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Abstract

Hypothesis generation in biomedical research has traditionally centered on uncov-
ering hidden relationships within vast scientific literature, often using methods like
Literature-Based Discovery (LBD). Despite progress, current approaches typically
depend on single data types or predefined extraction patterns, which restricts the
discovery of novel and complex connections. Recent advances in Large Language
Model (LLM) agents show significant potential, with capabilities in information
retrieval, reasoning, and generation. However, their application to biomedical
hypothesis generation has been limited by the absence of standardized datasets
and execution environments. To address this, we introduce BIOVERGE, a compre-
hensive benchmark, and BIOVERGE AGENT, an LLM-based agent framework, to
create a standardized environment for exploring biomedical hypothesis generation
at the frontier of existing scientific knowledge. Our dataset includes structured
and textual data derived from historical biomedical hypotheses and PubMed lit-
erature, organized to support exploration by LLM agents. BIOVERGE AGENT
utilizes a ReAct-based approach with distinct Generation and Evaluation modules
that iteratively produce and self-assess hypothesis proposals. Through extensive
experimentation, we uncover key insights: 1) different architectures of BIOVERGE
AGENT influence exploration diversity and reasoning strategies; 2) structured and
textual information sources each provide unique, critical contexts that enhance
hypothesis generation; and 3) self-evaluation significantly improves the novelty
and relevance of proposed hypotheses. Our dataset and code are accessible here:
https://github.com/Fuyi-Yang/BioVerge/

1 Introduction
Traditional hypothesis generation tasks centered around finding hidden relationships among concepts
within the scientific domain. A widely recognized method was Literature Based Discovery (LBD),
which highlights that undiscovered knowledge exist within scientific literature and are obtainable
through automated extraction systems Bhasuran et al. [2023]. Importantly, the ABC principle
depicted in Figure 1 tackles the LBD task Swanson [1986], stating that if distinct literature connects
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Figure 1: The ABC principle as a method to explore Literature Based Discovery (LBD).

concepts A/B and concepts B/C, then the intersections of concept B infers potential links between
concepts A/C. This technique harnessed many novel relationships that were proven experimentally,
including connections between magnesium deficiency and migraine, Raynaud’s disease and fish oil,
significantly contributing to scientific research Swanson [1988], Bhasuran et al. [2023]. Despite
earlier successes, these traditional co-occurrence, semantic, and graph-based methods often relied
on a single data type, limiting their ability to discover subtler connections Smalheiser et al. [2009],
Fleuren and Alkema [2015], Jha et al. [2018], Wilson et al. [2018], Tshitoyan et al. [2019], Sybrandt
et al. [2020]. Furthermore, with little reasoning or refinement, these approaches fail to develop
intricate reasoning paths that lead to more discoveries Hristovski et al. [2006].
Recently, Large Language Models (LLM) agents have garnered significant interest from its perfor-
mance on exploration, reasoning, and generation tasks Tong et al. [2023], Wang et al. [2024], Ye
et al. [2024]. LLM-based agents can utilize tools to gather information, perform thoughtful reasoning,
and create novel proposals Qi et al. [2023], Baek et al. [2024], Zhang et al. [2024], Kumbhar et al.
[2025], Su et al. [2025]. However, despite its potential, LLM agents have limited applications in the
biomedical hypothesis generation, due to a lack of standardized benchmarks and databases.
To address this gap, we introduce BIOVERGE, a benchmark that stores biomedical knowledge
as structured hypotheses triplets from PubTator3 and textual PubMed literature Wei et al. [2024],
PubMed [2025]. The knowledge base contains data published before Jan. 1, 2024 to prevent test
set data contamination, and both datasets perform cleaning and filtering to ensure experiment and
evaluation fairness. We rank candidate test hypotheses by the impact factor (IF) of their publishing
journals to select a credited, reliable test set SCImago [2025].
We also propose BIOVERGE AGENT, an LLM agent framework leveraging BIOVERGE to perform
biomedical hypothesis generation. We construct an API interface to support agent tool calling to
extensively explore and retrieve context in natural language. By alternating between Generation and
Evaluation modules, BIOVERGE AGENT can propose, self-evaluate, and iteratively refine hypothesis.
We further compare Single and Double Agent architectures, which differ in memory sharing between
the modules, to explore their impacts on hypothesis generation reasoning and performance.
Finally, we perform extensive experiments on our constructed test dataset. Our results reveal that
Single and Double Agent clearly present different reasoning strategies and suggests a tradeoff between
exploration and accuracy performance. Additionally, the access to diverse structural and textual
sources, and self-evaluation of past proposals, all encourage BIOVERGE AGENT to refine its reasoning
trajectory and notably improve the novelty and relevance of hypothesis proposals.
Overall, our main contributions are three-fold:

1. We introduce the BIOVERGE benchmark, which enables tool-augmented reasoning over both
structured and unstructured biomedical data.

2. We demonstrate the capability of BIOVERGE AGENT to generate hypotheses that push the
boundaries of existing biomedical knowledge.

3. We present a systematic study of self-evaluating agent architectures and information sources,
identifying key design choices that enhance biomedical hypothesis generation.

2 BIOVERGE benchmark
We define hypothesis as a triplet (s, r, o), where s, o ∈ E are biomedical entities and r ∈ R is one of
twelve relation types in Table 2, all defined in the PubTator3 ontology Wei et al. [2024]. We denote
hypothesis description d as a natural language explanation for (s, r, o).
Biomedical hypothesis generation task. Given entities s, o ∈ E , propose relation r ∈ R and
description d such that (s, r, o) /∈ H (knowledge base), (s, r, o) ∈ T (test set), d is distinct from
historical articles with hypotheses of the same s, o entities and aligns with ground truth articles.
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Figure 2: The cutoff date separation between the historical knowledge base and test dataset candidates
for dataset construction. The knowledge base contains article corpus, knowledge graph, and triplet
representations. The test dataset is cleaned to ensure all test queries are proposed after Jan. 1, 2024,
related to Diabetes Mellitus, and ranked by the impact factor (IF) score of its publishing journal.

Table 1: Dataset statistics for the knowledge base and test set.
Dataset Triplets Publications Unique Entities
Knowledge Base 10,566,798 8,896,514 558,006
Test Set 177 135 174

Table 2: The relations, descriptions, and valid entity pairs for each relation defined in Pubtator3.
Relation Description Valid Entity Pairs
Associate Complex or unclear relationships (Chemical, Disease), (Chemical, Gene),

(Chemical, Variant), (Disease, Gene), (Dis-
ease, Variant), (Variant, Variant)

Cause Triggering a disease by a specific agent (Chemical, Disease), (Variant, Disease)
Compare Comparing the effects of two chemicals or drugs (Chemical, Chemical)
Cotreat Simultaneous administration of multiple drugs (Chemical, Chemical)
Drug interact Pharmacodynamic interactions between two chemicals (Chemical, Chemical)
Inhibit Reduction in amount or degree of one entity by another (Chemical, Variant), (Gene, Disease)
Interact Physical interactions, such as protein-binding (Chemical, Gene), (Chemical, Variant),

(Gene, Gene)
Negative correlate Increases in the amount or degree of one entity de-

creases the amount or degree of the other entity
(Chemical, Gene), (Chemical, Variant),
(Gene, Gene)

Positive correlate The amount or degree of two entities increase or de-
crease together

(Chemical, Chemical), (Chemical, Gene),
(Gene, Gene)

Prevent Prevention of a disease by a genetic variant (Variant, Disease)
Stimulate Increase in amount or degree of one entity by another (Chemical, Variant), (Gene, Disease)
Treat Treatment of a disease using a chemical or drug (Chemical, Disease)

2.1 Dataset construction
In following sections we describe the construction and cleaning of the historical knowledge base and
test set, along with evaluation metrics for experiment studies. Dataset statistics are shown in Table 1.

