleb
et al. (2022) by averaging the scores over four relative different noise levels: {0.2, 0.4, 0.6, 0.8}. This is
done by first obtaining the score under each noise level scenario and then averaging them. The results of this
comparison are shown in Figure 5. Our experimental results demonstrate that this ensemble technique leads
to a noticeable improvement in performance.

6 Conclusion

In this paper, we proposed a method for matching text and images in the latent space of Stable Diffusion.
By adapting generative models to discriminative tasks, we are exploring a domain with promising practical
applications, which could be particularly beneficial in scenarios with data privacy concerns or when there is a
lack of data in specific domains. For methods, we fine-tuned the U-Net part of the model by focusing on the
cross-attention between text features and latent image features, which reflects the alignment between text and
image. Our results show that this fine-tuning approach improves the alignment between text and image, leading
to better performance in image-text matching tasks. Overall, our approach is a pioneering work that leverages
the inherent flexibility of diffusion-based visual generative models, demonstrating improved explainability and
an enhanced ability to capture fine-grained details, spatial relationships, and compositionality. Our results
can motivate research on simpler alternatives to adapt Stable Diffusion models, as well as on future methods
for better utilization of them.
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Broader Impact Statement

The Discriminative Stable Diffusion (Discffusion) approach proposed in this paper is dependent on a pre-
trained Stable Diffusion model, which may be challenging to obtain in certain scenarios where the model
has yet to be publicly released or where the computational resources required for training are not available.
Additionally, the quality of the pre-training can greatly impact the performance of Discffusion, highlighting
the need for further research to investigate methods for improving the pre-training process. There are other
techniques such as multi-task learning and meta-learning that can be possibly incorporated to improve the
performance of Discffusion. It is worth noting that in real-world scenarios, there is often a limited amount of
labeled data available, and collecting more data can be costly and time-consuming. Therefore, the ability of
Discffusion to perform well under a few-shot setting is an important aspect of its potential utility in practical
applications.
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A Ablations on Input Images Resolutions

In our experimental setup, CLIP accepts image resolutions of 224x224 and Stable Diffusion accepts 512x512.
Considering that image resolutions within the ComVG dataset vary, we adopted two distinct resizing strategies
to maintain a balanced comparison. In the first approach, we initially resize all input images to a 224x224
resolution, followed by a subsequent resizing to 512x512 specifically for Discffusion. In this way, there is no
additional information introduced when comparing with using CLIP. In the second approach, we directly
resize the input image resolutions to 512x512 and 224x224 for Discffusion and CLIP respectively. The results
of these strategies are illustrated in Table 5. It is evident that Discffusion surpasses both the fine-tuned CLIP
and the CLIP with prompt learning baselines by a large margin. These outcomes suggest that the Discffusion
model can adeptly harness the benefits of larger input image resolutions.

B Training Efficiency of Discffusion

The training efficiency of the Discriminative Stable Diffusion (Discffusion) model is noteworthy. Remarkably,
it requires only a single NVIDIA V100 GPU for training, with a memory footprint of approximately 15.4
GB with the Accelerate library 2 and FlashAttention (Dao et al., 2022) using the implementation available
in HuggingFace Diffusers 3. The model demonstrates efficient training times across different datasets: it
completes training on the Compositional Visual Genome (ComVG) dataset in 7 hours, on the RefCOCOg
dataset in 11 hours, and on the more extensive Visual Question Answering version 2 (VQAv2) dataset in 17
hours. These training durations highlight the model’s practicality and feasibility for use in various research
and application scenarios, especially considering the moderate computational resources required.

2https://huggingface.co/docs/accelerate/index
3https://huggingface.co/docs/diffusers/index
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Figure 7: Training loss curve for Discffusion with LCMs on the ComVG dataset. The observed fluctuations
point to training instability, which potentially impacts performance on the few-shot setting.

C Adapting Discffusion to Latent Consistency Models (Luo et al., 2023)

This section investigates the adaptability of Discriminative Stable Diffusion (Discffusion) to Latent Consistency
Models (LCMs) — a class of faster diffusion models that require fewer steps for both training and inference
(four steps). We evaluate the performance of Discffusion extended with LCMs in two experimental setups:
training on the MS-COCO dataset followed by zero-shot testing on Winoground, and few-shot training on
ComVG with subsequent testing on the same.

