
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VARIATIONAL INEQUALITY METHODS FOR
MULTI-AGENT REINFORCEMENT LEARNING:
PERFORMANCE AND STABILITY GAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent reinforcement learning (MARL) poses distinct challenges as agents
learn strategies through experiences. Gradient-based methods often fail to con-
verge in MARL, and performances are highly sensitive to initial random seeds,
contributing to what has been termed the MARL reproducibility crisis. Concur-
rently, significant advances have been made in solving Variational Inequalities
(VIs)—which include equilibrium-finding problems—particularly in addressing
the non-converging rotational dynamics that impede convergence of traditional
gradient-based optimization methods. This paper explores the potential of lever-
aging VI-based techniques to improve MARL training. Specifically, we study the
integration of VI methods—namely, Nested-Lookahead VI (nLA-VI) and Extragra-
dient (EG)—into the multi-agent deep deterministic policy gradient (MADDPG)
algorithm. We present a VI reformulation of the actor-critic algorithm for both
single- and multi-agent settings. We introduce three algorithms that use nLA-VI,
EG, and a combination of both, named LA-MADDPG, EG-MADDPG, and LA-EG-
MADDPG, respectively. Our empirical results show that these VI-based approaches
yield significant performance improvements in benchmark environments, such as
the zero-sum games: rock-paper-scissors and matching pennies, where equilibrium
strategies can be quantitatively assessed, and the Multi-Agent Particle Environment:
Predator-prey benchmark, where VI-based methods also yield balanced participa-
tion of agents from the same team, further highlighting the substantial impact of
advanced optimization techniques on MARL performance.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is a powerful machine learning approach for solving
complex, multi-player problems in diverse domains. It has been applied to tasks such as coordinating
multi-robot and multi-drone systems for instance for search and warehouse automation, optimizing
traffic flow and vehicle platooning in autonomous driving, managing energy distribution in smart
grids, simulating financial markets and automated trading, improving patient management and drug
discovery in healthcare, enhancing network performance in telecommunications, training intelligent
agents in games (e.g., Omidshafiei et al., 2017; Vinyals et al., 2017; Spica et al., 2018; Zhou et al.,
2021; Bertsekas, 2021, among others). In MARL, a system of N agents seeks to jointly optimize a
shared objective, with each agent operating based on its own policy, derived from its observations of
the environment. Depending on their reward objectives, agents may exhibit cooperative, competitive,
or mixed behaviors. These interactions introduce complex learning dynamics, making MARL
significantly more challenging and distinct from single and actor-only reinforcement learning (RL).

Despite the applicability of MARL to a wide range of problems, their deployment and research
development face significant challenges. Key issues include: (i) The iterative training process in
data-driven MARL is notoriously difficult, often failing to start to converge. This lack of conver-
gence remains a fundamental obstacle. (ii) Performance is highly sensitive to small changes in
hyperparameters or initial random seed variations, leading to unpredictable outcomes. This hinders
reproducibility. These challenges are also evident in single-agent reinforcement learning with
actor-critic structure (Konda & Tsitsiklis, 1999)–an instance of a two-player game. Such methods
require meticulous hyperparameter tuning, and their outcomes can vary significantly based on the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

random seeds used for sampling and model initialization (Wang et al., 2022; Eimer et al., 2023).
This variability undermines reproducibility, complicating both research progress and real-world
deployment (Henderson et al., 2019; Lynnerup et al., 2019). In MARL, these challenges are even
more pronounced, contributing to what is often referred to as the reproducibility crisis (Bettini
et al., 2024). Small changes to hyperparameter values can drastically alter results, as demonstrated
by Gorsane et al. (2022). Their study reveals significant performance variability across different
seeds in popular MARL benchmarks such as the StarCraft multi-agent challenge (Samvelyan et al.,
2019). Additionally, gradient-based optimization methods in MARL face unique challenges, such as
difficulties in exploring the joint policy space of multiple agents (Li et al., 2023; Christianos et al.,
2021), often leading to suboptimal solutions. Some MARL structures also exhibit inherent cycling
effects (Zheng et al., 2021), further exacerbating the problem of convergence. In this work, we focus
primarily on addressing challenge (i) by improving training stability. In doing so, we also aim to
mitigate the high variability caused by random seed and hyperparameter sensitivity, thereby partially
addressing (ii).

A concurrent line of works focuses on the Variational Inequality (VI) problem, a general class of
problems that encompasses both equilibria- and optima-finding problems; see Section 3 for definition.
VIs generalize standard minimization problems. In this case, the operator F is a gradient field
F ≡ ∇f . However, by allowing F to be a more general vector field, VIs also model problems such
as finding equilibria in zero-sum and general-sum games (Cottle & Dantzig, 1968; Rockafellar, 1970).
It has been observed that standard optimization methods that perform well in minimization tasks
of the form minz f(z)—where f : Rd → R is a real-valued loss function—often fail to solve some
simple instances of VIs. This failure is due to the rotational component inherent in the gradient
dynamics of these settings, which causes the latest iterate to cycle around the solution, leading to
non-convergence (Mescheder et al., 2018; Balduzzi et al., 2018). More precisely, the Jacobian of the
associated vector field (see def. in Section 3) can be decomposed into a symmetric and antisymmetric
component (Balduzzi et al., 2018), where each behaves as a potential (Monderer & Shapley, 1996)
and a Hamiltonian (purely rotational) game, resp. For instance, the gradient descent method for the
simple minz1∈Rd1 maxz2∈Rd2 z1 · z2 game, which simultaneously updates z1, z1 rotates around
the solution for infinitesimally small learning rates, and diverges away from it for practical choices
of its value. As a result, all variation methods based on gradient descent, such as Adam (Kingma
& Ba, 2015) have no hope of converging for some broad problem classes of VIs. This problematic
behavior is particularly pronounced when the separate sets of parameters are neural networks, as in
generative adversarial networks (GANs, Goodfellow et al., 2014). As a result, when GANs were first
introduced, substantial computational resources were required to fine-tune hyperparameters (Radford
et al., 2016). In addition, even for highly tuned hyperparameters, training with minimization methods
often (eventually) diverges away (Chavdarova et al., 2021), in sharp contrast to standard minimization.
The original GAN formulation (Goodfellow et al., 2014) and practical GAN implementations that are
not necessarily zero-sum, are all instances of VIs. The above training difficulties inspired numerous
recent research efforts to develop numerical methods to approximately solve variational inequalities
(VIs) and to study how VI optimization differs from minimization. Various algorithms have been
proposed and studied; reviewed in Sections 2 and 3 and Appendix A.1.1.

This paper hypothesizes that training instabilities in MARL and actor-critic RL primarily arise from
the rotational dynamics inherent in competitive learning objectives. This issue is compounded by
the prevalent reliance in practice on gradient descent-based methods, such as Adam (Kingma & Ba,
2015), which are known to induce similar issues in the Variational Inequality (VI) literature and have
been observed to cause analogous challenges in other VI applications (Goodfellow et al., 2014; Gidel
et al., 2019a; Chavdarova et al., 2021). Since VI optimization methods are specifically designed to
address rotational vector fields, this paper raises the following question:

Can MARL algorithms benefit from the application of Variational Inequality optimization methods?

To address this question, we focus on the multi-agent deep deterministic policy gradient (MADDPG)
method (Lowe et al., 2017) and integrate it with the (combination of) nested-Lookahead-VI (nLA-
VI) (Chavdarova et al., 2021) and Extragradient (EG) (Korpelevich, 1976) methods for solving
variational inequalities (VIs). Our main contributions are as follows:

• Primerely, we present a VI perspective for multi-agent reinforcement learning (MARL) problems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose the LA-MADDPG, EG-MADDPG, and LA-EG-MADDPG algorithms, which extend
MADDPG by combining it with nLA-VI, and with EG and a mix of both (respectively) in the
actor-critic parameter optimization for all agents.

• We evaluate the proposed methods against standard optimization approaches in several two-player
games and benchmarks from the Multi-Agent Particle Environment (MPE, Lowe et al., 2017).

