
Differential Privacy of Cross-Attention with Provable
Guarantee

Yingyu Liang
The University of Hong Kong

University of Wisconsin-Madison
yingyul@hku.hk, yliang@cs.wisc.edu

Zhenmei Shi
University of Wisconsin-Madison

zhmeishi@cs.wisc.edu

Zhao Song
The Simons Institute for the Theory of Computing

at the University of California, Berkeley
magic.linuxkde@gmail.com

Yufa Zhou
University of Pennsylvania

yufazhou@seas.upenn.edu

Abstract

Cross-attention has become a fundamental module nowadays in many important
artificial intelligence applications, e.g., retrieval-augmented generation (RAG),
system prompt, guided stable diffusion, and many more. Ensuring cross-attention
privacy is crucial and urgently needed because its key and value matrices may
contain sensitive information about model providers and their users. In this work,
we design a novel differential privacy (DP) data structure to address the privacy
security of cross-attention with a theoretical guarantee. In detail, let n be the input
token length of system prompt/RAG data, d be the feature dimension, 0 < α ≤ 1
be the relative error parameter, R be the maximum value of the query and key
matrices, Rw be the maximum value of the value matrix, and r, s, ϵs be param-
eters of polynomial kernel methods. Then, our data structure requires Õ(ndr2)

memory consumption with Õ(nr2) initialization time complexity and Õ(α−1r2)
query time complexity for a single token query. In addition, our data structure
can guarantee that the process of answering user query satisfies (ϵ, δ)-DP with
Õ(n−1ϵ−1α−1/2R2sRwr

2) additive error and n−1(α+ ϵs) relative error between
our output and the true answer. Furthermore, our result is robust to adaptive
queries in which users can intentionally attack the cross-attention system. To our
knowledge, this is the first work to provide DP for cross-attention and is promising
to inspire more privacy algorithm design in large generative models (LGMs).

1 Introduction

The development of Artificial Intelligence (AI) has four stages: (1) prediction AI, e.g., ResNet
[He et al., 2016] in image classification; (2) generation AI, e.g., ChatGPT [Achiam et al., 2023] in
language generation; (3) autonomous agent AI, Voyager [Wang et al., 2023] autonomously plays
Minecraft game [Fan et al., 2022]; (4) Artificial Generalization Intelligence (AGI). Humans have
made rapid progress in generative AI, and we are excitingly heading to the third stage, the era of AI
agent [Liu et al., 2023]. One prevalent application of AI agents is customized large generative mod-
els (LGMs) agents [OpenAI, 2024a], e.g., AgentGPT [GitHub, 2024a], SuperAGI [GitHub, 2024d],
MetaGPT [Hong et al., 2024b,a], GPT Researcher [GitHub, 2024c] and many so on. In particular,
recently, Apple Inc. introduced Apple Intelligence [Apple, 2024], signaling the integration of LGMs
into physical devices. This innovation allows devices to use personal information for real-life as-
sistance, such as entering passport numbers when booking flights or informing users of their latest

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

meetings. With increased AI capabilities, privacy concerns become significant, as the more personal
information devices handle, the greater the potential privacy risks.

One fundamental technique used in LGMs is cross-attention [Vaswani et al., 2017], which is an
essential module in retrieval-augmented generation (RAG) [Lewis et al., 2020], system prompt,
guided stable diffusion, and many so on. In RAG, to be more professional, the LGMs answer
user input queries by using a domain-specific database under cross-attention, which may contain
specific privacy data and knowledge so that the LGMs gain additional power. For system prompts,
based on cross-attention, some customized long prompts, e.g., user information or concrete rules,
are concatenated before user input to follow human instructions better, which are commonly used in
ChatGPT [GitHub, 2024b], Claude3 [Anthropic, 2024] and other commercial LGMs.

Consequently, protecting the privacy of domain-specific data in RAG or system prompts is crucial
as they contain sensitive information about users and companies. These data and prompts are the
core assets of many start-ups. However, these data and prompts can be easily recovered [Li et al.,
2023b], jailbroken [Jin et al., 2024], and released [Li et al., 2023a] by user adversarial attack [Yu
et al., 2024], e.g., there are 1700 tokens in ChatGPT system prompts [Patel, 2024]. These findings
highlight the critical importance of robust privacy protections in LGMs, making privacy not just
essential but an urgent issue that demands immediate attention.

To fundamentally preserve cross-attention privacy, we borrow the powerful tools from differential
privacy (DP) [Dwork et al., 2006], which provides measurable privacy and combines with statistical
machine learning seamlessly [Ponomareva et al., 2023]. Thus, in this work, we would like to ask
and answer the following question,

How can we use differential privacy to protect the security of cross-attention in LGMs?

Our work demonstrates that the Softmax cross-attention computation is equivalent to computing the
weighted distance problem.
Definition 1.1 (Softmax cross-attention). Let n and m be the token length of the data and input
query, respectively. Let d be the feature dimension. Given fixed key matrix K ∈ [0, R]n×d and
fixed value matrix V ∈ [−Rw, Rw]

n×d, for any input query matrix Q ∈ [0, R]m×d, the goal of the
Softmax Cross-Attention Computation is to get the matrix Attn(Q,K, V) ∈ Rm×d, which is

Attn(Q,K, V) := D−1AV,

where A ∈ Rm×n satisfies Ai,j := exp(⟨Qi,Kj⟩/d) for any i ∈ [m], j ∈ [n] (Qi and Kj denote the
i-th and j-th rows of Q and K, respectively) and D := diag(A1n) ∈ Rm×m is a diagonal matrix.

Note that Softmax(QK⊤) = D−1A ∈ Rm×n in Definition 1.1, which is the standard function used
in transformers, and usually, we call it as attention matrix. Our main theorem, presented below,
provides a robust solution of cross-attention, ensuring privacy and accuracy guarantees.
Theorem 1.2 (Main result; Informal version of Theorem 3.1). Let Q,K, V,Attn be defined in
Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability of fail-
ure parameter. Let r, s, ϵs be the parameters of the polynomial kernel methods (Lemma D.7). Let
l = Õ(r). Then, our Algorithm 1 requires O(lndr) memory with O(lnr) initialization time and
Õ(α−1lr) query time, such that with probability 1 − pf , the output process of cross-attention sat-
isfies (ϵ, δ)-DP and is robust to adaptive query with relative error n−1(α + ϵs) and additive error
Õ(n−1ϵ−1α−1/2lR2sRwr).

Our main technique in Theorem 1.2 ensures that cross-attention is differentially private by using the
polynomial kernel approximation method and transforming it into a weighted distance problem. We
then solve the problem by summing over weighted distances (depending on the value embedding)
between the query embedding and the key embedding. We build a data structure for weighted
Softmax queries in Section 4.3, and we extend this data structure to handle adaptive queries using
the ϵ0-net/metric entropy argument in Section 4.4. Furthermore, our error decreases as the input
token length grows, diminishing both the relative and additive errors to zero.

Our contributions are as follows:

• We demonstrate that cross-attention computations are equivalent to the weighted distance
problem (Section 3).

2

• We design a novel algorithm (Algorithm 2) that privately answers weighted Softmax
queries with high probability and a concrete accuracy bound.

• Our algorithm (Algorithm 1) handles multiple cross-attention queries and is robust against
adaptive query attacks (Theorem 3.1), meaning that potential attackers cannot intentionally
extract information of system prompts/RAG data.

To our knowledge, this is the first work to utilize DP to protect prompts in LGMs with theoretically
provable guarantees. While some have explored protecting user/system prompts with DP [Edemacu
and Wu, 2024, Mai et al., 2023], they are primarily empirical and lack theoretical guarantees. Ad-
ditionally, many others are working on protecting private datasets by applying DP to the fine-tuning
stage of LGMs [Behnia et al., 2022, Singh et al., 2024, Liu et al., 2024b, Yu et al., 2021, Li et al.,
2021, Shi et al., 2022a], which diverges from our work. The strength of DP lies in its strong, unam-
biguous, and concrete definition of privacy, enabling algorithm designs with provable privacy and
accuracy analysis. Therefore, we believe that the theoretical aspects of DP applications in LGMs
remain a highly impactful direction, and we aim to pave the way for further exploration in this area.

1.1 Related Work

Differential Privacy in Data Structure and Attention. Differential privacy (DP) is a flourishing
and powerful technique that has enormous applications in the topic of private machine learning.
In the era of Large Generative Models (LGMs), there are three primary approaches to ensuring
privacy: (1) during the pre-training stage: to protect training data [Abadi et al., 2016, Ponomareva
et al., 2023], (2) during the adaptation stage: to protect target data [Behnia et al., 2022, Singh et al.,
2024, Liu et al., 2024b, Yu et al., 2021, Li et al., 2021, Shi et al., 2022a], (3) during the inference
stage: to protect user/system prompts [Edemacu and Wu, 2024] and RAG data [Lewis et al., 2020].
To protect training data, DP-SGD [Abadi et al., 2016] uses DP optimizer to ensure data privacy,
severing as the traditional baseline method. Recently, numerous works have aimed to improve this
method by integrating DP in both the pre-training and fine-tuning stages of LGMs [Yu et al., 2021,
Li et al., 2021, Golatkar et al., 2022, Behnia et al., 2022, Shi et al., 2022a, Mattern et al., 2022, Singh
et al., 2024, Zheng et al., 2024, Liu et al., 2024b]. To protect user/system prompts, Edemacu and Wu
[2024] provides a survey on both DP and non-DP methods. In the use of LGMs, prompting methods
almost become a standard way for inference [Schulhoff et al., 2024]. Given the billions of prompt
interactions daily, ensuring privacy is essential [Mai et al., 2023]. We refer readers to Appendix B
for more related works.

Roadmap. In Section 2, we present the preliminary of differential privacy (DP) and cross-attention.
In Section 3, we present the main result of our cross-attention theorem (Theorem 3.1). In Section 4,
we outline the main results of our algorithms. In Section 5, we conclude our paper.

2 Preliminary

In this section, we give the preliminary of differential privacy (DP) and cross-attention. In Sec-
tion 2.1, we describe the notations. In Section 2.2, we give definitions related to DP.

2.1 Notations

We use Pr[] to denote the probability. We use E[] to denote the expectation. We use Var[] to denote
the variance. For two vectors x ∈ Rd and y ∈ Rd, we use ⟨x, y⟩ to denote the inner product between
x, y, i.e., ⟨x, y⟩ = ∑d

i=1 xiyi. We use X ⊂ Rd and |X| = n to mean the same thing as X ∈ Rn×d.
Also, we denote x⊤

i as the i-th row of X . We use xi,j to denote the j-th coordinate of xi ∈ Rn. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e., ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|.

2.2 Differential Privacy Definitions

In this section, we give several definitions related to differential privacy (DP). We refer the reader to
Dwork and Roth [2014] for more background and details on DP.

3

Definition 2.1 (Neighboring dataset). We define the two neighboring datasets as X,X ′ ∈ Rn such
that ∥X −X ′∥1 ≤ 1, i.e., they differ on a single data point.

Definition 2.2 (Sensitivity). The sensitivity of a function f : Rn → Rd is defined by: ∆ :=
maxX,X′∈Rn,∥X−X′∥1=1 ∥f(X)− f(X ′)∥1.
Definition 2.3 ((ϵ, δ)-DP). For ϵ > 0, δ ≥ 0, a randomized algorithm A is (ϵ, δ)-DP, if for all
S ⊆ Range(A) and for all X,X ′ such that ∥X−X ′∥1 ≤ 1: Pr[A(X) ∈ S] ≤ exp(ϵ) Pr[A(X ′) ∈
S] + δ. When δ = 0, the algorithm is said to have pure differential privacy.

We mainly use the truncated Laplace mechanism, which has the following definitions.
Definition 2.4 (Truncated Laplace distribution). We use TLap(∆, ϵ, δ) to denote the Truncated
Laplace distribution with pdf proportional to exp(−ϵ|z|/∆) on the region [−B,B], where B =
∆
ϵ · log(1 +

exp(ϵ)−1
2δ).

Fact 2.5 (Theorem 3 in Geng et al. [2020]). Let z denote a TLap(∆, ϵ, δ) random variable. Then

we have E[z] = 0, and Var[z] = 2∆2

ϵ2 (1−δ · log
2(1+ eϵ−1

2δ)+2 log(1+ eϵ−1
2δ)

eϵ−1). Furthermore, if δ = 0, we
have Var[z] = 2∆2/ϵ2, meaning truncated Laplacian mechanism will be reduced to the standard
Laplacian mechanism.
Lemma 2.6 (Laplace mechanism, [Dwork and Roth, 2014, Geng et al., 2020], see Lemma 2.2 in
Andoni et al. [2023]). Given a numeric function f that takes a dataset X as the input, and has
sensitivity ∆, the mechanism that outputs f(X) + z where z ∼ Lap(∆/ϵ) is (ϵ, 0)-DP. In addition,
if ϵ, δ ∈ (0, 0.5), f(X)+ z, where z ∼ TLap(∆, ϵ, δ) is (ϵ, δ)-DP. Moreover, the truncated Laplace
mechanism is always accuracy up to error B.

Algorithm 1 Adaptive query data structure

1: datastructure DPTREESOFTMAXADAPTIVE ▷ Theorem 4.4
2: members
3: D1, . . . ,DO(r log(dR/(ϵspf))) : DPTREESOFTMAX ▷ Algorithm 2
4: end members
5: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈
(0, 1), c ∈ (0, 0.1)), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01))

6: l← O(r log(dR/(ϵspf)))
7: for i = 1→ l do
8: Di.INIT(X,n,w, ϵ/l, δ/l, δ′/l, c, ϵs)
9: end for

10: end procedure
11: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1))
12: l← O(r log(dR/(ϵspf)))
13: r ← 0l

14: for i = 1→ l do
15: ri ← Di.DISTANCEQUERY(y, α)
16: end for
17: return Median of r
18: end procedure
19: end datastructure

3 Main Results: Cross-Attention

In this section, we show our main result for cross-attention. Theorem 3.1 states that we can ensure
the entire cross-attention module satisfies DP and is robust to adaptive queries. Our high-level idea
is based on the similarity between weighted distance problem and cross-attention. For a typical
weighted distance problem, we define the following: Let w ∈ Rn be the weights, X ∈ Rn×d be the
data matrix, where x⊤

i is the i-th row of X for i ∈ [n], and let y ∈ Rd be the query. Suppose we
need to answer ℓ1-distance query. We have∑

i∈[n]

wi︸︷︷︸
weight

∥ y︸︷︷︸
query

− xi︸︷︷︸
data

∥1.

