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ABSTRACT

Flow Matching and Diffusion models have achieved impressive feats as generative
paradigms for continuous data, such as images and videos, and more recently, for
high-dimensional discrete data. Despite this, multimodal generation combining
discrete and continuous modalities remains dominated by autoregressive models
that work on discrete tokenized inputs or continuous projected embeddings. In
this work, we present CrossFlows, a new paradigm for multimodal generation that
learns a flow on a joint discrete and continuous space. We show CrossFlows are
capable models for multimodal generation, as well as text-to-image, image-to-text
generation and other single-modality and multimodal downstream tasks.

1 INTRODUCTION

Multimodal generation and understanding, defined as the processing of both continuous and discrete
inputs and outputs, is the next frontier of Generative Al Zhang et al.| (2025); [Wang et al.| (2023)).
Applications range from interleaved multimedia generation to scientific use cases such as protein
design |Campbell et al.|(2024), or robotics |Black et al.[(2024)).

Classical and current state-of-the-art approaches include combining various pre-trained encoders
with a language decoder |Ye et al.| (2023); |Gemini (2025); |[Wang et al.[ (2024c); [Wu et al.| (2024));
Bai et al.| (2025); |Chen et al.| (2025)), as well as pre-training a single decoder on both image and text
tokens, an approach known as early-fusion training Zhu et al.| (2025)); |LIama-4, (2025); (Chameleon
(2025)); /Wang et al.| (2024d).

All these solutions rely on a powerful autoregressive discrete decoder. Despite impressive results,
these architectures are limited by sampling inefficiency |Jayaram & Thickstun| (2021) and modality
asymmetry [Parcalabescu & Frank (2024) which, for instance, leads to visual information being
disregarded in favor of textual biases [Vo et al.| (2025). Furthermore, it has been shown that vision-
language models become less reliant on visual information if sufficient textual clues are provided
Wang et al.|(2024b)), and that they struggle with tasks that require pure visual understanding [Fu et al.
(2025)); Ramakrishnan et al.|(2025)).

These shortcomings can be partly attributed to the image tokenization approach common in many of
these architectures, as evidence suggests that while discrete semantic tokens excel at capturing high-
level patterns, they sacrifice fine-grained spatial information Baek et al.| (2025); |Liu et al.| (2024);
Yan et al.| (2024).

There are some alternatives to the autoregressive paradigm for generation. Flow Matching (FM)
models learn a vector field that transports a simple source distribution to a target data distribution
Lipman et al.| (2022). On the other hand, Diffusion models learn to reverse a diffusion process that
gradually adds noise to real data, effectively learning to parameterize a reverse-time Stochastic Dif-
ferential Equation that maps from the source distribution to the target distribution |[Ho et al.| (2020).
While on continuous modalities Flow and Diffusion models frequently outperform autoregressive
transformers |Prajwal et al.|(2024); Cai et al.|(2025)), and match their performance on discrete modal-
ities |Nie et al.[(2025);|Gat et al.[(2024) (excelling in abstract rule learning 'Wang et al.| (2024a)), few
attempts have been made to use them for multimodal generation.

Both|Yang et al.|(2025) and |Swerdlow et al.|(2025)) train a Large Diffusion Model on discrete image
and text tokens, showing strong performance on textual-reasoning and text-to-image generation, but
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failing to leverage the continuous nature of image-data. (2024) combine Discrete Diffusion
with Autoregressive generation into a single transformer, training autoregressively on text tokens
and on masked tokens on the image part. Perhaps most notably, Campbell et al.|(2024) train a joint
discrete and continuous Flow model for protein structure generation, achieving true multimodal
generation on both continuous and discrete spaces and laying the foundation for a discrete flow-
based model based on Continuous Time Markov Chains (CTMCs).

These advancements gain further significance when analyzed under the light of the Generator Match-
ing framework Holderrieth et al.[(2025)), which provides the theoretical foundations for multimodal-
ity in generative models. In particular, this work shows how flow and diffusion models are particular
cases of the more general problem of parametrizing the generator of a Markov process, and goes on
to prove that generators can be linearly combined, which allows for multimodal generation, as well
as the combination of flow, diffusion, and other stochastic generative models such as jump models.

In this work, we build on the Generator Matching framework to train an image-language multimodal
generative model, showing that flow models can provide an effective alternative to the autoregressive
paradigm for multimodal generation. Instead of mapping both modalities to a common space, we
learn a factorized probability path on the continuous space of images and the discrete space of
language tokens, which allows us to achieve coupled cross-modal generation. That is, the generation
of each modality is influenced by the evolving state of the other modality, not just conditioned on a
fixed input. Further, we show this approach is equivalent to implicit guidance, which allows us to
control generation, while at the same time mitigating some of the limitations of current approaches
such as Classifier Free Guidance. Our contributions can be summarized as follows:

* We introduce the CrossFlows architecture for joint discrete and continuous multimodal
generation.

* We define the multi-modal theory foundation for our framework under the Generator
Matching theory.

* We show CrossFlows allow for implicit (manifold-constrained) guidance, making them
flexible foundational models for multimodal generation, single modality and other down-
stream tasks such as image inpainting.
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Figure 1: Unconditional generation of Image/Caption pairs with CrossFlows.

