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Abstract

Feedforward generalizable models for implicit shape reconstruction from unori-
ented point cloud present multiple advantages, including high performance and
inference speed. However, they still suffer from generalization issues, ranging
from underfitting the input point cloud, to misrepresenting samples outside of
the training data distribution, or with toplogies unseen at training. We propose
here an efficient mechanism to remedy some of these limitations at test time. We
combine the inter-shape data prior of the network with an intra-shape regularization
prior of a Nystrom Kernel Ridge Regression, that we further adapt by fitting its
hyperprameters to the current shape. The resulting shape function defined in a
shape specific Reproducing Kernel Hilbert Space benefits from desirable stability
and efficiency properties and grants a shape adaptive expressiveness-robustness
trade-off. We demonstrate the improvement obtained through our method with
respect to baselines and the state-of-the-art using synthetic and real data.

1 Introduction

Enabling machines to understand and navigate 3D is a major challenge. Instances of this ability
include downstream tasks in computer vision and graphics, such as shape reconstruction from noisy,
incomplete and relatively sparse point clouds. Building full shapes from point clouds is all the more an
important problem in account of the ubiquity of this light, albeit incomplete, 3D shape representation,
whether it is acquired from the increasingly democratized consumer grade and industrial depth
sensors or e.g. as obtained from photogrammetry (e.g. Structure From Motion, Multi-View Stereo
[62, 63]). Whilst Classical optimization based approaches such as Poisson Reconstruction [33] and
Moving least squares [27] can deliver mostly good reconstructions for all intents and purposes, they
require still dense clean point sets with reliable normal estimations. More recently, deep learning
based alternatives have been shown to offer faster and more robust predictions especially for noisy
and sparse inputs, without requiring normal information.

Within this class of methods, state-of-the-art feed forward (test time optimization-free) generalizable
models are based on implicit neural shape representations, where explicit meshes can be extracted at
test time using Marching Cubes [43]. While they offer many desirable properties, such as all-round
good performance and fast inference (within tens of milliseconds on a standard GPU), they still suffer
from limitations, some of which we come across upon examining the state-of-the-art method [7] for
1nstance:

Limited OOD generalization As these models are typically trained with full 3D supervision,
training commonly uses synthetic data such as the ShapeNet [ | 2] dataset, large real 3D supervision
being famously hard to come by. This results in a performance drop for real test data outside the
training distribution. Comparing Tables 2 and 6, the performance of [7] drops by roughly fourfold
going from testing on synthetic data to real scans.

Limited input size generalization As illustrated in table 7, when presented with testing point
clouds that are larger (e.g. 10k) than the training size (3k), the performance does not scale and even
deteriorates compared to testing on the training size.
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Underfitting the input There is no explicit guaranty the input points are at the predicted shape
function level set from a single forward pass. We hypothesise that enforcing this constraint under
well chosen regularizations could potentially lead to improvements at test time and a reduction of the
generalization issues mentioned above.

We want to formulate an efficient strategy to improve on these aspects of generalizable shape networks
at test time, i.e. reconstructing shapes by dynamically adjusting the network to the input point-cloud
during testing. We note that we follow such a strategy as training large models from scratch can
be resource intensive, while adaptation can be less costly and has been shown to yield considerable
improvements in e.g. domain adaptation and transfer learning literature. One possible solution [69]
(SAC) is to finetune the network weights at test time, using the knowledge that input point cloud
samples are on the desired surface as supervision. However, we find this strategy to be unstable as it
can overfit on these samples. As shown throughout the results (Section 4), it even exacerbates the
performance of its initial baseline network in many cases. This instability highlights the necessity
for regularization in this adaptation process. We need to balance the need to maintain the expressive
capacity of the learned functions while ensuring stability and robustness. To this end we devise three
important design choices:

e We restrain the hypothesis space of the adapted shape functions to be a Reproducing Kernel
Hilbert Space (RKHS). By the Representer Theorem, the minimizer of our regularized empirical
risk minimization (ERM) problem (Equation 7) emerges naturally as the solution of a Kernel Ridge
Regression (KRR) problem.