4

Now we introduce cross-attention. Let Q,K, V,Attn be defined in Definition 1.1. In a standard
cross-attention process, we have access to K and V before inference, but not to the user input Q.
For the cross-attention mechanism Attn (Definition 1.1), we aim to ensure that the matrix AV
satisfies DP guarantee. Let Ai,j = exp(⟨Qi,Kj⟩/d) for i ∈ [m], j ∈ [n]. Let Vj,k ∈ R be the
(j, k)-th entry of V , for j ∈ [n], k ∈ [d]. By post-processing property (Fact C.5), to ensure that the
forward output Attn(Q,K, V) = D−1AV (Definition 1.1) satisfies DP, we only need to ensure the
DP of its component AV 1. The (i, k)-th entry of AV for each i ∈ [m], k ∈ [d] is computed by

(AV)i,k =

n∑
j=1

Vj,k︸︷︷︸
weight

exp(⟨ Qi︸︷︷︸
query

, Kj︸︷︷︸
data

⟩/d), (1)

which can be viewed as a weighted Softmax problem, where V provides the weights, Q is the query,
and K is the dataset. Thus, we choose to add noise to K and V based on the similarity between the
weighted distance problem and cross-attention. Furthermore, we find that we can only handle one
column of V , i.e., V∗,k ∈ Rn, in a single data structure. Therefore, we need to initialize a total of d
different data structures, each with weights V∗,k for k ∈ [d].

Here, we present our main result below.
Theorem 3.1 (Softmax cross-attention, informal version of Theorem J.12). Let Q,K, V,Attn be
defined in Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability
of failure parameter. Let r, s, ϵs be the parameters of the polynomial kernel methods (Lemma D.7).
Let ΓR,s := maxj∈[s]

Rj
√
j!

(Definition J.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREESOFTMAXADAPTIVE (Algorithm 1) that uses O(lnrd) spaces to ensure cross-attention
satisfies DP and supports the following operations:

• We initialize d data structures using INIT(K,n, V∗,k, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈
(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)) (Algorithm 1), for k ∈ [d]. It takes O(lnr) time to initialize
one data structure.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ Rd, to DISTANCEQUERY(Qi, α ∈ (0, 1)) (Algorithm 1) for each i ∈ [m]. It takes
O(α−1lr log2 n) time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error n−1(α+ ϵs),
– the process of output z has additive error O(n−1ϵ−1α−1/2lΓ2

R,sRwr
√
log(l/δ′) · log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

In Theorem 3.1, we use our DPTREESOFTMAXADAPTIVE (Algorithm 1) and guarantee that, for
each query token of cross-attention, the output process satisfies (ϵ, δ)-DP with n−1(α + ϵs) rela-
tive error and O(n−1ϵ−1α−1/2lΓ2

R,sRwr
√
log(l/δ′) · log3/2 n) additive error, and O(α−1lr log2 n)

running time under adaptive query. More specifically, the algorithm creates d DPTREESOFTMAX-
ADAPTIVE data structures, each requiring O(lnr) memory consumption and O(lnr) initialization
time. Notably, our error is inversely proportional to n, meaning that as the input token length in-
creases, both the relative and approximate errors approach zero. This is achieved by the normalizing
matrix D (Definition 1.1). We refer the reader to Section J for proof details.

Thus, our algorithm theoretically protects system prompts/RAG data in cross-attention as discussed
in Section 1. In Section 4, we provide a detailed technical overview, and in Section A, we will
present self-attention and DP-related discussion.

4 Key Data Structure: DPTree

This section provides our key data structures: DPTREE (Algorithm 3), DPTREEDISTANCE (Al-
gorithm 5 and 6), DPTREEHIGHDIM (Algorithm 7), DPTREESOFTMAX (Algorithm 2), and DP-
TREESOFTMAXADAPTIVE (Algorithm 1).

1D is only a normalization factor and does not have sensitive information.

5

In Section 4.1, we provide our high-level proof insights. In Section 4.2, we give our basic build-
ing block algorithms DPTREE, DPTREEDISTANCE and DPTREEHIGHDIM. In Section 4.3, we
present our DPTREESOFTMAX algorithm that solves the weighted Softmax problem. In Section 4.4,
we present our DPTREESOFTMAXADAPTIVE algorithm that enables DPTREESOFTMAX to handle
adaptive query problem.

4.1 Technique Overview

Notice that Eq. (1) is not a typical distance measure like ℓ1 or ℓ2, but by using polynomial kernel
method techniques, we transform it into a distance measure. Alman and Song [2023] states that the
exponential inner product can be approximated by polynomial kernel function P (·) : Rd → Rr,
i.e., P (x)⊤P (y) ≈ exp(x⊤y/d) for two vector x, y ∈ Rd, with a relative error. Then, by the Law
of Cosines, we transform the inner product of polynomial kernel functions into a distance measure,
i.e.,

2P (x)⊤P (y) = − ∥P (x)− P (y)∥22 + ∥P (x)∥22 + ∥P (y)∥22. (2)
After transforming Eq. (1) into a distance measure, we design the DPTREE series data structures to
provide cross-attention DP guarantee.

In summary, we first design the data structure DPTREE (Algorithm 3) that builds a binary segment
tree with truncated Laplace noise added in the leaf nodes to ensure DP guarantee. Then, based on
this data structure, we design DPTREEDISTANCE (Algorithm 5 and 6) to answer one dimensional
weighted distance queries

∑n
i=1 wi · |y − xi|, which utilizes DPTREE to store and return noised

weights wi multiplied with the approximated distances between the query y and data xi. We further
decompose high dimensional ℓpp-distance problem into one dimensional ℓ1-distance problems using

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p. (3)

Based on this decomposition, we design DPTREEHIGHDIM (Algorithm 7) which is capable of
answering high dimension queries. Then, using Eq. (2) and DPTREEHIGHDIM, we design DP-
TREESOFTMAX (Algorithm 2) to answer Softmax queries. By building multiple copies of this data
structure, we boost the success probability such that it can answer any query (including adaptive
query) with an additive error, establishing the final data structure DPTREESOFTMAXADAPTIVE
(Algorithm 1). See Section D for a more detailed outline of algorithms and proof techniques.

4.2 DPTree, DPTreeDistance, and DPTreeHighDim

We design a basic data structure DPTREE (Algorithm 3) that answers summation queries by a sum-
mation segment tree with truncated Laplace noise (Definition 2.4). The algorithm first builds a
binary summation tree in an array and then adds truncated Laplace noises to each node. In query
time, we first trace from bottom nodes to find their lowest common ancestor, then report the sum-
mation by using at most 2 log n nodes on the path (Algorithm 3). Based on the parallel composition
rule of DP (Fact C.7), we find that if we have multiple disjoint interval queries, the error of the
weighted sum of the intervals can be bounded independently of the number of queries (Lemma E.8).
See more details in Section E.

We then design DPTREEDISTANCE, a one-dimensional weighted ℓ1 distance data structure detailed
in Algorithm 5 and 6. Initialization involves rounding each data point to the nearest multiple of a
small interval and aggregating their weights into an array (illustrated in Figure 1), which is then
input into our DPTREE. At query time, we retrieve aggregated weights within small intervals and
multiply them by their distances to the query point. We introduce a relative error parameter α
to reduce the number of iterations to O(log(n)/α), improving efficiency. Guided by Eq.(3), we
design DPTREEHIGHDIM (Algorithm 7), which extends DPTREEDISTANCE to higher dimension
by constructing independent data structures for each coordinate. See details in Section G and H.

4.3 Softmax Activation

In this section, we present DPTREESOFTMAX (Algorithm 2) that answers the weighted Softmax
query (Definition 4.1) and is further used to design DP cross-attention. First, we introduce the
definition of weighted Softmax query, an abstraction for the problem described in Eq. (1).

6

Algorithm 2 Softmax query

1: datastrucutre DPTREESOFTMAX ▷ Theorem 4.2
2: members
3: D1, . . . ,Dr : DPTREEDISTANCE ▷ Algorithm 5, Theorem J.7
4: P : [0,ΓR,s]

n×r ▷ Definition J.3 for ΓR,s, Eq. (9) for s, Eq. (10) for r
5: w : [−Rw, Rw]

n

6: Pwx, sw, ϵs : R
7: end members
8: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1), ϵs ∈ (0, 0.1)) ▷ Lemma D.7

9: ϵs, w, P, Pwx, sw ← ϵs, w, 0
n×r, 0, 0

10: for j = 1→ n do
11: Compute P (xj) ▷ Polynomial kernel function P (·), Lemma J.5
12: Compute wj∥P (xj)∥22
13: Pwx ← Pwx + wj∥P (xj)∥22
14: sw ← sw + wj

15: Pj,: ← P (xj)
16: end for
17: for i = 1→ r do
18: Di.INIT(P:,i, n, w, cϵ/

√
r log(1/δ′), δ/r) ▷ Algorithm 5

19: end for
20: end procedure
21: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)) ▷ Lemma D.7
22: Value← 0
23: Compute P (y)
24: Compute ∥P (y)∥22
25: for i = 1→ r do
26: Value← Value + Di.DISTANCEQUERY(P (y)i, α) ▷ Algorithm 6
27: end for
28: Value← 0.5 · (Pwx + sw∥P (y)∥22 − Value)
29: return Value
30: end procedure
31: end datastrucutre

Definition 4.1 (Weighted Softmax query (without normalization)). For the dataset X ∈ [0, R]n×d

where x⊤
i is the i-th row of X and query y ∈ [0, R]d, we define the weighted exponential inner

product/Softmax query to be:∑
i∈[n]

wi exp(⟨xi, y⟩/d) = w⊤ exp(Xy/d).

Building on Definition 4.1, we develop a novel algorithm to answer differentially private weighted
Softmax queries using the polynomial kernel method from Alman and Song [2023]. Specifically,
in Eq.(2), there is a term that computes the weighted ℓ22 distance, which we calculate using DP-
TREEHIGHDIM. We then compute the exact term for the weighted ℓ22 norms of the approximation
kernel. By summing these terms with a controlled error, we extend DPTREEHIGHDIM to answer
the Softmax query efficiently. More details can be found in Section J.

Theorem 4.2 (Softmax query, informal version of Theorem J.8). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition J.3). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Our data structure DPTREESOFTMAX (Algorithm 2) uses O(nr)
spaces to solve Softmax query problem for dataset X ⊂ [0, R]d and support following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 2) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 2) It takes O(α−1r log2 n) time to output
a number z such that

7

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),
– the error bound satisfies |z − w⊤ exp(Xy/d)| ≤ (α + ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

– it holds with probability at least 0.99.

Remark 4.3. In Theorem 4.2, the parameter ϵs is the accuracy parameter for polynomial kernel
approximation described in Section D.5. Besides, note that the error bound in Theorem 4.2 does
not depend on δ but depends on δ′. The role of δ is to control a hidden constant term in the big O
notation, i.e., increasing δ reduces the error by a small constant (Fact 2.5). In practice, we set δ as
a small positive constant close to 0. Please refer to the Lemma E.6 for more details.

4.4 Adaptive Query Data Structure

We adapt our DPTREESOFTMAX to DPTREESOFTMAXADAPTIVE (Algorithm 1) to solve the
adaptive query problem. By proving it can handle any query within the query space with a cer-
tain error, we ensure it effectively processes adaptive queries. We first boost the constant probability
to high probability using the Chernoff bound (Lemma C.2). Employing an ϵ0-net argument and the
union bound, we bound all query points within the net. Finally, we use the Lipschitz property of the
weighted Softmax distance function with an additive error to bound all points in the query space.
The corresponding proofs can be found in Section I and Section J.

Theorem 4.4 (Adaptive query Softmax data structure, informal version of Theorem J.11). Let
R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s := maxj∈[s]

Rj
√
j!

(Definition J.3). Let the accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset,
w ∈ [−Rw, Rw]

n be weights, y ∈ [0, R]d be the query, α ∈ (0, 1) be the relative error parameter
and pf be the failure probability parameter. Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREESOFTMAXADAPTIVE (Algorithm 1) that uses O(lnr) spaces to solve the weighted Softmax
query problem for the dataset X ⊂ [0, R]d and supports the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). It takes O(lnr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). It takes O(α−1lr log2 n) time to output a number z
such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes w⊤ exp(Xy/d),
– the error bound satisfies |z − w⊤ exp(Xy/d)| ≤ (α + ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability at least 1− pf (where pf is used in l),
– it is robust to adaptive query.

Remark 4.5. We describe the parallelization of our algorithms. In the second for loop of INIT
and the for loop of DISTANCEQUERY in Algorithm 2, the r DPTREEDISTANCE data structures
instantiated for each coordinate are independent of each other. In addition, the for loops in Algo-
rithm 1 are also parallelizable since the l = O(r log(dR/(ϵspf))) copies are independent. After
parallelization, we have the final time complexity of INIT to be O(nr) and DISTANCEQUERY to be
O(α−1 log2 n) in Algorithm 1 with O(lr) GPU process.

5 Conclusion and Discussion

To our knowledge, we are the first work to provide differential privacy for cross-attention. This
paper presents the DPTREE data structures, which provide a differential privacy guarantee for the
cross-attention module in large generative models. This is achieved by transforming the cross-
attention mechanism into a weighted distance problem. Furthermore, our algorithm is robust to
adaptive queries, allowing users to interact with the model arbitrarily without extracting sensitive
information from the system prompts or RAG data. Our results may inspire more privacy algorithm
design in large generative models. Further discussion, including extension to self-attention and DP
related design issue, is deferred to Section A.

8

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 308–318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. In Advances in Neural Information
Processing Systems (NeurIPS), pages 43544–43562, 2023.

Anthropic. System prompts, 2024. https://docs.anthropic.com/en/docs/
system-prompts.

Apple. Apple intelligence, 2024. https://www.apple.com/apple-intelligence/.

Arturs Backurs, Zinan Lin, Sepideh Mahabadi, Sandeep Silwal, and Jakub Tarnawski. Efficiently
computing similarities to private datasets. arXiv preprint arXiv:2403.08917, 2024.

Rouzbeh Behnia, Mohammadreza Reza Ebrahimi, Jason Pacheco, and Balaji Padmanabhan. Ew-
tune: A framework for privately fine-tuning large language models with differential privacy. In
2022 IEEE International Conference on Data Mining Workshops (ICDMW), pages 560–566.
IEEE, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pages 2206–2240. PMLR, 2022.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
vision transformer for image classification. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 357–366, 2021.

Justin Y Chen, Shyam Narayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

Vincent Cohen-Addad, Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong.
Near-optimal private and scalable k-clustering. Advances in Neural Information Processing Sys-
tems, 35:10462–10475, 2022a.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy. Ad-
vances in Neural Information Processing Systems, 35:33702–33715, 2022b.

Itai Dinur, Uri Stemmer, David P Woodruff, and Samson Zhou. On differential privacy and adap-
tive data analysis with bounded space. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 35–65. Springer, 2023.

Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

9

https://docs.anthropic.com/en/docs/system-prompts
https://docs.anthropic.com/en/docs/system-prompts
https://www.apple.com/apple-intelligence/

Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pages 1–19. Springer, 2008.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

Kennedy Edemacu and Xintao Wu. Privacy preserving prompt engineering: A survey. arXiv preprint
arXiv:2404.06001, 2024.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 560–578. SIAM, 2020.

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean esti-
mation with few users. In International Conference on Machine Learning, pages 16383–16412.
PMLR, 2022.

Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph. In 2022
IEEE International Symposium on Information Theory (ISIT), pages 2190–2195. IEEE, 2022.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest sub-
graph. In International Conference on Artificial Intelligence and Statistics, pages 11581–11597.
PMLR, 2022.

Yeqi Gao, Zhao Song, Xin Yang, and Yufa Zhou. Differentially private attention computation. In
Neurips Safe Generative AI Workshop 2024, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pages 89–99. PMLR, 2020.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu. On differentially pri-
vate counting on trees. In 50th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2023), volume 261, page 66. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2023.

GitHub. Agentgpt, 2024a. https://github.com/reworkd/AgentGPT.

GitHub. Chatgpt system prompt, 2024b. https://github.com/LouisShark/chatgpt_system_
prompt.

GitHub. Gpt researcher, 2024c. https://github.com/assafelovic/gpt-researcher.

GitHub. Superagi, 2024d. https://github.com/TransformerOptimus/SuperAGI.

10

https://github.com/reworkd/AgentGPT
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/LouisShark/chatgpt_system_prompt
https://github.com/assafelovic/gpt-researcher
https://github.com/TransformerOptimus/SuperAGI

Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, and Stefano
Soatto. Mixed differential privacy in computer vision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 8376–8386, 2022.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34:11631–11642, 2021.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pages 1948–1989. PMLR, 2022.

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex optimiza-
tion in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 5068–5089. SIAM, 2023.

Adityanand Guntuboyina and Bodhisattva Sen. L1 covering numbers for uniformly bounded convex
functions. In Conference on Learning Theory, pages 12–1. JMLR Workshop and Conference
Proceedings, 2012.

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
differentially-private histograms through consistency. arXiv preprint arXiv:0904.0942, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Sirui Hong, Yizhang Lin, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin
Wang, Lingyao Zhang, Mingchen Zhuge, et al. Data interpreter: An llm agent for data science.
arXiv preprint arXiv:2402.18679, 2024a.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collabo-
rative framework. In The Twelfth International Conference on Learning Representations, 2024b.
URL https://openreview.net/forum?id=VtmBAGCN7o.

Samuel B Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robustness implies
privacy in statistical estimation. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, pages 497–506, 2023.

Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th Interna-
tional Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2021.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
language models. arXiv preprint arXiv:2407.01599, 2024.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv preprint
arXiv:1909.03577, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024.

11

https://openreview.net/forum?id=VtmBAGCN7o

Haoran Li, Yulin Chen, Jinglong Luo, Yan Kang, Xiaojin Zhang, Qi Hu, Chunkit Chan, and Yangqiu
Song. Privacy in large language models: Attacks, defenses and future directions. arXiv preprint
arXiv:2310.10383, 2023a.

Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and Yangqiu Song. Multi-
step jailbreaking privacy attacks on chatgpt. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 4138–4153, 2023b.

Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory to practice.
Springer, 2017.

Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random projections.
arXiv preprint arXiv:2306.01751, 2023a.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent
weighted sampling. arXiv preprint arXiv:2306.07674, 2023b.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024a.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Unraveling the smoothness properties of
diffusion models: A gaussian mixture perspective. arXiv preprint arXiv:2405.16418, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024c.

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024a.

Zhihao Liu, Jian Lou, Wenjie Bao, Zhan Qin, and Kui Ren. Differentially private zeroth-order
methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818, 2024b.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
language model inference with local differential privacy. arXiv preprint arXiv:2310.09130, 2023.

Justus Mattern, Zhijing Jin, Benjamin Weggenmann, Bernhard Schölkopf, and Mrinmaya Sachan.
Differentially private language models for secure data sharing. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing, pages 4860–4873. Association
for Computational Linguistics, 2022.

Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning Theory,
pages 3979–4027. PMLR, 2022.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation.
arXiv preprint arXiv:2310.06289, 2023.

OpenAI. Creating a gpt, 2024a. https://help.openai.com/en/articles/
8554397-creating-a-gpt.

12

https://help.openai.com/en/articles/8554397-creating-a-gpt
https://help.openai.com/en/articles/8554397-creating-a-gpt

OpenAI. Video generation models as world simulators, 2024b. https://openai.com/research/
video-generation-models-as-world-simulators.

Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
of attention in prompt-tuning. In International Conference on Machine Learning, pages 26724–
26768. PMLR, 2023.

Dylan Patel. Chatgpt system prompt is 1700 tokens?!, 2024. https://x.com/dylan522p/
status/1755086111397863777.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113–1201, 2023.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Adaptive and dynamic
multi-resolution hashing for pairwise summations. In 2022 IEEE International Conference on
Big Data (Big Data), pages 115–120. IEEE, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si,
Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, et al. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint arXiv:2406.06608, 2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pages 6327–6340, 2022a.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2022b.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? arXiv preprint arXiv:2405.19592, 2024.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1–22, 2024.

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning, pages 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pages 32418–32462. PMLR, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roman Vershynin. An introduction with applications in data science. Camb. Ser. Stat. Probab. Math,
47, 2017.

13

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://x.com/dylan522p/status/1755086111397863777
https://x.com/dylan522p/status/1755086111397863777

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

David Woodruff, Fred Zhang, and Samson Zhou. On robust streaming for learning with experts:
algorithms and lower bounds. Advances in Neural Information Processing Systems, 36:79518–
79539, 2023.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2023.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024.

Fei Yang, Shiqi Yang, Muhammad Atif Butt, Joost van de Weijer, et al. Dynamic prompt learning:
Addressing cross-attention leakage for text-based image editing. Advances in Neural Information
Processing Systems, 36, 2024.

Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-Yan Lam.
Local differential privacy and its applications: A comprehensive survey. Computer Standards &
Interfaces, page 103827, 2023.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. In International Conference on Learning Representations, 2021.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

Ying Zhao and Jinjun Chen. A survey on differential privacy for unstructured data content. ACM
Computing Surveys (CSUR), 54(10s):1–28, 2022.

Chunyan Zheng, Keke Sun, Wenhao Zhao, Haibo Zhou, Lixing Jiang, Shaoyang Song, and Chunlai
Zhou. Locally differentially private in-context learning. In LREC/COLING, 2024.

14

Appendix

Contents

1 Introduction 1

1.1 Related Work . 3

2 Preliminary 3

2.1 Notations . 3

2.2 Differential Privacy Definitions . 3

3 Main Results: Cross-Attention 4

4 Key Data Structure: DPTree 5

4.1 Technique Overview . 6

4.2 DPTree, DPTreeDistance, and DPTreeHighDim 6

4.3 Softmax Activation . 6

4.4 Adaptive Query Data Structure . 8

5 Conclusion and Discussion 8

A Discussion 17

B More Related Work 17

C More Preliminary 18

C.1 Probability Tools . 18

C.2 Algebraic Facts . 18

C.3 DP Facts . 19

C.4 Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms 19

D Proof Outline 20

D.1 Summation Segment Tree . 20

D.2 Sensitivity for Range Summation Problem . 20

D.3 Weighted ℓpp Distance Problem . 21

D.4 One-Dimensional Weighted ℓ1 Distance Data Structure 21

D.5 Softmax Activation . 22

D.6 Adaptive Query . 22

E DPTree Algorithm 23

E.1 Single Data Structure . 23

E.2 Boost the Constant Probability to High Probability 24

E.3 Algorithm of Data Structure . 25

E.4 Disjoint Intervals . 27

15

F Weighted ℓpp Distance 28

F.1 One Dimensional Weighted Distance . 29

F.2 High Dimensional Weighted Distance . 29

G One-Dimensional Weighted ℓ1 Distance Query 30

G.1 Runtime Analysis . 30

G.2 Privacy and Accuracy Analysis . 31

G.3 One Dimension Single Data Structure . 33

H High-Dimensional Weighted ℓ1 Query 33

H.1 Privacy and Accuracy Analysis for High Dimensional Weighted Distance 33

H.2 High Dimension Single Data Structure . 35

I Adaptive Query 36

I.1 Boost the Constant Probability to High Probability 36

I.2 From Each Fixed Query Point to All On-net Points 36

I.3 From Net Points to All Points . 37

I.4 Effect of Different Norms on the Result . 38

J Softmax Activation 40

J.1 Exponential Inner Product . 40

J.2 Algorithm Modifications . 42

J.3 Adaptive Softmax . 43

J.4 Proof of Main Result . 45

16

Roadmap. The appendix is organized as follows. In Section A, we discuss DP-related topics
and potential extensions. In Section B, we provide more related works. In Section C, we give the
preliminary of our paper. In Section D, we offer an outline of our proof techniques. In Section E,
we give the analysis of the data structure DPTREE that can solve summation problem with DP and
accuracy guarantee. In Section F, we show how to solve weighted distance problem. In Section G,
we give our DPTREEDISTANCE data structure that can solve one dimensional ℓ1 distance problem
with DP and accuracy guarantee. In Section H, we present the analysis of our DPTREEHIGHDIM
(Algorithm 7) data structure, which can address the high-dimensional ℓ1 distance problem while
ensuring differential privacy and accuracy guarantees. In Section I, we show how we can handle
adaptive query. In Section J, we show how to extend our algorithm to Softmax activation and give the
analysis of DPTREESOFTMAX (Algorithm 2) and DPTREESOFTMAXADAPTIVE (Algorithm 1).

A Discussion

How do we extend to self-attention? As self-attention is a more fundamental module in LGMs,
we would like to extend our data structure to this setting. However, the challenge we faced was the
dynamic update in tree nodes for each query for self-attention, which our current analysis does not
support. How we can solve this challenge is crucial, and we leave it as our future direction.

Why not add noise to some other places? Where and how to add DP noises is an impor-
tant problem to ask during the DP algorithm design. In this paper, we consider the problem of∑n

i=1 wi exp(⟨xi, y⟩/d) where y, xi ∈ [0, R]d and w ∈ [−Rw, Rw]
n (Definition 4.1). Notice that

the only place where we add noises is in the most basic building block data structure DPTREE (Al-
gorihtm 3). From Lemma D.3 and the way we initialize DPTREE in Algorithm 5, we see that the
sensitivity ∆ of this problem is 2Rw.

A simple method for adding noise involves adding n noises to a length n array, with each item
wi exp(⟨xi, y⟩/d) for i ∈ [n]. However, this approach increases the error by a factor of n by basic
composition (Fact C.6) and also makes the model dependent on the number of queries. Besides,
it only supports a single query and requires rebuilding the tree for each new query, rendering it
impractical. In contrast, our current noise-adding technique (Lines 9 and 15 of Algorithm 3) utilizes
a summation tree such that the error only increases by a factor of poly log n. This method also
supports multiple queries, eliminating the need to rebuild the tree each time.

How to remove the relative error parameter α? The relative error parameter α in Theorem 3.1
appears because of the (1+α)-approximation introduced in Algorithm 5 (Remark G.3) to reduce the
number of required iterations from naive O(n) to O(log(n)/α). However, we notice that a recent
work [Liu et al., 2024a] does not utilize (1+α)-approximation and still achieves O(log n) iteration
number. They introduce a new tree node representation where each node stores the sum of distances
from one point to multiple points, enabling the answer to be divided into only log n values, each
combining two distance values, two count values, and y itself. Our DPTREE algorithms can be
integrated with their method, thus removing parameter α.

B More Related Work

Differential Privacy Guarantee Analysis. Ever since Dwork et al. [2006] proposes the notion
of differential privacy (DP), it has become one of the most essential standards of privacy protec-
tion in both theoretical and empirical ways [Dwork, 2008, Li et al., 2017, Zhao and Chen, 2022,
Ponomareva et al., 2023, Yang et al., 2023]. DP provides a powerful, robust, and quantifiable pri-
vacy definition, allowing algorithm design with concrete privacy and accuracy guarantee [Hay et al.,
2009, Esfandiari et al., 2022, Andoni et al., 2023, Li and Li, 2023b, Huang and Yi, 2021, Ghazi
et al., 2023, Backurs et al., 2024, Cohen-Addad et al., 2022a, Epasto et al., 2024, Chen et al., 2022,
Hopkins et al., 2023, Narayanan, 2022, 2023, Jung et al., 2019, Li and Li, 2024, Fan and Li, 2022,
Fan et al., 2024, Li and Li, 2023a, Cherapanamjeri et al., 2023, Cohen-Addad et al., 2022b, Dong
et al., 2024, Farhadi et al., 2022, Gopi et al., 2021, 2023, Li et al., 2022, Gopi et al., 2022, Eliáš
et al., 2020, Song et al., 2023b, Dinur et al., 2023, Woodruff et al., 2023, Song et al., 2023a, Gao
et al., 2024]. Additionally, new mechanisms have been proposed beyond the traditional Laplace,
Gaussian, and Exponential mechanisms [Dwork and Roth, 2014]. For example, truncated Laplace

17

mechanism [Geng et al., 2020] is proved to be the current tightest the lower and upper bounds on
the minimum noise amplitude and power cross all (ϵ, δ)-DP distributions.

Cross-Attention in System Prompt, RAG, Stable Diffusion and More. Cross-attention [Vaswani
et al., 2017], first introduced in language translation, is a widely used technique in many advanced AI
systems. For example, Stable Diffusion [Rombach et al., 2022] and SORA [OpenAI, 2024b] employ
cross-attention as a core module for a text-to-image conditional generation. This technique is also
utilized by other multimodal models [Liang et al., 2024c], including Imagen [Saharia et al., 2022]
and Diffusion Transformer [Peebles and Xie, 2023]. In the realm of text-to-image editing, Hertz
et al. [2022] analyzes and controls the cross-attention module to enable editing without requiring
additional training. Furthermore, Yang et al. [2024] tackles the issue of inaccurate cross-attention
maps, enhancing fine-grained control over edited regions while preventing unintended changes to
other areas. In addition, Retrieval Augmented Generation (RAG) [Lewis et al., 2020, Borgeaud
et al., 2022, Gao et al., 2023], a technique that improves model responses by retrieving information
from a knowledge base or external documents, extensively uses cross-attention as its core design
module. Cross-attention also has other applications. Oymak et al. [2023] demonstrates that the
prompt-tuning [Liang et al., 2024a] task can be formulated as cross-attention, while Chen et al.
[2021] uses cross-attention to fuse multi-scale features in vision transformers, thereby reducing
computation. Moreover, attention-based Transformer architecture makes LGMs equipping many
emergent ability [Wei et al., 2022], such as spatial reasoning [Wang et al., 2024], mathematical
reasoning [Li et al., 2024], in-context learning ability [Shi et al., 2024], compositional ability [Xu
et al., 2024], few-shot adaptation ability [Shi et al., 2022b, Xu et al., 2023], and so on.