The empirical outcomes, detailed in Table 6, reveal that Discffusion when augmented with LCMs surpasses the
original Discffusion on Winoground. However, it underperforms on the ComVG dataset. Closer examination
of the training dynamics for Discffusion (LCMs) on ComVG indicates instability, as depicted by the fluctuating
loss curve in Figure 7. This instability may due to the small number of sampling steps and account for the
diminished results on ComVG. Nonetheless, the preliminary success on Winoground suggests that, with
further refinement and larger dataset fine-tuning, LCMs could enhance the capabilities of Discffusion. This
finding demonstrates the potential of Discffusion to excel when integrated with more advanced diffusion
models, paving the way for future research in this direction.

D Visualization of Learned Prompt Weights

We present a visualization of the prompt weights learned after training on the MS-COCO dataset in Figure 8.
The distribution of weights is predominantly near zero, showcasing sparsity in the update made to the original
Stable Diffusion weights. This sparsity suggests that only minor updates are required for Stable Diffusion to
adapt to discriminative tasks effectively, which underscores the model’s potential for such applications and
strong latent representations gained during pre-training.

E Image-text Retrieval Directly Using Discffusion Embeddings

In this section, we study the quality of the representation space learned in Discffusion. We directly using
Discffusion’s embedding to do retrieval. Specifically, after fine-tuning Discffusion on the Compositional Visual
Genome (ComVG) and RefCOCOG dataset, we use the latent space features after the VAE to do the retrieval.
This process involves using cosine similarity to match these features with corresponding text embeddings. We
then compare the performance of Discffusion’s embeddings with those from the CLIP model. The results, as
shown in Table 7, illustrate the capability of Discffusion embeddings for retrieval tasks, underscoring their
potential for future research and applications in this area.
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Figure 8: Visualization of learned prompt weights after training on MS-COCO.

Table 5: Comparison of accuracy (%) on Compositional Visual Genome (ComVG) using CLIP, Discriminative
Stable Diffusion under the few-shot setting with different input image resolutions.

Method Resolution Compositional Visual Genome
Subjects Objects Predicate Average

CLIP (Fine-tuning) 224x224 80.77 82.49 60.50 76.10
CLIP (Prompt Learning) 224x224 78.88 79.51 60.41 74.24
Discffusion 224x224 80.81 83.17 63.51 78.11
Discffusion 512x512 80.97 84.32 63.53 78.19

F Additional Experimental Results

F.1 Extreme Few-shot Setting

We have expanded our experimentation to extreme few-shot learning by conducting tests with only 0.5% of
training data (27 examples from ComVG), with the results shown in Table 8. These results illustrate the
benefits of ours with such small data, particularly when compared to CLIP’s performance.

F.2 Masking Out Objects in RefCOCOg

We conduct additional experiments by masking objects with the provided bounding boxes to observe their
impact on the RefCOCOg dataset using 300 images. When elements are masked, the Top-1 accuracy of
Discriminative Stable Diffusion (Discffusion) drops significantly from 81.7% to 43.6%, as shown in Table 9.
This substantial decrease in accuracy demonstrates that Discffusion can capture key objects in images for the
correct matching.

F.3 Ablation Study on Time Steps Sampling in Discffusion

As presented in Table 10, we explored the effectiveness of using cross-attention maps from different time
steps in the Discriminative Stable Diffusion (Discffusion) compared to variants that employ a single time
step’s cross-attention maps (the sampled first time step and the sampled last time step). The comparative
results demonstrate the enhanced performance of the original Discffusion method. Leveraging all time steps’
information can effectively integrate and process the coarse-to-fine information throughout the diffusion steps
to do matching.
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Table 6: Comparison of accuracy (%) on Winoground and VL-checklist of CLIP, BLIP2, and Discffusion
fine-tuned on MS-COCO.

Method Winoground ComVG
Text Image Group Subjects Objects Predicate Average

Discffusion 34.00 13.75 10.50 80.78 84.90 63.43 78.27
Discffusion (LCM) 34.75 15.75 11.00 79.84 83.33 60.08 73.47

Table 7: Accuracy comparison (%) between directly using CLIP-embedding and Discffusion-embedding to do
retrieval on the Compositional Visual Genome (ComVG) and RefCOCOg datasets.

Method Compositional Visual Genome RefCOCOg
Subjects Objects Predicate Average Top-1 Acc. Top-5 Acc.