• We also discuss additional insights into the use of rewards as a performance metric in MARL.

2 RELATED WORKS

Our work draws mainly from two lines of work that we review next.

Multi-Agent Reinforcement Learning (MARL). Various MARL algorithms have been devel-
oped (Lowe et al., 2017; Iqbal & Sha, 2018; Ackermann et al., 2019; Yu et al., 2021), with some
extending existing single-agent reinforcement learning (RL) methods (Rashid et al., 2018; Son et al.,
2019; Yu et al., 2022; Kuba et al., 2022). Lowe et al. (2017) extend the actor-critic algorithm to the
MARL setting using the centralized training decentralized execution framework. In the proposed
algorithm, named multi-agent deep deterministic policy gradient (MADDPG), each agent in the game
consists of two components: an actor and a critic. The actor is a policy network that has access
only to the local observations of the corresponding agent and is trained to output appropriate actions.
The critic is a value network that receives additional information about the policies of other agents
and learns to output the Q-value; see Section 3. After a phase of experience collection, a batch is
sampled from a replay buffer and used for training the agents. To our knowledge, all deep MARL
implementations rely on either stochastic gradient descent or Adam optimizer (Kingma & Ba, 2015)
to train all networks. Game theory and MARL share many foundational concepts, and several studies
explore the relationships between the two fields (Yang & Wang, 2021; Fan, 2024), with some using
game-theoretic approaches to model MARL problems (Zheng et al., 2021). This work proposes
incorporating game-theoretic techniques into the optimization process of existing MARL methods to
determine if these techniques can enhance MARL optimization.

Variational Inequalities (VIs). VIs were first formulated to understand the equilibrium of a
dynamical system (Stampacchia, 1964). Since then, they have been studied extensively in mathematics
including operational research and network games (see Facchinei & Pang, 2003, and references
therein). More recently, after the shown training difficulties of GANs (Goodfellow et al., 2014)—
which are an instance of VIs—an extensive line of works in machine learning studies the convergence
of iterative gradient-based methods to solve VIs numerically. Since the last and average iterates
can be far apart when solving VIs (see e.g., Chavdarova et al., 2019), these works primarily aimed
at obtaining last-iterate convergence for special cases of VIs that are important in applications,
including bilinear or strongly monotone games (e.g., Tseng, 1995; Malitsky, 2015; Facchinei &
Pang, 2003; Daskalakis et al., 2018; Liang & Stokes, 2019; Gidel et al., 2019b; Azizian et al., 2020;
Thekumparampil et al., 2022), VIs with cocoercive operators (Diakonikolas, 2020), or monotone
operators (Chavdarova et al., 2023; Gorbunov et al., 2022). Several works (i) exploit continuous-time
analyses (Ryu et al., 2019; Bot et al., 2020; Rosca et al., 2021; Chavdarova et al., 2023; Bot et al.,
2022), (ii) establish lower bounds for some VI classes (e.g., Golowich et al., 2020b;a), and (iii)
study the constrained setting (Daskalakis & Panageas, 2019; Cai et al., 2022; Yang et al., 2023;
Chavdarova et al., 2024), among other. Due to the computational complexities involved in training
neural networks, iterative methods that rely solely on first-order derivative computation are the most
commonly used approaches for solving variational inequalities (VIs). However, standard gradient
descent and its momentum-based variants often fail to converge even on simple instances of VIs.
As a result, several alternative methods have been developed to address this issue. Some of the
most popular first-order methods for solving VIs include the extragradient method (Korpelevich,
1976), optimistic gradient method (Popov, 1980), Halpern method (Diakonikolas, 2020), and (nested)
Lookahead-VI method (Chavdarova et al., 2021); these are discussed in detail in Section 3 and
Appendix A.1.1. In this work, we primarily focus on the nested Lookahead-VI method, which has
achieved state-of-the-art results on the CIFAR-10 (Krizhevsky, 2009) benchmark for generative
adversarial networks (Goodfellow et al., 2014).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

Notation. Bold small letters denote vectors, and curly capital letters denote sets. Let Z be a convex
and compact set in the Euclidean space, with inner product ⟨·, ·⟩.

Setting: multi-agent deep deterministic policy gradient. Markov Games (MGs) extend Markov
Decision Processes to the multi-agent setting. In a Markov Game, N agents interact within an
environment characterized by a set of states S. Agents receive observations oi, i = 1, . . . , N of the
current environment state s ∈ S . Based on their policies πi, each agent i chooses an action ai ∈ Ai

from predefined finite action sets Ai, i = 1, . . . , N . These actions, collectively represented as a, are
then applied to the environment, which transitions to a new state ŝ ∈ S according to a transition
function T : S → S. Each agent receives a reward ri, i = 1 . . . N , and a new observation ôi. In the
MARL setting herein, each agent has its own Q-value that is, how much reward it expects to get from
a state when joint action a is performed.

Multi-agent deep deterministic policy gradient (MADDPG, Lowe et al., 2017), extends Deep
deterministic policy gradient (DDPG, Lillicrap et al., 2015) to multi-agent setting using the framework
of centralized training decentralized execution. Each agent i has (i) a critic network—Qi—which
acts as a centralized action-value function, (ii) a target critic network Q′

i that is less frequently updated
with the most recent Qi parameters for learning stability, (iii) an actor network µi which represents
the policy to be updated, and (iv) a target actor network µ′

i from which it selects its actions and is
periodically updated with the learned policy µi. Both the Critic and Actor networks are modeled
using feedforward networks, parameterized by w and θ respectively.

The VI framework. Broadly speaking, VIs formalize equilibrium-seeking problems. The goal is
to find an equilibrium z⋆ from the domain of continuous strategies Z , such that:

⟨z − z⋆, F (z⋆)⟩ ≥ 0, ∀z ∈ Z , (VI)

where the so-called operator F : Z → Rn is continuous, and Z is a subset of the Euclidean
d-dimensional space Rd. Thus, VIs are defined by the tuple F,Z , denoted herein as VI(F , Z).
This problem is equivalent to standard minimization, when F ≡ ∇f , where f is a real-valued
function f : Rd → R. We refer the reader to (Facchinei & Pang, 2003) for an introduction and
examples. To illustrate the relevance of VIs to multi-agent problems, consider the following example.
Suppose we have N agents, each with a strategy zi ∈ Rdi , and let us denote the joint strategy with
z ≡ [z⊺

1 , . . . ,z
⊺
N]⊺ ∈ Rd, d =

∑N
i=1 di. Each agent aims to optimize its objective fi : Rd → R.

Then, finding an equilibrium in this game is equivalent to solving a VI where F corresponds to:
F (z) ≡ [∇z1

f1(z), . . . ,∇zN
fN (z)]

⊺
.

Methods for solving VIs. The gradient descent method naturally extends for the VI problem as
follows:

zt+1 = zt − ηF (zt) , (GD)
where t denotes the iteration count, and η ∈ (0, 1) the step size or learning rate. The nested-
Lookahead-VI algorithm for VI problems (Chavdarova et al., 2021), originally proposed for mini-
mization by Zhang et al. (2019), is a general wrapper of a “base” optimizer where, at every step t:
(i) a copy of the current iterate z̃t is made: z̃t ← zt, (ii) z̃t is updated k ≥ 1 times, yielding ω̃t+k,
and finally (iii) the actual update zt+1 is obtained as a point that lies on a line between the current zt
iterate and the predicted one z̃t+k:

zt+1 ← zt + α(z̃t+k − zt), α ∈ [0, 1] . ((nested)LA-VI)

Notice that we can apply this idea recursively, and when the base optimizer is (nested)LA-VI (at
some level), then we have nested LA-VI, as proposed in Algorithm 3 in (Chavdarova et al., 2021).

