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ABSTRACT

Unified Vision–Language Models (UVLMs) aim to advance multimodal learn-
ing by supporting both understanding and generation within a single framework.
However, existing approaches largely focus on architectural unification while
overlooking the need for explicit interaction between the two capabilities during
task solving. As a result, current models treat understanding and generation as
parallel skills rather than synergistic processes. To achieve real synergy, we in-
troduce the interleaved Analyzing–Drafting problem-solving loop (AD-Loop), a
new think paradigm that dynamically alternates between analytic and drafting op-
erations. By interleaving textual thoughts with visual thoughts, AD-Loop enables
models to iteratively refine both comprehension and outputs, fostering genuine
synergy. To train this mechanism, we design a two-stage strategy: supervised
learning on interleaved thought data to initialize alternation, followed by rein-
forcement learning to promote adaptive and autonomous control. Extensive ex-
periments demonstrate that AD-Loop consistently improves performance across
standard benchmarks for both understanding and generation, with strong transfer-
ability to various UVLMs architectures. Visual analyses further validate the effec-
tiveness of implicit visual thoughts. These results highlight AD-Loop as a princi-
pled and broadly applicable strategy for synergizing comprehension and creation.
Code and model will be available later.

1 INTRODUCTION

Unified Vision–Language Models (Wang et al., 2024; Wu et al., 2025b; Deng et al., 2025; Wu
et al., 2025a; Xie et al., 2025) can handle both understanding and generation tasks, attracting
significant research attention as they hold the potential to move beyond task-specific solutions
toward general multimodal intelligence. Recent advances in multimodal large language models
(MLLMs) (Liu et al., 2024a; Bai et al., 2023; Dai et al., 2023) and diffusion-based generative trans-
formers (DiTs) (Podell et al., 2023; Yang et al., 2024; AI, 2025) have substantially improved per-
formance in both multimodal comprehension and content creation. Building upon these advances,
early efforts (Shen et al., 2023; Wu et al., 2024b) have attempted to integrate existing understand-
ing and generation models within a single framework, enabling both capabilities simultaneously.
However, such straightforward integration merely co-locates the two paradigms without enabling
genuine interaction or mutual reinforcement. In essence, understanding and generation are inher-
ently complementary (Paivio et al., 2006; Ellamil et al., 2012). Robust understanding provides the
semantic foundation for faithful generation, while successful generation results can serve as tangible
evidence of visual comprehension. Therefore, an effective unified model should not only combine
the two capabilities but also establish a mutually reinforcing loop.

To realize such synergy, early works have sought to build coherent unified architectures, for instance
by casting both understanding and generation as autoregressive (AR) next-token prediction (Zhan
et al., 2024; Wu et al., 2025a; Wang et al., 2024; Team, 2024a). While this design provides a unified
interface from an engineering standpoint, it often suffers from issues such as parameter competition
and task interference. More recent efforts explored (i) decoupled encoders with multi-head outputs
to reduce representational conflicts (Chen et al., 2025c; Ma et al., 2025; Kou et al., 2024; Deng et al.,
2025), and (ii) hybrid AR–diffusion models (Xie et al., 2025; Zhou et al., 2024; Xiao et al., 2025b)
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Query: Generate a traffic light where none of the lights are 
green.

U
nderstanding

Generation

Query: Identify the functional 
relationship between the kettle, 
stove and cup

The kettle is metallic, …the cup ceramic, 
empty. two potential relations:

Initial Analysis

Hypothesis Visualization

Relation A: kettle is placed on the stove 
for heating water.
Relation B: cup is directly associated 
with the stove for heating liquid.

Draft A Draft B

Verification via Visual Hypotheses

Fine-Grained Elaboration

Draft A is coherent with 
commonsense functional usage
Draft B is less plausible, as ceramic 
cups are rarely used directly for 
stovetop

Final Answer: The functional relationship is that 
the kettle is heated on the stove, and subsequent-
ly used to pour hot water into the cup.

The top is red, the middle is yellow, 
and the bottom is green. But, the 
query requires that none of the 
lights be green, so the green light 
should be switched off.

Verification Analysis

Final Generation

Initial Analysis

A traffic light is 
typically consists of  
three lights. 

Initial Generation

Figure 1: Illustration of the interleaved analytic–drafting problem-solving loop, where understand-
ing and generation interact synergistically to yield accurate solutions.

that take advantage of efficiency with high-fidelity rendering. Overall, these explorations of synergy
have predominantly focused on improving architectural design to unify the two abilities, while over-
looking a crucial point: during task solving, the understanding and generation modules often lack
close and explicit interaction, thereby failing to realize genuine synergy between comprehension
and generation. To illustrate this, when a user’s instruction is ambiguous, an understanding module
could first propose several plausible candidate solutions for a question, then invoke generation to
produce sketches or key visualizations as a means of “verifying” these candidates, ultimately yield-
ing the correct answer. Conversely, once the generation module produces initial results, it could
query the understanding module for high-level guidance, such as attributes or reasonable spatial lay-
outs, to progressively refine the output (see Fig. 1). This motivates a new perspective: instead of
treating understanding and generation as co-existing skills, we argue they should be interleaved in
a problem-solving loop.

To combat this, we propose a novel thinking paradigm, termed the interleaved analyzing–drafting
problem-solving loop (AD-Loop). The core idea is to enable the model to dynamically alternate
between understanding and generation, thereby fostering an organic synergy that enhances over-
all problem-solving capability. Specifically, building upon existing UVLMs, we design to inter-
leave textual thoughts, such as semantic abstraction and reasoning, with visual thoughts, including
sketching and spatial layout. This dynamic switching between analytic and synthetic modes enables
the model to iteratively refine its reasoning and outputs. Furthermore, we introduce a two-stage
training strategy to effectively optimize the model, as shown in Fig. 2. In the first stage, we con-
struct supervised datasets of interleaved textual–visual thoughts, which initialize the model with the
ability to alternate between analyzing and drafting in a guided manner. In the second stage, we
employ reinforcement learning with hybrid feedback to encourage the model to intelligently and au-
tonomously decide when to invoke understanding versus generation, thereby fostering adaptive and
self-directed synergy. Importantly, our proposed training framework and problem-solving paradigm
are architecture-agnostic, making them broadly applicable to a wide range of existing UVLMs. By
integrating interleaved analyzing and drafting, our approach substantially enhances their ability to
achieve deep synergy between comprehension and creation.

We conduct extensive experiments to evaluate the effectiveness of the proposed AD-Loop. First,
across widely used understanding and generation benchmarks, our method consistently delivers
broad and significant performance improvements, including an average +2.3% improvement on un-
derstanding tasks and an overall score of 86% on GenEval. Next, ablations across thinking strategies
demonstrate that interleaving analytic and drafting thinking yields clear advantages. We then con-
duct transfer studies across different UVLM architectures, showing that our approach can be seam-
lessly applied to diverse models and significantly enhance both understanding and generation bench-
marks compared to the original baselines. Furthermore, visualizations of implicit visual thoughts
confirm the rationality of our design. Finally, through detailed case analyses, we present compelling
evidence that our model alternates between understanding and generation during problem-solving,
leading to superior outcomes. Our contributions can be summarized as follows:

• We propose a fundamentally new strategy for synergizing understanding and generation by
introducing the interleaved analyzing–drafting thinking mechanism, which enables tight,
explicit interactions between the two capabilities.
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• We develop a novel two-stage learning strategy that equips UVLMs with the ability to intel-
ligently adopt interleaved analytic–drafting problem-solving loops during the task-solving
process. Moreover, the framework is architecture-agnostic across different UVLMs.

• Extensive experiments on understanding and generation benchmarks demonstrate the ef-
fectiveness of our approach, providing intuitive visual analyses that confirm both the ratio-
nality and efficacy of the proposed synergy.

2 RELATED WORK

The mutual benefits between understanding and generation have long been a central theme Paivio
et al. (2006); Ellamil et al. (2012). Enabled by rapid progress in multimodal large language models
(MLLMs) Liu et al. (2024a); Bai et al. (2023); Li et al. (2024) and diffusion-based generators Podell
et al. (2023); Yang et al. (2024), state-of-the-art systems now achieve strong performance on each
task in isolation. This has sparked growing interest in unified vision–language models (UVLMs) Xie
et al. (2025); Kou et al. (2024); Wu et al. (2025b), which support multimodal understanding and
generation within a single framework. Early explorations (Shen et al., 2023; Wu et al., 2024b)
largely composed powerful specialist models by directly connecting an understanding model with a
generation model. However, such plug-and-play integration merely co-locates the two capabilities
and does not realize mutual assistance. More recent efforts pursue more coherent formulations
that jointly model both tasks, e.g., casting both as autoregressive next-token prediction (Wu et al.,
2025a; Team, 2024a; Chen et al., 2025c;b; Geng et al., 2025b) or adopting unified AR-diffusion
architectures (Xie et al., 2025; Zhou et al., 2024; Deng et al., 2025). Yet even these tighter designs
still treat understanding and generation as parallel, independently callable skills; at inference time,
the two modules rarely engage in close, explicit interaction, and genuine synergy remains elusive.
In contrast, we introduce a novel thinking paradigm that enables true synergic learning between
understanding and generation through an interleaved analyzing–drafting loop.