2 BACKGROUND

2.1 CONTINUOUS FLOWS

Let ¢y : RY — R%, o, € C"(R? R?) be a C" dipheomorphism, i.e.: a continuously (r times)
differentiable and invertible map such that v, e ¢"(RY, RY).
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Now let 1 : [0, 1] x R? — R such that v(¢, x) + 1/;(x). The function 1 is called a C" flow. Given
a random variable (r.v.) X ~ po, a flow model is a continuous time Markov process (X;)o<i<1
such that

X = (Xo), Xo ~ po.

We can also express the above Markov process via an ODE:

d
a%(x) = u(Y(2)), Yo(x) =,

where u is a O™ ([0, 1] x R4, R%) velocity field u : [0,1] x R? — R?, u(t, z) — uy(x). Existence
and uniqueness of solutions to this ODE can be shown up to time ¢ = 1 (almost everywhere) as long
as we assume global Lipschitzness or integrability of u (see Lipman et al.[(2024)).

Such a flow defines a time dependent probability path (p;)o<i<1, Xi = ¥(Xo) ~ p; for Xy ~ po.
Conversely, given a probability path p;, we say u; generates p; if X; = 1(Xo) ~ p;. Notice
(pt)o<t<1 is a Markov process, because if we consider a partition 0 < ¢; < ... < t,, < 1, then for
a Borel set A:

(th+dt 6 A | th,...,th) = (Xt+dt € A ‘ th)

Under this setting, training a flow matching model amounts to

1. building a probability path (p;)o<:<1 generated by a flow u; such that p; aligns with our
target distribution and,

2. finding a parametrization u! of u; such that it minimizes the loss
Len(8) = Biw0,1), xmp, [[ue(Xe) = uf (Xe)[?]

where instead of the L2-norm we could use any Bregman divergence, see |[Lipman et al.| (2024));
Holderrieth et al.| (2025). The issue here is that u, is not tractable. Luckily, it suffices to optimize
with respect to the conditional flow. Given ar.v. Z ~ p1, the conditional loss is defined as,

Lorm(0) = By z,X,mpy 5 12) lue(Xe | Z) —uf (X)|1P]

where u; (7 | Z = z) is a conditional vector field generating the conditional probability path py|; (- |
z), from which it is possible to extract the marginal probability path:

pi(z) = /Pt\1($ | 2)p1(2)dz.

It can be proven that under mild assumptions, and if u;(z | 2) is conditionally integrable and gen-
erates py 1 (- | z), then the marginal velocity field u; generates the marginal probability path p;.
Further, optimizing 6 for Loy is equivalent to optimizing for Ly, given that the gradients of
both losses coincide (refer to[Lipman et al.|(2024); Holderrieth et al.| (2025) for proofs of both facts).

2.2 DISCRETE FLOWS

Suppose now we aim at building a flow model to generate discrete samples = € {1,..., .S }&. Con-
sider a rate matrix R; € R¥*9 such that the probability of jumping from state z; to state j at time ¢
is given by

Petar|t(J]2e) = 02,(7) + Re(wy, j)dt
where d,, is the Kronecker delta (1 if j = z; and 0 otherwise) and R:(j,j) = — Z#k Ri(j, k).

A trajectory can then be simulated taking Euler steps ¢1p ~ d5,(-) + Re(x+, -)ht, starting with
o ~ po. In practice, we parametrize the rate matrix R; and perform updates component-wise (see
Gat et al.|(2024))

Xipn ~ 0xi () + huf' (X, ).
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As in the continuous case, rate matrix R; generates the probability path py; (- | 2) if and only if it
satisfies the Kolmogorov Forward Equation:

Ope(x1) = Z Ri(j, xe)pe(G) — Z Ry(@e, j)pe ().

J#Te JFT

Discrete Flows where first introduced in [Campbell et al.| (2024)), including the uniform sampling
probability path for token interpolation,
1

P (@ | 21) = f()001(ze) + (1 = £(1)) 5

where f(t) is such that f(0) = 0, f(1) = 1 and monotonously increasing, and pg is the uniform
distribution over tokens. We simulate this probability path in our implementation of discrete flow
matching, see Section[3.3]

2.3  GENERATOR MATCHING FOR MULTIMODAL GENERATION

The Generator Matching framework introduced by Holderrieth et al.| (2025) provides a unified lan-
guage for understanding generative modeling based on Markov processes, including flows, diffusion
models and jump models, while providing powerful theoretical insights that allow the combination
and superposition of generators.

Generally speaking, given a Markov process (X;)o<¢<1 With transition kernel (k. p|¢)o<t<ttn<1
(e [Xipn € A| Xy = 2] = kyyp)e(A | 2)), and for any test function f € CZ°, then its generator
L; is defined as

(L f]()

d
=l [ #@knntdz] 2

d
= hiOEZth+;L|;L("$) [f(Xe4n) | Xe = ],

which acts as a sort of derivative of the transition kernel. [Holderrieth et al.|(2025)) goes on to show

that a generator £; of a Markov process satisfies the Kolmogorov Forward Equation

0

i Lo [f(@)] = Eanp, [Ce f(2)], (KFE)
if and only if X; generates the probability path (p;)o<:<1. This generalizes generative modeling as
parametrizing a generator L£;. For example, a flow as described in the previous subsection has gen-
erator V fu;. As explained for flows, the marginal object is not tractable, but conditional generators
L? (generating conditional probability paths p;(- | z)) are, which enables scalable training.