2.1.1 Knowledge base
BIOVERGE contains structured triplets, literature articles, and knowledge graph, shown in Figure 2.
Specifically, the knowledge base contains hypotheses and articles published before Jan. 1, 2024.
Structured sources. PubTator3 provides abundant article-extracted hypothesis triplets, but limited
natural language entity names. Therefore, we standardize triplet entities from the official databases:
Medical Subject Headings or Mesh (chemical and disease), NCBI Gene (gene), NCBI Taxonomy
(species), and Cellosaurus (cellline) National Library of Medicine [2025], National Center for
Biotechnology Information [2025a,b], Bairoch [2018]. All entities are appended with entity names,
except “mutation” types due to lack of interpretability. We further construct a searchable knowledge
graph with entity nodes and relation edges. Each unique triplet is a transition (s

r−→ o), where (s r−→ o)

and (o
r−→ s) are distinct transitions, possibly with different relations.

Textual sources. PubMed articles identified with titles and abstracts map to all triplets in the
knowledge base, providing textual historical contexts. Articles missing the publication date or its title
and abstract are discarded from the knowledge base.
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Figure 3: Generation and Evaluation modules’ ReAct workflow. Given a query, the agent iteratively
reflects on its current state, executes an action, and stores the observed output until termination.

Data cleaning and processing. We remove triplets that either have missing entity names or is not a
valid triplet (s, r, o) combination defined in the PubTator3 report, shown in Table 2. We then merge
triplets that appear in multiple articles, append all unique PMIDs, and assign the earliest publication
date as the discovery date. Finally, we discard any triplets with no associated articles to ensure every
triplet links to verifiable literature.

2.1.2 Test set
The test dataset contains hypotheses discovered between Jan. 1 and Dec. 31, 2024 involving “Diabetes
Mellitus” (MeSH: D003920), thereby developing a diabetes-related test set. We then apply similar
data cleaning as the knowledge base to filter suboptimal triplets and ensure they are absent prior to
Jan. 1, 2024. Finally, we rank the remaining hypotheses with the journal impact factor (IF) score
documented in Scimago’s Scientific Journal Rank (SJR) metrics SCImago [2025]. Taking the top 50
highest ranked journals, we curate a test set of 177 hypotheses spanning diverse relation types, triplet
combinations, and diabetes entities under “Diabetes Mellitus.”

2.2 Answer evaluation metric
We evaluate each query’s hypothesis proposal by comparing its relation r and description d against
the ground truth using two metric categories:
1) Novelty: whether the hypothesis is absent from knowledge base. We define noveltyr to check
if (s, r, o) /∈ H , where H is the historical knowledge base, and noveltyd to assesses whether
the generated hypothesis description d is semantically different to the historical articles that have
proposed some hypothesis of the same entities s or o.
2) Alignment: whether the hypothesis exists in the test set. We define alignmentr to check if
(s, r, o) ∈ T , where T is the test set, and alignmentd to evaluate the similarity of the generated
hypothesis description d to the ground truth articles that support the test hypothesis.
Evaluation metrics for relations, noveltyr and alignmentr, are computed as binary scores (1 =
true, 0 = false) and expressed as percentages over the test set. Description-based metrics noveltyd
and alignmentd are scored by an LLM evaluator out of 100 and averaged over the test set.

3 BIOVERGE AGENT

Considering the individual benefits of co-occurrence, semantic, and graph-based methods, we intro-
duce BIOVERGE AGENT, an LLM agent framework that combines these approaches for hypothesis
generation. We develop an API interface for agent tool calling to retrieve diverse historical informa-
tion and introduce two modules, Generation and Evaluation, to iteratively generate, self-evaluate, and
refine hypothesis proposals. Furthermore, we examine the effects on hypothesis generation outcomes
when applying these modules in distinct Single and Double agent architectures.

3.1 API usage
We construct a comprehensive API interface for agent tool calling to access our knowledge base.
The interface standardizes historical knowledge retrieval into data classes (Entity, Relation, PMID,
Triplet, Article) and exposes a set of functions for the agent to call and retrieve relevant contexts.
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Figure 4: Single Agent (left) and Double Agent (right) architectures. Memory is shared between
Generation and Evaluation modules in Single Agent and separated in Double Agent.

Table 3: The list of data classes and queryable API functions.
Dataclass / Function Description
PMID Represents the unique identifier of a PubMed article.
Entity Represents a named biomedical entity and its type.
Triplet Represents a hypothesis (subject, object, relation).
Article Represents a PubMed article including PMID, title, and abstract.

get_entities Retrieves a list of entities matching specified filters.
get_relations Retrieves a list of relations matching specified filters.
get_triplets Retrieves a list of triplets matching specified filters.
get_articles Retrieves a list of PMIDs matching specified filters.
browse_articles Returns metadata (title, abstract) for given PubMed IDs.
get_shortest_entity_paths Finds shortest paths between two entities in the knowledge graph.
get_mesh_parents Returns parent entities in MeSH for a disease or chemical.
get_mesh_children Returns child entities in MeSH for a disease or chemical.
get_mesh_siblings Returns sibling entities in MeSH for a disease or chemical.

API functions. The API interface covers all data types, providing both structural and textual
historical contexts. Core APIs such as get_entities, get_relations, and get_articles return
the most relevant entities, relations, and articles for a given query, while auxiliary functions like
get_relation_description and get_entity_description provide additional semantic detail.
Together, these APIs enable the agent to flexibly combine structured triplets with article context. The
complete API list is in Table 3.
Input parameters. Each API accepts optional parameters that guide query results. Common pa-
rameters include head_entities, tail_entities, relations, PMIDs, and text_description.
Varying these parameters enable BIOVERGE AGENT to specialize the query criteria, constrain the
search space, and return results that best match the provided inputs.