CLIP-embedding 80.77 82.49 60.50 76.10 69.88 84.57
Discffusion-embedding 78.43 76.25 57.68 73.27 66.14 84.61

F.4 Ablation Study on Loss Functions in Discffusion

Vision and language models trained with contrastive objective may not preserve all the visual infor-
mation. In this section, we study the impact of using different loss functions in training Discffu-
sion on image-text matching performance on the ComVG dataset. We test the cross-entropy loss:
LCE = − 1

N

∑N
n=1 (yn log ŷn + (1− yn) log (1− ŷn)) where N is the number of samples in the training dataset

and yn and ŷn are the true and predicted match scores for the n-th sample, respectively; and the standard
denoising diffusion training objective: LDiffusion = Ex,ϵ,t

[
∥ϵ− ϵθ (x, t)∥2

]
. The results, as presented in

Table 11, indicate that Discffusion, employing the original margin-based triplet loss function outperforms
the alternative approaches. This superiority is primarily attributable to the original diffusion training loss’s
inefficacy in adapting Stable Diffusion for discriminative tasks and the relative inadequacy of the cross-entropy
loss in managing the nuances of image-text matching tasks.

G Results on Text-to-Image Generation

In addition to the existing evaluations in the main paper, we also evaluate the capability of fine-tuned
Discffusion model on the task of text-to-image generation. We use two scores to evaluate the quality of
generated images:

• Frechet Inception Distance (FID) (Heusel et al., 2017) measures the similarity between two sets of
images. It considers both the quality and diversity of the generated images. It calculates the distance
between the distributions of the real and generated images in the feature space of a pre-trained
Inception model. A lower FID score suggests a higher similarity to the real image dataset, implying
better image quality and variety.

• Inception Score (IS) (Barratt & Sharma, 2018), on the other hand, was proposed to evaluate the
quality and diversity of images generated by GANs. It leverages the Inception model, originally
used for image classification, to score generated images. The Inception Score is calculated based on
the assumption that good models should generate diverse images (high entropy) but still be able
to classify these images correctly (low conditional entropy). Hence, a higher IS indicates better
performance of the generative model.

We detail the performance of these metrics on both the MS-COCO (Lin et al., 2014) and Compositional
Visual Genome (ComVG) datasets in Table 12. The results show that the Discriminative Stable Diffusion
(Discffusion) model, when fine-tuned in a few-shot setting for discriminative tasks on the ComVG dataset
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Table 8: Comparison of Few-shot and Extreme Few-shot Learning in Compositional Visual Genome.

Method Few-shot (ComVG) Extreme Few-shot (ComVG)
Subjects Objects Predicate Average Subjects Objects Predicate Average

CLIP (Fine-tuning) 80.77 82.49 60.50 76.10 74.40 75.10 57.90 69.80
CLIP (Prompt Learning) 78.88 79.51 60.41 74.24 74.55 75.15 57.79 69.83
Discffusion (Ours) 80.78 84.90 63.43 78.27 78.65 81.40 66.68 75.91

Table 9: Comparison of Top-1 and Top-5 accuracy (%) on RefCOCOg using Discriminative Stable Diffusion
(Discffusion) under the few-shot setting, and Discriminative Stable Diffusion (Discffusion) with the impact of
masking elements. This table highlights the effect of element masking on the Discffusion approach in the
RefCOCOg dataset.

Method Top-1 Acc. Top-5 Acc.
Discffusion 81.74 91.96
Discffusion (Masking Elements) 43.60 54.78

does not compromise the generative capability of the model, which remains on par with the performance of
the original Stable Diffusion model.

H Qualitative Results

H.1 Visualization of Generate Samples with Discffusion

In this section, we study the generative abilities after adapting Stable Diffusion to a discriminative one. We
present visualization of generated samples from the Visual Genome dataset with both Discffusion and Stable
Diffusion in Figure 9. The image quality of Discffusion is comparable to Stable Diffusion.

H.2 Visualization of Cross-attention Maps

We present visualizations of averaged cross-attention maps prior to the integration of the learned prompt
in Figure 10. These representations elucidate the Discffusion model’s reasoning strategy for ground-truth
image-text pairs. During the diffusion process, the correspondence between the text and image is reflected
in token-level scores on the attention map. Tokens receiving higher scores become predominant in the
decision-making process for matching. It is clear from the visualizations that the regions of the attention
maps imbued with informative elements tend to correspond with higher scores. The higher attention score
implies a stronger similarity between a token in the given text and elements of the image.