Extragradient (Korpelevich, 1976) uses a “prediction” step to obtain an extrapolated point zt+ 1
2

using GD: zt+ 1
2
=zt − ηF (zt), and the gradients at the extrapolated point are then applied to the

current iterate zt as follows:

zt+1=zt − ηF
(
zt − ηF (zt)

)
, (EG)

where η > 0 is a learning rate (step size). Unlike gradient descent, EG converges on some simple
game instances, such as in games linear in both players (Korpelevich, 1976).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Procedure Pseudocode for nLA-VI, called from Algorithm 2.
1: procedure NESTEDLOOKAHEAD:
2: Input: Number of agents N , current episode e, current actor weights and snapshots

{(θi,θi,s,θi,ss,)}Ni=1, current critic weights and snapshots {(wi,wi,s,wi,ss)}Ni=1, lookahead
hyperparameters ks, kss (where kss can be ∅) and αθ, αw

3: Result: Updated actor and critic weights and snapshots for all agents
4: if e%ks == 0 then
5: for all agent i ∈ 1, . . . , N do
6: wi ← wi,s + αw(wi −wi,s) Apply lookahead (1st level)
7: θi ← θi,s + αθ(θi − θi,s)
8: (θi,s,wi,s)← (θi,wi) Update snapshots (1st level)
9: end for

10: end if
11: if kss is not ∅ and e%kss == 0 then
12: for all agent i ∈ 1, . . . , N do
13: wi ← wi,ss + αw(wi −wi,ss) Apply lookahead (2nd level)
14: θi ← θi,ss + αθ(θi − θi,ss)
15: (θi,s,θi,ss,wi,s,wi,ss)← (θi,θi,wi,wi) Update snapshots (1st & 2nd level)
16: end for
17: end if
18: end procedure

4 A VI PERSPECTIVE & OPTIMIZATION METHODS FOR MARL

Herein, we describe our proposed approach, which utilizes VI methods in combination with a MARL
algorithm. Specifically, we delve into MADDPG, give a VI perspective of it, and describe its
combination with extragradient (Korpelevich, 1976) and nested Lookahead (Chavdarova et al., 2021).

4.1 A VI PERSPECTIVE OF MADDPG

Recall that for each i = 1, . . . , N agent, we have:

1. Q–Network, Qµ
i (x, a1, . . . , aN ;wi): central critic network for agent i;

2. Policy network, µi(oi;θi): policy network for agent i;

3. Target Q–network, Qµ′

i (x, a1, . . . , aN ;w′
i);

4. Target policy network, µ′
i(oi;θ

′
i).

These networks (maps) are parametrized by wi,θi,w
′
i,θ

′
i, respectively; with wi,w

′
i ∈ RdQ

i and
θi,θ

′
i ∈ Rdµ

i . The latter two—w′
i,θ

′
i for agent i—are running averages computed as:

θ′
i ← τθi + (1− τ)θ′

i

w′
i ← τwi + (1− τ)w′

i

. (Target-Nets)

Given a batch of experiences (xj ,aj , rj , x̂j)—sampled from a replay buffer (D)—the goal is to find
an equilibrium by solving the VI problem with the operator F defined as:

FMADDPG

(
...
wi

θi
...

)
≡



...

∇wi

1
S

∑
j

(
rji + γQµ′

i (x̂j , a′1, . . . , a
′
N ;w′

i)
∣∣
a′
k=µ′

k(o
j
k)
−Qµ

i (x
j ,aj ;wi)

)2

1
S

∑
j ∇θi

µi(o
j
i ;θi)∇ai

Qµ
i (x

j , aj1, . . . , ai, . . . , a
j
N ;wi)

∣∣∣
ai=µi(o

j
i)

...


,

(FMADDPG)
and Z ≡ Rd, where d =

∑N
i=1(d

Q
i + dµi). Even if N = 1, there is still a game between the actor

and critic—the update of wi depends on θi and vice versa.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 PROPOSED METHODS

To solve the VI problem with the operator as defined in (FMADDPG), we propose the LA-MADDPG,
and EG-MADDPG methods, described in detail in this section.

Algorithm 2 Pseudocode for LA–MADDPG: MADDPG with (Nested)-Lookahead-VI.
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1,

random steps Trand, learning interval Tlearn, actor networks {µi}Ni=1 with weights θ ≡ {θi}Ni=1,
critic networks {Qi}Ni=1 with weights w ≡ {wi}Ni=1, target actor networks {µ′

i}Ni=1 with weights
θ′ ≡ {θ′

i}Ni=1, target critic networks {Q′
i}Ni=1 with weights w′ ≡ {w′

i}Ni=1, learning rates ηθ, ηw,
optimizer B, discount factor γ, lookahead parameters ks, kss, αθ, αw, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: Weights snapshots (θs,θss,ws,wss)← (θ,θ,w,w)
5: for all episode e = 1 to T do
6: Sample initial state x from E
7: step← 1
8: repeat
9: if step ≤ Trand then

10: Randomly select actions for each agent i
11: else
12: Select actions using policy for each agent i
13: end if
14: Execute actions a, observe rewards r and new state x̂
15: Store (x,a, r, x̂) in replay buffer D
16: x← x̂
17: if step%Tlearn == 0 then
18: Sample a batch B from D
19: Use B and update to solve VI(FMADDPG, Rd) using B
20: Update target networks:
21: θ′ ← τθ + (1− τ)θ′

22: w′ ← τw + (1− τ)w′

23: end if
24: step← step+ 1
25: until environment terminates
26: NESTEDLOOKAHEAD(N, e,θ,w, ks, kss, αθ, αw)
27: end for
28: Output: θ, w

LA-MADDPG. Algorithm 2 describes the LA-MADDPG method. Critically, the (nested)LA-VI
method is used in the joint strategy space of all players. In this way, the averaging steps address the
rotational component of the associated vector field defined by FMADDPG resulting from the adversarial
nature of the agents’ objectives. In particular, it is necessary not to use an agent whose parameters
have already been averaged at that iteration.

The LA-MADDPG algorithm saves snapshots of the actor and critic networks for all agents, peri-
odically averaging them with the current networks during training. While the MADDPG algorithm
(Algorithm 4) runs normally using a base optimizer (e.g., Adam), at every interval k, a lookahead
averaging step is performed between the current networks (denoted θ,w), and their saved snapshots
θs,ws, as detailed in Algorithm 1. This method updates both the current networks and snapshots with
the α-averaged values. Multiple nested lookahead levels can be applied, where each additional level
updates its snapshot after a longer interval; see Algorithm 1. We denote lookahead update intervals
(episodes) with k subscripted by s and a larger number of s in subscript implies outer lookahead level,
e.g., ks, kss, ksss for three levels. All agents undergo lookahead updates at the same step, applying
this to both the actor and critic parameters simultaneously. An extended version of the algorithm with
more detailed notations can be found in appendix in algorithm 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(LA-)EG-MADDPG. For EG-MADDPG, EG is used for both the actor and critic networks and
for all agents; see Algorithm 6 for details. Algorithm 2 can also be used with EG as the base
optimizer—an option abstracted by B in Algorithm 2—resulting in LA-EG-MADDPG.

On the convergence. Under standard assumptions on the agents’ reward functions, such as con-
vexity, the above VI becomes monotone (see Appendix A.1.1 for definition). In this case, the above
methods have convergence guarantees, that is EG-MADDPG (Korpelevich, 1976; Gorbunov et al.,
2022), LA-MADDPG (Pethick et al., 2023), and LA-EG-MADDPG (Chavdarova et al., 2021, Thm.
3) have convergence guarantees. Contrary to these, the standard gradient descent method does not
converge for this problem (Korpelevich, 1976).

5 EXPERIMENTS

5.1 SETUP

We build upon the open-source PyTorch implementation of MADDPG (Lowe et al., 2017)1. We use
the same hyperparameter settings as specified in the original paper; detailed in Appendix A.2. For
our experiments, we use two zero-sum games: the Rock-Paper-Scissors (RPS) game and Matching
pennies. We then apply the methods to two of the Multi-agent Particle Environments (MPE) (Lowe
et al., 2017). We used versions of the games from the PettingZoo (Terry et al., 2021) library. We used
five different random seeds for training for all games and trained for 50000 episodes per seed for
Matching pennies and 60000 for the rest.