e By using a Gaussian kernel in this context, we benefit from the universality properties of the
associated (RKHS) i.e. a hypothesis space rich enough to approximate any continuous function
arbitrarily well. Thus, we avoid the difficulties arising from optimizing a large number of neural
network parameters, as in SAC, while maintaining the expressive capacity necessary for effective
shape modeling.

e We propose a strategy to solve our regularized ERM problem in a RHKS space adapted to the shape
we would like to recover. This is possible thanks to the unique correspondence between RKHS and
kernels. Hence, instead of relying on handmade fixed kernels, we learn the KRR hyperparameters
using a loss function that avoids overfitting on the data term (Equation 11).

In this regard, approximate KRR solvers based on Nystrom samples (Nystrom KRR) [48] can be
computed efficiently and allow scaling in point cloud size. As shown in our ablation studies, defining
this kernel in euclidean space seems insufficient to constrain the fitting problem. Hence we define
it in the feature space of the pretrained convolutional shape network. To define the fitting data, we
use the input point cloud with their inherent label: being samples from the surface by default. We
also augment the fitting data with additional samples paired with their shape network predictions as
pseudo-labels. This augmentation ensures the fitting problem is well defined. We note that through
this strategy, knowledge is being transferred from the network to our kernel regression through both
features and pseudo-labels.

Until recently, exiting methods for KRR hyperparameter tuning, e.g. cross-validation or grid search,
placed strong limits on the flexibility and number of hyperparameters that can be tuned. The work
of Meanti et al. [47] proposed lately a automated gradient based tuning of the hyperparameters of
the KRR by minimizing a loss that prevents overfitting on the fitting data. This strategy allows the
optimization of both the kernel hyperprameters and the Nystrom samples, and proves beneficial in
our context, i.e. fitting a shape function in feature space, as compared to baselines with fixed Nystrom
samples and/or kernel hyperparameters (See ablation in section 4.7). A visual summary of our method
can be found in Figure 1.

To test our idea we devise experiments on real and synthetic data targeting generalization issues.
Our approach improves consistently on the baseline networks, and outperforms other state-of-the-art
methods and test time network finetuning based strategies. We also show that our approach can be
applied successfully to more than one network. Our ablation studies showcase also the importance of
all the various components of our method.

2 Related Work

We review in this section previous work we deemed most relevant to our problem and contribution.



Shape Representations in Deep Learning Shapes can be represented within deep learning either
intrinsically or extrinsically. Intrinsic representations are a discrimination of the shape itself. When
done explicitly, using e.g. tetrahedral or polygonal meshes [73, 32] or point clouds [22], the output
topology in predefined thus bounding the variability of the shapes that can be generated. Among
other forms of intrinsic representations, 2D patches [26, 79, 20] can prompt discontinuities, whilst the
simplicity of shape primitives such as cuboids [72, 86], planes [39] and Gaussians [24] limits their
expressiveness. Differently, extrinsic shape representations model the entire space containing the
scene or object of interest. Voxel grids [82, 81] are the most popular one being the direct extension of
2D pixels to 3D domain. However, their capacity is limited by their cubic resolution memory cost.
Sparse representations such as octrees [60, 70, 75] can alleviate this issue to some extent.

