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Abstract—Recent advances in state-of-the-art neural network
architecture design have been moving toward Transformer mod-
els. These models achieve superior accuracy across a wide range
of applications in computer vision, natural language processing,
and speech recognition. This trend has been consistent over
the past several years since Transformer models were originally
introduced. However, the amount of compute and bandwidth
required for inference of recent Transformer models is growing
at a significant rate, and this has made their deployment in
latency-sensitive applications challenging. As such, there has been
an increased focus on making Transformer models more efficient,
with methods that range from changing the architecture design,
all the way to developing dedicated domain-specific accelerators.

In this work, we pursue a full-stack approach to optimiz-
ing Transformer inference. We analyze the implications of the
Transformer architecture on hardware, including the impact of
nonlinear operations such as Layer Normalization, Softmax, and
GELU, as well as linear operations, and we use this analysis
to optimize a fixed Transformer architecture. We assess the
challenges with finding the right mapping and scheduling of oper-
ations for Transformer models, and pursue neural architecture
search to further optimize the Transformer network. We find
that a full-stack co-design approach with the aforementioned
methods can result in up to 88.7× end-to-end speedup with
minimal performance degradation for Transformer inference.
More details can be found in our full paper [27], which includes
(1) a comprehensive analysis of Transformer workloads, (2) an
extensive survey of the current hardware and software solutions
on efficient Transformer inference, and (3) case studies to quan-
tify the advantages of co-design and co-optimization techniques
across the stack on full-stack Transformer inference.

I. INTRODUCTION

Deep learning models have scaled up to billions of param-
eters and billions of multiply-accumulate operations during
both training and inference. As a result, there has been a
growing interest in computing these models efficiently and in
deploying these compute and memory-intensive workloads on
resource-constrained edge devices. These edge devices have
tight energy and memory constraints, and the corresponding
applications that leverage deep learning models also often have
real-time latency constraints.

The demand for fast and efficient computation, coupled with
the characteristics of deep learning workloads that involve a
small set of distinct operations with substantial data reuse,
have led to the use of hardware accelerators. A multitude of
enterprise deep learning accelerators, such as [1], [3], [17],
[23], [25], [28]–[30], [37], [44], [46], have been developed and
integrated into commodity hardware by industry in the past
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decade. This parallels many research accelerators developed in
academia [7]–[10], [16], [18]–[20], [36]. Together with hard-
ware accelerator development, the software frameworks [2],
[5], [24], [34] and compilers [6], [32], [42] for deploying var-
ious deep learning algorithms have also enhanced and matured.
These tools enable the execution of deep learning algorithms
on accelerators, and they perform mapping optimizations to
improve the performance and efficiency of the full deep
learning pipeline. Nonetheless, the fast-evolving deep learning
algorithms still keep introducing new demands for hardware
and software support, as well as their co-optimization, to
satisfy various deployment constraints.

The recent rise in popularity of Transformers and large
language models [4], [12], [14], [15], [21], [38]–[41], [43],
[45] for solving various natural language processing (NLP)
tasks presents a brand new set of challenges in the design
of accelerators as well as frameworks. There has been an in-
creased focus on making Transformer inference more efficient,
especially due to their growing size and run-time complexity.
However, there is still a lack of understanding regarding the
workload characteristics of Transformer architectures, and thus
of the design principles necessary for effectively running these
models, when compared to the more well-known convolutional
neural network (CNN) architectures. For instance, compared
to the conventional CNN-focused design, Transformers are
mostly composed of matrix multiplications (matmuls) together
with memory-intensive nonlinear operations. In addition, the
computational graph and dataflow of Transformer models are
more complex than that of CNNs, with more types of operation
nodes, as well as more dataflow splits and concatenations.
All these challenges require us to undertake a comprehensive
analysis of the current hardware and software solutions as well
as the various design trade-offs for Transformer inference.

Our analysis yielded several key findings:
• We adapt Gemmini [19], which was originally designed for

CNN workloads, for Transformer inference. Without modi-
fications, the primary bottleneck for running Transformers
on CNN accelerators is the time spent on floating-point
non-linear operations. However, by adapting Gemmini to
support an integer-only BERT variant [26], and tuning the
memory configuration, we improve performance by 39.6×.