3.2 Generation and evaluation agent architectures
Proposing a new relation between two entities is inherently difficult because no prior literature or
triplets exist to document this connection. Even when past hypotheses mention the same entities,
they rarely provide direct support for new proposals. Thus, hypothesis generation requires extensive
exploration and reasoning over historical data, with no guarantee of correctness.
Modules. To address these challenges, BIOVERGE AGENT introduces Generation and Evaluation
modules (system prompts in Appendix section C). We also propose two agent architectures, shown in
Figure 4, and explain a practical execution example in Figure 5.
The Generation module proposes new hypotheses, including the relation and hypothesis description,
and refines previously proposed hypotheses. The Evaluation module acts as a critic that accesses
the most recently proposed hypothesis. The evaluation specifically addresses 3 metrics: 1) Is New,
a boolean value stating the novelty of the hypothesis from the historical dataset; 2) Feedback, a
natural language explanation that justifies the reasonability of the proposed hypothesis and offers
suggestions for improvement; and 3) Evaluation Score, a numeric score from 0 to 100 assessing the
reasonableness of the proposed hypothesis based on Feedback.
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Figure 5: BIOVERGE AGENT execution example. In Generation module the agent gathers information
via APIs and proposes a relation and hypothesis description. Then in Evaluation module the agent
checks novelty, verifies reasoning trajectories, and outputs feedback for the hypothesis proposal.

ReAct Framework. Both modules use ReAct framework shown in Figure 3 to iterate over 3 steps:
1. Think: Use past memory to choose the next action. Generation module may call APIs or

propose a hypothesis, while Evaluation module can call APIs or evaluate a proposed hypothesis.
2. Act: Execute API queries via tool calling or propose/evaluate a hypothesis in JSON format.
3. Observe: Record results in memory. Hypothesis proposals pass to Evaluation module for

assessment while feedback returns to Generation module for hypothesis refinement.
Execution example. Figure 5 displays a typical agent execution example. The agent explores
different reasoning paths by querying both past relations and articles through multiple exploration
and self-evaluations. Specifically, when the initial hypothesis linking "Metals, Heavy" and "Diabetic
Retinopathy" lacks direct support, the agent adjusts its reasoning towards related concepts like
oxidative stress and inflammation, retrieves relevant articles related to the input query, and refines
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Table 4: Average performance of CoT, Triplet RAG, and Article RAG baselines.

Setting noveltyr alignmentr noveltyd noveltyd (σ) alignmentd alignmentd (σ)
CoT 94.35 36.72 65.08 20.44 54.97 32.32
Triplet RAG 97.18 32.20 65.93 20.42 55.51 33.32
Article RAG 93.22 43.37 63.42 20.26 57.59 33.84

Table 5: Average performance of Single and Double Agent across evaluation thresholds (%).

Model ET noveltyr alignmentr noveltyd noveltyd (σ) alignmentd alignmentd (σ)

Single Agent

30 99.43 32.76 64.24 20.51 55.54 33.11
50 100.00 38.42 63.39 20.49 54.10 33.00
70 100.00 33.89 63.53 20.67 55.65 32.74
90 100.00 31.07 63.89 21.09 55.23 32.55

Double Agent

30 98.31 25.98 64.94 20.35 55.00 32.93
50 100.00 25.98 66.18 20.33 54.88 33.12
70 98.31 22.60 65.37 20.31 56.92 31.83
90 99.44 17.51 66.41 19.66 56.36 32.69

the hypothesis based on feedback from the Evaluation module. This interaction allows the agent
to converge towards a scientifically plausible and novel hypothesis proposal. Overall, this example
illustrates the potential and suitability of BIOVERGE AGENT for biomedical hypothesis generation,
where extensive exploration, self-evaluation, and iterative improvement are particularly beneficial.
Agent architecture. 1) Single Agent: The two modules share a common memory log, allowing
the Evaluation module to access Generation module’s historical information, reasoning steps, and
hypothesis proposals, and vice versa. 2) Double Agent: The two modules have separate memory logs
with no access to each other’s past actions or observations. This setup creates two separate agents: a
Generator agent as the Generation module and an Evaluator agent as the Evaluation module.
Design Rationale. We study both Single and Double Agent to understand their differences in tool
calling, reasoning, and self-evaluation for hypothesis generation. In Single Agent, shared memory
between modules reduces overall number of API queries and computation cost, while still allowing
the Evaluation module to provide targeted feedback for Generation module to refine proposals. On
the other hand, separating memory logs in Double Agent enables the Generator and Evaluator to
explore independently, encouraging more diverse reasoning trajectories and reducing the risk of
hallucination. We believe both agent frameworks offer distinct advantages for hypothesis generation,
therefore we evaluate both frameworks in our experiment studies.
Evaluation Threshold (ET). BIOVERGE AGENT accepts an Evaluation Threshold (ET) which is
a criterion for terminating the hypothesis generation process, available to both modules. When the
Evaluation Score from Evaluation module reaches ET, the agent terminates and extracts the latest
proposal as the final answer. Otherwise, if maximum allowable iterations is reached, the agent’s entire
memory log is sent to a LLM extractor that returns the most reasonable and confident hypothesis
proposal as the final answer.

4 Experiments
4.1 Experiment settings
For all experiments, we standardize a common set of hyperparameter settings across BIOVERGE
AGENT and baselines. The temperature is set to 0.7 for all LLM queries in agent ReAct steps and
baselines, and 0.2 for extracting the proposed hypotheses and evaluation feedback. The model used for
all agent frameworks and baselines is gpt-4o-mini due to limitations in computational resources and
the consideration of potential dataset contamination. For BIOVERGE AGENT experiments, we stan-
dardize the following metrics across Single and Double Agent architectures: max_outer_iterations of
3 which specifies the maximum number of alternations between Generation and Evaluation modules;
max_inner_iterations of 10 which specifies the maximum number of ReAct steps in both modules.
Evaluation thresholds of 30, 50, 70, and 90 are tested for both Single and Double Agent frameworks
to explore its importance in the agent’s reasoning and decision making.

4.2 Baselines
We evaluate several baseline methods by directly providing relevant historical information sources to
the baselines. The results are displayed in Table 4.
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Figure 6: Average inner iteration counts (left) and outer iteration counts (right) for Single and Double
Agent across evaluation thresholds.

Figure 7: Average number of API calls for Single Agent (left) and Double Agent (right).

All baselines show limitations under certain metrics. Article Retrieval Augmented Generation
(RAG) achieves the highest description alignment of 57.59, reflecting the importance of textual
sources to ground hypothesis proposals; however, it suffers from worst overall relation and description
novelty. Triplet RAG achieves highest relation novelty of 97.18, revealing that structural data helps
to validate novelty, yet its relation alignment of 32.20 is the lowest among baselines. Finally, Chain-
of-Thought (CoT) achieve a descent relation alignment at 36.72 but scores low on relation novelty
and document alignment, suggesting strong limitations without external data sources.

4.3 Agents
BIOVERGE AGENT achieves high novelty and alignment. Table 5 documents agent execution
results. The best setting is Single Agent with evaluation threshold 50, achieving a relation alignment
of 38.42%. All experiments achieved high relation novelty, above 98% across evaluation thresholds.
This shows that BIOVERGE AGENT has strong understanding of novelty, as the agent extensively
self-evaluates proposals from Generation module in the Evaluation module.