Implicit Neural Shape Representations Implicit neural representations (INRs) emerged recently
as a major medium for modelling extrinsic shape and radiance fields (e.g. [51, 83, 74, 30, 11]).
They overcome many of the limitations of the aforementioned classical representations thanks to
their ability to represent shapes with arbitrary topologies at virtually infinite resolution. They are
usually parameterised with MLPs mapping spatial locations or features to e.g. occupancy [50], signed
[55] or unsigned [16, 85] distances relative to the target shape. The level-set of the inferred field
from these MLPs can be rendered through ray marching [28], or tessellated into an explicit shape
using e.g. Marching Cubes [43]. Another noteworthy branch of work builds hybrid implicit/explicit
representations [54, 14, 19, 84] based mostly on differentiable space partitioning. In order to represent
collections of shape simultaneously, implicit neural models require conditioning mechanisms. These
include feature and latent code concatenation, batch normalization, hypernetworks [65, 67, 66, 76, 13]
and gradient-based meta-learning [52, 64]. Concatenation based conditioning was first implemented
using single global latent codes [50, 15, 55], and further improved with the use of local features
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Reconstruction from Point Cloud Classical approaches include combinatorical ones where the
shape is defined through an input point cloud based space partitioning, through e.g. alpha shapes [5]
Voronoi diagrams [1] or triangulation [9, 41, 59]. On the other hand, the input samples can be used to
define an implicit function whose zero level set represents the target shape, using global smoothing
priors [78, 36, 80] e.g. radial basis function [8] and Gaussian kernel fitting [61], local smoothing
priors such as moving least squares [49, 27, 34, 42], or by solving a boundary conditioned Poisson
equation [33]. The recent literature proposes to parameterise these implicit functions with deep neural
networks and learn their parameters with gradient descent, either in a supervised or unsupervised
manner.

Unsupervised Implicit Neural Reconstruction A neural network is typically fitted to the input
point cloud without extra information. Regularizations can improve the convergence such as the
spatial gradient constraint based on the Eikonal equation introduced by Gropp et al. [25], a spatial
divergence constraint as in [4], Lipschitz regularization on the network [40]. Atzmon et al. learns
an SDF from unsigned distances [2], and further supervises the spatial gradient of the function with
normals [3]. Ma et al. [44] expresses the nearest point on the surface as a function of the neural
signed distance and its gradient. They also leverage self-supervised local priors to deal with very
sparse inputs [45] and improve generalization [40]. All of the aforementioned work benefits from
efficient gradient computation through back-propagation in the neural network. Periodic activations
were introduced in [65]. Lipman [38] learns a function that converges to occupancy while its log
transform converges to a distance function. [80] learns infinitely wide shallow MLPs as random
feature kernels using points and their normals. Most of the aforementioned methods present failures
under sparse and noisy input due to the lack of supervision and data priors. Differently, we propose
here to combine a data prior based method and self-supervised learning.

Supervised Implicit Neural Reconstruction Supervised methods assume a labeled training data
corpus commonly in the form of dense samples with ground truth shape information. Auto-decoding
methods [35, 55, 71, 31, 10] require test time optimization to be fitted to a new point cloud, which
can take up to several seconds. Encoder-decoder based methods enable fast feed forward inference.
Introduced first in this respect, Pooling-based set encoders [50, 15, 23] such as PointNet [58] have
been shown to underfit the context. Convolutional encoders yield state-of-the-art performances.
They use local features either defined in explicit volumes and planes [57, 17, 37, 56] or solely at the
input points [7]. Ouasfi et al. [53] proposed concurrently the first convolution-free fast feed forward
generalizable model. Peng et al. [56] proposed a differentiable Poisson solving layer that converts
predicted normals into an indicator function grid efficiently. However, it is limited to small scenes
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Figure 1: Overview. Our method predicts an implicit shape function from a noisy unoriented input
point cloud. We combine a cross-shape deep prior (Pretrained generalizable occupancy network) and
an intra-shape adaptive Nystrom Kernel Ridge Regression (NKRR) g at test time. The latter learns to
map network features of the input points and additional points to the level-set and
respectively. The NKRR hyperparameters (Z,0) are adjusted to the current shape.

due to the cubic memory requirement in grid resolution. Most of these methods still suffer from
generalization issues. Concurrently, the work in [78, 29] proposes to build generalizable models
where the implicit decoder is a kernel regression. Differently, we advocate a strategy to improve the
generalization of any preexisting pretrained reconstruction network.