• Fusing BatchNorm with the neighboring convolution in
CNNs is straightforward. However, the benefits of fusing
operations in the Transformer architecture with the pre-
ceding matmuls depends on the particular operation as it
can impose constraints on the mapping, leading to runtime
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Fig. 1: Map of the computations performed in (Top) the multi-
head attention (MHA) module and (Bottom) the feed-forward
network (FFN) module in the Transformer encoder block

costs that outweigh the gains from operator fusion.
• We apply automated neural architecture search (NAS)

to search for efficient and high-performance Transformer
architectures on Gemmini-driven hardware. NAS finds an
architecture that improves EDP by 10.6× with minimal
degradation on target benchmark. Combined with the hard-
ware improvement, we achieve 88.7× end-to-end speedup.

II. HARDWARE ARCHITECTURE OPTIMIZATION

We first illustrate how architects familiar with mainstream
accelerators for convolutional, vision-based workloads can de-
sign state-of-the-art Transformer accelerators. We start with a
fairly typical CNN accelerator generated by the Gemmini [19]
accelerator-generator, optimized primarily for ResNet50-like
workloads, and we discuss changes we made to this acceler-
ator and its software stack to efficiently support Transformer
workloads such as BERT. Throughout this section, we use
BERT-Base as a workload. For more details, please refer to
Section 3 of our full paper [27].

1) Baseline Accelerator: We first generate a fairly typical
CNN accelerator with a 16×16 systolic array and the weight-
stationary dataflow using the Gemmini accelerator-generator.
The 8-bit integer weights and inputs are stored in a 256 kB
local scratchpad memory, and the 32-bit partial sums are stored
in a dual-ported 64 kB accumulator SRAM which performs
matrix additions. When DNN layers are too large to fit into the
local scratchpad, they fall back onto an external L2 cache and
DRAM which are shared with CPUs and other accelerators
on the system-on-chip (SoC). A host CPU tiles such layers to
compute the full outputs. The baseline accelerator produced
by Gemmini incorporates peripheral circuitry that enables
the execution of ReLU and max-pool operations, alongside
integer-float multipliers that facilitate the scaling of 32-bit
partial sums into 8-bit inputs for the subsequent layer. Native
support for these operations is important, as it eliminates the
necessity of offloading such operations to the host CPUs,
thereby circumventing the costly transfers of activations be-
tween DRAM or outer caches and the local scratchpad.

Finally, note that this baseline CNN accelerator does not
include any Transformer-specific features. In particular, there
is no support for nonlinear normalization operations such
as GELU, Softmax, or LayerNorm. Therefore, although it

achieves real-time or near-real-time performance on end-to-
end CNN workloads, the performance on Transformer work-
loads such as BERT is severely limited [19] as will be
discussed in more detail.

2) Performance Bottlenecks: Our observation has revealed
that the baseline CNN accelerator, when deployed for Trans-
former inference, exhibits < 1% utilization of its functional
units. Although individual matmuls exhibit 74% utilization, the
performance is severely impeded by the nonlinear operations
that need to be executed on the host CPU as they are not
natively supported by the accelerator. This is further exacer-
bated by the fact that the nonlinear operations necessitate the
use of floating-point arithmetic. Not only it is less energy and
latency efficient than their integer counterparts [22], it also
entails dequantization and re-quantization of the activations.
These overheads account for 96% of the overall execution
time (Fig. 2). Given that the majority of FLOPs in Trans-
former inference are matmuls, the time spent on the nonlinear
operations in the baseline accelerator is far from the theoretical
optimal, unless further optimizations are implemented.

In contrast to the convolutions in CNNs, which exhibit high
arithmetic intensity, Transformers mostly comprise matmuls,
often with small and/or rectangular matrices, which translate
to lower arithmetic intensities and different optimal tiling
strategies. This indicates that the memory hierarchy and mem-
ory bandwidth of our baseline CNN accelerator need to be
recalibrated for more efficient Transformer inference.