4.3.1 Iteration patterns across evaluation thresholds
Figure 6 presents average inner and outer iteration counts for Single and Double Agent across
evaluation thresholds. The left subplot documents the number of ReAct steps the agent executes
within Generation and Evaluation modules per outer loop, while the right subplot counts the number
of Generation-Evaluation iterations before termination. All values are averaged over the test dataset.
Both agents prioritize evaluation over generation. Single and Double Agent both perform more
evaluation steps than generation steps, which suggests their focus on self-evaluation in the Evaluation
module over frequent Generation module iterations. Specifically, Double Agent performs on average
1 more evaluation step than Single Agent, indicating that the sharing of memory logs influences
Single Agent to execute less.
Double Agent performs more outer iterations than Single Agent. Double Agent performs
more outer loops as evaluation threshold increases, shown as a gradual increase from 4.18 to 7.87,
exhibiting a reasonable correlation between compute and evaluation score. In contrast, Single Agent’s
outer iteration count stabilizes around 1.05–1.26. This stabilization might suggest Single Agent’s
overconfidence in self-evaluation to produce a satisfactory evaluation score, leading to smaller number
of outer iterations across different thresholds.
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Figure 8: Total number of API calls
for Single and Double Agent across
evaluation thresholds.

Figure 9: Single Agent, Double Agent, and CoT output
distribution compared to the test set relation distribution.
drug_int, neg_cor, and pos_cor refer to drug interact, nega-
tive correlate, and positive correlate respectively.

4.3.2 Agent API usage and strategy
Figure 7 shows the distribution of API tool calls during hypothesis generation, such as for querying
entities, retrieving historical relations, and browsing articles. The percentages are averaged over
multiple Single and Double Agent experiments under various evaluation thresholds.
Single Agent focuses on structured data sources. The majority of Single Agent tool calls concen-
trate on get_relations and get_triplets, each accounting for over 1/3 of overall APIs. This
reflects Single Agent’s focus to directly extract historical hypotheses and its smaller capacity for
prolonged iterative refinement. Because it typically executes less outer iterations, Single Agent has
fewer opportunities to explore and self-evaluate. Therefore, it prioritizes straightforward reasoning
paths grounded in structured hypotheses over article sources.
Double Agent balances structured and literature sources. Double Agent distributes its tool calls
more evenly between structured sources and article-related APIs, as the modular design encourages
broader exploration and more thorough self-evaluation. By revising suboptimal hypotheses proposals
and incorporating article evidence alongside relations and triplets, Double Agent expands its reasoning
trajectory and reduces reliance on a single data source.

4.3.3 Agent total API usage
Double Agent calls more APIs than Single Agent. Figure 8 presents the total number of API
tool calls across evaluation thresholds for Single and Double Agent, averaged over the test dataset.
Double Agent executes a high number of tool calls, with values ranging from 8.40 to 13.25 as ET
increases; in contrast, Single Agent exhibits less tool calls, between 2 to 4 calls per query. This
result is expected since Generation and Evaluation modules in Single Agent shares the memory log,
therefore less API requests are needed to retrieve the relevant context. On the other hand, Double
Agent executes significantly more tool calls, trading runtime efficiency and computational resources
for potentially greater thoroughness in exploration.

4.4 Error analysis
In this section we further discuss several insights into the agent’s behavior and explore aspects that
undermine BIOVERGE AGENT’s overall capabilities and effectiveness in hypothesis generation. We
compare the output relation distributions of Single Agent, Double Agent, and the chain of thought
baseline with the ground truth test dataset distribution, shown in Figure 9. No experiment settings
has prior knowledge regarding the test dataset relation distribution.
Single Agent biased towards causal relations. Single Agent’s and CoT baseline’s relation distri-
butions strongly skew towards causal relations of treat, cause, inhibit, stimulate, and prevent. This
pattern is likely due to the agent’s innate preference towards proposing and rewarding hypotheses
that connote strong causality, which are easier to semantically identify and disproportionally repre-
sented in literature corpora, and are therefore more likely identified as scientifically plausible and
relevant. Additionally, the Evaluation module in Single Agent possesses the Generation module’s
past reasoning trajectory, which might introduce overconfidence during it’s self-evaluation feedback
for more lenient evaluation scoring. Correlational relations such as interact demands more nuanced
contextual evidence and receives less attention during earlier iterations of hypothesis proposal.
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Table 6: Ablation study results. The base model is Single Agent with evaluation threshold of 50.
Setting noveltyr alignmentr noveltyd noveltyd (σ) alignmentd alignmentd (σ)
Relation Only 100.00 32.16 64.35 20.18 53.53 33.03
Triplet Only 100.00 32.20 63.79 21.24 54.52 32.80
Article Only 96.61 28.25 63.08 20.84 54.66 33.38
KG Only 98.87 28.81 64.38 20.33 53.45 33.71
Generation Only 100.00 33.89 62.85 20.81 53.93 33.49

Double Agent promotes exploration diversity but deviates from ground truth distribution.
Double Agent produces a more balanced distribution of relation types, with greater inclusion of non-
causal relation such as interact and compare. The strict separation of modules reduces overconfidence
and encourages the agent to perform broader exploration beyond causal relations. However, the output
alignment with the test set remains low. A key explanation is that the without direct access to the
Generator’s full reasoning trajectory, the Evaluator commonly composes more generic critiques (e.g.
“insufficient evidence” or “further exploration needed”) rather than precise guidance on hypothesis
refinement or reasoning flaws. This inherit dynamic promotes exploration but fails to drive the agent’s
proposals toward the ground truth distribution.
These findings suggest that robust hypothesis generation requires combining the strengths of both
Single and Double Agent, where the feedback from Evaluation module is both informative and
grounded, without being overly targeted or generic. Developing such framework remains future work
for improving the reliability and scientific plausibility of BIOVERGE AGENT.

4.5 Ablation studies
Table 6 documents the ablation studies that explore individual information sources available to
BIOVERGE AGENT (relation, triplet, article, and knowledge graph) to identify the usage and effec-
tiveness of each datatype for hypothesis generation. The base model, Single Agent with Evaluation
Threshold 50, is used to conduct all ablation experiments. In addition, we include a Generation Only
experiment setting, which performs hypothesis generation with only the Generation module.
All information sources meaningfully improve hypothesis generation. The ablation results
demonstrate that both relations and triplets sources can provide compact historical knowledge to
avoid past proposals, achieving 100% relation novelty for both ablations. On the other hand, article
corpora offers rich linguistic context and helps to produce more accurate hypothesis descriptions,
shown by the highest description alignment score of 54.66. This contrast highlights that a combination
of these data sources are necessary for the agent to maintain high novelty while proposing better
hypotheses, and removing some sources would compromise the agent’s performance.
Self-evaluation notably enhances performance. Comparing the result from generation-only ablation
to the base Single Agent setting with evaluation threshold 50 shows that removing Evaluation module
results in a 5% performance degradation, despite the same access to all information sources. This
demonstrates that iterative self-evaluations, even if imperfect, can identify and correct illogical
reasoning and encourage the agent to propose more relevant hypotheses.

