Published as a conference paper at COLM 2025

Adaptive Layer-skipping in Pre-trained LLMs

Xuan Luo, Weizhi Wang, Xifeng Yan
Department of Computer Science, UC Santa Barbara
{xuan_luo, weizhiwang, xyan}@cs.ucsb.edu

Abstract

Various layer-skipping methods have been proposed to accelerate token
generation in large language models (LLMs). However, limited attention
has been paid to a fundamental question: How do computational demands
vary across the generation of different tokens? In this work, we introduce
FlexiDepth, a method that dynamically adjusts the number of Transformer
layers used in text generation. By incorporating a plug-in router and
adapter, FlexiDepth enables adaptive computation in LLMs without modi-
fying their original parameters. Applied to Llama-3-8B, it skips 8 out of 32
layers while maintaining full benchmark performance. Our experiments
reveal that computational demands in LLMs significantly vary based on
token type. Specifically, generating repetitive tokens or fixed phrases re-
quires fewer layers, whereas producing tokens involving computation or
high uncertainty requires more layers. Despite the computational savings,
FlexiDepth does not yet achieve wall-clock speedup due to varied skipping
patterns and I/O overhead. To inspire future work and advance research on
practical speedup, we open-sourced FlexiDepth and a dataset documenting
its layer allocation patterns.

Model S xuan-luo/FlexiDepth-Llama-3-8B-Instruct

Dataset 5 xuan-luo/FlexiPatterns-Llama-3-8B-Instruct

1 Introduction

Large language models (LLMs) have achieved remarkable success in various tasks, in-
cluding translation (Zhu et al., 2024), code generation (Hui et al., 2024), and math reason-
ing (DeepSeek-Al et al., 2025). Currently, LLMs typically generate each token by performing
a full forward pass through all Transformer decoder layers. However, such a uniform
allocation is counter-intuitive, as simpler tasks intuitively require fewer computational
resources, whereas complex tasks demand more processing. This uniform allocation not
only results in computational inefficiencies but may also contribute to overfitting in LLMs.
In response to these challenges, various layer-skipping techniques have been proposed.
One line of research leverages statistical information, such as the difference between layer
inputs and outputs, to identify and skip less important layers (Men et al., 2024; He et al.,
2024b; Zhang et al., 2024). Another collection of methods involves early-exit (Varshney
et al., 2024; Jazbec et al., 2024; Schuster et al., 2022), where a confidence measure or a router
dynamically determines whether to bypass all subsequent layers at an intermediate point
of LLM. While these techniques have successfully reduced computational costs, limited
attention has been paid to a fundamental question: How do computational demands vary
across the generation of different tokens?

In this work, we propose FlexiDepth, a method for adaptive layer-skipping in pre-trained
large language models. At each transformer layer, our method determines whether the
hidden state input shall forward pass the layer or skip it. This layer-wise approach offers the
flexibility to tailor the computation path for each token, enabling processing with varying
numbers of transformer layers.

https://huggingface.co/xuan-luo/FlexiDepth-Llama-3-8B-Instruct
https://huggingface.co/datasets/xuan-luo/FlexiPatterns-Llama-3-8B-Instruct

Published as a conference paper at COLM 2025

[Context] The grey seal was found at Cruden Bay on
Tuesday. The Scottish SPCA removed the seal from
beach and took it to the charity's rescue centre...

[Prompt] Please calculate the sum of the 8 numbers
in the list: [99, 45, 12, 78, 33, 66, 21, 54]

Thankfully there were no injuries in thi nd wi To calculate the sum of all n
aniiutly fnere Were no injuries in this case andwe v, o 15t 'l add each number one by one:
were able to release him relatively quickly.
99 +45=144
[Prompt] Where the grey seal was found? 144 + 156
The grey was at Cruden 156 + 234
[Prompt] Please summarize this paragraph into a gg;‘ gg;
single sentence:)) 333 + 354
A grey seal was found tangled in netting
354 + 408
at Cruden , rescued
by the Scottish S PCA , and released back The sum of all is 408.

into the water with no injuries.

Figure 1: DepthMap illustrating layer-skipping patterns when applying FlexiDepth to
Llama-3-8B-Instruct. The light-to-dark blue gradient indicates layer usage ranging from 16
layers to 32 layers.