3) Memory Configuration Re-adjustment: We have ob-
served that the performance of BERT matmul operations
can be significantly improved by adjusting the sizes of the
input/weight scratchpad and the partial sum accumulator.
Specifically, we have found that larger accumulators with
higher output-reuse are more suitable for several matmuls in
Transformers, such as the query × key matmuls, which have
l× l output activation matrices which can be much larger than
the l × d/h input matrices for l, d, and h sequence length,
hidden dimension, and number of heads, respectively. Based
on this observation, we have modified the CNN-optimized
memory configuration of our baseline accelerator by reducing
the size of the scratchpad from 256 kB to 64 kB, and
increasing the size of the accumulator from 64 kB to 256 kB.
Importantly, these changes do not result in an increase in the
total SRAM capacity or the total area; however, they result in
a substantial 36% reduction in total matmul latency.

4) Hardware-Software Co-Design: To alleviate the over-
head incurred by runtime quantization and dequantization, as
well as the offloading of nonlinear operations to the CPU, we
have transitioned our baseline Transformer workload from a
naive BERT implementation, where only matmuls are quan-
tized, to an integer-only BERT variant known as I-BERT [26].
I-BERT substitutes floating-point nonlinear operations with
integer polynomial approximations, which can be implemented
faster and more efficiently in specialized accelerators. To
incorporate I-BERT, we add new integer implementations of
I-BERT’s GELU, LayerNorm, and Softmax variants to our
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Fig. 2: The time breakdown of a BERT inference with a sequence-length of 512, when running on (Left) the baseline CNN
accelerator, and (Middle) the accelerator with I-BERT’s hardware/software features incorporated. (Right) The time breakdown
with different sequence lengths after the change. For all sequence lengths, the total execution time is dominated by matmuls.

baseline CNN accelerator. The 32-bit matmul results residing
in the accumulator are fed into a newly added “normalization
unit” which computes reduction operations (e.g. sum, sum-of-
square, max, etc.) which are used by LayerNorm and Softmax.
Multiple passes of accumulator reads are required to compute
all the reductions in these operations. Subsequentially, the mat-
mul results in the accumulator undergo a final read operation
to be fed into a set of 16 activation units, which compute
I-BERT’s non-linear variants in parallel.

With these new features, overall end-to-end BERT inference
performance improved by 39.6× over the baseline acceler-
ator’s initial performance. As Fig. 2 illustrates, the compu-
tational bottleneck once again became the matmuls rather
than normalization or activation functions. Quantization and
dequantization no longer become necessary and GELU can
be trivially fused with the preceding matmuls, so that they
become one pipelined operation. When synthesized with the
ASAP7 PDK [13], the new hardware units increased the total
area consumption of the accelerator by only 14%, and the
GELU, LayerNorm, and Softmax operations increased the
power consumption of a BERT inference by only 9.3%.

III. SCHEDULING OPTIMIZATION

In Sec. II, we have demonstrated that the nonlinear opera-
tions in Transformers introduce challenges to efficient acceler-
ator design. We further find that these operations present non-
trivial challenges to the scheduling problem as well. In this
section, we provide a brief overview of those challenges. For
more details, please refer to Section 5 of our full paper [27].

Generally in DNN scheduling, it is an enticing strategy
to fuse relatively high-arithmetic-intensity matmuls with the
following low-arithmetic-intensity normalization operations.
For example, execution schedulers for CNN-type accelerators
often fuse convolutions with ReLU or max-pool operations.
This strategy is especially applicable in the case of quantized
workloads, where partial sums awaiting normalization are
often of higher bitwidth than the final normalized outputs.

Similarly, for Transformer encoders, we could overlap the
execution of normalization operations (LayerNorm and Soft-
max) with their preceding matmuls. However, this strategy
may require hardware/software changes. First in the case of
DNN accelerators like Gemmini, additional hardware support
for directly accessing partial sums by normalization operation
units may be required. Second, appropriate constraints on the
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Fig. 3: (Left) Impact of fusion-optimized scheduling for MHA
execution. Hiding the Softmax latency via fusion-optimized
scheduling improves overall MHA latency by 78%, but over-
lapping Wout projection with LayerNorm can hurt total la-
tency. (Right) Impact of fusion-optimized scheduling for FFN
matmul that enables latency hiding of the LayerNorm opera-
tion. We observe that fusion-optimized scheduling hurts total
latency by 27%. In both cases, we assume an input sequence
length of 512 and accumulator size of 256kB.

matmul execution schedule are necessary. In particular, the
tiling factor size of either output dimension of the matmul
must be maximized, so that rows/columns are immediately
ready and stored at the Gemmini accumulator scratchpad for
computing the mean and standard deviation. We refer to this
alternate scheduling approach as fusion-optimized scheduling.