2-player game: rock–paper–scissors. Rock–paper–scissors is a widely studied game in multi-agent
settings because, in addition to its analytically computable Nash equilibrium that allows for a precise
performance measure, it demonstrates interesting cyclical behavior (Zhou, 2015; Wang et al., 2014).
The game, with M = 3 actions, has a mixed Nash equilibrium where each action is played with equal
probability. At equilibrium, each agent’s action distribution is (13 ,

1
3 ,

1
3). This equilibrium allows us

to assess the alignment of learned policies with the optimal strategy. In our experiments version, N
players compete in an M -action game over t steps. At each step, players receive an observation of
their opponent’s last action. Once all players have selected their actions for the current step, rewards
are assigned to each player: as of −1 for a losing, 0 for tie and +1 for winning the game. we used
N = 2 players, M = 3 actions, and a time horizon of t = 25 steps.

2-player game: matching pennies. The game has M = 2 actions, N = 2 players: even and odd
that compete over t steps. At each step, the players must choose between two actions: Heads or
Tails. Even player wins with a reward of +1 if the players chose the same action and loses with a −1
otherwise, and vice versa. We used t = 25 steps. Similar to Rock–paper–scissors, this game also has
mixed Nash equilibrium where each action is played with equal probability. At equilibrium, each
agent’s action distribution is (12 ,

1
2).

We measured and plotted the squared norm of the learned policy probabilities relative to the equilib-
rium for both rock–paper–scissors and matching pennies.

MPE: Predator-prey— from the Multi-Agent Particle Environments (MPE) benchmark (Lowe et al.,
2017). It consists of N good agents, L landmarks, and M adversary agents. The good agents
are faster and receive negative rewards if caught by adversaries, while the slower adversary agents
are rewarded for catching a good agent. All agents can observe the positions of other agents, and
adversaries also observe the velocities of the good agents. Additionally, good agents are penalized
for going out of bounds. This environment combines elements of both competition and collaboration.
While all adversaries are rewarded when one of them catches a good agent, their slower speed
typically requires them to collaborate, especially since there are usually more adversaries than good
agents. For our experiments, we set N = 1, M = 2, and L = 2.

MPE: Physical deception, (Lowe et al., 2017). The game has N good agents, one adversary agent,
and N landmarks, with one designated as the target. The adversary does not observe the target and
must infer which of the N landmarks is the target one, aiming to get as close as possible and receiving
rewards based on its distance from the target. The good agents can observe the target and aim to

1Available at https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/
master.

7

https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/master
https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/master

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

deceive the adversary while also staying as close as possible to the target. All good agents share the
same reward, based on a combination of their minimum distance to the target and the adversary’s
distance. This game has no “competitive component” for the adversary: its reward depends solely on
its own policy. In our experiments, we set N = 2.

Methods. We evaluate our proposed methods by comparing them to the baseline, which is the
original MADDPG algorithm using Adam (Kingma & Ba, 2015) as the optimizer for all networks.
Throughout the section, we will refer to the LA-MADDPG, EG-MADDPG, and LA-EG-MADDPG
methods as LA, EG, and LA-EG, respectively. When referring to nLA-based methods, we will
indicate the k values for each lookahead level in brackets. For example, LA (10, 1000) represents a
two-level lookahead with ks = 10 and kss = 1000. We also use Adam in combination with the VI
methods for consistency with the baseline.

Details on the remaining hyperparameters can be found in Appendix A.2.

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (10,100,1000)
EG
LA-EG (40,200)

(a) Rock-paper-scissors

1 2 3 4 5
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,400,4000)
EG
LA-EG (40,400,4000)

(b) Matching pennies

Figure 1: Comparison on the rock–paper–scissors game and matching pennies game between the GD-
MADDPG, LA-MADDPG, EG-MADDPG and LA-EG-MADDPG methods, denoted as Baseline, LA, EG,
LA-EG, resp. x-axis: training episodes. y-axis: total distance of agents’ policies to the equilibrium policy,
averaged over 5 seeds. The dotted line depicts the start of the “shifting” (in first-in-first-out order) of the
experiences in the buffer.

5.2 RESULTS

2-player games: rock–paper–scissors and matching pennies. Figures 1a and 1b depict the average
distance of the agents’ learned policies from the equilibrium policy. The baseline method eventually
diverges. In contrast, LA-MADDPG consistently converges to a near optimal policy, outperforming
the baseline. While EG-MADDPG behaves similarly to the baseline, combining it with Lookahead
stabilizes the performances. Additionally, Adam exhibits high variance across different seeds, while
Lookahead significantly reduces variance, providing more stable and reliable results—an important
factor in MARL experiments.

For LA, we used 0.5 for the α hyperparameter, and after experimenting with several values for k, we
observed that smaller k-values for the innermost LA-averaging works better. Refer to Appendix A.2.1

0.0 0.2 0.4 0.6 0.8 1.0
Episodes ×102

0.0

0.2

0.4

0.6

0.8

Ad
ve

rs
ar

y
W

in
 R

at
e

Baseline
LA (40,400,4000)

Figure 2: Comparison on the
MPE:Predator-prey game between
the GD-MADDPG and LA-MADDPG,
optimization methods, denoted as
Baseline, LA, resp. x-axis: evaluation
episodes. y-axis: average win rate of
adversary agents, averaged over 5 runs
with different seeds. The dotted line
depicts the desired win rate (0.5) if both
agents learn good policies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Adversary Win Rate
Baseline 0.45± .16

LA-MADDPG 0.53± .11
EG-MADDPG 0.56± .27

LA-EG-MADDPG 0.51± .14

Table 1: Means and standard deviations (over 5 seeds)
of adversary win rate on last training episode for
MPE: Physical deception, on 100 test environments.
The win rate is the fraction of times the adversary was
closer to the target. Closer to 0.5 is better.

for further discussion. Despite relatively little hyperparameter tuning, the results indicate consistent
improvement.

MPE: Predator-prey. Figure 2 depicts the win rate of the adversary against the good agents. While
typical training monitors average rewards to indicate convergence, we observed that after training,
one adversary learns to chase the good agent while the other’s policy diverges, causing it to move
away or wander aimlessly. This suggests a convergence issue in the joint policy space, where one
agent’s strategy is affected by the other’s. Our results in Figure 2 demonstrate that using Algorithm 2
improves this behavior, with both adversaries learning to chase the good agent, reflected in a higher
win rate. Full method comparisons are provided in Appendix A.3.3.

MPE: Physical deception. Table 1 lists the mean and standard deviation of the adversary’s win
rate, indicating how often it managed to be closer to the target. Agents reach equilibrium when both
teams win with equal probability across multiple instances. Thus, we used 100 test environments
per method per seed. Given the game’s cooperative nature, the baseline performs relatively well,
with EG-MADDPG showing similar performance. Both LA-MADDPG and LA-EG-MADDPG
outperform their respective base optimizers–baseline and EG-MADDPG.

Summary. Overall, our results indicate the following. (i) With hyperparameter tuning, the proposed
VI-based methods achieve significant performance improvements; see Figure 1a. (ii) With informed
guesses for hyperparameters (details in Appendix A.2.1), our VI-based methods consistently outper-
form the baseline methods. (iii) Overall, the proposed VI methods do not yield worse performance
than their respective baseline methods, as they effectively address the rotational dynamics.

Comparison among our VI methods & contrasting with GAN conclusions. The widely used
Extragradient (EG) method for solving VIs—known for its convergence for monotone VIs—overall
performs close to the baseline. EG only introduces a minor local adjustment compared to GD. As
such, the results align with expectations: while EG occasionally outperforms GD (the baseline), its
performance is often similar. In contrast, nested LA applies a significantly stronger contraction, with
the degree of contraction increasing as the number of nested levels increases. This leads to substantial
performance gains, particularly in terms of stability, as it prevents the last iterate from diverging.
However, if the number of nested levels is too high, the steps can become overly conservative or
slow. Based on our experiments, three levels of nested LA yielded the best results (see Fig. 1-a). The
results also confirm that the MARL vector field in these games is highly rotational. For scenarios
with highly competitive reward structures among agents, we recommend using VI methods with
higher contractiveness, such as employing multiple levels of nested LA.