Contrast to layer skipping methods requiring training LLM from scratch, i.e. mixture-of-
depth (MoD) (Raposo et al., 2024), FlexiDepth enables adaptive layer-skipping in pre-trained
LLMs without modifying their original parameters. Specifically, FlexiDepth introduces
two light-weight plug-in modules at each decoder layer: (1) a router that makes binary
decisions about whether to skip the layer, and (2) a adapter that resolves representation
mis-alignments caused by layer skipping. The router and adapter are the only trainable
components within our framework. All other parameters are inherited from a pre-trained
LLM and remain frozen. At each layer, the input hidden states are first evaluated by the
router and directed to go through or skip the layer. For hidden states that go through the
layer, they are processed by the original attention and FFN modules of the LLM. Conversely,
hidden states that skip the layer are instead processed by the adapter. The adapter’s role
is to transform these skipped hidden states, aligning their representation to match those
that undergo full processing. Finally, both the processed hidden states and the adapted
hidden states are combined to produce the layer output. To optimize the router and adapter,
we introduce a layer skipping loss that works in conjunction with the original next-token
prediction loss. This loss function encourages layer skipping by penalizing the number of
layers used for generation, while maintaining generation quality through the prediction
loss. After training, the model can dynamically adjust its layer usage based on the input.

We comprehensively evaluate FlexiDepth across a diverse set of benchmarks. When applied
to Llama-3-8B-Instruct (Dubey et al., 2024), FlexiDepth preserves full performance (100.7%)
while skipping 8 out of 32 layers, significantly outperforming existing layer-skipping meth-
ods, particularly in continuous generation tasks.

FlexiDepth also reveals how computational demands vary when generating different types
of tokens. For demonstration, we created a colored map that shows the number of layers
used to generate each token, which we call ‘DepthMap’. Figure 1 (left) shows that sum-
marization typically requires more layers on average than extractive question answering.
Similarly, Figure 1 (right) reveals that in mathematical reasoning tasks like addition, to-
kens on the left-hand side of equations need fewer layers to generate than those on the
right-hand side. This type of adaptive allocation appears to resonate with human intuition.
For instance, humans typically exert more effort in summarization tasks to condense the
entire context into a concise form, while finding extractive question answering easier as
it only requires retrieval and extraction. Likewise, in mathematical tasks, deriving the
right-hand side of an equation involves computation that consumes more steps. Shifting
from token-specific patterns to overall layer usage, we observe that layer utilization follows
a long-tail distribution, with early and final layers used more frequently than middle layers.
To inspire further research along this direction, we compile a dataset documenting the layer
allocation behaviors of FlexiDepth across various tasks.

Published as a conference paper at COLM 2025

t
-

Router

Figure 2: The FlexiDepth layer. Left: Full-processing path where hidden states undergo the
pre-trained attention and FFN modules. Right: Skipping path where hidden states bypass
the attention module and processed by a lightweight adapter. The router and adaptor (in
red) are the only trainable components.

2 Method

In this section, we introduce FlexiDepth, a framework for adaptive layer-skipping in pre-
trained LLMs. Each FlexiDepth layer augments a standard decoder layer with a lightweight
router and adapter, keeping the original parameters frozen. The router evaluates normalized
input hidden states to compute the gating score g. Based on a threshold 7, hidden states
with ¢ > T are routed to the full-processing path (Figure 2, left), where they undergo the
pre-trained attention and FFN modules. Hidden states with ¢ < 7 are routed to the skipping
path (Figure 2, right), where they are instead processed by a lightweight adapter. In the
following parts, we elaborate on the core designs of FlexiDepth, including routing, attention
skipping, FFN skipping, and layer-skipping loss.

21 Routing

FlexiDepth employs a router at each layer to compute gating scores for routing. Let X =

[x1,%x2,...,x7] € RT*4 denote the input hidden states of the current layer, where T is the
sequence length and 4 is the hidden dimension. The router computes their corresponding

gating scores G = [¢1, 92, - -.,97] € RT as follows:
G = o(Router(Norm(X))), 1)

where Norm refers to the RMSNorm (Zhang & Sennrich, 2019), and ¢ is the sigmoid function
to ensure g; € (0,1). In previous works (Raposo et al., 2024; Tan et al., 2024), the router
is typically implemented as a simple linear transformation, and jointly optimized with
the transformer during training. However, in our setting, the original parameters of the
pre-trained transformer are frozen. Relying on a linear transformation is insufficient to
capture the nuances of the hidden states for routing. To address this issue, we design a
parameter-efficient router based on a bottlenecked MLP:

Router(z) = Wy - (W; - Norm(tanh(W,z))), 2)
where W| € R¥*4, W, € R™ and W, € R'*? represent the weights of down-projection,
up-projection, and router head, respectively. The d, denotes the bottleneck dimension.