A complementary line of work (Shao et al., 2024; Xu et al., 2024; Shen et al., 2025) focuses on en-
dowing MLLMs with strong reasoning capabilities. Early approaches follow the Chain-of-Thought
paradigm (Wei et al., 2022) by decomposing problems into substeps and supervising stepwise ratio-
nales. Subsequent methods scale test-time computation (Snell et al., 2024) via self-consistency or
majority voting and incorporate search-based inference (Yao et al., 2024), while training-time credit
assignment is improved through reinforcement learning (RL) or preference optimization tailored to
reasoning. More recently, RL has been explored to elicit emergent reasoning abilities that improve
multimodal understanding (Huang et al., 2025; Chen et al., 2025a; Yuan et al., 2025) and genera-
tion (Xiao et al., 2025b; Jiang et al., 2025a). In light of this, some explorations (Jiang et al., 2025b;
Yan et al., 2025) attempt to leverage RL to co-optimize understanding and generation, thereby
strengthening their respective capabilities. Beyond textual-only reasoning thoughts, several stud-
ies (Cheng et al., 2025a; Shao et al., 2024) interleave textual reasoning with visual evidence, either
via tool-augmented pipelines (Zheng et al., 2025; Zhang et al., 2025a; Man et al., 2025; Su et al.,
2025) or by directly generating visual traces (Chern et al., 2024; Li et al., 2025; Yang et al., 2025b).
Building on these advances, our work models the synergy between understanding and generation
as an interleaved analyzing–drafting problem-solving loop that jointly produces textual and visual
thoughts, thereby enhancing synergic learning within UVLMs.

3 METHODOLOGY

Building upon a UVLM, we model the synergetic understanding and generation thinking process
as an interleaved analyzing–drafting problem-solving loop. Given an input, the model alternates
between analyzing (producing textual thoughts) and drafting (producing visual thoughts) before de-
livering the final output. To achieve this, we design a two-stage training pipeline: Stage 1 performs
supervised training to imitate interleaved thinking, and Stage 2 leverages reinforcement learning to
enable the model to adaptively decide when to invoke analysis or drafting.

3.1 MODEL ARCHITECTURE

Let the input be x = (q, I), where q is text and I = {Im}Mm=1(M≥1) is an optional set of images.
The input image set I = {Im} is encoded by a vision encoder into visual embeddings, which are
fused with the textual stream and then processed by an LLM backbone for reasoning. The model
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Stage-1: Initially learning for interleave thinking
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Intra reward

Intra reward

Inter reward

update KL

Stage-2: RL-driven adaptive interleaved thinking

Figure 2: Pipeline of our training framework. Stage-1: train the UVLM to emit interleaved thinking
traces. Stage-2: apply GRPO for hybrid reasoning. The policy samples multiple traces with/with-
out the interleaved AD-Loop for each input. A reward model scores outcomes, and then group-
normalized advantages are applied to update the policy, teaching the model when AD-Loop helps.

outputs a thinking trace wrapped in <think> and </think> tags and a final outcome:

<think>[T-T][V-T][T-T][V-T] . . .</think> [Answer], (1)

where [T-T] denotes text thought, [V-T] denotes visual thought, which is enclosed by two special
tokens marking the beginning and end of the visual thought. [Answer] is the final text or image.
For image synthesis, prior unified models typically adopt either (i) discrete codebooks that predict
quantized “image tokens” (Chen et al., 2025c; Xie et al., 2025), or (ii) continuous latent regressors
that predict low-dimensional vectors consumed by a renderer (Deng et al., 2025). Emitting a full
visual scene during the thought phase requires long token streams (often hundreds of tokens or
prolonged diffusion steps), which increases latency and entangles reasoning with pixel-level details
that are irrelevant to the decision. Motivated by cognitive accounts that internal imagery is schematic
rather than pixel-accurate (Shepard & Metzler, 1971), we replace full rendering during thinking
with a compact set of latent visual thoughts, {vj}Kj=1, which summarizes only the factors useful for
reasoning under a strict budget K ≪ the tokens required to render an image. This design preserves
the sufficiency of visual cues for the downstream decision while avoiding the cost of pixel-level
synthesis in the thought process.

3.2 STAGE-1: SUPERVISED TRAINING OF INTERLEAVED THINKING

We begin with supervised fine-tuning on interleaved reasoning data. This approach mitigates the
instability commonly observed in cold-start RL for reasoning and provides a strong initialization for
next-stage reinforcement learning.

Dataset Construction. Our interleaved corpus comprises two halves: i) Understanding. We lever-
age the existing multimodal CoT resources (Cheng et al., 2025b; Zhang et al., 2025b; Shao et al.,
2024), reorganizing their rationales and cropping the referenced regions according to the provided
annotations to construct the interleaved schema. We further synthesize AD-Loop thinking traces
by instantiating schematic grid tasks following Li et al. (2025). In total, the understanding portion
contains 20K interleaved examples. ii) Generation. We use the GoT dataset (Fang et al., 2025) and
additionally construct an Inter-T2I set from X-to-image corpora (Xiao et al., 2025a), augmenting
each instance with an interleaved thinking trace. This yields 22K interleaved generation traces.

Training. To teach the model an AD-Loop style of thinking, we fine-tune the UVLM directly on
the above collected corpus, as shown in Fig. 2. A practical issue is that the data sources provide
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explicit visual thoughts (i.e., pixel images), whereas our reasoning format requires latent visual
thoughts. We therefore convert each explicit visual-thought image I into a compact set of tokens
via a frozen generator-side encoder and a deterministic clustering step. Technically, we reuse the
encoder for image generation from the unified model. Given I , the encoder yields a grid of latent
tokens {zi}Ni=1. Rather than supervising the model to emit the full grid, we reduce {zi}Ni=1 to a
small, semantically coherent set {vj}Kj=1 with K ≪ N . Following Jin et al. (2024), we adopt a
density peaks clustering mechanism to construct the token clusters. For each cluster Cj , we produce
a representative latent visual thought token vj as the union of members vj = 1

|Cj |
∑

i∈Cj
zi.

The clustering mechanism yields stable targets that merge tokens based on semantic proximity in
the latent space, rather than through naive spatial pooling. We order V̂ = {vj}Kj=1 by the center
coordinates of their clusters (top–left to bottom–right) to obtain a deterministic sequence. Let T ⋆

and V⋆ denote the gold text-thought and visual thoughts sequences in the <think> block, and let
o⋆ denote the final output. The final training objective is to optimize:

LS1 = LCE

(
T̂ , T ⋆

)
︸ ︷︷ ︸

text thoughts

+ α Lvis

(
V̂, V⋆

)
︸ ︷︷ ︸

latent visual thoughts

+ Lout(ô, o
⋆)︸ ︷︷ ︸

task output

, (2)

where Lvis is mean-squared error, and Lout is the original task loss. α is the coefficient weight.

3.3 STAGE-2: RL-DRIVEN ADAPTIVE INTERLEAVED THINKING

After Stage–1 fine-tuning, the model has acquired an initial interleaved thinking capability. How-
ever, some queries might be solved confidently with an isolated thinking mechanism, i.e., invok-
ing only the understanding or generation capability. Accordingly, Stage-2 further strengthens the
model’s thinking competence and makes the policy adaptive for each input. The model should be
able to decide whether to think with AD-Loop (V+) or without it (V−).

Drawing on group-relative preference optimization (Guo et al., 2025; Jiang et al., 2025c), we intro-
duce an adaptive interleaved thinking regimen, as illustrated in Fig. 2. For every query, the policy
explores both thinking modes and receives inter- and intra-group normalized feedback. The resulting
group-relative advantages drive on-policy updates toward a parsimonious strategy. We next detail
the sampling scheme in Adaptive Interleaved Thinking, the reward design in Reward Assignment,
and the update rule in Policy Optimization.

Adaptive Interleaved Thinking. For each query q, we sample two groups of trajectories from
the old policy πold: one with the AD-Loop enabled ({o+i }

G/2
i=1 ), and one with the AD-Loop disabled

({o−i }
G/2
i=1 ). Let G be the total number of samples per query:

{o+i }
G/2
i=1 ∼ πold, {o−i }

G/2
i=1 ∼ πold, O = {o+i }

G/2
i=1 ∪ {o−i }

G/2
i=1 (3)

Reward Assignment. Following Guo et al. (2025), each trajectory is assigned a scalar reward
composed of a format component and a content component. For generation tasks, the content term
aggregates alignment and quality scores (e.g., preference feedback (Wu et al., 2023), unified scor-
ing (Wang et al., 2025), or text–image alignment (Geng et al., 2025a)), while for understanding
tasks, we apply rule-based checks to enforce correctness:

rbase(o) = rformat + rcontent. (4)
To explicitly encourage useful AD-Loop, we add a margin-based bonus to V+ only when it outper-
forms the strongest V− candidate and the AD-Loop contributes meaningfully:

r(o+i ) = rbase(o
+
i )+λ 1(AD-Loop|a)max

(
0, rbase(o

+
i )−max

j
rbase−δ

)
, r(o−i ) = rbase(o

−
i ), (5)

where 1(AD-Loop|a) is an indicator that the answer is correct and AD-Loop thinking is employed.
The margin parameter δ requires the V+ candidate to exceed the strongest V− baseline by at least
δ, filtering out spurious wins and favoring the simpler text-only mode unless a meaningful gain
is achieved. λ scales this bonus, balancing its impact against the base reward. Furthermore, we
introduce inter-group reward to indicate which thinking mode performs best for each query:

rinter(o
m
i ) =

1, if m = argmax
m′∈{+, −}

{r(o+), r(o−)}

0, otherwise
, rintra(o

m
i ) = r(omi ), m ∈ {+,−} (6)
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Table 1: Comparison with baselines on multimodal understanding benchmarks. “Und.” and “Gen.”
denote understanding and generation, respectively.