These observations are consistent with results from GANs settings (Chavdarova et al., 2021), while
EG offers slight improvements over the baseline, more contractive methods consistently achieve
better results.

On the rewards as a metric in MARL. While saturating rewards are commonly used as a per-
formance metric in MARL, our experiments suggest otherwise, consistent with observations made
in some previous works such as (Bowling, 2004). In multi-agent games like Rock-paper-scissors,
rewards may converge to a target value even with suboptimal policies, leading to misleading evalua-
tions. For instance, in Figure 3 (top row), agents repeatedly choose similar actions, resulting in ties
that yield the correct reward but fail to reach equilibrium—leaving them vulnerable to exploitation
by a more skilled opponent. Conversely, LA-MADDPG (bottom row) did not fully converge to
the maximum reward, but agents learned near-optimal policies by randomizing over their actions,
which is the desired equilibrium. This underscores the need for stronger evaluation metrics in multi-
agent reinforcement learning, particularly when the true equilibrium remains unknown. Refer to
Appendix A.5 for additional discussion.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000
Episode

20

10

0

10

20

Av
er

ag
e

re
wa

rd

Agent 1
Agent 2

0 10000 20000 30000 40000 50000 60000
Episode

20

10

0

10

20

Av
er

ag
e

re
wa

rd

Agent 1
Agent 2

Figure 3: Saturating rewards (left) versus actions of the learned policies at the end (right) in the rock–
paper–scissors game. Top row: GD-MADDPG; bottom row: LA-MADDPG. In the left column, blue and
orange show the running average of rewards through a window of 100 episodes. In the right column, we depict
actions from the respective learned policies evaluation after training is completed, where each row represents
what actions players have chosen in one step of the episode. Saturating rewards do not imply good performance,
as evidenced by the top row; refer to Section 5.2 for discussion.

6 CONCLUSION

This paper addresses the fundamental optimization challenges in multi-agent reinforcement learning
(MARL). By framing MARL as an instance of a Variational Inequality (VI) problem, we highlight its
inherent optimization difficulties, which resemble those encountered in solving VIs. These challenges
manifest in practice as notoriously difficult training, significant performance variability across random
seeds, and other issues that hinder MARL reproducibility, development, and deployment.

To address these challenges, we leverage VI optimization techniques to enhance the convergence and
stability of MARL methods. We introduced the LA-MADDPG, EG-MADDPG and LA-EG-MADDPG
algorithms that combine the multi-agent deep deterministic policy gradient (MADDPG) method
with nested Lookahead-VI (Chavdarova et al., 2021), Extragradient (Korpelevich, 1976), and a
combination of both, respectively. Our experiments on the rock-paper-scissors, matching pennies and
two MPE environments (Lowe et al., 2017) consistently demonstrated the effectiveness of the VI
variants of MADDPG in improving performance and stabilizing training compared to the standard
baseline method. These findings point toward promising opportunities for further development of
VI-based methods in MARL, particularly in leveraging the structure of the MARL optimization
landscape.

REFERENCES

Johann J.H. Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing overesti-
mation bias in multi-agent domains using double centralized critics. ArXiv:1910.01465, 2019.

Waı̈ss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. A tight and unified
analysis of gradient-based methods for a whole spectrum of differentiable games. In AISTATS, pp.
2863–2873, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. In ICML, 2018.

D. Bertsekas. Rollout, Policy Iteration, and Distributed Reinforcement Learning. Athena scientific
optimization and computation series. Athena Scientific, 2021. ISBN 9781886529076.

Matteo Bettini, Amanda Prorok, and Vincent Moens. Benchmarl: Benchmarking multi-agent
reinforcement learning. arXiv:2312.01472, 2024.

Radu Ioan Bot, Ernö Robert Csetnek, and Phan Tu Vuong. The forward-backward-forward method
from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert
spaces. arXiv:1808.08084, 2020.

Radu Ioan Bot, Ernö Robert Csetnek, and Dang-Khoa Nguyen. Fast OGDA in continuous and
discrete time. arXiv:2203.10947, 2022.

Michael Bowling. Convergence and no-regret in multiagent learning. In NIPS, volume 17. MIT Press,
2004.

Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Tight last-iterate convergence of the extragradi-
ent method for constrained monotone variational inequalities. arXiv:2204.09228, 2022.

Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise in
GAN training with variance reduced extragradient. In NeurIPS, 2019.

Tatjana Chavdarova, Matteo Pagliardini, Sebastian U Stich, François Fleuret, and Martin Jaggi.
Taming GANs with Lookahead-Minmax. In ICLR, 2021.

Tatjana Chavdarova, Michael I. Jordan, and Manolis Zampetakis. Last-iterate convergence of saddle
point optimizers via high-resolution differential equations. In Minimax Theory and its Applications,
2023.

Tatjana Chavdarova, Tong Yang, Matteo Pagliardini, and Michael I. Jordan. A primal-dual approach
for solving variational inequalities with general-form constraints. In ICLR, 2024.

Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. arXiv:2006.07169, 2021.

Richard W. Cottle and George B. Dantzig. Complementary pivot theory of mathematical programming.
Linear Algebra and its Applications, 1(1):103–125, 1968. ISSN 0024-3795.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and
constrained min-max optimization. In ITCS, 2019.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with
optimism. In ICLR, 2018.

Jelena Diakonikolas. Halpern iteration for near-optimal and parameter-free monotone inclusion and
strong solutions to variational inequalities. In COLT, volume 125, 2020.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. arXiv:2306.01324, 2023.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional Variational Inequalities and Complemen-
tarity Problems. Springer, 2003.

Wentao Fan. A comprehensive analysis of game theory on multi-agent reinforcement. Highlights in
Science, Engineering and Technology, 85:77–88, 03 2024. doi: 10.54097/gv6fpz53.

Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial nets. In ICLR, 2019a.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang,
Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.
In AISTATS, 2019b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis. Tight last-iterate convergence rates
for no-regret learning in multi-player games. In NeurIPS, 2020a.

Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman Ozdaglar. Last iterate is
slower than averaged iterate in smooth convex-concave saddle point problems. In COLT, pp.
1758–1784, 2020b.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: O(1/K) last-iterate
convergence for monotone variational inequalities and connections with cocoercivity. In AISTATS,
2022.

Rihab Gorsane, Omayma Mahjoub, Ruan de Kock, Roland Dubb, Siddarth Singh, and Arnu Pretorius.
Towards a standardised performance evaluation protocol for cooperative marl. arXiv:2209.10485,
2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv:1709.06560, 2019.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In ICML,
2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Müller (eds.),
Advances in Neural Information Processing Systems, volume 12. MIT Press, 1999.

Galina Michailovna Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 1976.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, 2009.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv:2109.11251,
2022.

Marc Lanctot, John Schultz, Neil Burch, Max Olan Smith, Daniel Hennes, Thomas Anthony, and
Julien Perolat. Population-based evaluation in repeated rock-paper-scissors as a benchmark for
multiagent reinforcement learning. arXiv:2303.03196, 2023.

Pengyi Li, Jianye Hao, Hongyao Tang, Yan Zheng, and Xian Fu. Race: improve multi-agent
reinforcement learning with representation asymmetry and collaborative evolution. In Proceedings
of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence
of generative adversarial networks. AISTATS, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2015.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. NIPS, 2017.

Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, and John Hallam. A survey on reproducibility by
evaluating deep reinforcement learning algorithms on real-world robots. arXiv:1909.03772, 2019.

Yu. Malitsky. Projected reflected gradient methods for monotone variational inequalities. SIAM
Journal on Optimization, 25:502–520, 2015.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which Training Methods for GANs do
actually Converge? In ICML, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 1996.