In Fig. 3, we take a deeper look into the performance
implications of fusion-optimized scheduling for the BERT-
Base encoder. We model the total latency of each adja-
cent pair of matmul and LayerNorm/Softmax operations via
Timeloop [33] with the target hardware being the I-BERT
modified Gemmini described in Sec. II. Opportunities for
overlapping computations include: (1) the MHA query × key
matmul and following Softmax; (2) MHA Wout projection
and following LayerNorm; and (3) FFN W2 projection and
following LayerNorm. The two scheduling strategies we com-
pare are: (1) fusion-optimized scheduling and (2) Gemmini’s
default heuristic-based scheduler, which greedily maximizes
loop tile factors at the local SRAM level for each of the three
matmul dimensions. We refer to the second, default scheduling
approach as non-fused scheduling.

The left plot of Fig. 3 showcases the promises of mat-
mul and non-linear operator fusion within the MHA. With
Gemmini on-chip scratchpad and accumulator SRAM sizes of
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trained models. For better comparison, we additionally plot lines to illustrate +0.1 and +1 point perplexity degradation.

256KB, we observe that it is advantageous to fuse query ×
key matmuls with Softmax for each attention head and thereby
hide the relatively high latency of executing the Softmax
operation. Assuming an input sequence length of 512, the
Softmax latency is significant compared to the matmul, taking
up around 78% of the total cycles and contributes greatly to
the total latency.

On the other hand, the right plot of Fig. 3 shows the
results on matmul and LayerNorm overlapping in the FFN W2

projection. Here, we observe that fusion-optimized scheduling
worsens total latency by 27%. When scheduling the FFN, we
find that at the BERT-Base scale, it is consistently favorable to
overlap the MHA query × key with the ensuing Softmax but
consistently disadvantageous to chain the FFN W2 projection
matmul with LayerNorm. This is in contrast with previous
studies on GPU kernel fusion for Transformers [11], [35],
and it highlights how scheduling for Transformer matmuls
becomes more complex when targeting different styles of
custom hardware designs, including the Gemmini accelerator.

IV. NEURAL ARCHITECTURE OPTIMIZATION

Another important avenue in full stack optimization of
DNNs is optimizing DNN architectures and tailoring them for
specific hardware platforms. However, the exponential search
space of DNN architectures often makes it challenging to
find an optimal architecture, even without considering the
underlying hardware. To address this issue, automated neural
architecture search (NAS) methods have been proposed to
adapt DNNs for given hardware constraints. In this regard, we
apply hardware-aware NAS to search for Transformer archi-
tectures that are optimal on the Gemmini-driven accelerator
with better efficient and performance trade-offs. For a more
detailed overview of hardware-aware NAS and its application
to the Transformer architectures, please refer to Section 6 of
our full paper [27].

1) Experiment Setup: As a baseline architecture, we use a
6-layer Transformer architecture with all other model config-
urations remaining the same as BERT-Base. We use language
modeling on the WikiText-2 [31] as a training objective. To
evaluate the model performance, we measured perplexity on
the validation examples, where lower scores indicate better
performance. The stand-alone baseline model was trained for
50 epochs with the Adam optimizer and a linear learning rate

scheduling with a peak learning rate of {5, 2, 1, 0.5} × 10−5.
We use a sequence length of 512 and a batch size of 16.