Model #Params POPE↑ MME-P↑ MMB↑ SEED↑ GQA↑ MMMU↑ MM-Vet↑
• Und. Only

LLaVA-v1.5 (Liu et al., 2024a) 7B 85.9 1510.7 64.3 58.6 62.0 35.4 31.1
Qwen-VL-Chat (Bai et al., 2023) 7B - 1487.5 60.6 58.2 57.5 – –
IDEFICS (Laurençon et al., 2023) 8B - - 48.2 - 38.4 - -
InstructBLIP (Dai et al., 2023) 13B 78.9 1212.8 - - 49.5 – 25.6

• Und. and Gen.
Emu3 (Wang et al., 2024) 8B 85.2 1244.0 58.5 68.2 60.3 31.6 37.2
Show-o (Xie et al., 2025) 1.3B 80.0 1097.2 – – 58.0 26.7 –
Liquid (Wu et al., 2024a) 8B – 1448.0 – – 61.1 – –
MMaDA (Yang et al., 2025a) 8B 86.1 1410.7 68.5 64.2 61.3 30.2 –
Janus-Pro (Chen et al., 2025c) 7B 87.4 1567.1 79.2 72.1 62.0 41.0 50.0
BAGEL (Deng et al., 2025) 7B – 1687.0 85.0 – – 55.3 67.2
Ours 7B 90.1 1696.0 87.6 74.4 63.8 57.3 69.7

Table 2: Comprehensive generation comparison on GenEval (Ghosh et al., 2023) benchmark. “Und.”
and “Gen.” denote understanding and generation, respectively.

Model Single Obj.↑ Two Obj.↑ Counting↑ Colors↑ Position↑ Attri.↑ Overall↑
• Gen. Only
Emu3-Gen (Wang et al., 2024) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
SDXL (Podell et al., 2023) 0.98 0.74 0.39 0.85 0.15 0.23 0.55
FLUX.1-dev (Yang et al., 2024) 0.99 0.81 0.79 0.74 0.20 0.47 0.67
SD3-Medium (AI, 2025) 0.99 0.94 0.72 0.89 0.33 0.60 0.74

• Und. and Gen.
Show-o (Xie et al., 2025) 0.95 0.52 0.49 0.82 0.11 0.28 0.53
TokenFlow-XL (Xie et al., 2025) 0.95 0.60 0.41 0.81 0.16 0.24 0.55
Janus-Pro (Chen et al., 2025c) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
BAGEL (Deng et al., 2025) 0.99 0.94 0.81 0.88 0.64 0.63 0.82
MindOmni (Xiao et al., 2025b) 0.99 0.94 0.71 0.90 0.71 0.71 0.83
Ours 0.98 0.94 0.83 0.90 0.80 0.74 0.86

Optimization. Following group-relative preference optimization, we combine an intra-group ad-
vantage with an optional inter-group term:

Ai =

[
rintra(oi)−mean(rintra(oj))

std(rintra(oj))

]
︸ ︷︷ ︸

GRPO for intra-group advantage Aintra

+γ

[
rinter(oi)−mean(rinter(oj))

std(rinter(oj))

]
︸ ︷︷ ︸

GRPO for inter-group advantage Ainter

, (7)

This group-relative advantage Ai of i-th response encourages the model to prioritize the response
with higher relative quality. γ is the weighted parameter. Finally, following Guo et al. (2025), we
apply a KL-divergence regularization with β hyperparameters and a clip trick to optimize the model.

4 EXPERIMENTS

4.1 SETTINGS

Dataset. We construct the training dataset to emerge the synergy between understanding and gen-
eration, as described in Sec. §3.2, encompassing interleaved reasoning for both understanding and
generation. The detailed statistics are presented in Appendix §F.

Implementations. Our backbone is BAGEL-7B (Deng et al., 2025) in which SigLIP2-
so400m/14 (Tschannen et al., 2025) is adopted as the image encoder for understanding, and the
FLUX pre-trained VAE (Yang et al., 2024) is utilized as the image latent encoder/decoder for gen-
eration. We train the model in two stages. At stage-1, we fine-tune on the curated interleaved
reasoning corpus using a global batch size of 256 and a cosine learning-rate schedule with initial
learning rate 1×e−5. The maximum number of a latent visual thought is set to K=16 tokens. At
stage-2, we implement RL with the VERL framework (Sheng et al., 2025). We fix the random seed
to 42 to ensure reproducibility. The policy is optimized with AdamW, a constant learning rate of
2×e−6, a global batch size of 64, and 8 rollouts per prompt. The objective combines the clipped
policy-gradient loss (ϵ=0.5) with a KL regularization to a frozen reference model weighted by 0.01.
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Table 3: Comparison with different thinking strategies. Isolated thinking: understanding or genera-
tion performed in isolation; T : analyzing-only thinking; T + I (explicit): supervised textual–visual
(explicit) interleaving; T + Ĩ (implicit): learned textual–visual (implicit) interleaving; T / T + Ĩ :
adaptive interleaved thinking that automatically selects with or without interleaved thinking.

Think Strategy Understanding Generation (WISE)
MathVista↑ LogicVista↑ SAT↑ Cultural↑ Space↑ Biology↑

Isolated thinking 61.5 40.2 0.63 0.44 0.68 0.44
T 68.3 44.1 0.74 0.67 0.69 0.56
T + I (explicit) 72.9 46.6 0.81 0.73 0.74 0.64
T + Ĩ (implicit) 73.6 47.2 0.84 0.75 0.77 0.65

T / T + Ĩ 75.8 49.5 0.89 0.79 0.78 0.68

<think>The model should generate an image of a self-
driving bed that can move and adjust its position
automatically, showcasing advanced technology and
automation. Here’s the full, detailed prompt: A futuristic
self-driving bed that seamlessly integrates advanced
technology and automation, featuring sleek, modern
design with smooth, flowing lines and a minimalist
aesthetic. The bed is shown in motion, smoothly
transitioning between different positions, such as
reclining, adjusting its height, ..creating a sense of
sophistication and cutting-edge innovation. </think>

Prompt: A bed that can drive itself. <think> A near-future bedroom where a bed has been redesigned 
to drive itself [V-T]. The minimalist loft measures about 5 by 6 
meters with tall ceilings and a floor-to-ceiling window showing a 
rain-washed city skyline at dawn [V-T]. At the center, a king-size 
graphite-gray bed glides slowly across polished concrete, 
supported by compact omni-wheels [V-T] hidden under the frame. 
A subtle underglow light and a small cyan display on the 
headboard suggest autonomous control, alongside a tiny lidar and 
stereo sensors. One corner of the duvet lifts as the bed moves, 
casting ripples in fabric. The right wall features a discreet charging 
pad and a walnut nightstand, while a soft LED guide strip runs 
along the left baseboard. Dust motes drift in angled morning light, 
highlighting a futuristic yet serene atmosphere. <think> 

Original w/ Think
Generated with 

interleaved thoughts
Generated with only 

textual thoughts

Figure 3: Qualitative comparison: original prompt (left), self-think mode, interleaved thoughts, and
text-only thoughts filtered from the interleaved thoughts (right).[V-T] means latent visual thoughts.

4.2 MAIN RESULTS

Understanding. We compare the proposed method against state-of-the-art understanding-only
and unified models on multimodal understanding benchmarks, including POPE (Li et al., 2023b),
MME (Zhang et al., 2021), MMB (Liu et al., 2024b), SEED (Li et al., 2023a), GQA (Hudson &
Manning, 2019), MMMU (Yue et al., 2024), MM-Vet (Yu et al., 2023). As highlighted in Table 1,
our method consistently yields the best overall results. This improvement stems from interleaving
visual-text reasoning, which effectively mitigates conflicts between understanding and generation
while unlocking their synergy. Notably, even compared to MMaDA (Yang et al., 2025a), which
utilizes RL-based thinking training, our approach still yields significant gains, confirming that gen-
eration can indeed enhance understanding.

Generation. We assess visual generation performance on the GenEval benchmark (Ghosh et al.,
2023). As shown in Table 2, our method achieves the highest overall score of 86%, outperforming
both generation-only and unified baselines. In particular, it delivers substantial improvements in
fine-grained attributes in positional accuracy and attribute correctness. Moreover, compared with
MindOmni (Xiao et al., 2025b) that employs textual thinking only, our approach achieves better
performance, clearly demonstrating the effectiveness of incorporating visual thoughts.

4.3 ABLATION ON THINKING TYPES

We systematically evaluate reasoning strategies across both understanding and generation bench-
marks, including MathVista (Lu et al., 2023), LogicVista (Xiao et al., 2024), SAT (Ray et al., 2024),
and WISE (Niu et al., 2025). Results are summarized in Table 3. First, compared with the no-think
setting, equipping the model with reasoning capability (T-think) yields substantial improvements in
both understanding and generation, confirming the effectiveness of reasoning guidance. Second,
augmenting textual reasoning with visual thoughts further boosts performance, highlighting that vi-
sual cues supply fine-grained details complementary to text. When comparing explicit (T +I-think)
and implicit (T + Ĩ-think) visual thoughts, we observe only marginal differences. This can be partly
owed to the learning paradigm, and explicit supervision can introduce pixel-level noise, whereas
implicit reasoning captures compact salient cues. Nonetheless, combining the two in our hybrid
setting achieves the best results across all tasks, suggesting a strong complementarity.

Further qualitative evidence is provided in Fig. 3. With the raw prompt alone, the model tends to
generate superficial, semantically shallow outputs. Adding self-think produces more detailed de-
scriptions, yet still overly abstract and often misaligned with user intent. By contrast, interleaved
thoughts guide faithful, detail-oriented outputs (e.g., correct wheels/screens). Finally, filtering in-
terleaved traces to text-only frequently reintroduces errors (e.g., lighting/positioning), underscoring
the necessity of visual thoughts for high-fidelity controllability.
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Figure 2: Unified-R1 consistently improves both understanding and generation
across two backbones. Bars compare each baseline with its +Unified-R1 coun-
terpart under the same metric.
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Figure 4: Absolute performance gain after applying AD-Loop, comparing Janus-Pro with discrete
tokenization and BAGEL with continuous embedding for visual thoughts learning.

Table 4: Comparison of latent visual representations learn by the generation (Gen.) vs. understand-
ing (Und.) encoder.