5 Conclusion
In this work, we introduced BIOVERGE, a comprehensive benchmark that unifies structured and
textual biomedical knowledge to advance hypothesis generation. Our proposed BIOVERGE AGENT
framework employs Generation and Evaluation modules within Single and Double Agent architec-
tures, enabling iterative hypothesis generation and refinement through tool-calling, reasoning and
self-evaluation mechanisms. Through extensive experiments, we demonstrate that multi-sourced data
integration and self-evaluation are critical components for effective biomedical hypothesis generation.
These findings establish BIOVERGE benchmark as a valuable resource for the research community
and highlight the potential of agent-based approaches for scientific discovery in biomedicine.
Limitations and Future Work. The selection of models in the experiment section considers both
computational budget and models’ training data cutoff. To better assess other newly released models,
we plan to regularly update BIOVERGE to incorporate updated test sets with up-to-date time cutoffs to
mitigate data contamination. Moreover, this work centers on literature-based hypothesis generation,
which represents only one stage of the broader scientific discovery pipeline. Extending future research
to encompass downstream tasks such as experimental design and execution would move toward more
comprehensive discovery systems. Finally, our current evaluation is limited to diabetes research;
applying BIOVERGE AGENT to a wider range of biomedical domains will be essential for establishing
broader generalizability and clinical relevance.
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A Related works
A.1 AI-driven scientific discovery
To establish scientific discoveries, scientists employ a holistic procedure to propose, experiment, and
validate their research; this process often involves several iterations of data collection and analysis,
proposal construction, experimentation, and reflections Qi et al. [2023], Jain et al. [2023].
1) Data Extraction & Analysis: The first step in scientific inquiry involves extracting and inspecting
experiment findings from previous research, to discern specific patterns or intrinsic correlations.
Identifying inherent characteristics within the data is fundamental to establish and propel a novel
scientific research. 2) Establish Hypothesis: Next, hypotheses are crafted to conjecture the extracted
insights. This process involves formulating thoughtful predictions to explain observations from data
analysis, which dictates the subsequent research and potential outcomes. Therefore, well-thought
hypothesis proposals are critical to facilitate experimentation. 3) Experiment Design: To justify the
formulated hypothesis, scientists design experiments through careful manipulation of experimental
and confounding variables and define a comprehensive procedure to ensure validity and repeatability.
A well-designed scientific study should encompass proper experimental practices and yield relevant
results. 4) Experimentation: Closely adhering to previously established procedures, scientists
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rigorously conduct experiments to extensively collect measurements and observations. In addition,
executing multiple experimental trials ensures that employed methodologies produce significant and
unbiased results for succeeding evaluations. 5) Reflection: The collected data is thoroughly analyzed
under assumptions of the initial proposal, which either supports or refutes the hypothesis. Based on
the conclusion, scientists are encouraged to revise their hypothesis and conduct further exploration
from step one, repeating the cycle until satisfactory results are obtained and research findings are
sufficient for publication.
Hypothesis generation is pivotal: The documentation of the research inquiry process demonstrates
its importance in unearthing new breakthroughs within various disciplines such as psychology,
medicine, and medicine Tong et al. [2023], Sang et al. [2018a], O’Brien et al. [2024]. In particular,
deriving a novel hypothesis can be of uttermost importance as it directly influences the efficiency
and success of the overall scientific inquiry. An well-crafted hypothesis reduces wasteful resources
during prolonged experimentation, narrows the search space, and increases the likelihood of novel
and meaningful discoveries. In domains like biomedicine, where the search space is vast and complex,
well-formulated hypotheses are essential to guide resource-effective experimentation and accelerate
breakthroughs.

A.2 Hypothesis generation
Contemporary methods in LBD can be predominantly categorized into: 1) Co-occurrence based, 2)
semantic relation based, and 3) graph based approaches Bhasuran et al. [2023].

A.2.1 Co-occurrence based methods
One approach utilizes the co-occurrence of known entities among literature collections. The premise
is that if multiple entities, such as title keywords, phrases, and/or specific ideas, co-occur significantly
in a diverse range of scientific literature without previously declared associations, then they are
possibly correlated via some relationship Fleuren and Alkema [2015]. For example, Arrowsmith
attempts to determine concepts or entities that connect two domain disparate articles through co-
occurring entities in their literature titles Smalheiser et al. [2009]. Other works have expanded upon
these methods by incorporating natural language processing and temporal based techniques to more
effectively capture links among concept pairs or terms Pratt and Yetisgen-Yildiz [2003], Millikin
et al. [2023], Lin et al. [2022], Li et al. [2025]. However, most traditional co-occurrence based
methods do not consider the situational and fine-grained contexts within literature, which led to often
irrelevant and incorrect results Hristovski et al. [2006]. These methods also require manual effort to
identify potentially correlated literature, making the process tedious and poorly suited for the scale
and diversity of modern scientific literature.

A.2.2 Semantic based methods
A second branch of work, semantic based methods, focused on incorporating semantic meanings of
concepts using various NLP techniques to improve upon co-occurrence based approaches and increase
the relevance and validity of hypothesis Hristovski et al. [2006]. For instance, past works represent
terms using word embedding vectors to capture a deeper understanding of concepts and literature
for hypothesis generation Tshitoyan et al. [2019], Cohen et al. [2012]. Some works inject temporal
components to capture the changes and relevancy in pairwise concept links overtime Jha et al. [2018,
2019]. Other works utilize predicate triples (subject-predicate-object) or MeSH terms to obtain the
meanings within literature, often used in junction with graph representations Bhasuran et al. [2023],
Wilson et al. [2018], Li et al. [2025], Cohen and Widdows [2017]. Despite improvements in concept
representation and hypothesis discovery, most traditional semantic relation based methods remain
incapable of representing the entire literature space, which decreases the probability of uncovering
hidden connections among terms across literature from vastly different domains. In addition, the
underlying embeddings are likely fixed, which might introduce challenges when adapting to new
emergent concepts or shifting semantics over time.

A.2.3 Graph based methods
Graph based approaches aims to capture relationships among entities across a wide range of
scientific literature, organized structurally with node entities and edge relations into knowledge
graphs Gopalakrishnan et al. [2018], Sang et al. [2018a], Liekens et al. [2011], Millikin et al. [2023].
For example, MeTeOR connects MeSH terms from extracted articles in graphical representation to
perform link prediction through term co-occurrence Wilson et al. [2018]. Other works have leveraged
deep learning based methods to discover entity associations Wang et al. [2019], Sang et al. [2018b],
Sybrandt et al. [2020]. Specifically, Agatha constructs a large semantic graph to encode sentences,
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entities, lemma, etc. from UMLS and MeSH terms, and used their transformer-based ranking scheme
to validate the generated hypothesis Sybrandt et al. [2018, 2020]. Although graph-based methods
have more representational power incorporating co-occurrence and semantic relation methods, it is
often expensive to construct, which might lead to knowledge based scalability issues Jha et al. [2018].
Additionally, graph-based representations rely on the retrieved concepts from the vast literature
corpus, and the rigidity of these representations might cause the prediction framework to miss subtle
hidden links within concepts.