The fact that the KFE is a linear equation and the generator a linear operator has deep reaching
implications for multimodal generation. Let ¢} (- | 21), ¢?(- | z2) be two conditional probability

paths on S, Sy generated by processes I; and C; with generators £;' and E? resp. Define a
conditional factorized path on S7 x Sz as p;(- | 21,22) = ¢ (- | 21)¢Z(- | 2z2). Then the Markov
process X; = (I, Cy) with generator

L7 f (@1, 2) = [L7 f7) (1) + [£77 2] (x2),
(where f is a test function on .S; x So and f* its restriction to S;) is a solution to the KFE, i.e: it
generates p;(- | 21, 22). See Holderrieth et al.|(2025) for a detailed proof.

This means that the linear combination of the generators of a discrete process C; and a continuous
process I; generates the probability path p; on the joint multimodal space. We will leverage this fact
in the next section to learn probability paths in the product of discrete and continuous spaces.

3 MULTIMODAL GENERATION (OUR APPROACH)

3.1 MULTIMODAL FLOWS

Let S =9; x S =R x {1, ..., T}J be a multimodal space that combines continuous and discrete
data. Let p; be the underlying distribution, approximated by an image-text dataset D. Let z =
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(i1,¢1) ~ p1 be a pair image-caption. Define factorized probability paths as
pep (e | 2) = qppy (20 | i) g7 (2 | 1),

and let u; (- | z) be a flow generating py|; (- | ) as above. In our case, ¢; is the CondOT path, and ¢»
the uniform sampling probability path described in Section

In order to learn a parametrization of p; via two model components, uf ! continuous and uf 2 discrete,
we make each component depend on the multimodal state Z; = (I, C}), so that we approximate

the flow w, (- | z) generating py 1 (- | z) by uf = Wl (- | Zy),ul2 (- | Z,)).

This results on an interdependent generation process across modalities, meaning that both modalities
are generated in a coordinated way and their outputs are mutually consistent and sampled from the
e —1(1 —~1(2

joint distribution: (I, C;) ~ pi(- | Io = 2,Co = y) = (z,9) = (¢ "V (1), 0,2 (C)).
This guarantees a stronger consistency between modalities than autoregressive models, which often
generate one modality first and then the other one conditionally. In other words, since flows are

invertible and we are sampling from a true joint latent, we are guaranteeing consistency between
modalities.

This allows us to define the Multimodal Flow Matching Loss as
LMJW(H) = Et,zl7Itht(‘|Il)7Cf,Npt('|Cl) [Dl + D2]7
where
Dy = 1 .0 2 . 2 02 2
1= lug (e | Z0) = ug' (I, G, D2 = [ug(Cy | Z1) = ug® (I, C) 1™

As explained by [Holderrieth et al.| (2025), optimizing the linear combination of losses D1 and Dy
is equivalent to learning the conditional joint generator and, by marginalization, the generator of the
multimodal process X; ~ p; such that X; = (I1,C}) ~ p; is a pair image-caption.

3.2 GUIDANCE AND CROSS-GUIDANCE

Let y be a guiding signal from a space Sy which we want to use to guide generation (such as a text
prompt) for a flow model u; generating probability paths p; in a space S;. As long as we can sample
from the conditional target distribution p;|y (- | ¥), we can construct guided probability paths as

mﬂmw:/mmmmmw:/mmmmwwmw

where py|1 ( | 2) is the conditional path that we saw on the previous section, which does not depend
on y. Similarly, the guided velocity field is given by

wﬂﬂw=/w@V)

pt|1(3j | Z)puY(Z | y)
Pt\Y(CE | y)

dz.

Using Classifier Free Guidance| Ho & Salimans|(2022)), we can construct the parametrization simply
as

@ (x| y) = (1 —wui(z | 0) +wuf (x| y).

Despite the fact that @ does not exactly generate the path (p;)o<¢<1, it remains the most widely
applied guidance method.

Generally, the conditional probability path p,y (- | y) is defined using pairs image-captions € Sy x
So. During sampling, the guiding signal € S is kept unperturbed, while z; ~ pyy (- | ). This
allows for controlled generation, but raises the question: how close are pi(z) = Eyy [p1)y (2 | y)]
and E_,p[p1)y (= | y)]? That is, can we generate most samples in p; with the appropriate prompt?
Or does Classifier Free Guidance hamper interpolation?

There is some research in this direction. The phenomenon of mode collapse, that is, diversity loss
from over-emphasis on high-likelihood regions is well known in the literature, and specially acute
for higher values of w. In particular, |Chung et al. (2024) tie mode collapse to the guiding signal
forcing generation out of the data manifold. It has also been observed by |Patel et al.| (2023)).
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As we will show, multimodality can help mitigate this issue.

Cross-Guidance. In the multimodal setting, we construct the guided velocity field as uy7, ¢, (@ |
it, ct) which generates the probability path py,(x; | z), as explained in Section Under this
approach, guidance happens implicitly: instead of conditioning on a fixed input, the generation of
each modality is influenced by the evolving state of the other modality.