After computing the gating scores G, we apply a threshold-based routing mechanism using
a predefined threshold 7. For each hidden state x;, if g; > 7, it is routed to the full-processing
path (Figure 2, left), where the output is scaled by g; to ensure gradient flow to the router.

Published as a conference paper at COLM 2025

ko ki ko ks ks ko ko k4 ko ki ke ks ks
q0 q0 qo0
q1
q2 q2 q2
a3
q4 q4 q4
Vanilla No KV Cache KV Cache

Figure 3: Comparison of attention masks. Left: the vanilla attention mask. Middle: the
attention mask without KV Cache, where hidden states x; and x3 skip this layer. Right:
the attention mask with KV Cache, where despite x; and x3 skipping this layer, their
corresponding keys and values are still computed.

If g; < 7, the hidden state is routed to the skipping path (Figure 2, right), with the output
scaled by (1 — g;). This process is formalized as:

) {gi - FFN(Norm(Attn(Norm(x;)) + x;)) + Attn(Norm(x;)) + x;, ifg > T

" (1 —g;) - Adapter(Norm(x;)) + x;, ifg; <t @)

where x/ is the output hidden state for token 7, Norm represents layer normalization, FFN
denotes the feed-forward network, and Adapter(-) is the lightweight adapter.

2.2 Attention skipping

In the skipping path of FlexiDepth (Figure 2, right), the input hidden states simply bypass
the attention module via a shortcut. However, this straightforward approach can lead
to a significant loss of contextual information, resulting in performance degradation. In
autoregressive generation, the attention mechanism computes query, key, and value vec-
tors for each token, where keys and values are cached (KV Cache) (Pope et al., 2023) to
avoid redundant computation in subsequent decoding steps. When hidden states skip the
attention module, their corresponding key and value vectors are not generated, preventing
subsequent tokens from attending to them. This issue is illustrated in Figure 3 (middle),
where in this example, hidden states x; and x3 are routed to skip the layer. Naively skipping
the attention module for these tokens results in missing key-value pairs (i.e., k1, v1 and
ks, v3). Therefore, the subsequent tokens, such as g4, can no longer attend to them.

To address this issue, we propose a straightforward solution: we continue computing the
keys and values for hidden states that skip the layer. Specifically, while we can omit the
query vectors (e.g., 41,43) and their associated scaled dot-product operations, we retain
the calculations of the corresponding keys (kq, k3) and values (v1, v3). This approach, as
demonstrated in Figure 3 (right), ensures that future tokens maintain access to the full set of
contextual information, preserving the integrity of autoregressive generation.

2.3 FFN skipping

We observe that directly skipping the feedforward network (FFN) via a simple shortcut
significantly degrades model performance. Unlike the attention module, which only in-
volves linear transformations, the FFN module introduces nonlinearities. Consequently,
hidden states transformed by the FFN may not share the same latent space as those that skip
it. To mitigate this issue, we employ a lightweight adapter to align their representations.
This adapter follows the same structure as the FEN but features a significantly reduced
intermediate dimension. As shown in Figure 2 (right), the adapter is placed at the same
position as the skipped FFN.

2.4 Layer-skipping loss

To balance computational efficiency and generation quality, we introduce a skipping loss
that is jointly optimized with the next-token prediction loss. This loss is designed to penalize

Published as a conference paper at COLM 2025

the squared sum of the layers used. The squared loss imposes a larger penalty on tokens
that activate more layers and a smaller penalty on those that use fewer. This non-uniform
penalty stabilizes training by preventing the model from falling into extreme patterns, such
as skipping all layers or none. The loss function is formulated as:

1L (L, 2
Eskip:TZ(lzlgt> ’ 4)

t=1

where g/ denotes the gating score for layer [at time step t. The final loss integrates the
skipping loss Ly, with the original language modeling loss L, weighted by a factor a:

L =0 Laip+ Lim)

3 Experiments

3.1 Implementation details

We implement FlexiDepth on the pre-trained Llama-3-8B-Instruct model (Dubey et al., 2024),
which consists of 32 transformer layers. To enable adaptive layer-skipping, we convert
the latter 16 layers into FlexiDepth layers, as prior works (Men et al., 2024; Sun et al,,
2024) and empirical studies suggest that skipping earlier layers degrades performance. For
each FlexiDepth layer, the router, as defined in Equation 2, uses a bottleneck dimension
dy = f—éd, where d is the hidden dimension. The router’s gating function is implemented
using SparseMixer (Liu et al., 2023a;b) to ensure differentiability. The adapter has the same
structure as the original FFN but reduces the intermediate dimension by a factor of 16.
For the loss function in Equation 5, we set the coefficient « = 1 x 103, which results in
approximately 8 layers skipped during generation. We train FlexiDepth on the Tulu-v2
dataset (Ivison et al., 2023) for 3 epochs using the AdamW (Loshchilov & Hutter, 2019)
optimizer with a learning rate of 1 x 1074, B1 =09, B, =0999,and e =1 x 108. We use
a warmup ratio of 0.03 and a global batch size of 64. The training takes approximately 7
hours on 8 NVIDIA A100-PCIE-40GB GPUs.