A.2.4 Large language models
In recent years, large language models like GPT-4o and Llama have demonstrated impressive
capabilities in semantic understanding and logical reasoning OpenAI [2024], Touvron et al. [2023],
introducing many new research directions with LLM-enhanced tasks. Many latest works have inte-
grated LLMs to represent extracted concepts as natural language, not only improving interpretability
but also enabling the hypotheses generation that are contextually grounded, syntactically coherent,
and better aligned with scientific plausibility and novelty standards Wang et al. [2024], Yang et al.
[2024], Tong et al. [2023], O’Brien et al. [2024]. These discovery works also include LLM workflows
and agents for scientific discovery to explore how LLMs support systematic discovery beyond lan-
guage tasks Qi et al. [2023], Baek et al. [2024], Zhang et al. [2024], Kumbhar et al. [2025], Su et al.
[2025]. Other research have integrated LLMs and agentic workflows that guides its own decision
making process in a variety of domains. In healthcare, LLM agents are used for diagnosis, care,
documentation and decision making Liu et al. [2024], Gao et al. [2025], Yang et al. [2025], Wang
et al. [2025]. In software engineering, multi-agent LLM frameworks collaborate implicitly, planning
and debugging code on tasks like repository patching and issue resolution Islam et al. [2025], Ashrafi
et al. [2025], Lee et al. [2024], Yu et al. [2025].
However, despite the potential of LLM agents in reasoning and exploration in many domains, their
applications to biomedical hypothesis generation remains limited. This is primarily due to the absence
of standardized benchmark datasets, unified evaluation metrics, and agent-compatible execution
environments that can support interactive exploration, retrieval, and reasoning over complex historical
biomedical corpora. To address this gap, our work introduces BIOVERGE, a biomedical hypothesis
generation benchmark supporting agentic tool calling to query a historical knowledge base containing
PubTator3 extracted hypothesis triplets, PubMed literatures, and a constructed knowledge graph Wei
et al. [2024], PubMed [2025]. We also develop BIOVERGE AGENT, a LLM Agent framework
designed to interact with BIOVERGE for hypothesis generation. Distinct from other approaches,
our agent performs ReAct-based reasoning and alternates between a Generation and an Evaluation
module that can query APIs, retrieve structured and textual historical contexts, assess a hypothesis
proposal’s novelty and relevance, and refine generation outputs through reasoning and self-evaluation.

B Ablation studies
Table 6 documents the ablation studies that explore individual information sources available to
BIOVERGE AGENT (relation, triplet, article, and knowledge graph) to identify the usage and effec-
tiveness of each datatype for hypothesis generation. The base model, Single Agent with Evaluation
Threshold 50, is used to conduct all ablation experiments. In addition, we include a Generation Only
experiment setting, which performs hypothesis generation with only the Generation module.

Relation only Under this setting, the agent is provided with the get_relations() API only,
which returns the most frequent or relevant historical relations associated with given entity inputs. To
construct the ablation, we removed the descriptions of other APIs such as article and KG retrieval
APIs. The result achieved a relation novelty of 100 and a description novelty of 64.35, further
demonstrating our observations that get_relations() helps the agent capture relevant historical
hypothesis and avoids similar proposals to increase novelty.

Triplet only In this setting the agent is only provided with the get_triplets() API, which
fetches historical triplets when provided with relevant entity, relation inputs, PubMed identifier
(PMID), and/or text description inputs. The API returns a collection of related hypotheses in the
format of triplets, constructed similarly to relation only ablation. This study achieves perfect relation
novelty and high document alignment of 54.66, suggesting that compact, relation-focused retrieval
is a useful information type for retrieving relevant historical data, as also observed in the baseline
experiments in Table 4. This observation also suggests that retrieving historical triplets—structured
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more as edges of a knowledge graph—enables the agent to explore subtle connections through
different input combinations.

Article only In the article only ablation setting, the agent is only visible to get_articles() and
browse_articles() APIs, which returns the PMIDs of relevant literature given querying inputs
and the retrieved literature title and abstract of the PMIDs, respectively. Large passages offer rich
linguistic context, helping the agent produce hypothesis descriptions that well align with the ground
truth, as reflected in the highest document alignment score of 54.52. However, novelty is comparably
low as the agent might not acquire relevant hypothesis information directly from the provided article
corpus.

KG only This setting incorporates hypotheses discovered through a knowledge graph walk, where
a limited-depth breadth-first search is performed from each entity in a curated KG. The resulting
sequence of hypotheses is then added to the prompt. The study achieves the highest description
novelty of 64.38, however other metrics are worse than most ablations. This conclusion suggests
that while knowledge graphs can be beneficial when they provide complementary information not
captured by other data types, the less critical content retrieved from KG appears to hinder the agent’s
effectiveness.

Generation only Here we analyze the influence of the evaluation module on the agent’s ability to
perform hypothesis generation and explore whether the Generation module is capable of achieving
similar results without Evaluation module’s feedback. Therefore, we remove the Evaluation module
from the generation pipeline. The agent generates a hypothesis with access to all defined APIs but
will directly output its final hypothesis proposal without evaluation. Genration only agent achieves
the highest relation alignment score of 33.89 among ablation experiments but notably lower than the
base model under Single Agent with Evaluation Threshold of 50, suggesting the benefits of evaluation
to refine erroneous or illogical hypotheses and produce more meaningful proposals through multiple
rounds of Agent execution.

C System prompts

Generation Prompt

You are an expert in proposing new biomedical hypotheses based on historical
literature from PubMed and correspondingly extracted hypotheses by PubTator3.

### Database
You will work with a dataset consisting of PubMed Identifiers (PMID) and
article corpora (titles and abstracts) published before January 1, 2024, and
the extracted hypotheses represented as triplets in the form of (subject
entity, relation, object entity) as individual triplets and collectively in an
undirected knowledge graph. Entities and relations are defined in the PubTator3
report. There are seven entity types: ’chemical’, ’disease’, ’gene’,
’mutation’, ’protein mutation’, ’dna mutation’, and ’snp’; twelve relations
types: ’associate’, ’treat’, ’cause’, ’negative_correlate’,
’positive_correlate’, ’stimulate’, ’inhibit’, ’cotreat’, ’compare’, ’interact’,
’prevent’, and ’drug_interact’. For each relation, only specific subject-object
entity type combinations are valid. For example, the relation ’treat’ only
permits triplets where the subject is of type ’chemical’ and the object is of
type ’disease’.

### Task
Your task is to propose a new hypothesis by identifying the most probable
relation between two given entities in the query. The proposed relation must be
well-founded, considering context and logical inference, and must not have
occurred between these entities in the historical dataset.