This allows for greater flexibility. Given a signal y as before (e.g.: a text prompt), then the guided
probability path is

pyy (@ | 9) = / pia(@ | Dpuy (ir | &1 = y)dz,

because 1|y (z]y) = pijy (i1 | c1 = y) in the multimodal setting. But we don’t want to generate
pyy- Instead, we will generate pyc, (- | co = y). That is, instead of starting from Cy ~ @ =

Unif([vocab_size]?) we start with co = y. Then, along the multimodal probability path p, this
signal will influence I, while being allowed to be changed towards the data distribution (if needed).
Effectively, this means Cross-Guidance acts as Manifold Constrained guidance (Chung et al.|(2024).
Moreover, as the evolution of C is stochastic (for it depends on Iy ~ qé, usually a Gaussian
distribution) it helps mitigate mode collapse. More details on Cross-Guidance and experiments on
the Appendix [C}

o
e & 2

o

%

A;
A
¢

Figure 2: Experiment illustrating the phenomenon of mode collapse. The target distribution corre-
sponds to six gaussians, each point assigned a label that corresponds to its position on a grid, i.e.:
x and y indices of the box that contains it added together, which implies labels along the top-right,
bottom-left diagonal are underrepresented. When sampling using all labels, CFG (first row), misrep-
resents those regions. CrossFlows (second row) doesn’t, but leads to more noisy predictions. Third
row represents CrossFlows + CFG.

3.3 ARCHITECTURE

Our architecture consists of two jointly trained sub-models, one per modality. The text-to-image
(continuous flow) model is based on DiT [Peebles & Xie|(2023), originally designed for class condi-
tioning but extended here to handle both text and image inputs. It uses MM-DiT blocks along with
patch, timestep, and context embeddings, plus final linear layers. The image-to-text (discrete flow)
model is a transformer with cross-attention layers that fuse image embeddings with text.

Continuous Flow Model. Let D be a dataset of image—caption pairs (I,C). The text-to-image

model operates in the latent space, where images I € RZ*H*WxC are encoded by a VAE into latent

representations Z € RE*H/8xW/8x4 Thege latents are first processed by a learnable patch embed-

ding layer, which partitions the input into non-overlapping patches of size patch size X patch size and

projects each patch into a D-dimensional vector. This produces a sequence of embedded patches:
(H/8)(W/8)

Ximped € RPXTP T = =22 D = hidden size
patch size
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Additional embeddings are introduced before forwarding the sequence to the backbone. The diffu-
sion timestep ¢ is mapped to a D-dimensional vector via an MLP, while conditioning signals (e.g.,
text context) can be projected to the same dimension when required. A fixed 2D sinusoidal positional
encoding is also added to the input sequence.

Captions C' are processed as conditioning information. They are tokenized with the CLIP tokenizer
and encoded using a pre-trained CLIP text encoder. The backbone follows the MM-DiT architecture,
which fuses image patches, text embeddings, and timestep embeddings through cross-attention. The
number of MM-DiT blocks is determined by a depth parameter. Finally, a lightweight MLP projects
the features before the unpatchify operation reconstructs a tensor of the same size as the latent input.

Discrete Flow Model. Using the same dataset as in the continuous model, D with pairs (7, c) of
images and captions of length T', where i € REXHXWXC and ¢ ¢ NBXT | we now treat captions
as the training data and images as the conditioning factor for a discrete flow matching model. The
images are encoded using a pretrained image encoder (dinov2vitb14,/Oquab et al.[(2023)), resulting
in a sequence of image tokens z € RB*SXD where S is the number of visual tokens and D is the
embedding dimension. Then, each caption token c is embedded into a dense vector space using a
learned embedding layer, producing a sequence of text token embeddings XS .4 € REXTXD ‘where
T is the number of tokens in each caption and D is the hidden size.

Similar to the continuous case, a timestep embedding gets the time value ¢ and generates a condi-
tioning vector, using a frequency-based sinusoidal embedding and an MLP projection, modulating
attention and MLP layers using an adaptive layer norm (AdaLN). Xempbeq are then passed through
a transformer attending to the image tokens z and using AdaLN conditioning with the timestep
embedding ¢; = MLP(f;) € RB*P¢ for D, the image conditioning dimension. This process is
repeated for a number of blocks, where each one refines the input via:

x < CrossAttn(z, z) + SelfAttn(z) + MLP(z),

after which the final layer of the model projects the refined token embeddings back to the vocabulary
logits.

3.4 TRAINING

A schematic overview of the training pipeline is shown in Figure[3] We begin with a batch of dataset
instances consisting of images I and captions Cy, where Z; = (I;,C;) ~ p; follows the real
data distribution. The images are encoded into the latent space using a VAE, and additional image
features are extracted with the encoder. We denote the latent representation as I* and the image
embedding as /°. Next, a batch of timesteps is sampled, and the probability path is applied to obtain
Zy = (If, C), where both domains have the same level of noise.

The continuous flow model takes as input the latent representation I, the text embedding of the
prompt C;, and the timestep. To improve training efficiency, we employ several optimization tech-
niques. Using I¢, we apply REPA alignment |Yu et al.| (2025) to compare the original image em-
beddings with the features extracted from the 8th MM-DiT block. Additionally, we incorporate
HASTE Wang et al.|(2025)), which aligns both image embeddings and attention maps. In addition,
Classifier-Free Guidance is applied within the image model. For the image domain, we adopt the
classical conditional optimal transport path as the probability path.

The discrete flow model receives the text embedding of the prompt C', the image embedding of the
image I7 and the timestep. The model is inspired by Markov jump processes, where the learned
transition function is factorized across the token dimensions. Each dimension d € [1,...,T] is
stochastically assigned a jump schedule, ¢} (i.e. a time when it is allowed to change), and at each
timestep ¢, the model outputs logits for every dimension, updating the dimension with the earliest
scheduled time t}; > ¢ and leaving the rest unchanged. Once this dimension has been updated, a
new schedule is updated and this process continues until the scheduled time is 1 for all dimensions,
ie. t) = 1Vd € [1,...T]. For the text domain, we employ the MixtureDiscreteProbPath with
a polynomial convex scheduler. The source distribution is defined either using mask tokens or a
uniform distribution over the vocabulary. Training of the text model is guided by two different
options of objectives: cross-entropy loss and the GeneralizedKL loss.