MMstar MathVista LogicVista GenEval WISE (cultural) WISE (Biology)

From Gen. Encoder 54.9 75.8 47.5 0.86 0.79 0.68
From Und. Encoder 51.6 70.9 44.3 0.84 0.71 0.61

(1) (2) (3) (4)
Figure 5: Examples of latent visual thoughts. Each case shows the original image (left) and the
corresponding visual thoughts (right), capturing abstract visual structures.
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Figure 6: Performance across skills and capabilities on the LogicVista dataset, comparing models
with and without visual thoughts, alongside the proportion of visual-thought usage.

4.4 ANALYSES AND DISCUSSION

In this section, we are about to answer the following in-depth questions:

RQ-1: Can this method extend into different structures of unified MLLMs? Current unified
MLLMs adopt different architectures for visual content generation. One line of work, including our
backbone, generates continuous embeddings, while another, exemplified by Janus-Pro (Chen et al.,
2025c), produces discrete tokens. We apply our proposed method to both paradigms, as described in
Sec. §3.2. As shown in Fig. 4, Unified-R1 consistently improves both understanding and generation
across the two settings. These results demonstrate that our approach is architecture-agnostic and can
serve as a general mechanism for strengthening emergent task synergy in unified MLLMs.

RQ-2: Should visual thoughts be derived from understanding or generation? We compare
visual thoughts derived from the understanding versus the generation encoder. As shown in Table 4,
using the generation encoder yields consistently better results for both understanding and generation
tasks. This can be attributed to two aspects. On the one hand, we observe that models converge
faster under this setting, likely because generation-oriented thoughts are already extensively pre-
trained. Moreover, generation-based visual thoughts inherently capture both semantic and pixel-
level information, making them more informative and beneficial for multimodal reasoning.

RQ-3: What do the implicit visual thoughts look like? We visualize the clustering results in
Fig. 5. The observations align well with our expectations: latent visual thoughts encode semantically
coherent information while preserving coarse pixel-level structures. This allows the model to recover
the overall contours of the original image and to unify conceptually similar regions. For example,
in case (4), distinct regions depicting watermelons and lemons are consistently represented by the
same latent token, reflecting their shared conceptual category.
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Harmon MindOmni BAGEL OursBilp-3oJanus-ProPrompt

An empty bottle in 
water

A traffic light 
signaling drivers to 

prepare to stop.

A chameleon 
blending in with a 

brown leaf

A cat is sitting on a 
windowsill, with a 

bird feeder hanging 
outside the window. 

The feeder should 
be slightly to the 

right of the window.

A sunflower field 
during winter.

Figure 7: Comparison of unified MLLMs on T2I generation. Existing models often fail on prompts
requiring deeper reasoning, whereas our approach yields more faithful outcomes.

RQ-4: When are the visual thoughts needed? By comparing performance across different task
scenarios and analyzing the proportion of visual-thought usage, we obtain the results shown in Fig. 6.
Overall, integrating AD-Loop thoughts improves performance across a wide range of questions,
with pronounced gains in spatial and mechanistic reasoning. Fine-grained trends show preferential
activation for rotation, complex OCR, and 3D perception, while usage drops for tables, sequences,
and symbolic reasoning, where text-only chains suffice. These patterns indicate our adaptive policy
that selectively invokes visual thoughts when they offer the greatest benefit.

RQ-5: Case study. Finally, we provide qualitative analyses of our model’s capabilities in text-to-
image generation. As demonstrated in Fig. 7, baseline models often falter on reasoning-intensive
prompts, capturing superficial cues rather than underlying logic—for example, outputting red/-
green for “a traffic light signaling drivers to prepare to stop” (correct: yellow), rendering a green
chameleon on a brown leaf (ignoring adaptive coloration), or producing bright sunflowers for “a
sunflower field during winter” (ignoring seasonality). In contrast, our method consistently aligns
outputs with prompt semantics and the required reasoning. On the understanding side (Fig. 10), our
model exhibits stronger spatial reasoning, correctly localizing objects and motions where baselines
fail to do so. These cases highlight how interleaved reasoning facilitates faithful, reasoning-aware
generation and a more robust understanding. Additional examples can be found in Appendix §H.

5 CONCLUSION

In this work, we introduce a unified interleaved thinking framework, i.e., AD-Loop, for synergizing
understanding and generation in UVLMs. Our proposed two-stage learning paradigm first initial-
izes an interleaved AD-Loop thinking through supervised fine-tuning, and then employs hybrid re-
inforcement learning to enable the model to adaptively invoke interleaved thinking when beneficial.
This allows the model to learn when and how to leverage different capabilities, thereby unlocking
genuine synergy across tasks. Extensive experiments on diverse multimodal understanding and gen-
eration benchmarks demonstrate the effectiveness of our approach, with particularly strong gains on
reasoning-driven tasks. These results highlight the potential of interleaved AD-Loop as a general
mechanism for advancing unified multimodal intelligence.
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APPENDIX INDEX

This supplementary material includes the following sections:

• Clarification on the Use of Large Language Models (cf. §A).

• Ethics Statement (cf. §B).

• Reproducibility Statement (cf. §C).

• Detailed methodology (cf. §D).

• Comparison with Existing Synergetic Learning Methods (cf. §E).

• Detailed Dataset Construction (cf. §F).

• Detailed Setting (cf. §G).

• Extended Experimental Results (cf. §H).

• Thinking Strategies Comparison with Existing VLMs via Visual Information (cf. §I).

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we employ the large language models (LLMs) to help the dataset construction and
improve the clarity and readability of English writing. Specifically, we employ the QVQ-72B-
Preview to construct the Inter-T2I dataset. Additionally, LLMs were utilized to refine sentence
structure, correct grammatical errors, and enhance the overall presentation of our draft. The technical
content, research ideas, experimental design, analysis, and conclusions were entirely conceived,
implemented, and validated by the authors without reliance on LLMs.

B ETHICS STATEMENT

All datasets used in this work are publicly available and open-source. During the process of con-
structing our experimental data, we employed open-source text-to-image generation models. To
mitigate risks of harmful content, discrimination, or bias, all generated samples were manually
screened and filtered to ensure suitability for research purposes. Our approach is built on an open-
source foundation model that provides strong assurance for generating non-harmful and bias-free
content. Nonetheless, as with any generative system, it is impossible to guarantee that unintended
or potentially harmful outputs will never occur. We therefore emphasize that users and practition-
ers should exercise caution when deploying such models in downstream applications, especially in
sensitive domains.

We do not involve any human subjects, private or proprietary data, or personally identifiable in-
formation (PII) in this research. The work complies with community standards on data usage and
research integrity. No legal, ethical, or security violations are posed by the methodologies or exper-
iments presented in this paper. Furthermore, we highlight that our contributions are intended solely
for academic and scientific exploration. We explicitly discourage misuse of the proposed methods
for generating harmful, misleading, or discriminatory content. Future applications should integrate
appropriate safeguards, fairness considerations, and content moderation mechanisms.

C REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made a concerted effort to provide all neces-
sary details and materials. We provide comprehensive details of the proposed AD-Loop framework,
including its definition, input–output formulation, and implementation (Section §3.1). The model
backbone and training methodology are described in detail in Section §3 and Appendix §D. We fur-
ther report all hyperparameter settings and training configurations in Section 4.1 and Appendix §G,
using fixed random seeds to ensure the replicability of the experiments. All datasets used in this
study are publicly available open-source resources, and the data construction process, along with
the amount of data used at each training stage, is thoroughly documented in Appendix §F. Finally,
we will release the full codebase and data processing scripts to the community upon acceptance.
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D DETAILED METHODOLOGY

D.1 LATENT VISUAL THOUGHTS CONSTRUCTION.

Given an image visual thought I , the image encoder yields a grid of latent tokens Z = {zi}Ni=1,
where the image encoder can be either a VQ tokenizer (Sun et al., 2024; Chen et al., 2025c) or a
VAE encoder (Yang et al., 2024; Deng et al., 2025). We then calculate the local density ρi of the
token zi ∈ Z by referring its neighbors:

ρi = exp(− 1

K

∑
zm∈KNN(zi,Z)

||zm, zi||2), (8)

where KNN(zi,Z) denotes the K-nearest neighbors of zi in Z. We then measure the minimal
distance δi between the feature zi and other features with higher density:

δi =

{
minm:ρm>ρi

φ(zm, zi), if ∃ m,n : ρm > ρi
maxm φ(zm, zi), otherwise

(9)

In essence, δi represents the distance between the given token zi from other high-density tokens. We
summarize the score si of the feature by combining the local density ρi and minimal distance δi as
ρi × δi. We identify those tokens with relatively high scores, si, as cluster centers and then allocate
other tokens to their nearest cluster center based on the Euclidean distances. Finally, we utilize the
average token within each cluster to represent the corresponding cluster. The latent visual thought
token of the merged patch token is the union of the vision regions within the corresponding cluster.

D.2 REWARD MODEL

In Stage 2, each model response is evaluated with two complementary signals: (i) a format reward
that enforces structural validity (e.g., required fields, schema conformity), and (ii) a content reward
that measures semantic fidelity and task-specific quality. Below, we describe the content rewards
used for different task types.

Understanding-Task Reward Model For tasks with deterministic targets, such as multiple-
choice or numeric questions, we employ rule-based matching after normalization (e.g., case folding,
whitespace removal, and unit normalization). This yields a precise, low-variance signal of correct-
ness. For open-ended understanding questions, we rely on an external, learned reward model as
the judge; specifically, we use InternLM-XComposer2.5-Reward (Zang et al., 2025), which scores
responses by holistic relevance and coherence with the instruction.