C More Preliminary

In Section C.1, we give the probability tools we use in the paper. In Section C.2, we provide the
algebraic facts we use. In Section C.3, we give the DP facts we use in the paper. In Section C.4, we
compare between popular DP mechanisms.

C.1 Probability Tools

In this section, we give several probability lemmas.

Lemma C.1 (Markov’s inequality). If x is a nonnegative random variable and t > 0, we have

Pr[x ≥ t] ≤ E[x]
t

.

Lemma C.2 (Chernoff bound, [Chernoff, 1952]). Let xi be a Bernoulli random variable with prob-
ability pi of being equal to 1 and 1− pi of being equal to 0, and all xi for i ∈ [n] are independent.
Let x =

∑n
i=1 xi. Let µ = E[x] =

∑n
i=1 pi. Then, for all δ > 0 we have

Pr[x ≥ (1 + δ)µ] ≤ exp(−δ2µ/3),

and for all 0 < δ < 1

Pr[x ≤ (1− δ)µ] ≤ exp(−δ2µ/2).

Lemma C.3 (Chebyshev’s inequality). Let x (integrable) be a random variable with finite non-zero
variance σ2 (and thus finite expected value µ). Then for any real number k > 0,

Pr[|x− µ| ≥ kσ] ≤ 1

k2
.

C.2 Algebraic Facts

Fact C.4 (Upper bound of exponential, Fact C.9 in Liang et al. [2024b]). For a ∈ R, b ∈ R,
a, b ≤ R, where R ≥ 0, we have

| exp(a)− exp(b)| ≤ exp(R)|a− b|.

18

C.3 DP Facts

In this section, we present several facts about differential privacy (DP). We first state the post-
processing property, which means, in an algorithm, if one step is DP, all the following steps are
DP.

Fact C.5 (Post-processing, see Fact 2.1 in Ghazi et al. [2023]). Let A1 be an (ϵ, δ)-DP algorithm
and A2 be a (randomized) post-processing algorithm. Then the algorithm A(X) = A2(A1(X)) is
still an (ϵ, δ)-DP algorithm.

If we have many DP algorithms, we need a composition rule. The most straightforward composition
is the basic/sequential composition rule.

Fact C.6 (Basic composition, see Fact 2.3 in Ghazi et al. [2023]). Let A1 be an (ϵ1, δ1)-DP al-
gorithm and A2 be an (ϵ2, δ2)-DP algorithm. Then A(X) = (A1(X),A2(A1(X), X)) is an
(ϵ1 + ϵ2, δ1 + δ2)-DP algorithm.

We can do much better if we know that the inputs are disjoint.

Fact C.7 (Parallel composition, see Fact 2.4 in Ghazi et al. [2023]). Let A1 be an (ϵ1, δ1)-DP
algorithm and A2 be an (ϵ2, δ2)-DP algorithm. Assume A1 and A2 depend on disjoint subsets
of input coordinates. Then the algorithm A(X) = (A1(X),A2(A1(X), X)) is a (max{ϵ1, ϵ2},
max{δ1, δ2})-DP algorithm.

In addition, we have the advanced composition, which improves the dependence of the number of
DP algorithms to square root but compromises the term δ′.

Theorem C.8 (Advanced composition, see Theorem 3.20 in Dwork and Roth [2014]). For all
ϵ, δ, δ′ ≥ 0, the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, kδ + δ′)-differential
privacy under k-fold adaptive composition for:

ϵ′ = kϵ(eϵ − 1) + ϵ
√
2k log(1/δ′).

C.4 Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms

We first define the Laplace mechanism as below:

Definition C.9 (Laplace distribution). We use Lap(b) to denote the pdf: p(z) = 1
2b exp(−

|z|
b).

Fact C.10. For z ∼ Lap(b), E[z] = 0, and Var[z] = 2b2. Furthermore, if b = ∆/ϵ, we have
Var[z] = 2∆2/ϵ2.

In this paper, we use the Chebyshev inequality to bound the error, and from Geng et al. [2020], we
know that the truncated Laplace mechanism has the current minimum variance across all (ϵ, δ)-DP
distributions.

The variance of Gaussian mechanism in Theorem 3.22 in Dwork and Roth [2014]:

Var =
2∆2 log(1.25/δ)

ϵ2
.

The variance of Laplace mechanism in Fact C.10:

Var =
2∆2

ϵ2
.

The variance of truncated Laplace mechanism in Fact 2.5, for c ∈ (0, 1]:

Var =
2∆2c

ϵ2
.

Thus, since it has the minimum variance, we choose the truncated Laplace mechanism to design our
algorithms among these popular mechanisms.

19

D Proof Outline

This section provides the proof outline of our paper. In Section D.1, we analyze our DPTREE data
structure. In Section D.2, we show the sensitivity of summation problem. In Section D.3, we explain
the high-level idea behind the weighted ℓpp distance query. In Section D.4, we show how to answer
one-dimensional weighted ℓ1 distance query. In Section D.5, we show how to answer Softmax
distance query using previous algorithms. In Section D.6, we show how to handle adaptive query.
By combining the results from these sections, we prove the main results in Section 4.

D.1 Summation Segment Tree

First, in order to solve the weighted distance problem, we need to have a basic DP algorithm (Algo-
rithm 3) that can answer simple summation queries. After analyzing its DP and error in Section E,
we state the data structure theorem.
Theorem D.1 (DPTREE data structure, informal version of Theorem E.1). There is a data structure
(see DPTREE in Algorithm 3) that uses O(n) spaces to support the following operations:

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2 n),

– it holds with probability 0.99.

During the design of the data structure, we found an interesting property based on the parallel com-
position rule of DP Fact C.7. We will now state the lemma, whose proof is provided in Section E.
Lemma D.2 (Weighted sum of disjoint interval queries, informal version of Lemma E.8). If the
following conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let aj for j ∈ [t] be a series that square converges to a, i.e.,
∑t

j=1 a
2
j ≤ a.

Then, we have Alg. 3 is (ϵ, δ)-DP and output
∑t

j=1 ajQUERY(Sj) with the error upper bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

From Lemma D.2, we can see that if we have multiple disjoint interval queries, the error of the
weighted sum of the intervals can be bounded independently of the number of queries, as long as
the sum of squared weights is finite.

D.2 Sensitivity for Range Summation Problem

Our DP summation tree data structure DPTREE (Algorithm 3) requires sensitivity parameter ∆. In
this section, we show that for the summation problem, we have the sensitivity ∆ = 2R if the input
X ∈ [−R,R]n.
Lemma D.3 (Sensitivity of summation). Let X ∈ [−R,R]n. We have the sensitivity ∆ = 2R for
DPTREE.INIT in Algorithm 3.

Proof. Let’s say two neighboring datasets X and X ′ differ in xi and x′
i for some i in the array X .

Then for a summation problem, i.e. f(X) :=
∑n

i=1 xi, we have

∆ = max
X,X′

|f(X)− f(X ′)| = max
X,X′

|xi − x′
i| = 2R.

where the first step follows from Definition 2.2, the second step follows from X,X ′ differ in xi, x
′
i,

and the last step follows from each coordinate of the dataset is bounded in [−R,R].

20

D.3 Weighted ℓpp Distance Problem

In this section, we introduce the intuition behind the method for handling the weighted ℓpp distance
problem. The formal lemmas and proofs can be found in Section F.

Given a dataset and a query point in d dimensions, we round each coordinate of the data points
and the query point to the nearest multiple of a small interval. We then aggregate the weights of
data points that have been rounded to the same position. Finally, we compute the sum of these
aggregated weights multiplied by the distances between the query point and the data points over the
rounded positions. This approach makes the computation more efficient while maintaining sufficient
accuracy.

We provide an example of weighted ℓ1-distance of a one-dimensional dataset consisting of 10 data
points, i.e., X ∈ [0, 1]10 and a query y = 0 in Figure 1.
Lemma D.4 (Weighted ℓpp-distance high dimension, informal version of Lemma F.2). If the follow-
ing conditions hold:

• Let data X ∈ [0, R]n×d and x⊤
i ∈ [0, R]d be the i-th row of x, weight w ∈ Rn, query

y ∈ [0, R]d.

• We round each dimension of X and y to an integer multiple of R/n.

• Let xi,k, yk denote the k-th coordinates of xi, y for k ∈ [d].

• Let cj,k :=
∑

j0∈Sj,k
wj0 where the set Sj,k is the set of index i such that the corresponding

xi,k is rounded to jR/n for j ∈ {0, 1, 2, . . . , n} for k ∈ [d].

• After rounding, we assume that yk is in the lkR/n position for lk ∈ {0, 1, 2, . . . , n} for
k ∈ [d].

For the weighted problem, we have
n∑

i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k.

where O(R/n) is the rounding error for each data point.
Remark D.5. In Lemma D.4, we first round the dataset. This rounding simplifies the calculation
by reducing the number of possible positions to consider, from real values in [0, R]d to the total
O(nd) spots. However, it also introduces an error O(R/n) for one data point. Then, for one spot in
the rounded dataset, we sum over the weights of that spot and multiply the corresponding distance
raised to the power of p. Additionally, since we are dealing with ℓpp distance, the rounding error is
also raised to the power of p.

D.4 One-Dimensional Weighted ℓ1 Distance Data Structure

Based on previous discussions in Section D.1 and D.3, we can now describe our one-dimensional
weighted ℓ1 distance data structure, DPTREEDISTANCE, presented in Algorithm 5 and 6, which
generalizes the results from Backurs et al. [2024]. Drawing from the intuition in Section D.3, the
initialization process is as follows: first, we round each data point in the dataset to the nearest
multiple of a small interval and build an array that aggregates the corresponding weights. This array
is then fed into our DPTREE data structure in Algorithm 3. At query time, we query the DPTREE
to obtain the aggregated weights within a small interval and multiply these weights by the distance
to the query point. Furthermore, we also introduce a relative error parameter α to reduce the total
number of queries to O(log(n)/α) instead of querying all n positions. We also analyze the DP and
the error bound; see details in Section G.
Theorem D.6 (DPTREEDISTANCE data structure, informal version of Theorem G.6). There is a
data structure DPTREEDISTANCE (Algorithm 5 and 6) that uses O(n) spaces to solve weighted
ℓ1-distance query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

21

x

x1

1
x2

2.2
x3

3.1
x4

−2
x5

−3
x6

2
x7

6
x8

0.5
x9

−1
x10

1

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
{1}
0
10

{2.2}
1
10

{∅}
2
10

{3.1,−2,−3}
3
10

{2}
4
10

{∅}
5
10

{6}
6
10

{0.5}
7
10

{∅}
8
10

{−1, 1}
9
10

{∅}
10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

x
c0 = 1

0
10

c1 = 2.2

1
10

c2 = 0

2
10

c3 = −1.9

3
10

c4 = 2

4
10

c5 = 0

5
10

c6 = 6

6
10

c7 = 0.5

7
10

c8 = 0

8
10

c9 = 0

9
10

c10 = 0

10
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10
10

Figure 1: The visualization of how to build cj of rounded dataset X ∈ [0, 1]10 and compute the
weighted ℓ1 distance. The number above each xi is wi. See Algorithm 5 for details. Suppose y = 0.
Then

∑n
i=1 wi|y−xi| = 0.1 ·2.2+0.3 ·3.1+0.3 ·(−2)+0.3 ·(−3)+0.4 ·2+0.6 ·6+0.7 ·0.5+0.9 ·

(−1)+0.9·1 = 4.4. And
∑n

j=0 |k−j|cj/n = 0.1·2.2+0.3·(−1.9)+0.4·2+0.6·6+0.7·0.5 = 4.4.
See details in Lemma F.1.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6) It takes O(α−1 log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ)-DP, which computes
∑

i∈[n] wi|y − xi|,
– |z −∑

i∈[n] wi|y − xi|| ≤ α
∑

i∈[n] wi|y − xi|+O(ϵ−1α−1/2RRw log3/2 n),
– it holds with probability 0.99.

D.5 Softmax Activation

We then describe how we extend the previous results to Softmax activation, i.e. exponential inner
product function (Definition 4.1). From Alman and Song [2023], we know that Softmax activa-
tion can be approximated by polynomial kernel function P (·) with a certain error. The follow-
ing lemma shows that we can transform weighted Softmax queries into polynomial kernels. More
specifically, we have one term that computes the weighted ℓ22 distance, which is the place where
we add DP noises. Because of the decomposability of the ℓpp distance, i.e.

∑
i∈[n] wi∥xi − y∥pp =∑

j∈[d]

∑
i∈[n] wi|xi,j − yj |p, we can easily extend the results of Section D.4 to handle the ℓ22 dis-

tance query. After that, we compute the term for the weighted ℓ22 norms of approximation kernel
exactly. Summing all these terms, with a certain error, we can answer the Softmax query. Related
proofs can be found in Section J.
Lemma D.7 (Weighted Softmax approximation, informal version of Lemma J.6). Let the accuracy
parameter be ϵs ∈ (0, 0.1). Let R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}).

Let ΓR,s := maxj∈[s]
Rj
√
j!

(Definition J.3). Let P (x) : [0, R]d → [0,ΓR,s]
r be the s-th order

polynomial kernel function defined in Lemma J.5. Then, we can approximate the exponential inner
product using the polynomial kernel function:

w⊤ exp(Xy/d) = − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

+ O(w⊤ exp(Xy/d) · ϵs).
Moreover, the vectors P (·) can be computed in O(r) time.

D.6 Adaptive Query

We introduce how we can modify our algorithm to solve the adaptive query problem using some
tools in Qin et al. [2022]. Our approach is based on proving that our algorithm can handle any query
within the query space with a certain error. Since adaptive queries must lie within this space, our
algorithm can effectively handle them. In Section D.5, we demonstrate our algorithm’s capability
to answer weighted Softmax distance queries with constant probability. We then use the Chernoff

22

bound to boost the constant probability of our algorithm to a high probability. Next, we apply the
notion of an ϵ0-net to bound all query points within the net using the union bound. Finally, we bound
all points in the query space by utilizing the Lipschitz property of the weighted Softmax distance
function and introducing an additive error. See the proofs in Sections I and J.

Lemma D.8 (Adaptive Softmax, informal version of Lemma J.10). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and let |N | be the size of the net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let the relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
r/pf)) independent copies of the data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 2) and take the median of the outputs with each
data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d).

• Let B = O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting median of l responses is (ϵ, δ + δ′)-DP and the
error satisfies

|f(y)− Z(q)| ≤ (α+ ϵs)Z(q) +B + 2n
√
dRRw exp(R2)ϵ0.