For NAS, we adopt the BigNAS [47] strategy to train a
supernet using the same training hyperparameters as the stand-
alone training. The NAS search space is comprised of various
combinations of the number of layers in {3, 4, 5, 6}, number
of heads in {4, 6, 8, 10, 12}, hidden dimension in [384, 768],
and FFN dimension in [768, 3072]. Subsequently, we use
evolutionary search for 40 iterations with a population size of
40 and mutation probability of 0.2 to search optimal subnets
out of the fully trained supernet. After every iteration, only the
subnets that are Pareto-optimal in EDP (energy-delay-product)
and perplexity are retained. To measure the hardware cost, we
use a lookup table-based method for quickly assessing the
latency and energy consumption of each subnet on the target
hardware, instead of using time-consuming RTL simulation.
The lookup table contains Timeloop [33] simulated latency and
energy numbers for each operation, which are then summed
up to estimate the end-to-end values for the entire subnets.
After the evolutionary search, the Pareto-optimal subnets are
then evaluated with an RTL simulator to obtain a more precise
estimation of the latency. For the energy measure, we continue
to use the numbers from Timeloop. For the target hardware,
we use Gemmini with the optimizations applied in Sec. II.

2) Experiment Results: We show the NAS Pareto-frontier
results for EDP, latency and energy in Fig. 4 (blue curves)
where each point corresponds to a different Transformer
architecture found from the evolutionary search algorithm. Ad-
ditionally, we plot the stand-alone trained baseline Transformer
model trained as a reference (× mark). As can be seen in
the EDP plot (Fig. 4 Left), the NAS framework allows us to
obtain multiple Transformer architectures with better hardware
cost to perplexity trade-offs. That is, it finds architectures with
similar or even better perplexity, as compared to the baseline
with smaller hardware costs.

Fig. 4 (Middle and Right) further illustrates latency and
energy separately. As one can see, it is possible to attain a
1.4× reduction in latency versus the baseline Transformer
with 0.1 point perplexity degradation. If one could tolerate
1 point degradation in perplexity, latency can be reduced
by 2.4×. With regards to energy, one can attain a 1.6×
improvement considering 0.1 point perplexity degradation, and
4.4× when allowing perplexity degradation of 1 point. Taking
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both together, it is possible to reduce EDP by 2.2× with
just 0.1 point perplexity degradation, and 10.6× with 1 point
perplexity degradation. These examples illustrate the power of
co-design in allowing practitioners to choose a combination
that best matches their needs. It is important to note that this
represents a single run of our co-design methodology on a
specific hardware platform, and results may vary depending
on the target hardware and optimization goals.

V. CONCLUSION

While Transformer models have shown significant per-
formance improvements, their growing size and run-time
complexity present a critical challenge in efficient inference.
In this work, we have demonstrated the benefits of a full
stack approach by leveraging the advantages of co-design and
co-optimization techniques across the stack. We adapted a
CNN-oriented accelerator to efficient Transformer inference
by supporting integer-only nonlinear operations [26] and re-
balancing the memory hierarchy, which yielded a 39.6×
latency reduction. We also applied NAS to search for Pareto-
optimal Transformer architectures given the tradeoff between
EDP and perplexity, leading to a 10.6× EDP reduction with
minimal performance drop. Altogether, we have exhibited a
88.7× latency improvement without a noticeable performance
drop compared to a naive implementation without full-stack
considerations. We have also demonstrated that unlike in
CNNs, nonlinear operations in Transformers require careful
consideration when performing operator fusion when targeting
custom accelerators, e.g. systolic-array based architectures. We
expect more improvement when we take this into consider-
ation when designing the end-to-end full stack optimization
pipeline. We refer interested readers to our full paper [27],
which includes (1) a comprehensive analysis of Transformer
workloads, (2) an extensive survey of the current hardware
and software solutions on efficient Transformer inference,
and (3) case studies to quantify the advantages of co-design
and co-optimization techniques across the stack on full-stack
Transformer inference.

ACKNOWLEDGEMENTS

We acknowledge gracious support from Meta and in partic-
ular Michael Anderson, Satish Nadathur and Summer Deng,
as well as Google Cloud, Google TRC team, and specifically
Jonathan Caton, Prof. David Patterson, and Jing Li. Prof.
Keutzer’s lab is sponsored by Intel corporation, Intel VLAB
team, Intel One-API center of excellence, as well as funding
through BDD and BAIR. Sehoon Kim would like to acknowl-
edge the support from Korea Foundation for Advanced Studies
(KFAS). Amir Gholami was supported through funding from
Samsung SAIT. Michael W. Mahoney would also like to
acknowledge a J. P. Morgan Chase Faculty Research Award
as well as the DOE, NSF, and ONR. Our conclusions do not
necessarily reflect the position or the policy of our sponsors,
and no official endorsement should be inferred.