Generation-Task Reward Model For assessing the quality of generated images, we employ two
complementary criteria: 1) Semantic alignment score: Measures agreement between the generated
image and the ground-truth prompt via cosine similarity between CLIP image and text embeddings.
2) Human preference alignment score: Captures perceived aesthetic quality and prompt adherence
using learned preference models, namely HPS v2 (Wu et al., 2023) and ImageReward (Xu et al.,
2023). These signals are aggregated to provide fine-grained, content-aware feedback that guides the
model toward faithful, high-quality generations while maintaining the required output format.

D.3 THE OPTIMIZATION OBJECTIVES IN STAGE-2

After obtaining the advantages, we apply the standard objectives as described in Guo et al. (2025)
to optimize our model. In addition, to prevent the optimized policy πθ from diverging excessively
from the reference model πref , a KL-divergence regularization term DKL is introduced. The overall
optimization objective is:

max
πθ

E[q∼Drl,{oi}G
i=1∼πθ(O|q)[

1

G

G∑
i=1

min(
πθ(oi)

πθold(oi)
Ai, clip(

πθ(oi)

πθold(oi)
, 1− ϵ, 1 + ϵ)Ai)− β DKL

(
πθ∥πref

)]
,

(10)

where ϵ, β are the hyper-parameters.
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Figure 8: Comparison of existing mechanisms for synergizing understanding and generation, in-
cluding isolated learning where the two abilities are trained independently, dual learning which
leverages cross-modal reconstruction for mutual supervision, and co-learning which jointly opti-
mizes both tasks with paired samples.

E COMPARISON WITH EXISTING SYNERGETIC LEARNING METHODS

We here position our approach in relation to existing methods for synergistic learning between un-
derstanding and generation. As illustrated in Fig. 8, prior work can be broadly grouped into two
major directions.

Unified Models for Synergistic Learning. A common line of research aims to unify understand-
ing and generation within a single framework. Representative examples (Xie et al., 2025; Wu et al.,
2025a; Deng et al., 2025; Xiao et al., 2025b) include models that adopt a purely autoregressive for-
mulation, or hybrid designs that combine autoregressive and diffusion-based paradigms. In these
approaches, synergy is encouraged through shared parameters, which enable implicit interaction
between the two tasks. However, during training and inference, the two abilities remain largely
independent. As a result, such models primarily learn to master understanding and generation in
parallel, rather than achieving genuine synergy in task-solving.

Learning Optimization for Synergistic Learning. Another approach is to design a learning
schema that fosters synergy between understanding and generation. For instance, dual learning
methods (Yan et al., 2025) translate visual inputs into textual descriptions and then regenerate vi-
suals from those descriptions, with reconstruction quality serving as the optimization signal. Co-
learning strategies (Jiang et al., 2025b) further extend this idea by coupling each sample with both
generation prompts and multimodal understanding queries, thereby jointly improving performance
on the two tasks. While effective for mutual supervision, these approaches still operate at the stage
of co-training skills, rather than enabling active collaboration between them during task execution.

Our Contribution. In contrast, our work introduces a fundamentally different perspective. We
argue that real synergy should emerge not only during the learning phase but also in the problem-
solving process itself. Specifically, we propose the Analyzing-Drafting problem-solving Loop (AD-
Loop), a novel problem-solving mechanism in which understanding and generation are interleaved
at appropriate moments to jointly address a task. Furthermore, we develop a two-stage training
strategy that equips unified multimodal models with this capability. In particular, our second-stage
hybrid learning scheme enables the model to adaptively and intelligently decide when to invoke
understanding or generation, thereby achieving organic integration of the two abilities and realizing
genuine synergy.

F DETAILED DATASET CONSTRUCTION

Here, we outline the process of constructing training data. The overall statistics are presented in
Table 5, and an instance example visualization of each constructed dataset is shown in Fig. 9.

AD-Loop Dataset for Understanding Task. To construct the interleaved analyzing–drafting loop
for understanding tasks, we draw upon the following representative sources:

• CMoT (Cheng et al., 2025b) is a chain of multimodal-thought dataset that requires mul-
timodal input and multi-output reasoning output. It consists of four categories: (1) Visual
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As depicted, … 
likeness to body. 

The primary 
focus is … 
given color

As visible … a 
resemblance to arms

As represented, 
these … legs.

As visible ... 
similar to head

In … man 
dancing

What is the tangram in  
image more like? A: hook  
B: man dancing C: turtle D: 
onion

B

What is the person 
playing?

Identify the person in the image. 

Baseball

Query the object relationship 
with the person is on to find 
the answer.

Identify the objects associated with 
the person.

Go Down Go Up Go Right
Your task is…devise an 
action plan to reach the 
goal ... provide your 
action plan. Go Up

Go Down

Go Right

A bottle of Italian Extra 
Virgin Olive Oil, sliced 
bread, and a plate with 
an olive on a wooden 
surface

The image features a rustic scene with a wooden cutting board [V-T] as the central element. On the 
board, there is a loaf of French bread, sliced into thick pieces [V-T] , with a few slices already cut. To 
the left of the bread, there is a small white plate with a single olive oil droplet and a single green olive 
[V-T]. To the right of the bread, there is a bottle of Italian Extra Virgin Olive Oil [V-T], labeled 
"Gourmet Toscano," with a dark green cap and a purple label. The bottle is positioned upright, with the 
label facing forward. In the background, there is a bowl filled with green olives [V-T], adding to the 
Mediterranean theme of the scene. The overall composition is balanced, with the bread and olive oil 
bottle as the focal points, surrounded by the olives and the cutting board, creating a harmonious visual 
arrangement.

[["wooden cutting board", [41, 61], [[0, 484], [998, 996]]], ["single green olive", [283, 301], [[199, 894], 
[274, 964]]], ["bottle of Italian Extra Virgin Olive Oil", [341, 381], [[539, 11], [713, 651]]]]

User query Analyzing–Drafting problem-solving loop Answer

Figure 9: Visualization of the constructed dataset. Given a user query, we establish an analyz-
ing–drafting problem-solving loop in which textual and visual thoughts alternate dynamically, ulti-
mately leading to the final answer.

Creation, (2) Visual Deletion, (3) Visual Update, and (4) Visual Selection to comprehen-
sively explore complex visual operations and concise expression in real scenarios. The final
average number of AD-Loop is 3.

• Visual-CoT (Shao et al., 2024) provides intermediate reasoning annotations with bounding
boxes that highlight critical regions necessary for answering visual reasoning questions. We
derive explicit visual thoughts by zooming into and cropping the annotated regions, which
serve as supervision signals for the visual-thought channel, resulting in an average of 2 per
AD-Loop trajectory.

• CoF (Zhang et al., 2025b) identifies focus regions during question answering. We derive
explicit visual thoughts by zooming into and cropping the annotated regions, which serve
as supervision signals for the visual-thought channel , yielding an average of 3 per sample..

• Visual Spatial Planning (VSP) Yang et al. (2025b) formulates schematic grid-based nav-
igation tasks, where an agent must move from a designated start to the destination while
avoiding “holes”. Following Li et al. (2025), we render these states using the OpenAI Gym
framework (Brockman et al., 2016), with the initial map and action sequence as inputs.
Visual thoughts correspond to the visualization of each movement step, with an average of
3 latent visual thoughts.

AD-Loop Dataset for Generation Task. For generation tasks, we construct interleaved analyz-
ing–drafting resources from the following datasets and models:

• GoT-T2I (Fang et al., 2025) provides both reasoning traces and bounding-box annotations
of salient objects. We crop the corresponding image regions based on the bounding-box
information and append these cropped patches directly after the associated textual descrip-
tions, thereby forming explicit visual representations. We treat the annotated bounding
boxes of salient objects as latent visual thoughts, resulting in an average of 4.
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Table 5: The statistics of the constructed dataset for two-stage learning. ‘Avg.’ indicates the average
number of the latent visual thoughts within the datasets.

Task Dataset Avg. Stage-1 Stage-2 Total

Understanding

CMoT (Cheng et al., 2025b) 3 1K 1K 2K
Visual-CoT (Shao et al., 2024) 2 12K 1K 13K
CoF (Zhang et al., 2025b) 3 4K 1K 5K
VSP (Yang et al., 2025b) 3 3K 1K 4K

Generation GoT-T2I (Fang et al., 2025) 4 12K 3K 15K
Inter-T2I 4 10K 2K 12K

Table 6: Hyperparameters and data sampling ratios for Stage-1 and Stage-2.

Stage-1 Stage-2

Hyperparameters
Learning rate 1× 10−5 2× 10−6

Batch size 256 64
LR scheduler Cosine Constant
Optimizer AdamW AdamW
Warm-up steps 200 200

Data Number(K)
Only-Text 0.0 4
Understanding Data 20 4
Generation Data 22 5

• Inter-T2I We leverage X-to-Image (Xiao et al., 2025a) corpora to obtain high-quality
prompt–image pairs, and employ QVQ-72B-Preview (Team, 2024b) to construct reflective
critiques conditioned on visual inputs. To enrich intermediate visual thoughts, we adopt
Flux1-dev (Yang et al., 2024) to generate visual hypotheses guided by subgoals extracted
from the prompts. We generate visual hypotheses based on sub-goals extracted from the
prompts and retain only the first occurrence of each object to avoid duplication. The aver-
age number of latent visual thoughts is 4.

G DETAILED SETTINGS

G.1 TRAINING CONFIGURATION

We adopt two distinct UVLMs as the backbone of our framework. While both models incorpo-
rate dedicated heads for video understanding and generation, they differ fundamentally in their ap-
proaches to video synthesis: Janus-Pro employs an LLM backbone that generates discrete tokens,
whereas BAGEL adopts a design that generates continuous tokens. Below, we detail the architectural
designs of these two models.

BAGEL (7B) (Deng et al., 2025) is initialized from Qwen2.5 LLM (Qwen et al., 2025). For vi-
sual understanding, BAGEL adopts SigLIP2-so400m/14 (Tschannen et al., 2025) with a fixed 384-
resolution to convert the raw pixels into tokens. For visual generation, BAGEL utilizes a pre-trained
VAE model from FLUX (Yang et al., 2024) to convert images from pixel space to latent space and
vice versa. The latent representation is then processed by a 2 × 2 patch embedding layer to reduce
the spatial size and match the hidden dimension of the LLM backbone.