During training, we evaluate multiple multimodal generation configurations, with particular empha-
sis on the effect of incorporating pre-trained components (a pre-trained T2I model and/or a pre-



Under review as a conference paper at ICLR 2026

trained I2T model). Finally, for optimization under the joint loss defined in Equation [3.1] we apply
a weighted combination of the image and text loss terms.

Pretrained

Pretrained

Text g Image
Encoder Encoder
Y & L; Y
Continuous Discrete
Flow Model Flow Model
v v v
d I
Elt REPAlignment Chiat

Figure 3: CrossFlows architecture and training strategy. We sample a time ¢, and interpolate on
discrete and continuous probability paths to generate image and text interpolations ; and C;, which
are then passed as input to both the continuous and discrete flow models. We can also perform REPA
Alignment on the images to improve the quality of generations.

3.5 SAMPLING

Sampling is performed parallelly on the discrete and continuous flows. We begin by sampling Zy =
(1o, Cp) ~ po and a time grid, and proceed to solve both ODE’s via an Euler method, feeding in
each step I; and C}, to both models. Guided generation is performed starting with Zy = (o, prompt)
or Zy = (image, Cy). More details as well as other sampling strategies on Appendix

4 EXPERIMENTS & RESULTS

4.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of our method through a series of experiments. All models are initially
trained on the COCO2017 dataset , which contains approximately 100k images, each paired with five
captions. In configurations that incorporate pre-trained components, we additionally use the CC3M
dataset, which provides about 2.9M image—caption pairs for training the T2I and I2T models.

For evaluation, we generate 4k synthetic samples from the trained models and compare them against
an equal number of samples drawn from the COCO2014 validation set, which contains roughly 50k
samples in total. We assess performance across three tasks: image generation (FID, FLD, Preci-
sion, Recall), text generation / image captioning (Perplexity, Cosine Similarity), and multimodal
generation (CLIPScore). We add Image Inpainting experiments in Appendix

4.2 RESULTS

Image generation. We evaluate the quality of images generated by the continuous flow model
trained in the multimodal setup. The results are reported in Table f.2] where we compare our pro-
posed multimodal model against a flow-matching baseline trained with HASTE, the CC3M dataset,
and an MM-DiT backbone. When trained from scratch, the multimodal model shows a reduction
in image quality, as indicated by a higher FID score. To improve performance, we initialized the
image model with a pre-trained T2I model; however, this configuration performed worse than both
the baseline and the scratch-trained multimodal model.

Text generation (image captioning). Analogously to the text-to-image evaluation, we evaluate
the text generation capabilities by producing captions conditioned on 4k real images selected ran-
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Method FID | Precision{ Recall{ ClipScore{ Caption Sim 7
FM-MMDIiT-HASTE (T2I Model) 22.12 - - 17.21 -
Cross-Modal FM + REPA 25.48 0.68 0.53 20.30 0.2694
Cross-Modal FM + Pre-trained T2I ~ 27.38 0.68 0.52 19.81 0.6185

Table 1: Quantitative results for different models. For image quality, lower FID is better and higher
Precision and Recall are better. For image-text alignment we have the ClipScore where higher value
is better.

domly from the COCO2014 validation set. Then, we compare the similarity between real and syn-
thetic captions using the cosine similarity of their sentence embeddings, obtained with the sentence-
transformer model UKP Lab, The resulting mean cosine similarity is 0.61 (with a standard deviation
of 0.16), indicating a moderate-to-strong overall alignment with the real captions.

Multi-modal generation. After assessing the capabilities in image and text generation separately,
it’s time to study the conceptual alignment of text and images when generated together. The Clip-
Score values are presented in Table .2 where we can see an improvement of the alignment com-
pared to the baseline using the multi-modal setup. Figure 4] compares the distribution of ClipScores
between samples from the validation set of COCO2014 and a synthetic dataset generated with Cross-
Flows, suggesting a semantic match between image and captions similar to real datasets.

CLIP Score Distribution Comparison

CLIP Score Distribution Comparison

Figure 4: Comparison of CLIPScores between 50K image-caption pairs generated by CrossFlows
and those from the ground-truth validation set of COCO2014, alongside another distribution com-
parison.

5 LIMITATIONS & FUTURE WORK

The experiments in this work have been carried out with a small scale dataset (around
110k images and 7.5k text tokens). It is not the scope of this paper to compare against state-of-
the-art generative models, for which large scale pre-training with millions of images and billions of
tokens would be needed, but to showcase the potential of flow models as an alternative to autore-
gressive multimodal generation. Future work includes larger scale training as well as interleaved
image-text-other modalities generation.

6 CONCLUSIONS

In this paper, we introduced CrossFlows, a new paradigm for multimodal generation that learns a
flow on a joint discrete and continuous space. Rather than mapping different modalities into the
same space, we learn probability paths on their product space. We name this approach Cross-Modal
generation, as the evolving state of each modality depends on the distribution of the other modality.
This entails some advantages: it avoids modality asymmetry, as we don’t need a continuous or
discrete decoder; it permits conditional generation on unfixed inputs, which mitigates mode collapse
and lack of diversity of generations; and it permits solving downstream tasks previously hard to solve
with Flow models, such as image inpainting. We hope this work will contribute to the progress
toward new paradigms for multimodal generation.
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APPENDIX

A TRAINING & EVALUATION DETAILS

A.1 SAMPLING

We employ the following strategies to generate high-fidelity synthetic data pairs of images and
captions.