E DPTree Algorithm

In this section, we give the analysis of privacy, accuracy and runtime of our DPTREE (Algorithm 3).
In Section E.1, we give the theorem (Theorem E.1) of our data structure that can answer summation
problem. In Section E.2, we improve our data structure from constant probability to high probability
by applying Chernoff bound. In Section E.3, we give the analysis. In Section E.4, we show some
results of our data structure if the input queries are disjoint.

E.1 Single Data Structure

We give the theorem of our DPTREE data structure that can answer the summation problem with
DP, accuracy, runtime guarantee.

Theorem E.1 (DPTREE data structure, formal version of Theorem D.1). There is a data structure
(see DPTREE in Algorithm 3) that uses O(n) spaces to support the following operations:

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1)). It takes O(n) time to initialize the
data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2 n),

– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma E.3 (running time of initialization), Lemma E.4
(running time of query), Lemma E.5 (DP of query), and Lemma E.6 (error of query) together.

23

Algorithm 3 DPTree initialization and query

1: datastructure DPTREE ▷ Theorem D.1
2: members
3: b : R2n−1

4: c : R2n−1

5: end members
6: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ R, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma E.3, Lemma D.3
7: b[n, 2n− 1]← a
8: for i = n→ 2n− 1 do
9: c[i]← b[i] + TLap(∆, ϵ/ log n, δ/ log n)

10: end for
11: for i = (log n)→ 1 do
12: for j = 1→ 2i−1 do
13: k ← 2i−1 + j − 1
14: b[k]← b[2k] + b[2k + 1]
15: c[k]← b[k] + TLap(∆, ϵ/ log n, δ/ log n)
16: end for
17: end for
18: end procedure
19: procedure QUERY(x ∈ [n], y ∈ [n]) ▷ Lemma E.4, E.5, E.6
20: Trace from bottom nodes of x and y to find their lowest common ancestor, then we report

the summation (based on c) by using at most 2 log n nodes on the path. Let Value be the above
summation.

21: return Value
22: end procedure
23: procedure TRUEQUERY(x ∈ [n], y ∈ [n])
24: Trace from bottom nodes of x and y to find their lowest common ancestor, then we report

the summation (based on b) by using at most 2 log n nodes on the path, where the height of the
tree is log n, and we need left and right boundary points. Let Value be the above summation.

25: return Value
26: end procedure
27: end datastructure

E.2 Boost the Constant Probability to High Probability

We can use Chernoff bound to boost the high probability by repeating the data structure multiple
times.

Theorem E.2 (High-probability). There is a data structure (see DPTREEHIGHPROB in Algo-
rithm 4) that uses O(n log(1/δfail)) spaces to support the following operations

• INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01)). It takes
O(n log(1/δfail)) time to initialize the data structure.

• QUERY(x ∈ [n], y ∈ [n]). It takes O(log(n) · log(1/δfail)) time to output a number z such
that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑y

i=x ai,

– |z −∑y
i=x ai| ≤ O(ϵ−1∆ log3/2(n) · log(1/δfail)),

– it holds with probability 1− δfail for failure probability δfail ∈ (0, 0.01).

Proof. Note that our data structure (Theorem E.1) succeeds with probability 0.99. The success of
the algorithm (Theorem E.1) can be viewed as a Bernoulli random variable, to which we apply the
Chernoff bound (Lemma C.2). By repeating the data structure O(log(1/δfail)) times and taking the
median of the outputs, we boost the success probability. The details are following.

To boost the success probability, we assume the query is repeated l times. Let i ∈ [l], and let zi
denote the indicator random variable for the success of the i-th instance of the data structure for a
single query. Let z =

∑l
i=1 zi be the total success times. Since p = Pr[zi = 1] = 0.99, we can

24

have µ = E[z] =
∑l

i=1 p = lp. Note that p = 0.99. By setting δ = 0.1 and using Chernoff bound
from Lemma C.2, we can show

Pr[z ≤ l/2] ≤ Pr[z ≤ (1− δ)lp] ≤ exp(−δ2lp/2).
Note that we want z > l/2 (since we want at least half to succeed so we could take the median),

Pr[z > l/2] ≥ 1− exp(−δ2lp/2).

To ensure that failure probability is δfail, we have

exp(−δ2lp/2) = δfail.

We can make this hold by choosing l = O(log(1/δfail)).

By the DP basic composition rule (Fact C.6), we need to choose ϵ = ϵ′/O(log(1/δfail)) and δ =
δ′/O(log(1/δfail)) where ϵ′, δ′ are the ϵ, δ in Theorem E.1.

Algorithm 4 Boost constant probability

1: datastructure DPTREEHIGHPROB ▷ Theorem E.2
2: members
3: D1, . . . ,DO(log(1/δfail)) : DPTREE ▷ Alg. 3
4: end members
5: procedure INIT(a ∈ Rn, n ∈ N+,∆ ∈ N+, ϵ ∈ (0, 1), δ ∈ (0, 1), δfail ∈ (0, 0.01))
6: for i = 1→ O(log(1/δfail)) do
7: Di.INIT(a, n,∆, ϵ/O(log(1/δfail)), δ/O(log(1/δfail)))
8: end for
9: end procedure

10: procedure QUERY(x ∈ [n], y ∈ [n])
11: r ← 0O(log(1/δfail))

12: for i = 1→ O(log(1/δfail)) do
13: ri ← Di.QUERY(x, y)
14: end for
15: return Median of r
16: end procedure
17: end datastructure

E.3 Algorithm of Data Structure

In this section, we analyze the accuracy, DP, and runtime of Algorithm 3.

We first analyze the runtime.

Lemma E.3 (Runtime of initialization, Algorithm 3). For the initialization, we have the time com-
plexity of Algorithm 3 is O(n).

Proof. All the computations are dominated by O(n) time.

Lemma E.4 (Runtime of query, Algorithm 3). For each query, we have the time complexity of
Algorithm 3 is O(log n).

Proof. Due to the property of tree, we will use at most 2 log n nodes in the tree, thus the running
time is O(log n).

We now analyze the DP.

Lemma E.5 (Privacy of query, Algorithm 3). The output process of QUERY (see Algorithm 3) is
(ϵ, δ)-DP.

25

Proof. Suppose that our dataset is X ∈ [−R,R]n. Note that we only add noise in the pre-processing
stage. There is no noise in the query stage. Since the problem we care about is summation, if we
change one leaf node, the sensitivity ∆ = 2R (see Lemma D.3). Since we add noise to each node
in the tree, and each leaf node count will contribute to log n nodes, it is equivalent to our output
function being in log n dimension. We will then blow up the DP parameter by log n factor. Thus,
using the basic composition rule (Fact C.6), the DP guarantee for the whole tree data structure is
((ϵ/ log n) · log n, (δ/ log n) · log n) which is (ϵ, δ)-DP.

We now analyze the accuracy.

Lemma E.6 (Accuracy of query, Algorithm 3). Let ϵ ∈ (0, 1) and δ ∈ (0, 1). Then, using Cheby-
shev’s inequality and Fact 2.5, we have the error of QUERY(see Algorithm 3) output is upper
bounded by:

O(ϵ−1∆ log3/2 n).

with probability 0.99.

Proof. For an interval S, we define TRUEQUERY(S) to be the output of DPTREE.TRUEQUERY in
Algorithm 3. Let QUERY(S) denote the noised interval query answer returned by DPTREE.QUERY
in Algorithm 3. Let z := QUERY(S) − TRUEQUERY(S), which from Algorithm 3 we can see
this is the sum of O(log n) independent truncated Laplace random variables each with parameter
TLap(∆, ϵ/ log n, δ/ log n). Thus,

z =

O(logn)∑
i=1

zi

where zi ∼ TLap(∆, ϵ/ log n, δ/ log n), and every zi are independent to each other.

We know µ = E[z] = 0 since E[zi] = 0. From Fact 2.5, we know the variance for each zi is
Var[zi] = cϵ−2∆2 log2 n where 0 < c ≤ 2 and c = 2 when δ = 0.

Therefore, we can show

Var[z] = Var[

O(logn)∑
i=1

zi]

=

O(logn)∑
i=1

Var[zi]

= O(cϵ−2∆2 log3 n) (4)

where the first step follows from definition of z, the second step follows from every zi are indepen-
dent to each other, and the last step follows from Var[zi] = O(cϵ−2∆2 log2 n).

Note that we wish to bound |z| = |QUERY(S)− TRUEQUERY(S)| as our error.

Using Lemma C.3, we can have

Pr[|z| ≥ kσ] ≤ 1

k2
.

We know that σ =
√
Var[z] = O(c1/2ϵ−1∆ log3/2 n). Picking k = 10, we have

Pr[|z| < 10σ] ≥ 0.99.

Thus, we conclude that error is bounded by O(c1/2ϵ−1∆ log3/2 n) = O(ϵ−1∆ log3/2 n) (since
c ∈ (0, 2]) with probability 0.99.

26

E.4 Disjoint Intervals

In this section, we show some interesting results for our DPTREE data structure if the input queries
are disjoint.
Lemma E.7 (Sum of disjoint interval queries). If the following conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

Then, we have Algorithm 3 is (ϵ, δ)-DP and outputs
∑t

j=1 QUERY(Sj) with the error upper bounded
by

O(t1/2ϵ−1∆ log3/2 n)

with probability 0.99.

Proof. From Lemma E.5, we know that DPTree.QUERY is (ϵ, δ)-DP. Then, from Fact C.7 and the
disjoint intervals in Algorithm 6, we can conclude that the value returned is (ϵ, δ)-DP.

Let TRUEQUERY(Sj) denote the true interval query answer returned by DPTREE.TRUEQUERY in
Algorithm 3 for interval Sj . Let QUERY(Sj) denote the noised interval query answer returned by
DPTREE.QUERY in Algorithm 3 for interval Sj . Let zj := QUERY(Sj) − TRUEQUERY(Sj) and
z =

∑t
j=1 zj . From the proof of Lemma E.6, we know zj is the sum of O(log n) independent trun-

cated Laplace random variables each with parameter TLap(∆, ϵ/ log n, δ/ log n) and the variance
is bounded by

Var[zj] = O(ϵ−2∆2 log3 n)

Since the intervals Sj are disjoint, they are independent to each other. Then, we have

Var[z] = Var[

t∑
j=1

zj]

=

t∑
j=1

Var[zj]

= O(tϵ−2∆2 log3 n)

where the first step follows from definition of z, the second step follows from the intervals are
disjoint, and the last step follows from Var[zj] = O(ϵ−2∆2 log2 n).

Note that we wish to bound |z| as our error.

Using Lemma C.3, we can have error bounded by

O(t1/2ϵ−1∆ log3/2 n)

with probability 0.99.

Moreover, this can be generalized to weighted sum of queries.
Lemma E.8 (Weighted sum of disjoint interval queries, formal version of Lemma D.2). If the fol-
lowing conditions hold that:

• Let there be t disjoint intervals, i.e., Sj for j ∈ [t], such that Sj ∩ Sk = ∅ for all j ̸= k.

• Let ϵ ∈ (0, 1) and δ ∈ (0, 1).

• Let aj for j ∈ [t] be a series that square converges to a, i.e.,
∑t

j=1 a
2
j ≤ a.

Then, we have Alg. 3 is (ϵ, δ)-DP and output
∑t

j=1 ajQUERY(Sj) with the error upper bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

27

Proof. The DP proof is the same as in the proof of Lemma E.7.

Let TRUEQUERY(Sj) and QUERY(Sj) be same in the proof of Lemma E.7 Let zj := QUERY(Sj)−
TRUEQUERY(Sj) and z =

∑t
j=1 ajzj . From the proof of Lemma E.7, we know the variance of zj

is bounded by

Var[zj] = O(ϵ−2∆2 log3 n)

Since the intervals Sj are disjoint, they are independent to each other. Then, we have

Var[z] = Var[

t∑
j=1

ajzj]

=

t∑
j=1

Var[ajzj]

=

t∑
j=1

a2j Var[zj]

=

t∑
j=1

a2j ·O(ϵ−2∆2 log3 n)

= O(aϵ−2∆2 log3 n)

where the first step follows from the definition of z, the second step follows from the intervals are
disjoint, the third step follows from the Var[az] = a2 Var[z] for a random variable z and a constant
a, the fourth step follows from the Var[zj] = O(ϵ−2∆2 log2 n), and the last step follows from∑t

j=1 a
2
j ≤ a.

Note that we wish to bound |z| as our error.

Using Lemma C.3, we can have error bounded by

O(a1/2ϵ−1∆ log3/2 n)

with probability 0.99.

F Weighted ℓpp Distance

In this section, we introduce how to handle weighted ℓpp distance problem in the high level idea. In
Section F.1, we show how to solve one dimensional weighted problem. In Section F.2, we show how
to solve high dimensional weighted problem by decomposing each coordinate of the high dimen-
sional dataset.

Suppose we have the original data X ∈ [0, R]n and weight w ∈ Rn and query y ∈ [0, R]. We want
to compute the weighted ℓ1-distance, i.e.

n∑
i=1

wi · |y − xi|.

For data in d-dimension, due to the decomposability of ℓpp distance, our problem will be: given
xi ∈ [0, R]d and wi ∈ R for i ∈ [n], and y ∈ [0, R]d, we can compute

n∑
i=1

wi · ∥y − xi∥pp =

d∑
j=1

n∑
i=1

wi · |yj − xi,j |p

where xi,j , yj means the j-th coordinates of xi, y for j ∈ [d].

Therefore, we can solve one dimension problem first, and then the high dimension case can be
solved automatically.

28

F.1 One Dimensional Weighted Distance

Now we can give the lemma for weighted distance of dataset.
Lemma F.1 (Weighted distance one dimension). If the following conditions hold:

• Let data X ∈ [0, R]n, weight w ∈ Rn, query y ∈ [0, R].

• We round X and y to an integer multiple of R/n.

• Let cj =
∑

j0∈Sj
wj0 where set Sj is the set of index i such that the corresponding xi is

rounded to jR/n for j ∈ {0, 1, 2, . . . , n}.
• After rounding, we assume y is in the kR/n position for k ∈ {0, 1, 2, . . . , n}.

For the weighted problem, we have
n∑

i=1

wi · |y − xi| =
n∑

j=0

(|k − j|R/n+O(R/n))cj .

Moreover, we have
n∑

i=1

wi · |y − xi|p =

n∑
j=0

(|k − j|R/n+O(R/n))pcj

where O(R/n) is the rounding error for each data point.

Proof. For each i, we have:

wi · |y − xi| = wi · (
|k − j|R

n
+O(

R

n
)).

where O(R/n) is the rounding error introduced by each data point, since each data point will be at
most O(R/n) away from its true position.

We can construct cj by

cj =
∑
j0∈Sj

wj0

set Sj is the set of index i such that the corresponding xi is rounded to jR/n. Moreover, cj can be
negative.