Janus-Pro (7B) (Chen et al., 2025c) utilizes the SigLIP (Zhai et al., 2023) to extract high-dimensional
semantic features from images. These features are flattened from a 2-D grid into a 1-D sequence,
and an understanding adaptor is used to map these image features into the input space of the LLM
for understanding. For visual generation tasks, Janus-Pro adopts the VQ tokenizer from Sun et al.
(2024), which discretizes images into token IDs for autoregressive generation.

During the training, the maximum number of each latent visual thought is set to 16 tokens. At stage
2, we set λ = 1.0 and a margin δ = 0.2 for RL training. We set the weighting hyper-parameters
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Table 7: Performance comparison of explicit and latent visual thoughts on the spatial visual planning
task at levels 3 and 6.

Type Model Level 3 Level 6

Explicit
Anole (Chern et al., 2025) 0.02 0.00
MVoT (Li et al., 2025) 0.21 0.03

Implicit
Mirage (Yang et al., 2025b) 0.75 0.39
Ours 0.81 0.47

α = 1, and γ = 1. We set the KL coefficient to β = 0.001 and ϵ = 0.5. Besides the interleaved data,
we also leverage 4K text-only reasoning data (Huang et al., 2025; Li et al., 2024) in Stage 2. The
other necessary parameters are shown in Table 6.

G.2 EVALUATION METRICS

Here, we detail the evaluation metrics employed in the experiments. For understanding tasks, we
report accuracy, following standard practice Xie et al. (2025); Deng et al. (2025); Ma et al. (2025),
to measure the percentage of correctly predicted answers on each dataset. For generation tasks, we
conduct evaluations on two benchmarks:

• (1) GenEval. We adopt the official GenEval toolkit1 to assess text-to-image generation
quality. GenEval comprises six task categories, including single object, two objects, count-
ing, colors, position, and attribute binding. The GENEVAL score is formulated as a binary
correctness measure, indicating whether all elements specified in the prompt are faithfully
rendered in the generated image. This setup directly evaluates the model’s compositional
alignment between textual instructions and visual outputs.

• (2) WISE. We select a subset of WISE domains (e.g., biology, culture, and space) for eval-
uation. Following prior work Deng et al. (2025); Chen et al. (2025c), we report WiScore,
the primary metric of the benchmark, which emphasizes the accuracy of depicted objects
and entities grounded in world knowledge. WiScore is computed as a weighted combina-
tion of three components: Consistency, Realism, and Aesthetic Quality. Higher WiScore
values indicate stronger capability in generating images that correctly represent real-world
concepts while maintaining visual plausibility.

H EXTENDED EXPERIMENTAL RESULTS

Comparison of Explicit and Implicit Visual Thoughts. We compare existing explicit and im-
plicit approaches on the spatial visual planning task. As shown in Table 7, explicit methods yield
the weakest performance. A likely reason is that when the model is required to explicitly draft
intermediate visual thoughts, the quality of these drafts is heavily constrained by the model’s in-
herent generation capability. In such cases, the model struggles to construct faithful visualizations
from high-level semantic representations, resulting in low-quality visual thoughts. Building upon
these imperfect drafts further propagates errors, resulting in cumulative degradation of reasoning.
By contrast, latent (implicit) visual thoughts achieve consistently stronger results, as they bypass the
limitations of explicit drafting and enable more faithful internal reasoning representations.

Comparison on Leveraging Understanding for Text-to-Image Generation. Table 8 reports the
performance of different approaches that exploit understanding to enhance text-to-image genera-
tion. Existing methods predominantly rely on textual visual thoughts (e.g., MindOmni (Xiao et al.,
2025b), T2I-R1 (Jiang et al., 2025a)) or apply reinforcement learning to refine outputs directly.
While these approaches yield moderate improvements, their reliance on text-only reasoning or post-
hoc optimization limits their ability to capture fine-grained visual semantics. In contrast, our method
consistently achieves the best results across GenEval (Ghosh et al., 2023) and WISE Niu et al.

1https://github.com/djghosh13/geneval

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Performance comparison of different methods on leveraging understanding for the text-to-
image generation task.

Model GenEval (Position) WISE(Cultural) WISE(Biology)

MindOmni (Xiao et al., 2025b) 0.59 0.60 0.56
X-Omni (Geng et al., 2025b) - 0.71 0.48
T2I-R1 (Jiang et al., 2025a) 0.71 0.56 0.54
Ours 0.80 0.79 0.68

(2025), demonstrating that interleaving understanding with generation enables more accurate spa-
tial reasoning and semantically faithful image synthesis.

Visualization on Understanding Tasks. We further provide qualitative visualizations of the
model’s performance on various understanding tasks. For instance, in mathematical reasoning prob-
lems (Fig. 11), the model is first able to analyze the question, then drafts intermediate visual sketches
analogous to human scratch work, and finally derives the correct solution. Similarly, in more abstract
scenarios, such as tangram analysis (Fig. 12), the model successfully generates accurate intermedi-
ate visualizations that facilitate the correct interpretation, significantly outperforming approaches
like BAGEL, which also employ self-thinking strategies.

Visualization on Generation Tasks. We also provide additional qualitative results on generation
tasks. Compared with alternative reasoning-based methods, our model demonstrates superior per-
formance on prompts that require commonsense reasoning. For example, as shown in Fig. 13, base-
line models tend to generate kangaroos sitting directly on the ground, whereas our model correctly
depicts the kangaroo using its tail for support, which is more consistent with reality. In creative syn-
thesis scenarios, such as the counterfactual prompt “a plant watering a gardener” our model is still
able to produce outputs that faithfully capture the user’s intent. Furthermore, Fig. 14 contrasts gen-
erations produced by the base model with and without our thinking mechanism, where our approach
consistently yields higher-quality images that better align with user instructions.

Visualization on Editing Tasks. We further compare our approach with BAGEL (Deng et al.,
2025) on diverse image editing tasks, both with and without the “think” process, as shown in Fig. 15.
The results indicate that our method consistently produces more faithful and semantically aligned
edits. For instance, when asked to infer the missing element in a visual pattern, BAGEL either fails
to capture the correct reasoning or generates unrelated content, whereas our model accurately iden-
tifies the missing orange. In procedural editing tasks such as heating corn kernels until they pop,
our approach generates realistic popcorn, while BAGEL outputs less plausible textures. Similarly,
for biological transformations (e.g., albinism in corals) and structural corrections (e.g., fixing un-
reasonable parts of a bicycle), our method yields coherent results that respect both semantic intent
and visual fidelity. These comparisons highlight the strength of our interleaved thinking process in
producing edits that are both accurate and visually credible.

Challenging Cases. Fig. 16 and 17 present several challenging examples where our model still
exhibits limitations. On the understanding side, the model may occasionally over-draft on simple
queries. For very basic attribute questions, the introduction of additional reasoning steps can lead
to unnecessary elaboration and, in some cases, incorrect predictions. Similarly, although the model
shows improvements on visually grounded mathematical tasks, such as MathVista (Lu et al., 2023),
it still struggles on problems that require strict symbolic reasoning, where applying AD-Loop may
introduce deviations from the optimal logical path.

On the generation side, the model continues to face difficulties in rendering fine-grained visual
details, including scene text, subtle body parts (e.g., fingers), and numerically precise elements.
A plausible explanation is that the compact latent visual representations may under-encode such
fine details. We anticipate that incorporating more detailed feedback into the Stage-2 RL reward,
encouraging the model to attend to fine-grained latent visual thoughts, could further mitigate these
issues in future work.
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I THINKING STRATEGIES COMPARISON WITH EXISTING VLMS VIA VISUAL
INFORMATION

Compared to existing “alternation-based” or “integration-based” visual information argumented
multimodal reasoning works (Zhang et al., 2025a; Zheng et al., 2025), the proposed AD-Loop is
fundamentally different across several objective and design perspectives.

(1) Objective: achieving genuine synergy between understanding and generation. The goal
of AD-Loop is not merely to alternate modalities but to enable a mutual strengthening between
the model’s understanding and generation capabilities. The entire framework, both in design and
training, is centered around this objective, which distinguishes it from prior works that only combine
modalities without enabling reciprocal influence.

(2) Modeling perspective: internal, bidirectional, and iterative interaction rather than passive
alternation. In AD-Loop, both textual and visual information are derived from the model’s internal
reasoning without relying on external tools for visual integration. The process is not a fixed alter-
nation but a dynamic switching between analytic (textual) and synthetic (visual-drafting) modes,
allowing iterative refinement of reasoning. Moreover, unlike prior methods that use explicit images
or pixel-level drafts, AD-Loop introduces latent visual thoughts, which serve as concept-aligned
abstractions. These representations compress visual regions into semantic clusters and disentangle
relevant from irrelevant information, enabling visual reasoning without pixel-level noise or compu-
tational overhead.

(3) Learning perspective: adaptive rather than mandatory or heuristic alternation. As dis-
cussed in Appendix E, existing synergistic or alternating approaches typically rely on fixed sched-
ules or heuristics. In contrast, AD-Loop is explicitly adaptive: our hybrid learning scheme with
Stage-2 group-relative RL allows the model to intelligently decide when to invoke understanding or
drafting. This results in an organic integration of the two capabilities and is key to realizing genuine
synergy, rather than superficial alternation.