3.2 Main results

In this part, we present the experimental results of applying the proposed FlexiDepth to the
pre-trained Llama-3-8B-Instruct model (Dubey et al., 2024).

Benchmarks. We evaluate FlexiDepth across a diverse set of tasks. For single-token
generation benchmarks, we include: MMLU (Hendrycks et al., 2021), HellaSwag (Zellers
et al., 2019), and Winogrande (Sakaguchi et al., 2020). For multi-token generation tasks,
we test on: GSMS8K (Cobbe et al., 2021), HumanEval (Chen et al., 2021), CoQA (Reddy
et al., 2019). Evaluations are conducted using the Im-evaluation-harness toolkit (Gao et al.,
2024), with 5-shot settings for MMLU, HellaSwag, Winogrande, and GSM8K, and zero-shot
settings for HumanEval and CoQA. The evaluation metrics are accuracy (acc) for MMLU,
normalized accuracy (accnorm) for HellaSwag, accuracy (acc) for Winogrande, exact-match
(EM) for GSMBK, pass-at-1 (Pass@1) for HumanEval, and F1 score (F1) for CoQA.

Baselines. We compared FlexiDepth with previous layer-skipping methods that are com-
patible with LLMs. All baseline methods are applied to the LLama-3-8B-Instruct model,
which consists of 32 transformer layers. We define k as the number of layers to skip dur-
ing generation, with all methods configured to skip the same number of layers for fair
comparison. The baseline methods are as follows: (1) LayerSkip (Elhoushi et al., 2024):
This early-exit method skips the last k consecutive layers during decoding and employs
speculative decoding (Leviathan et al., 2023) to refine generation results. For comparison,
we disable speculative decoding. (2) ShortGPT (Men et al., 2024): This approach prunes k

Published as a conference paper at COLM 2025

Methods Single-Token Generation Multi-Token Generation Retain %
MMLU Hellaswag Winogrande GSM8K HumanEval CoQA

Vanilla 0.673 0.706 0.744 0.679 0.299 0.784 100.0%
Skip 4 Layers

LayerSkip 0.659 0.636 0.676 0.004 0.0 0.350 54.0%

ShortGPT 0.664 0.662 0.700 0.536 0.092 0.145 69.1%

LaCo 0.671 0.693 0.724 0.581 0.031 0.778 81.7%

MindSkip 0.664 0.698 0.722 0.378 0.189 0.720 84.2%

Ours 0.663 0.724 0.756 0.695 0.390 0.810 106.5%
Skip 8 Layers

LayerSkip 0.650 0.525 0.640 0.0 0.0 0.049 43.9%

ShortGPT 0.307 0.462 0.597 0.001 0.0 0.005 32.0%

LaCo 0.656 0.628 0.695 0.065 0.006 0.707 65.3%

MindSkip 0.602 0.650 0.646 0.039 0.024 0.620 60.2%

Ours 0.616 0.705 0.735 0.662 0.341 0.801 100.7%

Table 1: Performance comparison based on Llama-3-8B-Instruct, which consists of 32 layers.
Retain % represents the percentage of average retained benchmark performance.

Model MMLU Hellaswag Winogrande GSMS8K HumanEval CoQA Retain %
Llama-2-13B 0.492 0.727 0.714 0.236 0.102 0.790 100.0%
FledDepth _ 0481 0741 0716 __ 0253 009 0780 _1002%
Skipped 7.08 1.98 5.00 6.65 11.61 6.19 -
Llama-3-8B 0.673 0.706 0.744 0.679 0.299 0.784 100.0%
FledDepth 0663 0743 0756 _ _ 0657 0323 = 0803 _1021%
Skipped 4.12 2.00 3.97 10.42 9.55 7.44 -
Qwen-2.5-3B 0.651 0.702 0.639 0.576 0.487 0.705 100.0%
FledDepth 0643 0701 0679 __ 0583 0476 = 0741 101.5%
Skipped 1.23 1.25 1.15 1.71 1.69 1.88 -

Table 2: Performance and skipping patterns of FlexiDepth on instruction-tuned models.
Each model includes baseline performance (first row), FlexiDepth’s performance (second
row), and average skipped layers (third row). The "-Instruct’ are omitted for simplicity.

layers deemed less important by assessing their input-output difference. (3) LaCo (Yang
et al., 2024b): This method employs a layer-collapse strategy to reduce the model by k layers,
merging subsequent layers into a prior one using a Reserving-Differences-while-Seeking-
Common (RDSC) approach. (4) MindSkip (He et al., 2024a): This method explores attention,
FFN, and layer skipping via a simple linear router, finding that skipping FFN or entire
layers leads to significant performance degradation. For comparison, we employ its layer
skipping setting and train it on the same tulu-v2 (Ivison et al., 2023) dataset.