I Error Analysis

Here, we present an example of a failure case on the Compositional Visual Genome (ComVG) dataset, as
illustrated in Figure 11, where the Discffusion model failed to successfully discriminate. As can be observed,
Discffusion struggles to recognize the word ‘white’ in the image, leading to incorrect matching. This could
potentially be attributed to the lack of ability to understand compositionality inherent in the original stable
diffusion model.

J Hyper-parameter Settings

In this section, we will introduce the detailed hyper-parameter settings in the paper.

Datasets: We used the Compositional Visual Genome and RefCOCOg datasets for the image-text matching
task, where we used the split introduced in Jiang et al. (2022) and Yu et al. (2016).
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Figure 9: The visualizations of generated samples from the Visual Genome dataset using the prompts
A man is catching the football, A man is catching a dog, A woman is eating the food, A dog
is smiling, A commercial stainless kitchen with a pot of food cooking, and Dark brown horse
with long straight black tail standing up in a field, employing a DDIM sampler with 50 steps.
The left two columns are samples generated by the original Stable Diffusion. The right two columns
are samples generated by Discffusion. The image quality of Discffusion is comparable to Stable Diffusion,
suggesting that the few-shot fine-tuning on discriminative tasks in Discffusion does not hinder text-to-image
generation performance.
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Table 10: Comparison of accuracy (%) on Compositional Visual Genome (ComVG). The table shows the
effectiveness of utilizing cross-attention maps from different time steps compared to using only single time
step’s cross-attention map.

Method Subjects Objects Predicate Average
Discffusion 80.78 84.90 63.43 78.27
Discffusion (First Time Step Sampling) 59.93 54.24 51.68 55.45
Discffusion (Last Time Step Sampling) 76.78 80.90 59.43 74.27

Table 11: Comparison of accuracy (%) on Compositional Visual Genome (ComVG) trained with different loss
functions.

Method Subjects Objects Predicate Average
Discffusion 80.78 84.90 63.43 78.27
Discffusion (Cross-Entropy Loss) 75.77 81.42 60.05 72.01
Discffusion (Diffusion Loss) 65.58 59.83 54.42 60.96

Model architecture: We used the Stable Diffusion v2.1 model with a U-Net architecture and a VAE, with
resolutions of 768x768 and 512x512, and CLIP-ViT/H as the text encoder. The sampling was carried out
using the DDIM (Song et al., 2020) method with a total of 50 steps.

Pre-training: The model was pre-trained from scratch using the LAION-5B (Schuhmann et al., 2022) dataset.
The U-Net architecture consists of 16 layers with input blocks, middle blocks, and output blocks. The input
blocks contain a 6-layer spatial transformer, the middle block contains a 1-layer spatial transformer, and the
output block contains a 9-layer spatial transformer. Each spatial transformer contains two attention layers,
one self-attention layer and one cross-attention layer.

Evaluation metrics: We evaluated the performance of our approach using the Acc@K metric, with K={1,5},
measuring the accuracy of the correct match of image-text pairs.

Ablations: In the ablation study on the number of attention heads used, we experimented with dynamic
attention head weighting. To obtain the weights, we first trained the model and used the learned weights in
the subsequent inference time. For the other two settings, where we averaged the attention head weights,
we used consistently averaged weights across all the experiments. This allowed us to compare the effect of
the number of attention heads on the final performance of the model, while controlling for the potential
confounding factor of different attention head weights; In the ablation study of using cosine similarity, as
the dimension of the latent representation of images and texts are not the same, we compute the cosine
similarity on the shared dimensions between the image and text representation. For the experiments of using
the maximum value, we take the maximum value from each column of the attention map; In the ablation
study on performing ensembling over noise levels, we set the noise level to {0.2, 0.4, 0.6, 0.8} and obtain the
prediction under each scenario. We then average the predictions to obtain the final score.
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Table 12: Comparison of Frechet Inception Distance (FID) and Inception Score (IS) for Text-Conditional
Image Synthesis on the RefCOCOg and Compositional Visual Genome (ComVG) datasets. We use DDIM
sampler and the total number of sampling steps is 50.

Method
Text-Conditional Image Synthesis
MS-COCO ComVG

FID ↓ IS ↑ FID ↓ IS ↑
Stable Diffusion 23.3 19.7 26.9 17.5
Discffusion 24.1 19.5 26.0 18.1

Figure 10: The visualization of averaged attention maps in Discffusion for the prompt: A table with a
plate of food, a glass of water, and a napkin.

Figure 11: The failure case in Discffusion for the prompt: A man in front of a large hill wearing
skis and holding poles.
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