Naive Sampling. The easiest way to sample is to directly follow the same logic as in training, that is,
doing generation sequentially following the inference method of each model, and conditioning the
next update on the current image/caption interpolation prediction. Thus, one can start by sampling
from the source distributions of both modalities (random Gaussian noise for the images and uniform
tokens for the text), obtaining (o, Cy) ~ po, as well as defining a discretization of the time interval
t € [0, 1] with a set number of steps. See Algorithm 1}
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Algorithm 1 Multimodal generation sampling

Input: Zy = (Iy, Co) ~ po
Parameter: u; (I;, Cy,t), ua(Cy, It, t), n, Wesg

Output: Z; = (I1,C1) ~ p1
Lett = 0.
Leth=1/n

while ¢t < 1 do
if wcpg > 1 then

v = ul(It, Ct,t), Vg = UQ(Ct, It,t)
v19 = u1(le,0,t)
V1 = V1,0 + Wefg - (Ul - Ul,(ZJ)

else

v = ul(It,Ct,t), Vo = UQ(Ct7It,t)

Liyh =L+ h- v
Ciyn =h-v2
Ziyn = (Ltgn, Crin)
Lett=t+h

return Z; = (I1,Ch)

Adaptive Horizon Sampling. A more interesting way of sampling is to leverage the number of steps
it takes for one modality to reach stability, and allow the generative process each modality depend
on this factor. Essentially, we introduce a horizon parameter for the evolution of each modality,
allowing inference over a time interval rather than only allowing updates on pairs of steps (¢, t1).
As we noticed in our experiments that the text sampling stabilized in a fewer number of steps than
the images, we decided to set a bigger sampling horizon for the image generation, allowing them to

evolve through more timesteps before conditioning the next text update.

We observe Adaptive Horizon Sampling to be beneficial, as bad text quality during the initial steps
hinders image definition. Adaptive Horizon Sampling allows the text to gain semantic significance
faster. However, we have not yet fully investigated whether this leads to more pronounced mode

collapse.

Step 19 Step 29 Step 39 Step 49
o vz . - _

Text Evolution During Generation

Step 0:
Step 9:
Step 19:
Step 29:
Step 39:
Step 49:

fone already gaye strokeprincessstrauberries fut cleveragomez hodgson enc leanreminds rewards securburned improvisrelationshiperinkathrynleche game ty
fone already gaye strokeze strawberries fut cleveragomez hodgson enc leanreminds rewards securburned!relationshiperinkathrynleche game typography!hall
<|startoftext|>already gaye graze strawberries fut cleveragomez park. <|endoftext|>reminds rewards securburned!relationship!kathrynleche game typograp
<[startoftext|>already gaye graze strawberries fut cleveragomez park. <|endoftext|>!!!!!relationshiptkathrynigame! thalljudged sawa much!publishers & b
<[startoftext|>already horses graze in a serenagomez park. <|endoftext|>!!!1!111lgame! halllsava much!publishers!bengal ibattlefront luriterslife!!
<|startoftext|>two horses graze in a standard city park. <|endoftext|>I!!1 i niEEE i En it EnEn i nbn i nEn i n iy

FINAL: two horses graze in a standard city park.

Figure 5: Unconditional sampling of an Image/Caption pair with CrossFlows.
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A.2 TRAINING DETAILS

We train our models on a single node with data-parallel distributed training across four NVIDIA
H100 GPUs using the Accelerate framework, for a total of 250-400k steps. Training is performed
with a batch size of 256 using the AdamW optimizer, with a learning rate of 1 x 10~* and a weight
decay of 1 x 1075,

A.3 PERPLEXITY

One of the advantages of Flow Matching models is that they allow for explicit estimation of log
probabilities Lipman et al.|(2022). This is specially interesting in the case of discrete flow matching,
as it allows to estimate the quality of text generation, without resourcing to n-gram based metrics for
text comparison such as BLEU or ROUGE, which do not capture the semantic meaning of the text.

Let I; be a sample image, and C),,.4 a generated caption. Following Haxholli et al.| (2024), we may
write

1 /
K
71 re ’0 < t
08, (Cprea; 0) < /0 1= ry xztptu(xt | 21)
L . . . .
D (Lt aiy log Pl (] | @6:0) + 1= pi (2} | 0650) = Ligi gy )t
i=1

The integral may be approximated via Monte Carlo methods, but the difficulty strives in the sum over
x,: depending on the text schedule chosen, the number of possibilities can be too great. There are
two ways around this: choose a schedule in which only one token changes by timestep, or estimate
py1(z¢ | z1) by computing only backward probability paths from z;, and adding some noise, as
these are the instances of z; with highest probability, and the others in the sum can be bounded with
these. We follow the second approach.

B DIFFUSION

Diffusion models |Ho et al.| (2020) are generative models trained to learn the reverse of a diffusion
process that gradually adds noise to real data. At generation time, they start from pure noise and
progressively denoise it to produce a realistic sample. We investigate here the potential of diffusion
models as backbone for our multimodal architecture.