Summing over all i and grouping by j, we get:
n∑

i=1

wi · |y − xi| =
n∑

j=0

(
|k − j|R

n
+O(

R

n
))cj .

The total rounding error will be O(R) because we have n data points, each with an error of at most
O(R/n).

Moreover, we have
n∑

i=1

wi · |y − xi|p =

n∑
j=0

(
|k − j|R

n
+O(

R

n
))pcj .

F.2 High Dimensional Weighted Distance

Finally, we can solve the problem of weighted distance for d-dimensional dataset.
Lemma F.2 (Weighted ℓpp-distance high dimension, formal version of Lemma D.4). If the following
conditions hold:

29

• Let data X ∈ [0, R]n×d and x⊤
i ∈ [0, R]d be the i-th row of x, weight w ∈ Rn, query

y ∈ [0, R]d.

• We round each dimension of X and y to an integer multiple of R/n.

• Let xi,k, yk denote the k-th coordinates of xi, y for k ∈ [d].

• Let cj,k :=
∑

j0∈Sj,k
wj0 where set Sj,k is the set of index i such that the corresponding

xi,k is rounded to jR/n for j ∈ {0, 1, 2, . . . , n} for k ∈ [d].

• After rounding, we assume yk is in the lkR/n position for lk ∈ {0, 1, 2, . . . , n} for k ∈ [d].

For the weighted problem, we have

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k

where O(R/n) is the rounding error for each data point.

Proof. We can show

n∑
i=1

wi · ∥y − xi∥pp =

d∑
k=1

n∑
i=1

wi · |yk − xi,k|p

=

d∑
k=1

n∑
j=0

(|lk − j|R/n+O(R/n))pcj,k

where the first step follows from decomposability of ℓpp-distance by dimension, the second step
follows from Lemma F.1.

G One-Dimensional Weighted ℓ1 Distance Query

In this section, we generalize the algorithms in Backurs et al. [2024] to weighted distance. Here,
we compute the problem of one-dimensional weighted ℓ1 distance query i.e.

∑
i∈[n] wi|y − xi|

for a given query y ∈ [0, R], weights w ∈ [−Rw, Rw]
n and dataset X ⊂ [0, R] and n = |X|.

In Section G.1, we analyze the runtime of our algorithm. In Section G.2, we analyze the DP and
accuracy of our algorithm. In Section G.3, we give the theorem for our DPTREEDISTANCE data
structure.

G.1 Runtime Analysis

We first analyze the runtime.
Lemma G.1 (Runtime of initialization, Algorithm 5). For the initialization, we have the time com-
plexity of INIT in Algorithm 5 is O(n).

Proof. In the initialization of INIT, the computations need O(n) time to compute the count and
O(log n) time to build the tree. Thus, total time is O(n).

Lemma G.2 (Runtime of DISTANCEQUERY, Algorithm 6). For the ℓ1 distance query, we have the
time complexity of DISTANCEQUERY in Algorithm 6 is O(α−1 log2 n).

Proof. In DISTANCEQUERY, the computations need O(log n) time to compute one value from DP-
TREE.QUERY and this process need to be repeated O(α−1 log n) times.

Remark G.3. In Line 8 and 13 of Algorithm 6, we use R/(1 + α)j to approximate the distance of
each data point to the query in Lemma F.1, i.e. |k − j|R/n. This will introduce α relative error but
also reduce the numbers of iteration from O(n) to O(log(n)/α).

30

Algorithm 5 Pre-processing data structure

1: datastructure DPTREEDISTANCE ▷ Theorem G.6
2: members
3: D : DPTREE ▷ Alg. 3
4: X : [0, R]n

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1)) ▷ Lemma F.1
8: X,w, a← X,w, 0n+1

9: for i = 1→ n do
10: j ← ROUND(xi, n) ▷ xi ∈ X for i ∈ [n]
11: aj ← aj + wi

12: end for
13: D.INIT(a, n+ 1, 2Rw, ϵ, δ) ▷ Alg. 3, Lemma D.3
14: end procedure
15: procedure ROUND(x ∈ [0, R], n ∈ N+)
16: Let j ∈ {0, 1, 2, . . . n− 1} denote the integer such that jR/n ≤ x < (j + 1)R/n
17: if |x− (j + 1)R/n| ≤ |x− jR/n| then
18: j ← j + 1
19: end if
20: return j
21: end procedure
22: end datastructure

Algorithm 6 One dimensional weighted ℓ1 distance query

1: datastructure DPTREEDISTANCE ▷ Theorem G.6
2: procedure DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)) ▷ Lemma G.2, Lemma G.4, Lemma G.5
3: y ← ROUND(y, n) · (R/n) ▷ Alg. 5
4: Value← 0
5: for j = 0, 1, ..., O(log(n)/α) do
6: lj ← ROUND(y + R

(1+α)j+1 , n)

7: rj ← ROUND(y + R
(1+α)j , n) ▷ Consider the points to the right of y

8: Value← Value + D.QUERY(lj , rj) · R
(1+α)j ▷ Alg. 3

9: end for
10: for j = 0, 1, ..., O(log(n)/α) do
11: lj ← ROUND(y − R

(1+α)j , n)

12: rj ← ROUND(y − R
(1+α)j+1 , n) ▷ Consider the points to the left of y

13: Value← Value + D.QUERY(lj , rj) · R
(1+α)j ▷ Alg. 3

14: end for
15: Return Value
16: end procedure
17: end datastructure

G.2 Privacy and Accuracy Analysis

We show the DP.

Lemma G.4 (Privacy of DISTANCEQUERY, Algorithm 6). The output process of DISTANCE-
QUERY (Algorithm 6) is (ϵ, δ)-DP.

Proof. From Lemma E.5, we know that DPTree.QUERY is (ϵ, δ)-DP output. We observe that inter-
vals in Algorithm 6 are disjoint. Then, following the same logic in the proof of Lemma E.8, we can
conclude that the value returned is (ϵ, δ)-DP.

We now analyze the accuracy of the algorithm.

31

Lemma G.5 (Accuracy of DISTANCEQUERY, Algorithm 6). If the following conditions are satis-
fied:

• Let X ∈ [0, R]n be a dataset consisting of n one-dimensional numbers, with weights w ∈
[−Rw, Rw]

n.

• Let α ∈ (0, 1) represent the relative error parameter utilized in Algorithm 6.

• Let Ã denote the output of the DISTANCEQUERY in Algorithm 6.

• Let A∗ :=
∑

i∈[n] wi|y−xi| represent the true distance query value for a specific query y.

Then with probability 0.99, we have

|Ã−A∗| ≤ αA∗ +O(ϵ−1α−1/2RRw log3/2 n).

Proof. To simplify the explanation, we consider only the distance query for the points in X located
to the right of y. The proof can be symmetrically applied to the case of points to the left of y. For
an interval Sj := (lj , rj) where lj , rj are defined in Algorithm 6, we define TRUEQUERY(Sj) to be
the output of DPTREE.TRUEQUERY in Algorithm 3. Let

Â :=

O(log(n)/α)∑
j=0

R

(1 + α)j
· TRUEQUERY(Sj).

Since TRUEQUERY returns the sum of the corresponding weights, it aligns with the true answer
A∗ :=

∑
i∈[n] wi|y − xi|. Thus, we have

|Â−A∗| ≤ α ·A∗,

because for all j, the distances between y and different points in X vary only by a multiplicative
factor of (1 + α).

Next we show the additive error. Let QUERY(Sj) denote the noised interval query answer returned
by DPTREE.QUERY in Algorithm 3. Algorithm 6 outputs Ã =

∑O(log(n)/α)
j=0

R
(1+α)j · QUERY(Sj).

We wish to bound

|Â− Ã| ≤ |
O(log(n)/α)∑

j=0

R

(1 + α)j
· (TRUEQUERY(Sj)− QUERY(Sj))|.

Let zj := QUERY(Sj) − TRUEQUERY(Sj), which from Algorithm 3 we can see this is the sum of
O(log n) independent truncated Laplace random variables.

From Lemma E.8, we only need to show that the series 1
(1+α)j for j ∈ {0, 1, . . . , O(log(n)/α)}

square converges to 1/α, since R is a constant.

We can show
O(log(n)/α)∑

j=0

1

(1 + α)2j
≤

∞∑
j=0

1

(1 + α)2j

≤
∞∑
j=0

1

(1 + α)j

=
1

1− 1
1+α

= 1 +
1

α
= O(1/α)

where the first step follows from we extend the finite sum to infinite sum, the second step follows
from 1

(1+α)2j ≤ 1
(1+α)j , the third step follows from the closed form of geometric sum, the fourth

step follows from simple algebra, and the last step follows from α ∈ (0, 1).

32

Then from the proof of Lemma E.8, we can know that the variance is given by

O(
R2R2

w log3 n

αϵ2
) (5)

since the sensitivity ∆ = 2Rw from Lemma D.3.

Using Lemma C.3, we can have additive error bounded by

O(
R ·Rw log3/2 n

ϵ
√
α

).

with probability 0.99.

G.3 One Dimension Single Data Structure

We therefore have the data structure that can solve weighted ℓ1-distance problem.

Theorem G.6 (DPTREEDISTANCE data structure, formal version of Theorem D.6). There is a data
structure DPTREEDISTANCE (Algorithm 5,6) that uses O(n) spaces to solve weighted ℓ1-distance
query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6) It takes O(α−1 log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y− xi|,

– |z −∑
i∈[n] wi|y − xi|| ≤ α

∑
i∈[n] wi|y − xi|+O(ϵ−1α−1/2RRw log3/2 n),

– it holds with probability 0.99.

Proof. The proofs follow from combining Lemma G.1 (running time of initialization), Lemma G.2
(running time of query), Lemma G.4 (DP of query), and Lemma G.5 (error of query) together.

H High-Dimensional Weighted ℓ1 Query

In this section, we show how we can solve the high dimensional weighted ℓ1 distance problem,
generalizing results from Backurs et al. [2024]. In Section H.1, we give the analysis of Algorithm 7.
In Section H.2, we give the theorem of our DPTREEHIGHDIM data structure.

Algorithm 5,6 can be naturally extended to higher dimensions because of the decomposability of the
ℓ1 distance function. We construct d separate one-dimensional distance query data structures, each
corresponding to a coordinate projection of the dataset.

H.1 Privacy and Accuracy Analysis for High Dimensional Weighted Distance

We now give the analysis of our Algorithm 7 for high dimensional weighted ℓ1-distance query.

33

Algorithm 7 High-dimensional weighted ℓ1 distance query

1: datastrucutre DPTREEHIGHDIM ▷ Theorem H.3
2: members
3: D1, . . . ,Dd : DPTREEDISTANCE ▷ Alg. 5
4: X : [0, R]n×d

5: w : [−Rw, Rw]
n

6: end members
7: procedure INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]

n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1),
c ∈ (0, 0.1)) ▷ Lemma F.2

8: X ← X
9: w ← w

10: for i = 1→ d do
11: Di.INIT(X:,i, n, w, cϵ/

√
d log(1/δ′), δ/d) ▷ Alg. 5

12: end for
13: end procedure
14: procedure DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)) ▷ Lemma H.1, Lemma H.2
15: Value← 0
16: for i = 1→ d do
17: Value← Value + Di.DISTANCEQUERY(yi, α) ▷ Alg. 6
18: end for
19: return Value
20: end procedure
21: end datastrucutre

Lemma H.1 (Privacy of DISTANCEQUERY, Algorithm 7). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
7, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 represent the true distance query value.

• Let ϵ = O(log(1/δ′)).

Then, we have the output process of DISTANCEQUERY (Algorithm 7) is (ϵ, δ + δ′)-DP.

Proof. The (ϵ, δ + δ′)-DP guarantee follows from the approximate DP advanced composi-
tion result Theorem C.8. Our algorithm instantiate each one-dimensional data structure with
(cϵ/

√
d log(1/δ′), δ/d)-DP total d times.

From advanced composition in Theorem C.8, for a sufficient small parameter ϵ and constant c, we
have the final privacy loss parameter be:

O(cϵ
√
2d log(1/δ′)/

√
d log(1/δ′)) = O(ϵ)

and the final failure probability parameter be:
dδ/d+ δ′ = δ + δ′.

Lemma H.2 (Accuracy of DISTANCEQUERY, Algorithm 7). If the following conditions hold

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1).

• Let c ∈ (0, 0.1) be a small constant and A be the output of DISTANCEQUERY in Algorithm
7, where each one-dimensional algorithm is configured to be (cϵ/

√
d log(1/δ′), δ/d)-DP

(see Line 11).

34

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 represent the true distance query value.

With probability 0.99, we have

|A−A∗| ≤ αA∗ +O(ϵ−1α−1/2RRwd
√
log(1/δ′) · log3/2 n).

Proof. Let Ai be the i-th dimension output returned by Di in Algorithm 7. Let A∗,i be the true
distance query value in the i-th dimension. Observe that A∗ =

∑d
i=1 A∗,i and A =

∑d
i=1 Ai.

We follow the similar idea in the proof of Lemma G.5. Let zj,i be the random variables that represent
zj (used in the proof of Lemma G.5) for the i-th coordinate. We can observe that the overall error
across d coordinates can be upper bounded by

|
d∑

i=1

O(log(n)/α)∑
j=0

Rzj,i
(1 + α)j

|

where each zj,i is the sum of O(log n) truncated Laplace random variables independent to others.
With ϵ scaled down by cϵ/

√
d log(1/δ′) and δ scaled down by δ/d, the variance of each individual

dimension is given by (see Eq. (5))

O(α−1ϵ−2dR2R2
w log(1/δ′) log3 n).

Thus, the total variance for d instantiated data structures is then

O(α−1ϵ−2d2R2R2
w log(1/δ′) log3 n).

Finally, from Lemma C.3, we have the additive error given by

O(α−1/2ϵ−1dRRw

√
log(1/δ′) · log3/2 n).

H.2 High Dimension Single Data Structure

We have the data structure that can solve weighted ℓ1-distance problem in d-dimensional data.

Theorem H.3 (DPTREEHIGHDIM data structure). There is a data structure DPTREEHIGHDIM
(Algorithm 7) that uses O(nd) spaces to solve weighted ℓ1-distance query problem for dataset X ⊂
[0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1)). (Algorithm 7) It takes O(nd) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 7) It takes O(α−1d log2 n) time to
output a number z such that

– the process of output z satisfies is (ϵ, δ + δ′)-DP private, which computes∑
i∈[n] wi∥y − xi∥1,

– |z−∑
i∈[n] wi∥y−xi∥1| ≤ α

∑
i∈[n] wi∥y−xi∥1+O(ϵ−1α−1/2RRwd

√
log(1/δ′) ·

log3/2 n),
– it holds with probability 0.99.