3 Method

Our input is a noisy unoriented point cloud P C R3*~». Our objective is to recover a 3D reconstruc-
tion, i.e. the shape surface S that best explains this observation, where the input point cloud elements
approximate noisy samples from S.

To achieve this, we model an implicit function f that predicts occupancy values relative to a target
shape S at any queried euclidean space location ¢ € R3, given the input point cloud P, i.e. f(P,q) =
1 if q is inside the shape, and 0 otherwise. The inferred shape S can then be obtained as a level set of
the occupancy field inferred through f:

S={qeR®| f(P,q) = 0.5}. (1)

In practice, an explicit triangle mesh for S is extracted using the Marching Cubes [43] algorithm.

3.1 Feedforward Generalizable Model

The staple back-bone models for feedforward generalizable implicit shape reconstruction from point
cloud (e.g. [57, 17, 7]) have typically a two-stage architecture. First, a deep convolutional network
(usually a U-Net) builds features in RV* from the input point cloud:

F = &(P). @

Features F can be extrinsic or intrinsic. For instance in [57, 17], the ConvNet builds an extrinsic
2D or 3D explicit feature grid representing space around the shape. More recently, Boulch ez al. [7]
argued against this strategy, contending that voxel centers may be far from the input point cloud
locations, and are sampled uniformly while they should be more focused near the surface of interest.
They hence define features intrinsically, i.e. only at the input point cloud locations. In both strategies,
the ConvNet offers transnational equivariance and generalization ability. It is worth noting that it
is also naturally endowed with a locality mechanism, which is crucial for performance with fast
inference times, as only a single forward pass in the encoder is needed to build the feature space.
Conversely, other generalizable models lacking locality in their encoders, such as the work in [21],
enforce locality through local patch inputs. They hence require as many encoder forward passes as
there are query points. This naturally results in significantly increased inference times compared the
the aforementioned competition that we build on.



Given a 3D query point ¢, an implicit decoder, typically an MLP, maps the feature to the occupancy
value:

oce(q) = o(¥(F(q))) ©)

= o(l(q)), @

where o (.) represents the Sigmoid activation and [(.) a logit function. In the case of extrinsic feature
networks [57, 17, 56], feature F(q) is obtained by linear interpolation (trilinear in the case of 3D

feature grids, and bilinear for 2D grids). For intrinsic feature networks [7], the feature is pooled
order-invariantly from the nearest points of the input point cloud. Without loss of generality we build
in this work on the model in [7], as it has been shown to achieve state-of-the-art performances on
several benchmarks.

3.2 Kernel Ridge Regression as a Shape Function in Feature Space

Existing pretrained generalizable feedforward models for reconstruction from point cloud suffer from
generalization limitations. As they are typically trained on synthetic shape datasets (e.g. ShapeNet
[12]) with full supervision, using a predefined point cloud size and simulated noise, their performance
reduces when tested on point clouds that are different from the training ones regarding properties
such as density, and whether they are real or simulated. Such shortcomings of an instance of these
models are showcased in Tables 7 and 5. We design henceforth an efficient mechanism that can fill
this performance gap, while benefiting from the available shape labels at test time: The fact that the
input point cloud is made of samples that belong to the surface we wish to reconstruct.

We consider the following training data samples:

{(@a,y) ¥y = {F ), 00} 2 ULF @), 15:) i, )

where (z;,y;) € RV* x Rand n = 2 x N,,. {p;} are the samples of the input point cloud P.
{p:} are additional samples around this point cloud, that can be automatically generated following
e.g. the strategy in [44]. Features F(.) and occupancy logits [(.) are obtained from the pretrained
convolutional occupancy model (See Equations 2 and 4). We note that these data samples are
corrupted by a combination of observation noise in the input point cloud (points p; not being exactly
at the surface) and prediction errors of the initial model (pseudo-labels {(p;) being inaccurate).