[Question]: were any of the objects in the initial frame that you can still see in the second frame moved from their original positions?
[Correct answer]: chair was moved left and towards from the camera

[BAGEL w/ Think] To determine if any objects were moved from their original positions between the two frames, we need to 
carefully compare the positions of the objects in both images.\n\n1. **Identify Key Objects:**\n   - **Chair:** The chair is a 
prominent object in both frames.\n   - **Guitars:** The guitars are also noticeable in both frames.\n   - **Desk:** The desk and

[Janus-Pro] Step 1: Observe the initial frame and the second frame.\n- In the initial frame, there is a chair on the left side of the room.\n- In the second frame, the 
chair is still on the left side but slightly closer to the camera.\n\nStep 2: Analyze the movement of the objects.\n- The chair appears to have moved slightly towards 
the camera, but it is still in the same general position relative to the other objects.\n\nStep 3: Compare the options.\n- Option 1 suggests the chair was moved left 
and towards the camera.\n- Option 2 suggests the chair was moved right and away from the camera.\n\nStep 4: Determine the correct answer.\n- The chair's 
position in the second frame does not match the description of moving left or right and towards or away from the camera.\n\nFinal answer: chair was not moved 
from its original position.

[Harmon] To determine if any objects were moved, we need to compare the positions of the items in both frames. In the initial frame (left side of the image), there is 
a chair that appears to be facing towards the camera and has its legs spread out for stability. In the second frame (right side of the image), the same chair seems to 
have been repositioned with its legs now closer together and angled slightly away from the camera.\n\nIn the second frame, the chair's position relative to the 
camera has changed: it was initially on the left but is now more centered in the frame. This indicates that the chair was indeed moved from its original 
position.\n\nTherefore, the correct answer is:\n['chair was moved right and away from the camera']

[Ours] To decide whether an object moved between frames, we compare relative positions of key items. In the initial Frame 1 the rolling chair sits beside the guitar 
case on the floor [V-T], with several guitars nearby and the table close to its right.\n In the Frame 2, only part of the chair is visible and it appears behind the guitar 
case [V-T], indicating a shift toward the camera and leftward relative to the original layout; it’s also farther from the table than before.\n Final answer:\n[chair was 
moved left and towards from the camera']

its contents are another key element.\n\n2. **Compare Positions:**\n   - **Chair:** In the first frame, the chair is positioned towards the left side of the image, 
closer to the camera. In the second frame, the chair is moved to the  right side of the image, further away from the camera.\n - **Guitars:** The guitars appear to be 
in the same general area in both frames, but their exact positions might have changed slightly.\n   - **Desk:** The desk and its contents seem to have shifted slightly, 
but the main items (like the box and the computer tower) are still in the same general area.\n\n3. **Conclusion:**\n   - The chair has been moved from its original 
position. It was moved to the right and away from the camera.\n\nTherefore, the correct answer is: 'chair was moved right and away from the camera'.\n\nFinal 
answer: 'chair was moved right and away from the camera'

Figure 10: Qualitative comparison across baseline unified MLLMs on multimodal understanding.
Correct answers are marked in green, errors in red, and [V-T] denotes latent visual thoughts.
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[Question]: AB is the diameter of ⊙O. Point C is a point on AB. Point D is on ⊙O, AD = AC. Connect DC and extend it to intersect 
⊙O at point E. Connect AD, AE, OE. If ∠BAD = 30°, the degree measure of ∠COE is ()
[Option]: A: 30° B: 35°         C: 40°      D: 45°
[Correct Answer]: A
[BAGEL w/o Think] Final answer: B

[BAGEL w/ Think] To find the measure of ∠COE, we can use properties of circles and angles. Let's break down the problem step by 
step.\n\n1. **Identify the given information:**\n   - AB is the diameter of circle O.\n   - Point C is on AB.\n   - Point D is on circle O 
such that AD = AC.\n   - AD = AC implies that triangle ADC is isosceles with AD = AC.\n   - ∠BAD = 30°.\n\n2. **Understand the 
properties of circles:**\n   - The angle subtended by a diameter in a circle is a right angle (90°). Therefore, ∠ADB = 90°.\n   - Since AD 
= AC, triangle ADC is isosceles, so ∠ADC = ∠ACD.\n\n3. **Calculate ∠ADC:**\n   - Since ∠BAD = 30° and ∠ADB = 90°, ∠ABD = 60° 
(since the angles in a triangle sum to 180°).\n   - In triangle ADC, ∠ADC = ∠ACD. Let's denote each of these angles as x.\n   - 
Therefore, 2x + 30° = 180° (since the sum of angles in triangle ADC is 180°).\n   - Solving for x: 2x = 150°, so x = 75°.\n   - Thus, ∠ADC 
= 75°.\n\n4. **Determine ∠COE:**\n   - Since ∠ADC = 75°, and ∠ADC is an inscribed angle that subtends arc AC, the measure of 
arc AC is 2 * 75° = 150°.\n   - The central angle ∠COE that subtends the same arc AC is equal to the measure of the arc, which is 
150°.\n   - However, ∠COE is the angle at the center of the circle, and since ∠COE is the central angle for arc AC, it is equal to the 
measure of the arc AC, which is 150°.\n\n5. **Calculate the remaining angle:**\n   - Since AB is the diameter, the total angle 
around point O is 360°.\n   - The angle ∠AOE is the remaining angle that completes the circle.\n   - ∠AOE = 360° - 150° = 210°.\n\n6. 
**Determine the correct option:**\n   - The question asks for the measure of ∠COE, which we found to be 150°.\n   - However, the 
options provided are A. 30°, B. 35°, C. 40°, D. 45°.\n   - None of the options match 150°, which suggests there might be a 
misunderstanding in the problem setup or options provided. However, based on the given options and the logical steps, the closest 
and most reasonable answer would be D. 45°, as it is the only option that could be a part of the correct calculation 
process.\n\nFinal answer: D.

[Janus-Pro] Step 1: Identify the key elements in the problem.\n- ⊙O is the circle.\n- AB is the diameter of ⊙O.\n- Point C is a point 
on AB.\n- Point D is on ⊙O, AD = AC.\n- Connect DC and extend it to intersect ⊙O at point E.\n- Connect AD, AE, OE.\n- ∠BAD = 
30°.\n\nStep 2: Analyze the given information.\n- Since AD = AC, triangle ACD is isosceles.\n- ∠BAD = 30°, so ∠CAD = 60°.\n- Since 
AD = AC, ∠ADE = 60°.\n- ∠ADE + ∠COE = 180°.\n\nStep 3: Calculate ∠COE.\n- ∠ADE = 60°.\n- ∠ADE + ∠COE = 180°.\n- 60° + ∠COE 
= 180°.\n- ∠COE = 180° - 60°.\n- ∠COE = 120°.\n\nStep 4: Determine the correct answer.\n- The degree measure of ∠COE is 
120°.\n\nFinal answer: 120°

[Ours] <think>To answer this question, the image is depicted below: [V-T]\n Let’s think step by step: 1) Let O(0,0), A(-1,0), B(1,0). 
Then AB is the diameter. 2) ∠BAD = 30° ⇒ arc BD = 60°, so D = (1/2, √3/2). 3) Triangle ABD is a 30°–60°–90° right triangle, hence AD = 
√3. Given AC = AD and C lies on AB, we get C = (√3–1, 0). 4) Line DC intersects the circle again at E = (√3/2, –1/2). 5) Vector OC lies 
along the x-axis (0°), OE has angle –30°. Therefore, ∠COE = 30°. </think><answer>Final answer: A</answer>

[Janus-Pro] To answer this question, let's analyze the tangram shapes and their arrangement in the image.\n\n1. The image shows 
a set of geometric shapes that are typically used in tangram puzzles.\n2. The shapes are arranged in a way that resembles a dog's 
head.\n3. The yellow shapes form the outline of the dog's head, with the pink shape representing the body.\n4. The cyan shape is 
positioned to resemble the ears or side of the dog.\n\nBased on this analysis, the tangram in the image shows a closer likeness to 
a dog's head.\n\nFinal answer: A

[Question]: What does the tangram in the image show a closer likeness to? 
[Option]: A: a dog's head B: someone flexin         C: mailbox      D: woman
[Correct Answer]: C

[MindOmni] To determine what the tangram in the image shows a closer likeness to, let's analyze the shapes and their 
arrangement:\n\n1. The image consists of several geometric shapes: triangles, a square, and a parallelogram.\n2. The shapes are 
arranged in a way that suggests a recognizable form.\n3. The large yellow triangle at the top left resembles an ear.\n4. The two 
yellow squares and the yellow triangle below them form a shape that looks like a face with a mouth.\n5. The pink shapes at the 
bottom resemble a body.\n\nConsidering these observations, the overall arrangement of the shapes most closely resembles a 
face with a mouth, which is characteristic of a dog's head.\n\nFinal answer: A. a dog's head

[BAGEL w/o think] Final answer: B

[BAGEL w/ think] To determine what the tangram in the image resembles, we need to carefully analyze the shapes and their 
arrangement. \n\n1. **Identify the Shapes**: The tangram consists of seven pieces: five triangles, one square, and one 
parallelogram. These pieces are arranged to form a larger shape.\n\n2. **Analyze the Arrangement**:\n   - The largest triangle is 
positioned on the left side.\n   - The square is located at the top center.\n   - The parallelogram is at the bottom center.\n   - The 
remaining triangles are arranged around these central shapes.\n\n3. **Compare with Options**:\n   - **Option A (a dog's head)**: 
The arrangement does not resemble a dog's head. The shapes do not form the typical features of a dog's face.\n   - **Option B 
(someone flexin)**: The shapes do not form a person flexing their muscles. The arrangement lacks the typical features of a human 
figure.\n   - **Option C (mailbox)**: The arrangement does not resemble a mailbox. The shapes do not form the typical rectangular 
and triangular features of a mailbox.\n   - **Option D (woman)**: The arrangement of the shapes does resemble a woman. The 
largest triangle can be seen as the head, the square as the upper body, and the parallelogram as the lower body. The other 
triangles can be interpreted as arms and legs.\n\n4. **Conclusion**: Based on the analysis, the tangram in the image most closely 
resembles a woman.\n\nFinal answer: D.