REFERENCES

[1] “Edge TPU,” https://cloud.google.com/edge-tpu/, accessed: 2018-12-05.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: a system for
{Large-Scale} machine learning,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[3] D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar, A. Ling,
A. Bitar, I. Ahmed, and J. Ross, “The groq software-defined scale-
out tensor streaming multiprocessor: From chips-to-systems architectural
overview,” in IEEE Hot Chips Symposium, 2022, pp. 1–69.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[6] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 578–594.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp.
269–284.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2016.

[9] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2019.

[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “DaDianNao: A Machine-learning
Supercomputer,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2014.

[11] J. Choi, H. Li, B. Kim, S. Hwang, and J. H. Ahn, “Accelerating trans-
former networks through recomposing softmax layers,” in International
Symposium on Workload Characterization (IISWC), 2021.

[12] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[13] L. Clark, V. Vashishtha, L. Shifren, A. Gujia, S. Sinha, B. Cline,
C. Ramamurthya, and G. Yeric, “ASAP7: A 7-nm FinFET Predictive
Process Design Kit,” Microelectronics Journal, 2016.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat et al., “Glam: Efficient scaling of
language models with mixture-of-experts,” in International Conference
on Machine Learning. PMLR, 2022, pp. 5547–5569.

[16] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92–104.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Accel-
eration for General-Purpose Approximate Programs,” in Proceedings of
the International Symposium on Microarchitecture (MICRO), 2012.

[18] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operation Systems (ASPLOS), 2017.

[19] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Proceedings of the 58th Annual Design
Automation Conference (DAC), 2021.

5

https://cloud.google.com/edge-tpu/


[20] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” SIGARCH Comput. Archit. News, vol. 44, no. 3, Jun. 2016.

[21] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai,
E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark
et al., “Training compute-optimal large language models,” arXiv preprint
arXiv:2203.15556, 2022.

[22] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 10–14.

[23] J. Hruska, “New movidius myriad x vpu packs a custom neural compute
engine,” 2017.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” CoRR, vol. abs/1408.5093, 2014.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a
tensor processing unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), June 2017, pp. 1–12.

[26] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert:
Integer-only bert quantization,” in International conference on machine
learning. PMLR, 2021, pp. 5506–5518.

[27] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney et al., “Full
stack optimization of transformer inference: a survey,” arXiv preprint
arXiv:2302.14017, 2023.

[28] S. Knowles, “Graphcore,” in IEEE Hot Chips Symposium, 2021, pp.
1–25.

[29] H. Liao, J. Tu, J. Xia, and X. Zhou, “Davinci: A scalable architecture
for neural network computing.” in IEEE Hot Chips Symposium, 2019,
pp. 1–44.

[30] S. Lie, “Cerebras architecture deep dive: First look inside the hw/sw
co-design for deep learning: Cerebras systems,” in IEEE Hot Chips
Symposium, 2022, pp. 1–34.

[31] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” 2016.

[32] NVIDIA. (2018) TensorRT: https://developer.nvidia.com/tensorrt.
[33] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,

R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
systematic approach to dnn accelerator evaluation,” in 2019 IEEE inter-
national symposium on performance analysis of systems and software
(ISPASS). IEEE, 2019, pp. 304–315.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[35] S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying bert:
Implications for accelerator design,” in International Symposium on
Workload Characterization (IISWC), 2021.

[36] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou,
Z. Wu, W. He et al., “Towards artificial general intelligence with hybrid
tianjic chip architecture,” Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[37] R. Prabhakar and S. Jairath, “Sambanova sn10 rdu: Accelerating soft-
ware 2.0 with dataflow,” in IEEE Hot Chips Symposium, 2021, pp. 1–37.

[38] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[39] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[40] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song,
J. Aslanides, S. Henderson, R. Ring, S. Young et al., “Scaling language
models: Methods, analysis & insights from training gopher,” arXiv
preprint arXiv:2112.11446, 2021.

[41] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of trans-
fer learning with a unified text-to-text transformer,” arXiv preprint
arXiv:1910.10683, 2019.

[42] A. Sabne, “Xla: Compiling machine learning for peak performance,”
2020.

[43] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow,
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