The fundamental concept and the key distinction from other latent variable models involves a stan-
dard forward corruption process g, which takes clean data x from the data distribution g(x) and
defines a latent variable z; for t € [0, 1], representing progressively noisy versions of x as follows:

2t = Jouxr + /1 — e

where € ~ N(0,T) and (a¢);e[o,1] is a noise schedule, monotonically decreasing in ¢ Sahoo et al.
(2024). Therefore, it is a predetermined Markov chain that incrementally adds Gaussian noise to the
data.

On the other hand, the reverse diffusion model py parameterized over z and 2z, is trained to maximize
a variational lower bound on log-likelihood (ELBO), conceptualizing it as a Markov chain with
Gaussian transitions.

B.1 DISCRETE DIFFUSION

Discrete Diffusion Models can be broadly categorized into two types based on whether they embed
discrete structures in a continuous space and then perform a Gaussian diffusion [Chen et al.| (2023));
Li et al.| (2022), or if they define a diffusion process directly on discrete structures. D3PM |Austin
et al.| (2021) presents a framework that includes a Markov forward process that is characterized by
the multiplication of matrices (); over T discrete time steps as described below [Sahoo et al.| (2024):
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q(zt|z) = Cat(z; Q) = Cat(z;Qt - Q-1 - - Q1)

Thus, the scoring viewpoint on diffusion modeling may be extended to discrete data using the Con-
tinuous Time Markov Chain (CTMC).

B.2 SIMPLE MASKED DIFFUSION MODELS

The authors in [Sahoo et al.| (2024) note that, rather than supporting general noise processes, like
those used in discrete diffusion models, absorbing state diffusion (where the unmasked token re-
mains unchanged during the reverse diffusion and the clean input is never masked) delivers superior
performance. Therefore, they focus on masking techniques and develop a precise Rao-Blackwellized
approach that does not rely on CTMC theory, achieving better results than general methods in this
area.

B.3 MASKED DIFFUSION LANGUAGE MODELS (MDLM

Masked Diffusion Language Models (MDLM) represent a significant advancement in discrete dif-
fusion modeling for text generation, addressing performance gap between diffusion and autoregres-
sive methods in language modeling. [Sahoo et al.| (2024) demonstrate that well engineered masked
diffusion can achieve state-of-the-art results among diffusion models, approaching autoregressive
perplexity within 15-25% on standard benchmarks.

B.3.1 INITIAL ARCHITECTURE AND INTERESTING POINTS ON CHOOSING MDLM

The authors present a substitution-based way to parameterize the reverse diffusion process with
two key features. First, it has zero masking probabilities, which means the model never predicts
[MASK] tokens. Second, it includes carry-over unmasking, meaning that unmasked tokens stay the
same during reverse diffusion. This approach simplifies the training objective analytically.

The model provides a simpler continuous-time variational lower bound that effectively reduces train-
ing variance using a low-discrepancy sampler (as discussed in Section 3.2 and Appendix D.3 in|Sa-
hoo et al.[(2024)) and enhances numerical stability. The resulting objective is a weighted average
of masked language modeling (MLM) losses, which shows a clear connection between diffusion
models and BERT-style encoders.

Unlike earlier diffusion methods that only worked with fixed-length sequences, MDLM allows the
generation of text of any length using a new semi-autoregressive decoding algorithm. This method
employs previously generated tokens as prefixes for the next generation rounds, making it possible
for the model to create longer texts gradually.

The framework uses a Diffusion Transformer (DiT) architecture that adds timestep conditioning into
encoder-only transformers with rotary positional embeddings. One important finding is that leaving
out explicit time dependence in the denoising network works well, while also letting the model
optimize caching, leading to a 2x speedup in inference.

Most importantly, the authors show that modern engineering techniques, such as effective tokeniza-
tion, stable numerical implementations, and updated architectures, greatly enhance performance,
even for methods that were previously dismissed. This suggests that some performance gaps in
earlier studies may have been due to implementation issues rather than fundamental flaws in the
algorithms.

B.3.2 IMAGE CONDITIONING

The MDLM framework’s connection to BERT-style architectures and its sequential generation
paradigm make it particularly well-suited for multimodal generation applications. The encoder-
only design is suitable to incorporate visual features through cross-attention mechanisms, while the
iterative process facilitates image-conditioned text generation that maintains long-range coherence.

To achieve this, we have gone further implementing a new methodology using the CLIP visual
extractor as a feature extractor, along with cross-attention integration as an extension of the initial
architecture.
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Our approach incorporates image conditioning into DiT through a dedicated cross-attention mecha-
nism, added to dynamic transformer blocks, enabling direct interaction between textual representa-
tions and visual features while preserving the original temporal conditioning mechanism.

We employ a dual-pathway image conditioning architecture that processes visual information using
two complementary mechanisms. First, we utilize global visual conditioning via feature fusion,
where spatially pooled image features are added to temporal embeddings and propagated through
an Adaptive Layer Normalization (AdaLLN) across all transformer layers. After that, we introduce
spatial aware cross-attention in selected layers, where individual text tokens can attend to specific
spatial patches from the image encoder’s patch token representation.

This approach is interesting due the multi-granularity conditioning and the complementary informa-
tion flow it provides. The architecture processes visual information at two different levels of details
at the same time (global context through AdalLN and local spatial details one using cross-attention),
which allows the models to have a better scene understanding. Additionally, the global pathway
ensures that all text generation in influenced by visual context.