We approximate the mapping from deep shape features x; to occupancy logits y; using a non-linear
non-parametric regression g(.) to provide spatial regularization while favouring flexibility, i.e. without
making strong assumptions on the model. In particular, we use Kernel Ridge Regression (KRR),
where the hypothesis space of the mapping is a reproducing kernel Hilbert space . Associated
to this space is a kernel function kg : RV# x RN# — R, that depends on hyperparameters 6. To
ensure the minimisation of the square error of the mapping over the training samples is well defined,
a regularization is typically needed, with a weight A:

go = arg min||g(X) — Y + Algll3, ©
geEH
where X ={z;}1;, Y ={y},. N

The unique solution to this problem is expensive to compute. For efficiency we follow the approxima-
tion to KRR that considers a lower subspace of dimension m << n [77]. This allows our method to
scale to large input point clouds. The approximation uses m inducing features Z = {z; };”:1, also

known as Nystrdm Samples, where z; € RVF.

Finally, the unique solution to the minimization in Equation 6 writes [48]:

Goz =Y Bike (- z), ®)
j=1

1
where = (K,ImKnm + /\nKmm) K Y. )

Here, (Knm); ; = ke (i, 25) and (Kinm); ; = ke (2i,2;), where i € [1,n] and j € [1,m]. This
solution can be computed efficiently through e.g. the Falcon solver [48].



3.3 Learning the Shape Function Hyperparameters

Next, based on [47], we propose to automatically learn the hyperparameters of our Nystrom KRR,
namely the kernel hyperparameters 8 and the Nystrom samples Z, using gradient descent. This shape
specific tuning allows for a larger hyperparameter space and using more expressive kernels. The
optimization consists in minimizing an upper bound £"" of the ideal objective, i.e. the expectation
over all possible data points of the squared error of the model. This allows to avoid overfitting on the
training set:

2 _ N2 _ »
Lo = =1y ((K + n/\K)’lK) +  T(K ~ K)L™ (Go.z) + 2L (Goz),  (10)

s 1,. .
where £ (g.2) = [130.2(X) = YI* + Nldo 213 (1)

K = K,..K! K/ and'symbolizes the Moore-Penrose matrix inverse. The upper bound is made,

in this order, of he Nystrom penalty attempting to make the Nystrom kernel K closer to the complete
kernel K, a second term penalizing overly complex kernels, and finally a data fit term. We note that
the authors in [47] derived this loss by replacing expectations with their empirical counterparts. They
also propose to use the Hutchinson approximation to compute matrix traces for efficiency.

Aftre N gradient descent steps (as illustrated in Algorithm 1), we select hyperparameters 8* and
Z* that minimize the squared error of the model over the training data following [47]. For a given
query point g, our final implicit occupancy function can be expressed as the sigmoid activated optimal
Nystrom KRR in feature space:

f(P,q) = o(ge z- (F(q))) (12)

Algorithm 1 The training procedure of our method.

Input: Point cloud P, pretrained occupancy network (¥, ®), learning rate «
Output: optimal kernel hyperparameters 8™ and Nystrom samples Z*
P = upsample(P)
X = o([P,P])
Y =1[0,7 o &(P)]
initialize Z as m random features from X, initialize @
for N times do
compute go,z from X, Y (Equations 8 and 9)
compute £ for ge .z, X and Y (Equations 10 and 11)
(0,Z) < (8,Z) — aVeg zL"
end for