Your answer should contain a relation and a natural language description of the
hypothesis. The relation should be selected from the defined relation types,
excluding ’associate’. The available options are: ’treat’, ’cause’,
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’negative_correlate’, ’positive_correlate’, ’stimulate’, ’inhibit’, ’cotreat’,
’compare’, ’interact’, ’prevent’, and ’drug_interact’. The description should
be a clear and concise natural language description of the hypothesis,
explaining the chosen relation between the query entities in a scientifically
plausible context. (based on scientific context to do reasoning)

Output your answer in JSON format:
‘‘‘json
{{"Relation": "___", "Hypothesis Description": "___"}}
‘‘‘

For example, for query Triplet(subject_entity=Entity(name="Insulin",
entity_type=Entity_Type.CHEMICAL), relation=Relation.(?),
object_entity=Entity(name="Diabetes", entity_type=Entity_Type.DISEASE), you
expected answer output should be:
‘‘‘json
{{"Relation": "treat", "Hypothesis Description": "Insulin treats diabetes by
facilitating glucose uptake in cells, thereby reducing hyperglycemia and
managing blood sugar levels effectively."}}
‘‘‘

You have access to Python APIs that allow you to query the database of PubMed
publications, triplets, and triplet-built networkx graph to assist in
validating new hypotheses.
The available API functions are described as follows:

‘‘‘python
{api_description}
‘‘‘

### Generator Process Overview
As the ’Generator’, you are part of an iterative process between a ’Generator’
and ’Evaluator’, with up to {max_outer_iterations} maximum outer iterations.
Specifically, you are responsible for proposing a new hypothesis or refining a
previously proposed hypothesis. You will receive an assessment from the
’Evaluator’ that assesses the proposed hypothesis, in the following JSON format:

‘‘‘json
{{"Is New": "___", "Feedback": "___", "Evaluation Score": "___"}}
‘‘‘

- ’Is New’: Check the novelty of the hypothesis. ’False’ if the hypothesis
exists in the historical dataset, ’True’ otherwise.
- ’Feedback’: a clear and concise natural language explanation providing
justification for the reasonability, plausibility, and novelty of the
proposed hypothesis based on the scientific context and past logical
reasoning and offering suggestions to improve hypothesis generation.
- ’Evaluation Score’: A numeric score from 0 to 100 assessing the
reasonableness of the proposed hypothesis based on your feedback.

With the feedback from ’Evaluator’, refine the current hypothesis and
description or propose a new hypothesis for the given query. You may propose a
previously proposed relation with a new hypothesis description.

Each outer step can include up to {max_inner_iterations} inner iterations. Each
inner iteration includes three inner steps:
1. ’Thought’: Analyze the situation and decide the next action.
2. ’Action’: Perform the decided action (e.g., use an API, propose a
hypothesis).
3. ’Observation’: Record the results of the action or relevant observations.
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The hypothesis generation process concludes when one of the following
conditions is met:
1. A proposed hypothesis is confirmed as new and achieves an ’Evaluation Score’
of at least {evaluation_threshold} out of 100.
2. The maximum number of outer iterations is reached.

### Hypothesis Generation Step-by-Step Guide

#### Inner Iteration Steps
Each inner iteration consists of three steps:
1. **Thought**: Analyze and reason about the current information. Decide on the
next action from one of two choices: ’Call API’, ’Propose Hypothesis’’.
2. **Action**: Perform the action with these specifications:
- ’Call API’: Perform a single functional call from the API with the
appropriate inputs to gather more information. Do not include additional code,
explanations, or natural language descriptions. Example:
‘‘‘python
get_relations(head_entities=[Entity(name="entity1",
entity_type=Entity_Type.TYPE1)], tail_entities=[Entity(name="entity2",
entity_type=Entity_Type.TYPE2)])
‘‘‘
- ’Propose Hypothesis’: Propose a new hypothesis with a relation and a
hypothesis description, and output in JSON format. Do not include additional
code, explanations, or natural language descriptions. Expected Format:
‘‘‘json
{{"Relation": "___’", "Hypothesis Description": "___"}}
‘‘‘

- ’Relation’: a relation selected from the defined relation types,
excluding ’associate’. The available options are: ’treat’, ’cause’,
’negative_correlate’, ’positive_correlate’, ’stimulate’, ’inhibit’,
’cotreat’, ’compare’, ’interact’, ’prevent’, and ’drug_interact’.
- ’Hypothesis Description’: a clear and concise natural language
description of the hypothesis, explaining the chosen relation between the
query entities in a scientifically plausible context.

3. **Observation**: Return the executed results of the API call or the
assessment of the proposed hypothesis.

### Completion Criteria
The hypothesis generation process concludes as follows:
- A hypothesis is considered **final** if:
- It achieves an ’Evaluation Score’ of at least {evaluation_threshold} out of
100.
- It is confirmed to be a new hypothesis.

- If the criteria are not met, continue the process until either the criteria
are satisfied or the maximum of {max_outer_iterations} outer iterations is
reached.

**Notes:**
Use various APIs to gather diverse information, including multi-hop relations,
relation and entity descriptions, relevant PubMed article insights,
semantically similar triplets, etc.. Note: Minimize repeating the same API
calls executed before; a strict limit of {max_retries} applies.
Logically reason across the information, considering both the frequency of
relationships and their semantic meaning, to propose scientifically plausible
hypotheses.
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Evaluation Prompt

You are an expert in assessing new scientific hypotheses based on historical
data, by evaluating novelty and logical plausibility.

### Database
You will work with a dataset consisting of PubMed Identifiers (PMID) and
article corpora (titles and abstracts) published before January 1, 2024, and
the extracted hypotheses represented as triplets in the form of (subject
entity, relation, object entity) as individual triplets and collectively in an
undirected knowledge graph. Entities and relations are defined in the PubTator3
report. There are seven entity types: ’chemical’, ’disease’, ’gene’,
’mutation’, ’protein mutation’, ’dna mutation’, and ’snp’; twelve relations
types: ’associate’, ’treat’, ’cause’, ’negative_correlate’,
’positive_correlate’, ’stimulate’, ’inhibit’, ’cotreat’, ’compare’, ’interact’,
’prevent’, and ’drug_interact’. For each relation, only specific subject-object
entity type combinations are valid. For example, the relation ’treat’ only
permits triplets where the subject is of type ’chemical’ and the object is of
type ’disease’.

### Task
Your task is to assess a proposed hypothesis, consisting of relation and a
natural language description of the hypothesis between two given entities in
the query. The proposed relation must be well-founded, considering context and
logical inference, and must not have occurred between the given entities in the
historical dataset.