To further extend the image conditioning paradigm, we also studied the benefits of using two pre-
trained text-only models as a backbone: the first one, with 40k steps due to hardware constraints,
using Fineweb-Edu Lozhkov et al.|(2024) (1.3T tokens) with a CLIP tokenizer; and the second one,
consisting of OpenWebText ope|for 1M training steps to the Huggingface hub|Gokaslan et al.[(2019)
with a GPT2 tokenizer. This choice leads to faster convergence, improved text generation quality,
and more stable training. Following this, we implemented a fine-tuning strategy with a modified
DiT architecture, trained on both the CC3M dataset|Sharma et al.| (2018), which contains a training
set of approximately 3.3 million image-caption pairs, and COCO 2017 |Lin et al.|(2015ab).

B.3.3 TEXT GENERATION (IMAGE CAPTIONING)

Repeating the idea expressed in[subsection 4.7 we evaluate the text generation capabilities by pro-
ducing captions conditioned on 1k real images selected randomly from the COCO2014 validation
set and comparing the similarity between real and synthetic captions. In this case, the resulting mean
cosine similarity is 0.50 (with a standard deviation of 0.14), indicating a moderate overall alignment
with the real captions.

C CRo0SS GUIDANCE

As mentioned in Section[3.2] we explore intrinsic alternatives to Classifier Free Guidance within the
multimodal framework. We leverage the fact that textual prompts belong to the target distribution
approximated by our model. In addition to learning probability paths interpolating between Z, =
(1o, Cp) and Z; = (image, caption), during training we initialize the model with some probability p
(p = 0.1) with Z = (I, caption).

Say the dataset D = (Ui, Uc) of image captions is the support of p1, and that the initial distribution
po has support Dy = (Ui, Ucg). By training in the aforementioned way, the model learns paths
interpolating between Dy U (Uc) and D. Thus, when initializing the model with a prompt during
sampling, this leads to guided generation. Crucially, prompt is allowed to change during generation
within the data manifold learned by the model, which we believe allows for more diverse guided
generation than CFG and mitigates the phenomenon of mode collapse.

C.1 MODE COLLAPSE EXPERIMENT

To put these ideas to test, we design the following experiment.

We let g be six gaussian distributions with means placed on a circle and variance of 0.5. This is
our continuous distribution. Then, a grid is fixed to the plane, and for each given point z we take
the indices 4, j of the box containing it. This is our discrete distribution ¢7. In order to mimic the
fact that in image-caption datasets there are semantic concepts that are overrepresented, while others
are underrepresented, we make our captions be ¢ = i + j. This means labels along the top-right,
bottom-left diagonal are underrepresented. See in Figure[f]a batch consisting of points and captions
sampled from p;.

17



Under review as a conference paper at ICLR 2026

PR S . LEE
sgkee  aat. 0
R

S LI 2 )

Figure 6: A batch of points and captions sampled from the target distribution of our experiment.

This dataset is interesting, because labels corresponding to central values 80 — 120 are produced by
more ¢, 7 combinations. If we create a heatmap of cells in the grid colored by the amount of points
in a batch that have a label ¢ such that i + j = ¢ we obtain a top-left-bottom-right distribution, see[7}

Hzeatmap of a+b labels distributed along diagonal.
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Figure 7: Cells in the grid colored by the amount of points in a batch that have a label c such that
i+j=c

We now train a continuous flow on ¢, conditioning directly on the classes ¢ for 75k steps. We
then sample using a CFG. On the other hand, we train a Cross-Modal flow, consisting on both a
continuous flow approximating the path to ¢i and a discrete flow approximating the path to ¢?. We
sample in the way described above. In this case, the label we condition on is allowed to change
during the generation. Results can be seen in[9] We use a CFG scale of 3.0 in the first row, and of
1.5 in the third row. We observe that CFG pushes points along the top-left-bottom-right diagonal,
which is the area of labels that appear with higher density during training. This does not occur in
the multimodal flow, but the generation is more noisy. Finally, the third row represents the best of
both worlds.

C.2 IMAGE INPAINTING

A great advantage of Cross-Guidance is that it allows us to perform controlled downstream tasks
without any modifications to the model. One example is image inpainting, where we select an
image and modify it by cutting out a section. One way to inpaint with a regular Flow Matching
model would be to take the modified image, solve the ODE of our model in reverse time to get
starting noise, and to then solve it in forward time hoping the model will reconstruct something
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Figure 8: Experiment illustrating the phenomenon of mode collapse. The target distribution corre-
sponds to six gaussians, each point assigned a label that corresponds to its position on a grid, i.e.:
x and y indices of the box that contains it added together, which implies labels along the top-right,
bottom-left diagonal are underrepresented. When sampling using all labels, CFG (first row), misrep-
resents those regions. CrossFlows (second row) doesn’t, but leads to more noisy predictions. Third
row represents CrossFlows + CFG.

close to the original image. But this method is not guaranteed to work, given that modified images
are out-of-distribution.

In the multimodal setting, however, we have the evolution of the discrete modality to balance the
forward process from the out-of-distribution input. The procedure is as follows:

1. Given a pair image/prompt, (I, C ), modify the image to obtain 1.

2. Solve the ODE in backward time to obtain the initial noise of the modified image Io.

3. Solve the ODE in forward time using (Iy, C;) as starting condition.

Backward ODE

3
i..
Forward ODE & ¥

w

‘ A picture of a man in the snow ‘

Figure 9: Image inpainting procedure with CrossFlows. We use Cross Guidance to guide generation
from the noise obtained from computing the ODE in reverse time from the modified image.
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