Proof. For the runtime analysis, since we loop data structure DPTREEDISTANCE d times, an addi-
tional d factor will appear for both initialization and query time complexity. The DP is proved by
Lemma H.1. The accuracy is proved by Lemma H.2.

35

I Adaptive Query

In this section, we introduce how we can solve the adaptive query problem by our algorithm, using
some tools from Qin et al. [2022]. Our idea is that, if we can prove that our algorithm can solve
any query in the query space with certain error. Then, since adaptive query must lie in this space,
we can handle adaptive query. In Section I.1, we show how we can boost the constant probability
of our algorithm to high probability. In Section I.2, we show how we can apply the notion of ϵ0-net
and bound all query points in net. In Section I.3, we show how we can bound all points in the query
space by introducing an additive error. In Section I.4, we examine the effects of different norms on
our adaptive query proof.

First, from Theorem H.3, given query y ∈ [0, R]d, α ∈ (0, 1) we have DISTANCEQUERY(y, α) that
can solve d-dimension weighted ℓ1-distance problem with constant probability 0.99. Now we show
how to improve it to solve adaptive query problem.

I.1 Boost the Constant Probability to High Probability

We can repeat the data structure multiple times and take the median to boost the constant probability
using Chernoff bound from Lemma C.2.

Lemma I.1 (Using Chernoff bound to boost the probability). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log(1/pf)) independent copies of data structure DPTREEHIGHDIM and
take the median of the outputs with each data structure instantiated with (ϵ/l, (δ + δ′)/l)-
DP.

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 be the true answer.

• Let B = O(ϵ−1α−1/2lRRwd
√
log(l/δ′) · log3/2 n).

Then for each fixed query point y, we can have the process of outputting the median of l responses
is (ϵ, δ + δ′)-DP and the error is upper bounded by αA∗ +B with probability 1− pf .

Proof. By basic composition Fact C.6, we prove the DP. Similar to the proof of Theorem E.2, we
prove the error by Chernoff bound (Lemma C.2).

I.2 From Each Fixed Query Point to All On-net Points

In this section, we build ϵ0-net and generalize from each fixed query point to all on-net points.

Definition I.2 (ℓp ϵ0-net, see Definition 4.2.1 in Vershynin [2017]). We define N be ℓp ϵ0-net of
B := {q ∈ [0, R]d} such that, for every point q in B, there exists y ∈ N satisfying ∥y − q∥p ≤ ϵ0.

Fact I.3 (ℓ∞ ϵ0-net). Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N . We have |N | ≤
(5R/ϵ0)

d.

Fact I.4 (ℓ2 ϵ0-net, see Lemma 5 in Woodruff [2014]). Let N be the ℓ2 ϵ0-net of B, and |N | be the
size of net N . We have |N | ≤ (5R/ϵ0)

d.

Fact I.5 (ℓ1 ϵ0-net, see Theorem 2 in Guntuboyina and Sen [2012]). Let N be the ℓ1 ϵ0-net of B,
and |N | be the size of net N . We have |N | ≤ (5R

√
d/ϵ0)

d.

Lemma I.6 (From for each query point to for all points in net). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

36

• We create l = O(log(|N |/pf)) independent copies of data structure DPTREEHIGHDIM
and take the median of the outputs with each data structure instantiated with (ϵ/l, (δ +
δ′)/l)-DP.

• Let A∗ =
∑

i∈[n] wi∥y − xi∥1 be the true answer.

• Let B = O(ϵ−1α−1/2lRRwd
√

log(l/δ′) · log3/2 n).

Then with probability 1− pf , for all query points y ∈ N , we can have the process of outputting the
median of l responses is (ϵ, δ + δ′)-DP and the error is upper bounded by αA∗ +B.

Proof. By basic composition Fact C.6, we prove the DP. From Lemma I.1, we know for each y ∈ N ,
the error is upper bounded by αA∗ +B with probability 1− pf/|N |.
Then, by union bound, with probability 1− pf , the error of all |N | query points in the net y ∈ N is
upper bounded by αA∗ +B.

I.3 From Net Points to All Points

In this section, we show how to generalize points from net to all points in the query space. Since
adaptive query must lie in this space, we complete the proof of adaptive query.
Lemma I.7 (Lipschitz of query function). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1.

• Let L = nRw.

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi∥y − xi∥1 −
∑
i∈[n]

wi∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · |∥y − xi∥1 − ∥ỹ − xi∥1|

≤
∑
i∈[n]

|wi| · ∥y − ỹ∥1

= nRw · ∥y − ỹ∥1
where the first step follows from definition of Z(y), the second step follows from triangular in-
equality, the third step follows from reverse triangular inequality, the fourth step follows from
w ∈ [−Rw, Rw]

n.

Lemma I.8 (From points in net to all points in query space). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

• We create l = O(log((R/ϵ0)
d/pf)) independent copies of data structure

{DPTREEHIGHDIMj}lj=1 and take the median of the outputs with each data struc-
ture instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREEHIGHDIMj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) :=
∑

i∈[n] wi∥y − xi∥1, where Z(y) is L-Lipschitz with L = nRw.

37

• Let B = O(ϵ−1α−1/2lRRwd
√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfy

|f(y)− Z(q)| ≤ αZ(q) +B + 2Ldϵ0.

Proof. By basic composition Fact C.6, we prove the DP.

We define an event E such that:

∀y ∈ N

|f(y)− Z(y)| ≤ αZ(y) +B.

From Lemma I.1, with l = O(log(|N |/pf)) we know

Pr[event E holds] ≥ 1− pf

We can show

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

where the first step follows from definition of l, the second step follows from Fact I.3.

We condition on event E to be held. Then, by definition of ℓ∞ ϵ0-net (see Definition I.2), for each
q /∈ N , there exists y ∈ N such that

∥y − q∥∞ ≤ ϵ0 (6)

We know

|Z(y)− Z(q)| ≤ L · ∥y − q∥1
≤ L · d∥y − q∥∞
≤ L · dϵ0 (7)

where the first step follows from Lemma I.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from Eq. (6).

Using the on-net query y to answer the off-net query q, for any q /∈ N , we have

|f(y)− Z(q)| ≤ |f(y)− Z(y)|+ |Z(q)− Z(y)|
≤ |f(y)− Z(y)|+ L · d · ϵ0
≤ αZ(y) +B + L · d · ϵ0
≤ αZ(q) +B + 2L · d · ϵ0 (8)

where the first step follows from triangular inequality, the second step follows from Eq. (7), the third
step follows from Lemma I.6, and the last step follows from Eq. (7).

Thus, we complete the proof.

Therefore, even adaptive queries can be answered accurately, since any adaptive query can be as-
sumed in B.

I.4 Effect of Different Norms on the Result

In the above proof, we have two different measure spaces, i.e. ℓ∞ distance of ϵ0-net (Definition I.2)
and ℓ1 Lipschitz (Lemma I.7).

One might ask, will the norm we choose in two spaces have an impact on the final result? We can
show that the norm we choose currently is sufficient to use.

For different norms, the only differences in the proofs will be Lipschitz smoothness in Eq. (7) and
the cardinality of ϵ0-net, i.e. |N | in Fact I.3.

38

Lemma I.9. If we use ℓ∞ ϵ0-net and use ℓ1 Lipschitz in Lemma I.8, we have copies of data structure
l = O(d log(nR/pf)).

Proof. If we use ℓ∞ to bound the distance to net, Eq. (7) is:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw · d∥y − q∥∞
≤ nRw · dϵ0

where the first step follows from Lemma I.7, the second step follows from ∥x∥1 ≤ d∥x∥∞ for
x ∈ Rd, and the last step follows from ℓ∞ ϵ0-net.

Then, Eq. (8) is

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · d · ϵ0

For ℓ∞ distance, we have |N | ≤ (5R/ϵ0)
d in Fact I.3.

We can choose ϵ0 = Θ(1/n) to hide nRw · d · ϵ0 term in B in Lemma I.8. Thus,

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

= O(log((nR)d/pf))

= O(d log(nR/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

Lemma I.10. If we use ℓ2 ϵ0-net and use ℓ1 Lipschitz in Lemma I.8, we have copies of data structure
l = O(d log(nR/pf)).

Proof. If we use ℓ2 to bound the distance to net, Eq. (7) changes to be:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw ·

√
d · ∥y − q∥2

≤ nRw · ϵ0
√
d

where the first step follows from Lemma I.7, the second step follows from ∥x∥1 ≤
√
d · ∥x∥2 for

x ∈ Rd, and the last step follows from ℓ2 ϵ0-net.

Then, Eq. (8) changes to be

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · ϵ0
√
d

For ℓ2 distance, we also have |N | ≤ (5R/ϵ0)
d in Fact I.4.

We can choose ϵ0 = Θ(1/n) to hide nRw ·
√
d · ϵ0 term in B in Lemma I.8. Thus,

l = O(log(|N |/pf)
= O(log((R/ϵ0)

d/pf)

= O(log((nR)d/pf))

= O(d log(nR/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

Lemma I.11. If we use ℓ1 ϵ0-net and use ℓ1 Lipschitz in Lemma I.8, we have copies of data structure
l = O(d log(ndR/pf)).

39

Proof. If we use ℓ1 to bound the distance to net, Eq. (7) changes to be:

|Z(y)− Z(q)| ≤ nRw · ∥y − q∥1
≤ nRw · ϵ0

where the first step follows from Lemma I.7, and the last step follows from ℓ1 ϵ0-net.

Then, Eq. (8) changes to be

|f(y)− Z(q)| ≤ αZ(q) +B + 2nRw · ϵ0

For ℓ1 distance, we have |N | ≤ (5R
√
d/ϵ0)

d.

We can choose ϵ0 = Θ(1/n) to hide nRw · ϵ0 term in B in Lemma I.8. Thus,

l = O(log(|N |/pf)
= O(log((R

√
d/ϵ0)

d/pf)

= O(log((nR
√
d)d/pf))

= O(d log(nRd/pf))

where the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b < 1, d > 1.

From the above analysis, we can show that ℓ∞ or ℓ2 ϵ0-net is slightly better than ℓ1 ϵ0-net.

• ℓ∞ ϵ0-net, Lemma I.9: we have l = O(d log(nR/pf)).
• ℓ2 ϵ0-net, Lemma I.10: we have l = O(d log(nR/pf)).
• ℓ1 ϵ0-net, Lemma I.11: we have l = O(d log(nRd/pf)).

Thus, the norm we choose for ϵ0-net is sufficient good.

J Softmax Activation

In this section, we introduce how we extend previous ℓ1 distance results to the Softmax activation
function, which is the most widely used distance measure in attention mechanism based models.

In Section J.1, we show how to extend to the Softmax distance function in Lemma J.6. In Section J.2,
we show how to adjust our algorithms. In Section J.3, we extend our algorithm to be robust to
adaptive query. In Section J.4, we give the proof of our main result Theorem 3.1.

J.1 Exponential Inner Product

In this section, we show how we obtain the Softmax distance using ℓ22 distance query. First, we
provide some helpful results from Alman and Song [2023].
Definition J.1 (Definition 3.1 in Alman and Song [2023]). Let r ≥ 1 denote a positive integer. Let
ϵ ∈ (0, 0.1) denote an accuracy parameter. Given a matrix A ∈ Rn×n

≥0 , we say Ã ∈ Rn×n
≥0 is an

(ϵ, r)-approximation of A if

• Ã = U1 · U⊤
2 for some matrices U1, U2 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j −Ai,j | ≤ ϵ ·Ai,j for all (i, j) ∈ [n]2.

Lemma J.2 (Lemma 3.4 in Alman and Song [2023]). Suppose Q,K ∈ Rn×d, with ∥Q∥∞ ≤ R,
and ∥K∥∞ ≤ R. Let A := exp(QK⊤/d) ∈ Rn×n. For accuracy parameter ϵ ∈ (0, 0.1), there is a
positive integer s bounded above by

s = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/R)
, R2

})
, (9)

and a positive integer r bounded above by

r ≤
(
2s+ 2d

2s

)
(10)

40

such that: There is a matrix Ã ∈ Rn×n that is an (ϵ, r)-approximation (Definition J.1) of A ∈ Rn×n.
Furthermore, the matrices U1 and U2 defining Ã can be computed in O(n · r) time.

Here we consider the vector version of Lemma J.2.

Definition J.3. We define ΓR,s := maxj∈[s]
Rj
√
j!

.

Then, we have P (x) : [0, R]d → [0,ΓR,s]
r where P (·) is polynomial kernel function defined in

Alman and Song [2023].

Remark J.4. We use ΓR,s to denote the value range of our polynomial kernel methods function,
i.e., P (x) : [0, R]d → [0,ΓR,s]

r. The factorial term in ΓR,s comes from Taylor approximation
coefficients. We take the maximum overall s order approximation terms to get the upper bound of
our value range.

Lemma J.5 (Polynomial approximation). For any accuracy parameter ϵs ∈ (0, 0.1), let R ≥ 1,
and let P (x) : [0, R]d → [0,ΓR,s]

r be the s-th order polynomial kernel function defined in Alman
and Song [2023] where r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Then, for any x, y ∈

[0, R]d, we have

|P (x)⊤P (y)− exp(x⊤y/d)| ≤ ϵs ·min{exp(x⊤y/d), P (x)⊤P (y)}

Furthermore, the vectors P (x) and P (y) can be computed in O(r) time.

Proof. Let n = 1. The proof follows from directly applying Lemma J.2.

Using the results from Alman and Song [2023] above, we can extend our results to Softmax activa-
tion.

Lemma J.6 (Weighted Softmax approximation, formal version of Lemma D.7). Let accuracy pa-
rameter be ϵs ∈ (0, 0.1). Let R ≥ 1. Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}).

Let P (x) : [0, R]d → [0,ΓR,s]
r be the s-th order polynomial kernel function defined in Lemma J.5.

Then we can approximate exponential inner product using polynomial kernel function:

w⊤ exp(Xy/d) = − 1

2

∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
1

2

∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

+ O(w⊤ exp(Xy/d) · ϵs)

Moreover, the vectors P (·) can be computed in O(r) time.

Proof. From Lemma J.5, we can use polynomial kernel to approximate the Softmax function:

w⊤ exp(Xy/d) =
∑
i∈[n]

wiP (xi)
⊤P (y) +O(w⊤ exp(Xy/d) · ϵs).

The proof of approximation error and time complexity of constructing P (·) follows from Lemma J.5.

Then, we can show

2
∑
i∈[n]

wiP (xi)
⊤P (y) = −

∑
i∈[n]

wi∥P (xi)− P (y)∥22 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

= −
∑
j∈[r]

∑
i∈[n]

wi|P (xi)j − P (y)j |2 +
∑
i∈[n]

wi(∥P (xi)∥22 + ∥P (y)∥22)

where the first step follows from ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2⟨x, y⟩, and the second step follows
∥x∥22 =

∑d
j=1 |xj |2 for x ∈ Rd.