Shayegan Omidshafiei, Jason Pazis, Chris Amato, Jonathan P. How, and John Vian. Deep de-
centralized multi-task multi-agent reinforcement learning under partial observability. In ICML,
2017.

Thomas Pethick, Wanyun Xie, and Volkan Cevher. Stable nonconvex-nonconcave training via linear
interpolation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Leonid Denisovich Popov. A modification of the arrow–hurwicz method for search of saddle points.
Mathematical Notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv:1803.11485, 2018.

Ralph Tyrrell Rockafellar. Monotone operators associated with saddle-functions and minimax
problems. Nonlinear functional analysis, 18(part 1):397–407, 1970.

Mihaela Rosca, Yan Wu, Benoit Dherin, and David G. T. Barrett. Discretization drift in two-player
games. In ICML, 2021.

Ernest K. Ryu, Kun Yuan, and Wotao Yin. Ode analysis of stochastic gradient methods with optimism
and anchoring for minimax problems. arXiv:1905.10899, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv:1902.04043, 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
arXiv:1905.05408, 2019.

Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano, Davide Scaramuzza, and
Mac Schwager. A real-time game theoretic planner for autonomous two-player drone racing.
arXiv:1801.02302, 2018.

Guido Stampacchia. Formes bilineaires coercitives sur les ensembles convexes. Académie des
Sciences de Paris, 258:4413–4416, 1964.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan, Luis S
Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo: Gym
for multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34:
15032–15043, 2021.

Kiran Koshy Thekumparampil, Niao He, and Sewoong Oh. Lifted primal-dual method for bilinearly
coupled smooth minimax optimization. In AISTATS, 2022.

Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60:237–252, 1995. ISSN 0377-0427.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Tim-
othy Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ek-
ermo, Jacob Repp, and Rodney Tsing. Starcraft ii: A new challenge for reinforcement learning.
arXiv:1708.04782, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Han Wang, Archit Sakhadeo, Adam White, James Bell, Vincent Liu, Xutong Zhao, Puer Liu, Tadashi
Kozuno, Alona Fyshe, and Martha White. No more pesky hyperparameters: Offline hyperparameter
tuning for rl. arXiv:2205.08716, 2022.

Zhijian Wang, Bin Xu, and Hai-Jun Zhou. Social cycling and conditional responses in the rock-paper-
scissors game. Scientific Reports, 4(1), 2014. ISSN 2045-2322. doi: 10.1038/srep05830.

Tong Yang, Michael I. Jordan, and Tatjana Chavdarova. Solving constrained variational inequalities
via an interior point method. In ICLR, 2023.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv:2011.00583, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. ArXiv:2103.01955, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative, multi-agent games. arXiv:2103.01955, 2022.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS, 2019.

Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J. Ratliff. Stackelberg
actor-critic: Game-theoretic reinforcement learning algorithms. arXiv:2109.12286, 2021.

Hai-Jun Zhou. The rock–paper–scissors game. Contemporary Physics, 57(2):151–163, March 2015.
ISSN 1366-5812. doi: 10.1080/00107514.2015.1026556.

M. Zhou, Y. Guan, M. Hayajneh, K. Niu, and C. Abdallah. Game theory and machine learning in
uavs-assisted wireless communication networks: A survey. arXiv:2108.03495, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL BACKGROUND

A.1.1 VI CLASSES AND ADDITIONAL METHODS

The following VI class is often referred to as the generalized class for VIs to that of convexity in
minimization.

Definition 1 (monotonicity) An operator F : Rd → Rd is monotone if ⟨z − z′, F (z)− F (z′)⟩ ≥
0, ∀z, z′ ∈ Rd . F is µ-strongly monotone if: ⟨z − z′, F (z) − F (z′)⟩ ≥ µ∥z − z′∥2 for all
z, z′ ∈ Rd.

In addition to those presented in the main part, we describe the following popular VI method.

Optimistic Gradient Descent (OGD). The update rule of Optimistic Gradient Descent OGD ((OGD)
Popov, 1980) is:

zt+1 = zt − 2ηF (zt) + ηF (zt−1) , (OGD)

where η ∈ (0, 1) is the learning rate.

A.1.2 PSEUDOCODE FOR NESTED LOOKAHEAD FOR A TWO-PLAYER GAME

For completeness, in Algorithm 3 we give the details of the nested Lookahead-Minmax algorithm
proposed in (Algorithm 6, Chavdarova et al., 2021) with two-levels.

Algorithm 3 Pseudocode of Two-Level Nested Lookahead–Minmax. (Chavdarova et al., 2021)
1: Input: Stopping time T , learning rates ηθ, ηφ, initial weights θ, φ, lookahead hyperparameters

ks, kss and α, losses Lθ , Lφ, update ratio r, real–data distribution pd, noise–data distribution pz .

2: (θs,θss,φs,φss)← (θ,θ,φ,φ) (store copies for slow and super-slow)
3: for t ∈ 1, . . . , T do
4: for i ∈ 1, . . . , r do
5: x ∼ pd, z ∼ pz
6: φ← φ− ηφ∇φLφ(θ,φ,x, z) (update φ r times)
7: end for
8: z ∼ pz
9: θ ← θ − ηθ∇θLθ(θ,φ, z) (update θ once)

10: if t%ks == 0 then
11: φ← φs + αφ(φ−φs) (backtracking on interpolated line φs, φ)
12: θ ← θs + αθ(θ − θs) (backtracking on interpolated line θs, θ)
13: (θs,φs)← (θ,φ) (update slow checkpoints)
14: end if
15: if t%kss == 0 then
16: φ← φss + αφ(φ−φss) (backtracking on interpolated line φss, φ)
17: θ ← θss + αθ(θ − θss) (backtracking on interpolated line θss, θ)
18: (θss,φss)← (θ,φ) (update super-slow checkpoints)
19: (θs,φs)← (θ,φ) (update slow checkpoints)
20: end if
21: end for
22: Output: θss, φss

A.1.3 DETAILS ON THE MADDPG ALGORITHM

The MADDPG algorithm is outlined in Algorithm 4. An empty replay buffer D is initialized to
store experiences (line 3). In each episode, the environment is reset and experiences in the form of
(state, action, reward, next state) are saved to D. After a predetermined number of random iterations,
learning begins by sampling batches from D.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The critic of agent i receives the sampled joint actions a of all agents and the state information of
agent i to output the predicted Qi-value of agent i. Deep Q-learning (Mnih et al., 2015) is then
used to update the critic network; lines 21-22. Then, the agents’ policy network is optimized using
policy gradient; refer to 24. Finally, following each learning iteration, the target networks are updated
towards current actor and critic networks using a fraction τ .

All networks are optimized using the Adam optimizer (Kingma & Ba, 2015). Once training is
complete, each agent’s actor operates independently during execution. This approach is applicable
across cooperative, competitive, and mixed environments.