4 Results

In this section, we evaluate our method using real and synthetic data both quantitatively and qualita-
tively. As our method builds on Poco [7], we compare our results to this baseline. We also compare
to other state-of-the-art convolutional occupancy networks, such as Conv [57] and SAP [56]. We
compare to the strategy based on test-time finetuning of a convolutional occupancy network (Conv
[57]) in SAC [69]. Additionally, we compare to the strategy based on fitting an MLP to the point
cloud in NP [44]. We compare also to classical learning-free Poisson reconstruction (SPSR [33])
where input point normals are estimated with PCA. For state-of-the-art convolutional occupancy
networks Poco, Conv and SAP, we use their official publicly available pretrained models as trained
on the same training split of ShapeNet [12] with 3k sized point clouds and noise of variance 0.005.
We use the publicly available official implementations of SAP and NP. We present also an ablative
analysis of the components of our method in Section 4.7. We provide additional results in the
supplementary material. We note that from a computational stand point, for a 10k sized input point
cloud, our method takes roughly 10 seconds to converge on a NVIDIA RTX A6000 GPU. The other
test-time tuning based alternatives we compare to here, namely SAC and NP take roughly 1 and 5
minutes respectively.



4.1 Implementation Details

We run all the experiments for 100 epochs using Adam optimizer with learning rate 0.1. We use
the Falcon Library to implement the tuning of Nystrom KRR in feature space. Regarding the input
size and feature dimensions, We experimented with Np = 10k (also 500 and 3k in ablation) and
Npg = 32 and m = 500 inducing points.

4.2 Metrics

Following seminal work, we evaluate our method and the competition w.r.t. the ground truth using
standard metrics for the 3D reconstruction task. Namely, the volumetric Intersection over Union
(IoU) when ground truth meshes are available, the L1 Chamfer Distance CD; (x 102) and euclidean
distance based F-Score (FS) when ground truth points are available, and finally Normal Consistency
(NC) when ground truth normals are available. We detail the expressions of these metrics in the
supplementary material.

4.3 Datasets

ShapeNet [ 2] consists of various instances of 13 different synthetic 3D object classes. Following
[80], we use the first 20 shapes from the test split of each class for evaluation. We generate inputs of
different sizes (10k, 3k, 500) while adding gaussian noise of standard deviation 0.005 following the
literature (e.g. [7, 57]). ScanNet v2[ 18] is a challenging real dataset containing 1513 room scans as
captured with an RBG-D camera. We use 100 scans from the test split for evaluation. We sample 10k
points from the scans as input. Faust [0] consists of real scans of 10 human body identities in 10
different poses. We use the entire 100 scans for evaluation. We sample 10k points from the scans as
inputs. We use the provided mesh registrations to compute IoU.

4.4 Object Level Reconstruction

Table 1: ToU 1 of ShapeNet reconstruction. Table 2: CD; | of ShapeNet reconstruction.
Conv SAC NP Poco Ours Conv SAC NP Poco Ours
Chair 0,87 0,88 0,67 090 0091 Chair 041 039 056 042 0,34
Lamp 0,77 0,75 0,64 080 0,87 Lamp 047 044 0,72 0,56 042
Table 0,89 0,79 0,71 0,89 0091 Table 035 056 0,62 038 0,30
Mean 0,84 081 0,67 0,8 0,90 Mean 041 046 0,63 045 0,35
Table 3: FS 1 of ShapeNet reconstruction. Table 4: NC 1 of ShapeNet reconstruction.
Conv. SAC NP Poco Ours Conv. SAC NP Poco Ours
Chair 0,95 098 0,87 098 0,99 Chair 0,95 095 0,88 095 0,96
Lamp 092 094 083 095 0,96 Lamp 09 089 090 09 092
Table 098 092 0,80 098 0,99 Table 096 093 0,78 096 0,97
Mean 095 095 0,83 097 0,98 Mean 094 092 085 094 0,95