41

J.2 Algorithm Modifications

Based on Lemma J.6, we can now extend our DP algorithms to handle Softmax activation. First,
we need to construct P (y) and P (xi) for i ∈ [n], each costing O(r) time. Then, for the second
term in Lemma J.6, i.e. 1

2

∑
i∈[n] wi(∥P (xi)∥22 + ∥P (y)∥22), we don’t need to add DP noises in it;

instead, we calculate this term exactly, preprocess it, and store the results in the algorithm. For the
first term,− 1

2

∑
j∈[r]

∑
i∈[n] wi|P (xi)j−P (y)j |2, we can adjust our high dimensional DP distance

query algorithm to solve it.

Due to the decomposability of ℓpp norm, i.e.∑
i∈[n]

wi∥xi − y∥pp =
∑
j∈[d]

∑
i∈[n]

wi|xi,j − yj |p,

we can compute ℓ22 norm easily (see details in Lemma F.2). We then show how to extend our one
dimensional ℓ1 distance algorithm (Algorithm 5 and 6) to ℓ22 distance with minor modifications.
Theorem J.7 (DPTREEDISTANCE ℓ22 distance). With α scaled down by a factor of 2 and all QUERY
instead multiplied by R2/(1 + α/2)2j in Lines 8 and 13 of Algorithm 6, i.e., from

• Lines 8 and 13: Value← Value + D.QUERY(lj , rj) · R
(1+α)j

to

• Lines 8 and 13: Value← Value + D.QUERY(lj , rj) · R2

(1+α/2)2j .

The data structure DPTREEDISTANCE (Algorithm 5,6) uses O(n) spaces to solve weighted ℓ22-
distance query problem for dataset X ⊂ [0, R] and support the following operations:

• INIT(X ⊂ [0, R], n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1)). (Algorithm 5) It takes

O(n) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R], α ∈ (0, 1)). (Algorithm 6)

It takes O(α−1 log2 n) time to output a number z such that

– the process of output z satisfies (ϵ, δ)-DP private, which computes
∑

i∈[n] wi|y−xi|2,

– |z −∑
i∈[n] wi|y − xi|2| ≤ α

∑
i∈[n] wi|y − xi|2 +O(ϵ−1α−1/2R2Rw log3/2 n),

– it holds with probability 0.99.

Proof. The proof is similar to that of Theorem G.6, except that now our additive error includes R

increased by a power of 2, i.e., from O(ϵ−1α−1/2RRw log3/2 n) to O(ϵ−1α−1/2R2Rw log3/2 n).

Now we can give our result that can answer Softmax query.

Theorem J.8 (Softmax query, formal version of Theorem 4.2). Let R ≥ 1. Let r ≤
(
2s+2d

2s

)
and

s = O(max{ log(1/ϵs)
log(log(1/ϵs)/R) , R

2}). Let ΓR,s be defined in Definition J.3. Let accuracy parameter
be ϵs ∈ (0, 0.1). There is a data structure DPTREESOFTMAX (Algorithm 2) that uses O(nr) spaces
to solve Softmax query problem for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1)). (Algorithm 2) It takes O(nr) time to initialize the data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 2) It takes O(α−1r log2 n) time to
output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2Γ2
R,sRwr

√
log(1/δ′) · log3/2 n),

42

– it holds with probability 0.99.

Proof. The DP proof is the same as the proof of Lemma H.1.

We then show the time complexity. From Lemma J.6, we know that constructing P (·) requires O(r)
time. In the first for loop of INIT, the dominating time consumption is O(nr). The second for loop
also has a time complexity of O(nr). Therefore, the total time complexity for INIT is O(nr). In
the DISTANCEQUERY function, constructing P (y) takes O(r) time. Within the for loop, it requires
O(α−1r log2 n). Thus, the total time complexity for DISTANCEQUERY is O(α−1r log2 n).

The space complexity is O(nr), since storing the n× r matrix P is the dominating factor.

The proof of the error follows from the triangle inequality by combining the errors in Lemma J.6
and Theorem J.7.

J.3 Adaptive Softmax

In this section, we show how to make Algorithm 2 robust to adaptive query. We follow the
same idea from Section I. We notice that, in the Softmax activation, we have query function
Z(y) := w⊤ exp(Xy/d) different from the ℓ1-distance in Section I. Therefore, we need to re-
calculate Lipschitz constant first.

Lemma J.9 (Lipschitz of weighted Softmax). If the following conditions hold:

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let Z(y) := w⊤ exp(Xy/d).

• Let L = nd−1/2RRw exp(R2).

Then, we have Z(y) is L-Lipschitz (note that we have ℓ1 Lipschitz here).

Proof. We can show

|Z(y)− Z(ỹ)| = |
∑
i∈[n]

wi exp(x
⊤
i y/d)−

∑
i∈[n]

wi exp(x
⊤
i ỹ/d)|

≤
∑
i∈[n]

|wi| · | exp(x⊤
i y/d)− exp(x⊤

i ỹ/d)|

≤
∑
i∈[n]

|wi| exp(R2)|x⊤
i y/d− x⊤

i ỹ/d|

≤
∑
i∈[n]

|wi| exp(R2)∥xi∥2 · ∥y − ỹ∥2/d

≤ nRw exp(R2)
√
dR · ∥y − ỹ∥2/d

≤ nd−1/2RRw exp(R2)∥y − ỹ∥1
where the first step follows from definition of Z(y), Z(ỹ), the second step follows from triangu-
lar inequality, the third step follows from Fact C.4, the fourth step follows from Cauchy–Schwarz
inequality |u⊤v| ≤ ∥u∥2 · ∥v∥2 for u, v ∈ Rd, the fifth step follows from wi ∈ [−Rw, Rw] and
xi ∈ [0, R]d, and the last step follows from ∥u∥2 ≤ ∥u∥1 for u ∈ Rd.

Then we can show how to extend our algorithm to be robust to adaptive query.

Lemma J.10 (Adaptive Softmax, formal version of Lemma D.8). If the following conditions hold:

• Let N be the ℓ∞ ϵ0-net of B, and |N | be the size of net N .

• Let data set X ∈ [0, R]n×d, weights w ∈ [−Rw, Rw]
n, query y ∈ [0, R]d.

• Let relative error parameter α ∈ (0, 1), the failure probability pf ∈ (0, 0.01).

43

• We create l = O(log((R/ϵ0)
r/pf)) independent copies of data structure

{DPTREESOFTMAXj}lj=1 (Algorithm 2) and take the median of the outputs with
each data structure instantiated with (ϵ/l, (δ + δ′)/l)-DP.

• Let f(y) := Median({DPTREESOFTMAXj .DISTANCEQUERY(y, α)}lj=1).

• Let Z(y) := w⊤ exp(Xy/d), where Z(y) is L-Lipschitz with L = nd−1/2RRw exp(R2).

• Let B = O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

Then with probability 1 − pf , for all query points q ∈ B, there exists a point y ∈ N which is the
closest to q, we can have the process of outputting the median of l responses is (ϵ, δ + δ′)-DP and
the error satisfies

|f(y)− Z(q)| ≤ (α+ ϵs)Z(q) +B + 2n
√
dRRw exp(R2)ϵ0.

Proof. The proof follows from the same idea as the proof of Lemma I.8, except that we use Theo-
rem J.8 and the Lipschitz in Lemma J.9.

Theorem J.11 (Adaptive query Softmax data structure, formal version of Theorem 4.4). Let R ≥ 1.
Let r ≤

(
2s+2d

2s

)
and s = O(max{ log(1/ϵs)

log(log(1/ϵs)/R) , R
2}). Let ΓR,s be defined in Definition J.3.

Let accuracy parameter be ϵs ∈ (0, 0.1). Let X ∈ [0, R]n×d be the dataset, w ∈ [−Rw, Rw]
n be

weights, y ∈ [0, R]d be the query, α ∈ (0, 1) be the relative error parameter, and pf be the failure
probability parameter. Let l = O(r log(dR/(ϵspf))). There is a data structure DPTREESOFT-
MAXADAPTIVE (Algorithm 1) that uses O(lnr) spaces to solve weighted Softmax query problem
for dataset X ⊂ [0, R]d and support the following operations:

• INIT(X ⊂ [0, R]d, n ∈ N+, w ∈ [−Rw, Rw]
n, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈

(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)). (Algorithm 1) It takes O(lnd) time to initialize the
data structure.

• DISTANCEQUERY(y ∈ [0, R]d, α ∈ (0, 1)). (Algorithm 1) It takes O(α−1ld log2 n) time
to output a number z such that

– the process of output z satisfies (ϵ, δ + δ′)-DP private, which computes
w⊤ exp(Xy/d),

– |z − w⊤ exp(Xy/d)| ≤ (α+ ϵs) · w⊤ exp(Xy/d)

+ O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n),

– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. We only need to show how to pick ϵ0 in the parameter l, because everything else is
the same as Lemma J.10. We know the additive error introduced by adaptive query is Ea :=
O(n
√
dRRw exp(R2)ϵ0) and the relative error introduced by polynomial kernel approximation is

Ep := w⊤ exp(Xy/d) · ϵs. It can be shown that:

Ep := w⊤ exp(Xy/d) · ϵs
≤ ϵs∥w∥2 · ∥ exp(Xy/d)∥2
= O(nRwϵs exp(R

2))

where the first step follows from definition of Ep, the second step follows from Cauchy–Schwarz
inequality, and the last step follows from w ∈ [−Rw, Rw]

n, X ∈ [0, R]n×d, and y ∈ [0, R]d.

Picking ϵ0 = Θ(ϵs√
dR

), we can hide the error of adaptive query Ea in Ep. Thus, we have

l = O(log((R/ϵ0)
r/pf))

= O(log((
√
dR2/ϵs)

r/pf))

= O(r log(dR/(ϵspf)))

44

where the first step comes from the definition of l, the second step comes from picking ϵ0 =
Θ(ϵs√

dR
), and the last step follows from log(ad/b) = O(d log(a/b)) for any a > 1, 0 < b <

1, d > 1.

J.4 Proof of Main Result

In this section, we give the proof of our main result of Theorem 3.1.
Theorem J.12 (Softmax cross-attention, formal version of Theorem 3.1). Let Q,K, V,Attn be
defined in Definition 1.1. Let α ∈ (0, 1) be the relative error parameter and pf be the probability
of failure parameter. Let r, s, ϵs be parameters of polynomial kernel methods (Lemma D.7). Let
ΓR,s := maxj∈[s]

Rj
√
j!

(Definition J.3). Let l = O(r log(dR/(ϵspf))). There is a data structure
DPTREESOFTMAXADAPTIVE (Algorithm 1) that uses O(lnrd) spaces to make cross-attention DP
and supports the following operations:

• We initialize d data structures using INIT(K,n, V∗,k, ϵ ∈ (0, 1), δ ∈ (0, 1), δ′ ∈ (0, 1), c ∈
(0, 0.1), ϵs ∈ (0, 0.1), pf ∈ (0, 0.01)) (Algorithm 1), for k ∈ [d]. It takes O(lnr) time to
initialize one data structure.

• At query time, for user input Q, we process one token at a time by passing the i-th row of Q,
denoted Qi ∈ Rd, to DISTANCEQUERY(Qi, α ∈ (0, 1)) (Algorithm 1) for each i ∈ [m]. It
takes O(α−1lr log2 n) time to output an entry z in Attn(Q,K, V) such that

– the process of output z satisfies (ϵ, δ + δ′)-DP,
– the process of output z has relative error n−1(α+ ϵs),
– the process of output z has additive error O(n−1ϵ−1α−1/2lΓ2

R,sRwr
√
log(l/δ′) ·

log3/2 n),
– it holds with probability 1− pf (where pf is used in l),
– it is robust to adaptive query.

Proof. From Section 3, we know that we can ensure matrix AV in cross-attention computation
satisfies DP. Next, from Theorem 4.4, for i ∈ [m], j ∈ [n], k ∈ [d], we have (AV)i,k is (ϵ, δ+δ′)-DP
and also robust to adaptive query. For D, we compute the exact true value. By the post-processing
property of DP (Fact C.5), our cross-attention process is DP.

Let (AV)i,k be the true value and (̃AV)i,k be the noisy value. Then, from Theorem 4.4, we have

|(AV)i,k − (̃AV)i,k| ≤ (α+ ϵs) · (AV)i,k +O(ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2 n).

(11)

For Di,i, we can show

Di,i = (A · 1n)i =

n∑
j=1

exp(⟨Qi,Kj⟩/d) ≥ n (12)

because ⟨Qi,Kj⟩ ≥ 0 for bounded Q,K.

Finally, we can show the error of one entry is bounded by

|(D−1AV)i,k − (D−1ÃV)i,k| = |D−1
i,i ((AV)i,k − (̃AV)i,k)|

= |D−1
i,i | · |((AV)i,k − (̃AV)i,k)|

≤ n−1(α+ ϵs) · (AV)i,k

+O(n−1ϵ−1α−1/2lΓ2
R,sRwr

√
log(l/δ′) · log3/2(n))

where the first step follows from definition, the second step follows from simple algebra, and the
last step follows from Eq.(11) and (12).

45

	Introduction
	Related Work

	Preliminary
	Notations
	Differential Privacy Definitions

	Main Results: Cross-Attention
	Key Data Structure: DPTree
	Technique Overview
	DPTree, DPTreeDistance, and DPTreeHighDim
	Softmax Activation
	Adaptive Query Data Structure

	Conclusion and Discussion
	Discussion
	More Related Work
	More Preliminary
	Probability Tools
	Algebraic Facts
	DP Facts
	Comparison of Truncated Laplace, Gaussian, and Laplace Mechanisms

	Proof Outline
	Summation Segment Tree
	Sensitivity for Range Summation Problem
	Weighted Distance Problem
	One-Dimensional Weighted Distance Data Structure
	Softmax Activation
	Adaptive Query

	DPTree Algorithm
	Single Data Structure
	Boost the Constant Probability to High Probability
	Algorithm of Data Structure
	Disjoint Intervals

	Weighted Distance
	One Dimensional Weighted Distance
	High Dimensional Weighted Distance

	One-Dimensional Weighted Distance Query
	Runtime Analysis
	Privacy and Accuracy Analysis
	One Dimension Single Data Structure

	High-Dimensional Weighted Query
	Privacy and Accuracy Analysis for High Dimensional Weighted Distance
	High Dimension Single Data Structure

	Adaptive Query
	Boost the Constant Probability to High Probability
	From Each Fixed Query Point to All On-net Points
	From Net Points to All Points
	Effect of Different Norms on the Result

	Softmax Activation
	Exponential Inner Product
	Algorithm Modifications
	Adaptive Softmax
	Proof of Main Result