Algorithm 4 Pseudocode for MADDPG (Lowe et al., 2017).
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1,

number of random steps Trand before learning, learning interval Tlearn, actor networks {µi}Ni=1,
with initial weights θ ≡ {θi}Ni=1, critic networks {Qi}Ni=1 with initial weights w ≡ {wi}Ni=1,
learning rates ηθ, ηw, optimizer B (e.g., Adam), discount factor γ, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: for all episode e ∈ 1, . . . , T do
5: x← Sample(E) (sample from environment E)
6: step← 1
7: repeat
8: if e ≤ Trand then
9: for each agent i, ai ∼ Ai (sample actions randomly)

10: else
11: for each agent i, select action ai = µi(oi) +Nt using current policy and exploration
12: end if
13: (apply actions and record results)
14: Execute actions a = (a1, . . . , aN), observe rewards r and new state x̂
15: replay buffer D ← (x,a, r, x̂)
16: x← x̂
17: (apply learning step if applicable)
18: if step%Tlearn = 0 then
19: for all agent i ∈ 1, . . . , N do
20: sample batch {(xj ,aj , rj , x̂j)}Bj=1 of size B from D
21: yj ← rji + γQµ′

(x̂j , a′1, . . . , a
′
N), where a′k = {µ′

k(o
j
k)}

22: Update critic by minimizing the loss (using optimizer B):

L(θi) = 1
S

∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
N)

)2

23: Update actor policy using policy gradient formula and optimizer B
24: ∇θi

J ≈ 1
S

∑
j ∇θi

µi(o
j
i)∇ai

Qµ
i (x

j , aj1, . . . , ai, . . . , a
j
N), where ai = µi(o

j
i)

25: end for
26: for all agent i ∈ 1, . . . , N do
27: θ′

i ← τθi + (1− τ)θ′
i (update target networks)

28: w′
i ← τwi + (1− τ)w′

i
29: end for
30: end if
31: step← step+ 1
32: until environment terminates
33: end for
34: Output: θ, w

A.1.4 EXTENDED VERSION OF LA-MADDPG PSEUDOCODE

We include an extended version for the LA-MADDPG algorithm without VI notations in algorithm 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 5 Pseudocode for LA–MADDPG: MADDPG with (Nested) Lookahead.
1: Input: Environment E , number of agents N , number of episodes T , action spaces {Ai}Ni=1, num-

ber of random steps Trand before learning, learning interval Tlearn, actor networks {µi}Ni=1, with
initial weights θ ≡ {θi}Ni=1, critic networks {Qi}Ni=1 with initial weights w ≡ {wi}Ni=1, learn-
ing rates ηθ, ηw, base optimizer B (e.g., Adam), discount factor γ, lookahead hyperparameters
ks, kss (where kss can be ∅) and αθ, αw, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: for all agent i ∈ 1, . . . , N do
5: (θi,s,θi,ss,wi,s,wi,ss)← (θi,θi,θi,wi,wi,wi)
6: (store snapshots for nLA)
7: end for
8: for all episode e ∈ 1, . . . , T do
9: x← Sample(E) (sample from environment E)

10: step← 1
11: repeat
12: if e ≤ Trand then
13: for each agent i, ai ∼ Ai (sample actions randomly)
14: else
15: for each agent i, select action ai using current policy and exploration
16: end if
17: (apply actions and record results)
18: Execute actions a = (a1, . . . , aN), observe rewards r and new state x̂
19: replay buffer D ← (x,a, r, x̂)
20: x← x̂
21: (apply learning step if applicable)
22: if step%Tlearn = 0 then
23: for all agents i ∈ 1, . . . , N do
24: sample batch {(xj ,aj , rj , x̂j)}Bj=1 of size B from D
25: yj ← rji + γQµ′

(x̂j , a′1, . . . , a
′
N), where a′k = {µ′

k(o
j
k)}

26: Update critic by minimizing the loss L(wi) =
1
S

∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
N)

)2

using B
27: Update actor policy using policy gradient formula and B
28: ∇θiJ ≈ 1

S

∑
j ∇θiµi(o

j
i)∇aiQ

µ
i (x

j , aj1, . . . , ai, . . . , a
j
N), where ai = µi(o

j
i)

29: end for
30: for all agents i ∈ 1, . . . , N do
31: θ′

i ← τθi + (1− τ)θ′
i (update target networks)

32: w′
i ← τwi + (1− τ)w′

i
33: end for
34: end if
35: step← step+ 1
36: until environment terminates
37: NESTEDLOOKAHEAD(N, e,Θ,W, ks, kss, αθ, αw)
38: where:
39: Θ = {(θi,θi,s,θi,ss}Ni=1 (all actor weights and snapshots)
40: W = {(wi,wi,s,wi,ss)}Ni=1 (all critic weights and snapshots)
41: end for
42: Output: θ, w

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1.5 PSEUDOCODE FOR EXTRAGRADIENT

In Algorithm 6 outlines the Extragradient optimizer (Korpelevich, 1976), which we employ in
EG-MADDPG. This method uses a gradient-based optimizer to compute the extrapolation iterate,
then applies the gradient at the extrapolated point to perform an actual update step. The extragradient
optimizer is used to update all agents’ actor and critic networks. In our experiments, we use Adam
for both the extrapolation and update steps, maintaining the same learning intervals and parameters
as in the baseline algorithm.

Algorithm 6 Extragradient optimizer; Can be used as B in algorithm 2.

1: Input: learning rate ηφ, initial weights φ, loss Lφ, extrapolation steps t
2: φcopy ← φ (Save current parameters)
3: for i ∈ 1, . . . , t do
4: φ = φ− ηφ∇φLφ(φ) (Compute the extrapolated φ)
5: end for
6: φ = φcopy − ηφ∇φLφ(φ) (update φ)
7: Output: φ

A.2 DETAILS ON THE IMPLEMENTATION

As mentioned earlier, we followed the configurations and hyperparameters from the original MAD-
DPG paper for our implementation. For completeness, these are listed in Table 2. We ran T = 60000
for all environments except Matching Pennies where we ran for 50000 training episodes, with a
maximum of 25 environment steps (s) per episode.

In all Rock-Paper-Scissors and Matching pennies experiments, we used a 2-layer MLP with 64 units
per layer, while for MPE: Predator-prey , we used a 2-layer MLP with 128 units per layer. ReLU
activation was applied between layers for both the policy and value networks of all agents.

A.2.1 HYPERPARAMETER SELECTION FOR NESTED-LOOKAHEAD

In this section, we discuss and share guidelines for hyperparameter selection based on our experiments.

Summary.

• We observed two- or three-level of nested-Lookahead outperform single-level Lookahead.

• Each level has different k, denoted here with ks, kss, ksss as in the main part. These should
be selected as multiple of the selected k for the level before, that is, kss ≡ cssks, and
ksss ≡ cssskss, where css, csss are positive integers.

• We observed that for the innermost lookahead, small values for ks, such as smaller than 50,
perform better than using large values. For the outer kss, ksss large values work well, such
as in the range between 5− 10 for the css, csss.

• We typically used α = 0.5, and we observed lower values, such as α = 0.3, give better
performances then α > 0.5.

Discussion.

• To give an intuition regarding the above-listed conclusions, small values for ks help because
the MARL setting is very noisy and the vector field is rotational. If large values are used
for ks, then the algorithm will diverge away. It is known that the combination of noise and
rotational vector field can cause methods to diverge away (Chavdarova et al., 2019).

• Relative to the analogous conclusions for GANs (Chavdarova et al., 2021), the differences
is that:

– The better-performing values for ks are of a similar range as for Lookahead with GD
for GANs; however they are smaller than those used for Lookahead with EG for GANs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters used for LA-MADDPG experiments.

Name Description

Adam lr 0.01
Adam β1 0.9
Adam β2 0.999
Batch-size 1024
Update ratio τ 0.01
Discount factor γ 0.95
Replay Buffer 106

learning step Tlearn 100
Trand 1024
Lookahead α 0.5

A.3 ADDITIONAL RESULTS

A.3.1 ROCK-PAPER-SCISSORS: BUFFER STRUCTURE

For the Rock-Paper-Scissors (RPS) game, using a buffer size of 1M wasn’t sufficient to store all
experiences from the 60K training episodes. We observed a change in algorithm behavior around
40K episodes. To explore the impact of buffer configurations, we experimented with different sizes
and structures, as experience storage plays a critical role in multi-agent reinforcement learning.

Full buffer. The buffer is configured to store all experiences from the beginning to the end of training
without any loss.

Buffer clearing. In this setup, a smaller buffer is used, and once full, the buffer is cleared completely,
and new experiences are stored from the start.

Buffer shifting. Similar to the small buffer setup, but once full, old experiences are replaced by new
ones in a first-in-first-out (FIFO) manner.

Results. Figure 4 depicts the results when using different buffer options for the RPS game.

A.3.2 ROCK-PAPER-SCISSORS: SCHEDULED LEARNING RATE

We experimented with gradually decreasing the learning rate (LR) during training to see if it would
aid convergence to the optimal policy in RPS. While this approach reduced noise in the results, it
also led to increased variance across all methods except for LA-MADDPG.