We show here reconstruction results from 10k sized noisy point clouds of classes Chair, Table and
Lamp of ShapeNet. Convolutional occupancy models were trained with 3k sized noisy inputs. We
report a comparison on IoU in Table 1, CD; in Table 2, FS in Table 3, and NC in Table 4. Figures 2
and 4 shows qualitative comparisons. Our method improves consistently across all metrics over its
baseline Poco, as well as the other strategies. Methods that benefit from deep data priors (Conv, SAC,
Poco, Ours) outperform data prior free overfitting (NP). We note also that these results show that the
finetuning strategy SAC is not stable and does not improve consistently on its deep convolutional
occupancy network Conv. This is also confirmed in the visual results in Figure2, where the finetuning
can lead to breakage in the reconstruction. Our method delivers more robust reconstruction generally
with less holes and artifacts. As it can be seen in the same figure, it can particularly recover from
failure cases of its baseline Poco. We believe that many of the failures of the baseline Poco are due to
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Figure 2: Qualitative comparison of ShapeNet reconstructions.

its lack of generalization w.r.t. the input size. Figure 4 shows additional visual comparisons to SPSR.
We provide a numerical comparison to this classical method in the supplementary material.

4.5 Generalization to Real Scene Scans

7o :
Ours Poco SAP SAC Conv Input
Figure 3: Qualitative comparison of ScanNet v2 reconstructions.

We evaluate here the generalization from synthetic object training to real scenes. We show recon-
struction results from 10k points sampled from real scans of ScanNet v2 in Table 5. As meshes are
not available we can not compute IoU here. Our method (Ours(Poco)) based on Poco outperforms
the baseline and the competition, demonstrating superior generalization ability. Figure 3 shows a few



Table 5: ScanNet reconstruction. Table 6: Faust reconstruction.

CD.| NCT FSt loUl CD,| NC] FS{

SPSR 227 074 0.68

SPSR - 048 091 091
SAP 1,12 0,73 0,67

SAP 090 029 093 0,98
Conv 1,22 0,71 0,60
SAC 097 076 077 Conv 0,85 041 092 0,95

9 9 9 A 2

Poco 1,11 0,77 0,79 SAC 077- 030 09 0,95

Poco 0,90 0,32 0:93 0,97

Ours (Poco) 094 0,79 0,80 Ours 092 026 095 099

Ours (Conv) 0,70 0,77 0,79

Bt &

Figure 4: Qualitative comparison to Screened fgoisson Surface Reconstruction (SPSR). Input / Ours
/ SPSR, in this order.

qualitative results. While we offer improved performances compared to the competition, we note that
the quality of our reconstruction remains limited still is such a challenging setting. We also show
that our method can be successfully applied to other existing occupancy networks, as combining our
strategy with baseline Conv (Ours(Conv)) leads to a considerable improvement in its performance.

4.6 Generalization to Real Articulated Shape Scans

We evaluate here generalization from synthetic
object training to real non-rigid human shapes.
We show reconstruction results from 10k points
sampled from real scans in Faust. As summa-
rized in Table 6, both convolutional networks
SAP and Poco offer good initial performances.
Notice how the finetuning based SAC can im-
prove of its baseline (Conv) CD; score while
conversely worsening its IoU score. We outper-
form both our baseline and competing methods.
Figure 5 shows a visual comparison of the re-
sults, where we recover from some failures of
our baseline (Poco), and show limitations of the
finetuning strategy in SAC. Figure 4 shows ad-
ditional visual comparisons to SPSR.

4.7 Ablative Analysis

We conduct further ablative studies of our pro-
posed method on the Lamp class of ShapeNet,
as we found its shapes to be challenging and dis-
playing many fine and complex features. Table 7
shows the performance of both our method and
Figure 5: Qualitative comparison of Faust recon- our baseline network Poco [7] for inputs of size
structions. 500, 3k and 10k. We note that Poco has been

trained on 3k sized inputs. Notice first how the
performance of Poco improves in CD; while deteriorating in IoU. This shows the performance of
this model does not necessarily scale with input size. Our method on the other hand shows healthy
consistent improvements over the baseline Poco, which also scale with input size. We notice also that
the performance gap w.r.t. Poco is slightly tighter in the sparsest setup (500 points). We believe this
is due to the inductive bias of kernel methods favouring smoothness, as such a prior can prove less
effective for extremely sparse data.