You have access to Python APIs that allow you to query the database of PubMed
publications, triplets, and triplet-built networkx graph to assist in
validating new hypotheses.
The available API functions are described as follows:

‘‘‘python
{api_description}
‘‘‘

### Evaluator Process Overview
As the ’Evaluator’, you are part of a larger iterative process between a
’Generator’ and ’Evaluator’, performing up to {max_outer_iterations} maximum
outer iterations.
You will receive a proposed hypothesis from a ’Generator’, in the following
JSON format:

‘‘‘json
{{"Relation": "___", "Hypothesis Description": "___"}}
‘‘‘

- ’Relation’: one relation selected from the following relation types:
’treat’, ’cause’, ’negative_correlate’, ’positive_correlate’, ’stimulate’,
’inhibit’, ’cotreat’, ’compare’, ’interact’, ’prevent’, and ’drug_interact’.
- ’Hypothesis Description’: a clear and concise natural language description
of the hypothesis, explaining the chosen relation between the query entities
in a scientifically plausible context.

You are to assess the proposed hypothesis and provide an assessment, including
novelty check, feedback, and an evaluation score.
You should evaluate the novelty and logical plausibility by searching for
potential counter-evidence from historical data and explore alternative
reasoning paths to strengthen the proposed hypothesis.

Each outer step can include up to {max_inner_iterations} inner iterations. Each
inner iteration includes three inner steps:
1. ’Thought’: Analyze the situation and decide the next action.
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2. ’Action’: Perform the decided action (e.g., use an API or provide assessment
of a hypothesis).
3. ’Observation’: Record the results of the action or relevant observations.

The hypothesis generation process concludes when one of the following
conditions is met:
1. A proposed hypothesis is confirmed as new and achieves an ’Evaluation Score’
of at least {evaluation_threshold} out of 100.
2. The maximum number of outer iterations is reached.

### Hypothesis Evaluation Step-by-Step Guide

#### Inner Iteration Steps
Each inner iteration consists of three steps:
1. **Thought**: Analyze and reason about the current information. Decide on the
next action from one of three choices: ’Call API’ and ’Provide Assessment’.
2. **Action**: Perform the action with these specifications:
- ’Call API’: Perform a single functional call from the API with the
appropriate inputs to gather more information. Do not include additional code,
explanations, or natural language descriptions. Example:
‘‘‘python
get_relations(head_entities=[Entity(name="entity1",
entity_type=Entity_Type.TYPE1)], tail_entities=[Entity(name="entity2",
entity_type=Entity_Type.TYPE2)])
‘‘‘
- ’Provide Assessment’: Provide assessment results of the current proposed
hypothesis with novelty check, feedback, and evaluation score, and output in
JSON format. Do not include additional code, explanations, or natural language
descriptions. Expected Format:
‘‘‘json
{{"Is New": "___", "Feedback": "___", "Evaluation Score": "___"}}
‘‘‘

- ’Is New’: Check the novelty of the hypothesis. ’False’ if the hypothesis
exists in the historical dataset, ’True’ otherwise.
- ’Feedback’: a clear and concise natural language explanation providing
justification for the reasonability, plausibility, and novelty of the
proposed hypothesis based on the scientific context and past logical
reasoning and offering suggestions to improve hypothesis generation.
- ’Evaluation Score’: A numeric score from 0 to 100 assessing the
reasonableness of the proposed hypothesis based on your feedback.

3. **Observation**: Return the executed results of the API call or the output
of the proposed or assessed hypothesis.

#### Completion Criteria
The hypothesis generation process concludes as follows:
- A hypothesis is considered **final** if:
- It achieves an ’Evaluation Score’ of at least {evaluation_threshold} out of
100.
- It is confirmed to be a new hypothesis.

- If the criteria are not met, continue the process until either the criteria
are satisfied or the maximum of {max_outer_iterations} outer iterations is
reached.

**Notes:**
Use various APIs to gather diverse information, including multi-hop relations,
relation and entity descriptions, relevant PubMed article insights,
semantically similar triplets, etc.. Note: Minimize repeating the same API
calls executed before; a strict limit of {max_retries} applies.
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You should evaluate the novelty and logical plausibility by searching for
potential counter-evidence from historical data and explore alternative
reasoning paths to strengthen the proposed hypothesis.
Logically reason across the information, considering both the frequency of
relationships and their semantic meaning, to propose scientifically plausible
hypotheses.

Query Prompt

Please evaluate the current proposed relation between entities "{entity1_name}"
and "{entity2_name}" based on provided historical information. I.e. critique
the current relation for query
Triplet(subject_entity=Entity(name="{entity1_name}",
entity_type={entity1_type}), relation=Relation.(?),
object_entity=Entity(name="{entity2_name}", entity_type={entity2_type}).
Current proposed hypothesis: {current_proposal}
{scratchpad}

Evaluation Prompt

You are an expert in checking the novelty and alignment of proposed hypotheses
between entities "{entity1_name}" and "{entity2_name}" based on historical
literature from PubMed.

### Database
The dataset consists of PubMed Identifiers (PMID) and article corpora (titles
and abstracts) published before January 1, 2024, and the extracted hypotheses
represented as triplets in the form of (subject entity, relation, object
entity) as individual triplets and collectively in an undirected knowledge
graph. Entities and relations are defined in the PubTator3 report. There are
seven entity types: ’chemical’, ’disease’, ’gene’, ’mutation’, ’protein
mutation’, ’dna mutation’, and ’snp’; twelve relations types: ’associate’,
’treat’, ’cause’, ’negative_correlate’, ’positive_correlate’, ’stimulate’,
’inhibit’, ’cotreat’, ’compare’, ’interact’, ’prevent’, and ’drug_interact’.
For each relation, only specific subject-object entity type combinations are
valid. For example, the relation ’treat’ only permits triplets where the
subject is of type ’chemical’ and the object is of type ’disease’.

### Input
The proposed hypothesis contains a natural language description of the
hypothesis, explaining the chosen relation between the query entities in a
scientifically plausible context. The given answer format is:
Here is the proposed hypothesis:
{proposed_hypothesis_description}

### Task
Your have 2 tasks:
1. Verify the novelty for the proposed hypothesis by checking its novelty from
related past literature between entities "{entity1_name}" and "{entity2_name}".
The proposed hypothesis is novel if it is semantically distinct from all
related literature. The proposed hypothesis is not novel if it is semantically
similar to at least one piece of related literature. Generate a ’Novelty Score’
from 0 - 100, where 100 indicates the proposed hypothesis is entirely novel and
semantically unrelated to past literature.
Here is the list of related past literature:
{related_past_literature}

2. Check the alignment of proposed hypotheses to ground truth literature. The
proposed hypothesis is aligned if it is semantically similar to at least one
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ground truth literature. The proposed hypothesis is not aligned if it is
semantically distinct from all ground truth literature. Generate an ’Alignment
Score’ from 0 - 100, where 100 indicates the proposed hypothesis is completely
semantically aligned with all ground truth literature.
Here is the list of ground truth literature:
{ground_truth_literature}

### Evaluation Output
Output the ’Novelty Score’ and ’Alignment Score’ in JSON format. Do not include
additional code, explanations, or natural language descriptions. Expected
format:

‘‘‘json
{{"Novelty Score": "___", "Alignment Score": "___"}}
‘‘‘
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