Figure 5 depicts the average distance to the equilibrium policy over 5 different seeds for each methods,
using periodically decreased step sizes.

A.3.3 MPE: PREDATOR-PREY FULL RESULTS

While in the main part in Figure 2 we showed only two methods for clarity, Figure 6 depicts all
methods.

We also evaluated the trained models of all methods on an instance of the environment that runs for
50 steps to compare learned policies. We present snapshots from it in Figure 7. Here, you can clearly
anticipate the difference between the policies from baseline and our optimization methods. As in the
baseline, only one agent will chase at the beginning of episode. Moreover, for the baseline (topmost
row), the agents move further away from the landmarks and the good agent, which is suboptimal.
This can be noticed from the decreasing agents’ size in the figures. While in ours, both adversary
agents engage in chasing the good agent until the end.

A.3.4 MPE: PREDATOR-PREY AND PHYSICAL DECEPTION TRAINING FIGURES

In figures 8a and 8b we include the rewards achieved during the training of GD-MADDPG and
LA-MADDPG resp. for MPE: Predator-prey. The figures show individual rewards for the agent

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
Episodes ×104

0.2

0.4

0.6

0.8

1.0
Di

st
an

ce
 to

 e
qu

ilib
riu

m
Baseline
LA (40,200)
EG
LA-EG (40,200)

(a) Full buffer

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,200)
EG
LA-EG (40,200)

(b) Clearing buffer (20K)

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,200)
EG
LA-EG (40,200)

(c) Shifting buffer (20K)

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,200)
EG
LA-EG (40,200)

(d) Shifting buffer (40K)

Figure 4: Comparison of different buffer configurations (see Appendix A.3.1) and methods on Rock-paper-
scissors game. x-axis: training episodes. y-axis: 5-seed average norm between the two players’ policies and
equilibrium policy (1

3
, 1
3
, 1
3
)2. The dotted line indicates the point at which the buffer begins to change, either

through shifting or clearing.

1 2 3 4 5 6
Episodes ×104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
st

an
ce

 to
 e

qu
ilib

riu
m

Baseline
LA (40,200)
EG
LA-EG (40,200)

Figure 5: Compares MADDPG with different LA-MADDPG configurations to the baseline MADDPG
with (Adam) in rock–paper–scissors. x-axis: training episodes. y-axis: 5-seed average norm between the two
players’ policies and equilibrium policy (1

3
, 1
3
, 1
3
)2. The dotted lines depict the times when the learning rate was

decreased by a factor of 10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Episodes ×102

0.0

0.2

0.4

0.6

0.8

Ad
ve

rs
ar

y
W

in
 R

at
e

Baseline
LA (40,400,4000)
EG
LA-EG (40,400,4000)

Figure 6: Comparison on the MPE–Predator-prey game between the GD-MADDPG, LA-MADDPG, EG-
MADDPG and LA-EG-MADDPG optimization methods, denoted as Baseline, LA, EG, LA-EG, resp. x-axis:
evaluation episodes. y-axis: mean adversaries win rate, averaged over 5 runs with different seeds.

t = 1 t = 10 t = 20 t = 30 t = 40 t = 50

Figure 7: Agents’ trajectories of fully trained models with all considered optimization methods on the
same environment seed of MPE: Predator-prey. Snapshots show the progress of agents as time progresses in
a 50 steps long environment. Each row contains snapshots of one method, from top to bottom: GD-MADDPG,
LA-MADDPG, EG-MADDPG and LA-EG-MADDPG. Big dark circles represent landmarks, small red circles are
adversary agents and green one is the good agent.

.

(prey) and one adversary (predator). Blue and green show the individual rewards received at each
episode while the orange and red lines are the respective running averages with window size of 100
of those rewards.

Figures 9a and 9b demonstrate same results but for MPE: Physical deception. In this game, We have
two good agents, ’Agent 0 and 1’ but since they are both receive same rewards, we only show agent
0.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) GD-MADDPG (b) LA-MADDPG

Figure 8: The figure shows the learning curves during training of GD-MADDPG and LA-MADDPG for
MPE: Predator-Prey. x-axis: training episodes. y-axis: agents rewards and their moving average with a
window size of 100, calculated over 5-seeds over 5 seeds.

(a) GD-MADDPG (b) LA-MADDPG

Figure 9: The figure shows the learning curves during training of GD-MADDPG and LA-MADDPG for
MPE: Physical deception. x-axis: training episodes. y-axis: agents rewards and their moving average with a
window size of 100, calculated over 5-seeds over 5 seeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.4 MATD3 EXPERIMENTS

We compared Multi-agent TD3 (MATD3), (Ackermann et al., 2019) with MADDPG on the MPE
benchmark, Physical deception. From Figure 10, we observe that the performances are similar:
both algorithms fluctuate between high and low rewards. Hence, optimization methods dealing with
rotational dynamics would benefit both.

0 10000 20000 30000 40000 50000 60000
Episodes

20

10

0

10

20

To
ta

l r
ew

ar
ds

MADDPG
MATD3

Figure 10: Comparison on the MPE–Physical deception game between the MADDPG, and MATD3
algorithms. x-axis: training episodes. y-axis: total rewards.

A.5 ON THE REWARDS AS CONVERGENCE METRIC

Based on our experiments and findings from the multi-agent literature (Bowling, 2004), we observe
that average rewards offer a weaker measure of convergence compared to policy convergence in
multi-agent games. This implies that rewards can reach a target value even when the underlying
policy is suboptimal. For example, in the Rock–paper–scissors game, the Nash equilibrium policy
leads to nearly equal wins for both players, resulting in a total reward of zero. However, this same
reward can also be achieved if one player always wins while the other consistently loses, or if both
players repeatedly select the same action, leading to a tie. As such, relying solely on rewards during
training can be misleading.

Figure 3 (top row) depicts a case with the baseline where, despite rewards converging during training,
the agents ultimately learned to play the same action repeatedly, resulting in ties. Although this
matched the expected reward, it falls far short of equilibrium and leaves the agents vulnerable to
exploitation by more skilled opponents. In contrast, the same figure shows results from LA-MADDPG
under the same experimental conditions. Notably, while the rewards did not fully converge, the agents
learned a near-optimal policy during evaluation, alternating between all three actions as expected.
These results also align with the findings shown in Figure 1a.

We explored the use of gradient norms as a potential metric in these scenarios but found them to
be of limited utility, as they provided no clear indication of convergence for either method. We
include those results in Figure 11, where we compare the gradient norms of Adam and LA across the
networks of different players.

This work highlights the need for more robust evaluation metrics in multi-agent reinforcement
learning, a point also emphasized in (Lanctot et al., 2023), as reward-based metrics alone may be
inadequate, particularly in situations where the true equilibrium is unknown.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

10 3

10 2

10 1

100

Pl
ay

er
 0

 n
or

m
s

Actor Critic

0 2 4 6
Episodes ×104

10 3

10 2

10 1

100

Pl
ay

er
 1

 n
or

m
s

0 2 4 6
Episodes ×104

Adam
LA-MADDPG (40,200)

Figure 11: Gradient norms across training in the rock–paper–scissors game.

24

	Introduction
	Related Works
	Preliminaries
	A VI Perspective & Optimization Methods for MARL
	A VI Perspective of MADDPG
	Proposed Methods

	Experiments
	Setup
	Results

	Conclusion
	Appendix
	Additional Background
	VI classes and additional methods
	Pseudocode for Nested Lookahead for a Two-Player Game
	Details on the MADDPG Algorithm
	Extended version of LA-MADDPG pseudocode
	Pseudocode for Extragradient

	Details On The Implementation
	Hyperparameter Selection for Nested-Lookahead

	Additional Results
	Rock-Paper-Scissors: Buffer Structure
	Rock-Paper-Scissors: Scheduled learning rate
	MPE: Predator-prey Full results
	MPE: Predator-Prey and Physical deception training figures

	MATD3 experiments
	On the Rewards as Convergence Metric