[Ours] <think>The initial step involves examining regions of the image that are marked by a specific color.\nAs illustrated, these 
regions resemble the shape of a pole [V-T].\nNext, attention shifts to segments highlighted by another color. As shown, these 
areas take on a form similar to a box [V-T].\nFinally, we focus on the portions rendered in the remaining colors.\nThese sections, 
as depicted, bear a likeness to a flag [V-T] .\n Taken together, the overall tangram arrangement most closely aligns with 
the shape of a mailbox [V-T].\n </think> \n\n <answer> Final answer: C</answer> 

Figure 11: Understanding Comparison across UVLMs on the math question answering task. Correct
answers are marked in green, errors in red, and [V-T] denotes latent visual thoughts.

[Janus-Pro] To answer this question, let's analyze the tangram shapes and their arrangement in the image.\n\n1. The image shows 
a set of geometric shapes that are typically used in tangram puzzles.\n2. The shapes are arranged in a way that resembles a dog's 
head.\n3. The yellow shapes form the outline of the dog's head, with the pink shape representing the body.\n4. The cyan shape is 
positioned to resemble the ears or side of the dog.\n\nBased on this analysis, the tangram in the image shows a closer likeness to 
a dog's head.\n\nFinal answer: A

[Question]: What does the tangram in the image show a closer likeness to? 
[Option]: A: a dog's head B: someone flexin         C: mailbox      D: woman
[Correct Answer]: C

[MindOmni] To determine what the tangram in the image shows a closer likeness to, let's analyze the shapes and their 
arrangement:\n\n1. The image consists of several geometric shapes: triangles, a square, and a parallelogram.\n2. The shapes are 
arranged in a way that suggests a recognizable form.\n3. The large yellow triangle at the top left resembles an ear.\n4. The two 
yellow squares and the yellow triangle below them form a shape that looks like a face with a mouth.\n5. The pink shapes at the 
bottom resemble a body.\n\nConsidering these observations, the overall arrangement of the shapes most closely resembles a 
face with a mouth, which is characteristic of a dog's head.\n\nFinal answer: A. a dog's head

[BAGEL w/o think] Final answer: B

[BAGEL w/ think] To determine what the tangram in the image resembles, we need to carefully analyze the shapes and their 
arrangement. \n\n1. **Identify the Shapes**: The tangram consists of seven pieces: five triangles, one square, and one 
parallelogram. These pieces are arranged to form a larger shape.\n\n2. **Analyze the Arrangement**:\n   - The largest triangle is 
positioned on the left side.\n   - The square is located at the top center.\n   - The parallelogram is at the bottom center.\n   - The 
remaining triangles are arranged around these central shapes.\n\n3. **Compare with Options**:\n   - **Option A (a dog's head)**: 
The arrangement does not resemble a dog's head. The shapes do not form the typical features of a dog's face.\n   - **Option B 
(someone flexin)**: The shapes do not form a person flexing their muscles. The arrangement lacks the typical features of a human 
figure.\n   - **Option C (mailbox)**: The arrangement does not resemble a mailbox. The shapes do not form the typical rectangular 
and triangular features of a mailbox.\n   - **Option D (woman)**: The arrangement of the shapes does resemble a woman. The 
largest triangle can be seen as the head, the square as the upper body, and the parallelogram as the lower body. The other 
triangles can be interpreted as arms and legs.\n\n4. **Conclusion**: Based on the analysis, the tangram in the image most closely 
resembles a woman.\n\nFinal answer: D.

[Ours] <think>The initial step involves examining regions of the image that are marked by a specific color.\nAs illustrated, these 
regions resemble the shape of a pole [V-T].\nNext, attention shifts to segments highlighted by another color. As shown, these 
areas take on a form similar to a box [V-T].\nFinally, we focus on the portions rendered in the remaining colors.\nThese sections, 
as depicted, bear a likeness to a flag [V-T] .\n Taken together, the overall tangram arrangement most closely aligns with 
the shape of a mailbox [V-T].\n </think> \n\n <answer> Final answer: C</answer> 

Figure 12: Understanding Comparison across UVLMs on multimodal content reasoning task. Cor-
rect answers are marked in green, errors in red, and [V-T] denotes latent visual thoughts.
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Newly hatched eggs

Harmon MindOmni BAGEL OursBilp-3oJanus-ProPrompt

A kangaroo sitting
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step as a bear emerges 
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hiker's emotional 
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Draw plants watering 
a gardener with a 
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A person checks 
their watch 
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umbrella while 
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A log reduced to 
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days.

Figure 13: Generation Comparison across UVLMs.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Generate an image to 
explain the cause of 

following scene: a 
collapsed sandcastle 
surrounded by deep 

footprints.

BAGEL 
w/ think

BAGEL 
w/o think

MindOmni 
w/ think

MindOmni 
w/o think

Generate an image to 
explain the cause of 

following scene: a 
shattered cookie jar 

surrounded by biscuits 
on the kitchen floor.

A birdbath is centered 
between two garden 

benches. A squirrel faces 
the birdbath from the left 

bench, while a cat 
crouches under the right 

bench, gazing at the 
squirrel.

Ours

A charcoal grill with fully 
burned briquettes.

A bird perched on top of 
a dog.

A osmanthus tree during 
spring

Prompt

Figure 14: Generation Comparison on MindOmni (Xiao et al., 2025b) and BAGEL (Deng et al.,
2025) with/without Think process.Our proposed method achieves more accurate generation results.
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Please draw the 
correct shape in the 

'?' box at the top 
right corner 

according to the 
pattern.

BAGEL 
w/ think

BAGEL 
w/o think OursPrompt

Heat the corn 
kernels in the picture 

until they pop

Changes in the 
organism after 
albinism in the 

image

Correct 
unreasonable parts 
of the bicycle in the 

image

Appearance of a 
plant lacking water 

in the image

Figure 15: Editing Comparison on BAGEL (Deng et al., 2025) with/without think process.
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Generate a perfectly 
symmetric lotus 

lamp with double 
reflection in water.

[Question] What is the most prominent feature in the image?
[Option]  A: The skyline, B: The golf course, C: The trees, D: The person

[Ours] The image is taken from a perspective that places the golf course in the foreground [V-T], 
with the trees and skyline serving as secondary elements [V-T]. The golf course is the central 
focus, with the green and the golfer being the main subjects [V-T] . The trees frame the scene 
and add depth, but they are not the primary focus  [V-T] . The skyline, while visible, is in the 
background and does not dominate the image [V-T] . Therefore, the most prominent feature is 
the golf course. Final answer: B.

"204": "The maximum value of \\(|(a + b)(a + c)(a + d)(b + c)(b + d)(c + d)|\\) is \\(\\boxed{16}\\).",

[BAGEL w/ Think] Let's compute it step-by-step using the Euclidean algorithm.\n\n1. Find 
gcd(3339, 2961)\n3339 − 2961 = 378\nSo now compute gcd(2961, 378):\n2961 ÷ 378 = 7 × 378 
= 2646\n2961 − 2646 = 315\nNow gcd(378, 315):\n378 − 315 = 63\ngcd(315, 63) = 63\nSo, 
gcd(3339, 2961) = 63\n\n2. Now compute gcd(63, 1491)\n1491 ÷ 63 = 23 × 63 = 1449\n1491 − 
1449 = 42\nNow gcd(63, 42):\n63 − 42 = 21\nSo, gcd(63, 1491) = 21\n\nFinal Answer:\n21

[Question] Find the greatest common divisor of $3339$, $2961$, and $1491$.

BAGEL: Let's compute it step-by-step using the Euclidean algorithm.\n\n1. Find gcd(3339, 2961)\n3339 − 2961 = 378\nSo now 
compute gcd(2961, 378):\n2961 ÷ 378 = 7 × 378 = 2646\n2961 − 2646 = 315\nNow gcd(378, 315):\n378 − 315 = 63\ngcd(315, 63) = 
63\nSo, gcd(3339, 2961) = 63\n\n2. Now compute gcd(63, 1491)\n1491 ÷ 63 = 23 × 63 = 1449\n1491 − 1449 = 42\nNow gcd(63, 
42):\n63 − 42 = 21\nSo, gcd(63, 1491) = 21\n\nFinal Answer:\n21

[BAGEL w/o Think]  Final answer: C.

[Ours] To find the greatest common divisor, we first determine the greatest common divisor of 
the first two numbers: $\gcd(3339, 2961)$. \n$3339 = 1 \cdot 2961 + 378$\n$2961 = 7 \cdot 378 
+ 318$\n$378 = 1 \cdot 318 + 60$\n$318 = 5 \cdot 60 + 18$\n$60 = 3 \cdot 18 + 6$\n$18 = 3 
\cdot 6 + 0$\nTherefore, $\gcd(3339, 2961) = 6$. \n [V-T] Next, we find the greatest common 
divisor of the result from the previous step (6) [V-T] and the third number (1491): $\gcd(6, 
1491)$ . \n$1491 = 248 \cdot 6 + 3$\n$6 = 2 \cdot 3 + 0$\n [V-T] Therefore, $\gcd(6, 1491) = 3$.
\nThus, the greatest common divisor of all three numbers is $\mathbf{3}$.\nFinal answer: 3.

Figure 16: Failure cases illustrating over-drafting on simple tasks, as well as challenges on problems
that require strictly logical mathematical reasoning.

A Lunar New Year 
doorway with a red 
“福” paper pasted 

upside down.

Seven balloons in a 
row; even positions 

are blue, odd 
positions are red.

A close-up of hands 
holding a book; the 
title area is blank.

GeminiOurs GPT 5.1

Figure 17: Failure cases showing that the proposed method still struggles with rendering scene text,
as well as fine-grained body details and numerically precise content.
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