Input Ours Poco SAC SAP



Table 8 shows an ablation of the design choices of our method. Our performance drops as expected
whether we disable the kernel hyperparameters @ finetuning (w/o ), the Nystrom samples Z finetun-
ing (w/o Z). We note also the importance of learning the regression in feature space. We notice that
reconstruction often fails when we attempt to solve the regression in euclidean space. Hence our w/o
Feat. version uses a Fourier positional encoding to stabilize this baseline. However, this version still
under performs compared to our final model. Disabling the tuning all together (w/o tune) results in
a performance drop as well. Increasing the number of number of Nystrom samples in this context
improves the performance.

Table 8 provides also an ablation the number of Nystrom samples m while tuning (Ours). We find
that generally the higher the number of inducing features Z the better the performance, as it was the
case without hyper-parameter optimization (w/o tune). This is expected as the approximation error
of the Nystrom KRR decreases with more inducing points. Additionally, more learnable inducing
points implies more representation power for the KRR function. Increasing m comes however with
increased computation overhead due to both solving the Nystrém KRR with a higher number of
inducing features Z and also learning these features. Increasing m beyond a certain limit can also
lead to overfitting. As our aim in this work is an efficient approach to improve generalization, we
find a relatively small m value (500) already sufficient to produce satisfactory shape predictions and
offers a good performance/compute overhead trade-off.

Table 7: Ablation of input size. Table 8: Ablation of our model.

IoU} CD;/ NCt FSt IoUt CD;/ NCt FSt

Poco(500) 0,71 085 0,86 084 w/o tune (m = 1k) 0.84 0.61 092 0.96
Ours (5000 0,73 0,80 0,85 0,85 w/o tune (m = 5k) 087 055 092 097

w/o tune (m = 10k) 0.87 053 092 0.96
Poco(3k) 0,85 0,60 091 0,96

Ours (3k) 0,86 0,52 092 0,96 w/o Feat. 045 223 079 0.58
w/o 6 086 052 092 095
Poco(10k) 0,80 0,56 0,90 095 47 086 0.3 092 096

Ours (10k) 0,87 046 0,92 096

Ours (m = 500) 087 042 092 096
Ours (m = 1000)  0.88 041 092 097
Ours (m = 5000)  0.86 043 091 0.96

Finally, we note that we chose to use an equal number of input and augmented samples (Equation
5) empirically as it gave the best overall results. It is possible that for high levels of noise, a higher
number of augmented samples could prove beneficial. However, higher levels of noise for the input
also imply less accurate predictions from the occupancy network, meaning less reliable pseudo-labels
for the augmented samples.

5 Limitations

Extreme generalization from relatively sparse point cloud is still challenging for our method as well
as the literature and we will seek further improvement in future work. Although it offers robustness,
the inherent inductive bias in our method also favours smoothness, which can prove not ideal for
representing the highest level of detail. Ablation of number of the NKRR Nystrom samples m in
Table 8 shows that the KRR can possibly suffer from overfitting for large values of m, hence setting
this hyperparameter can be challenging. We provide visualizations and a short discussion of the
behavior of our method under some baseline failures in the supplementary material.

6 Conclusion

We presented a method for shape reconstruction from unoriented point cloud that combines the data
prior of a preexisting deep reconstruction network and an efficient non-parametric interpolant. The
resulting combination offers improved generalization over the network baseline, network test-time
finetuning, and several state-of-the-art methods. We hope we can inspire more work in the direction
of fine-tuning and transfer learning from preexisting feedforward occupancy networks, especially
since there are many competing strategies that could be explored. For instance, while we propose
here to improve the boundary decision by learning the shape function, an alternative strategy could
be to tune solely the features instead.
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