FlexiDepth demonstrates a varied number of skipped layers for different tasks. To compare
fairly with baselines at a consistent number of skipped layers k, we trained multiple Flex-
iDepth models with varying penalty weights « and evaluated their performance. For each
task, we report the results of the model that achieves the target number of skipped layers k.
Later, we will highlight FlexiDepth’s adaptability by showing its performance across these
tasks with a single, fixed «.

Table 1 presents the comparison results. FlexiDepth consistently outperforms baseline
methods, especially in multi-token generation tasks. For example, when skipping 8 layers,
baseline methods retain reasonable performance on single-token generation benchmarks
and the short-form question-answering task CoQA. However, they suffer from near-zero
accuracy on GSM8K and HumankEval that requires longer reasoning. In contrast, FlexiDepth
excels across both single-token and multi-token generation tasks, achieving an average
performance retention of 100.7%.

Published as a conference paper at COLM 2025

Interestingly, FlexiDepth even slightly surpasses the original model’s performance on cer-
tain benchmarks, highlighting the potential benefits of adaptive depth. To further examine
whether this improvement stems from training data or the mechanism itself, we com-
pare FlexiDepth with the fully fine-tuned allenai/llama-3-tulu-2-8b model on huggingface,
which is trained on the same dataset as FlexiDepth. Notably, this model achieves 0.554 on
GSMBS8K and 0.354 on HumanEval, while FlexiDepth achieves 0.695 and 0.390 on the same
tasks—even when skipping 4 layers. This result suggests that the performance gains are
not solely attributable to the training data. We hypothesize that its adaptive layer-skipping
mechanism may implicitly act as a form of regularization, by skipping less informative or
noisy parameters during inference, thus enhancing generalization. Future work is needed
to explore this possibility and investigate the broader potential of adaptive layer-skipping.

3.3 FlexiDepth on different language models

We evaluate FlexiDepth on language models of varying sizes. These models are trained
under the identical configuration and dataset described in our implementation details.
Larger models, specifically Llama-2-13B-Instruct and Llama-3-8B-Instruct, exhibit greater
number of layers skipped compared to the smaller Qwen-2.5-3B-Instruct (Yang et al., 2024a).
Specifically, Llama-2-13B-Instruct and Llama-3-8B-Instruct skip an average of 6.42 and
6.25 layers, respectively, across benchmarks, while Qwen-2.5-3B-Instruct skips only about
1.49 layers. This trend indicates that larger models possess greater inherent redundancy,
enabling more aggressive layer skipping without notable performance degradation. Given
this trend, FlexiDepth can potentially be applied to even larger models to further exploit
their redundancy. For instance, it could be applied to large mixture-of-experts models
like DeepSeek-V3 (DeepSeek-Al et al., 2024), where experts are distributed across multiple
servers during inference. By skipping entire layers, FlexiDepth could reduce cross-server
communication overhead, enhancing inference efficiency of MoE models.

3.4 Layer allocation dataset

To investigate these layer-skipping patterns and their relationship to task complexity, we
constructed a dataset using FlexiDepth with Llama-3-8B-Instruct as the base model. This
dataset captures layer usage for token generation in two key domains: language modeling
and math reasoning. By recording the number of layers utilized per token, we aim to
uncover how FlexiDepth dynamically adjusts the layers to meet varying task demands.

Text Generation. For text generation tasks, we constructed a dataset by randomly sam-
pling 100 paragraphs from the XSum test set (Narayan et al., 2018), which is a collection
of news articles. We evaluated FlexiDepth on three subtasks for each paragraph: copying,
summarization, and continuation:

Please copy this paragraph: <paragraph>...</paragraph>

Directly output the copied paragraph here:

Please summarize this paragraph into a single sentence:
<paragraph>...</paragraph>

Directly output the summarized paragraph here:

Please continue writing this paragraph: <paragraph>...</paragraph>
Directly output the continued paragraph here:

We recorded the number of layers used per token across all outputs: copying averaged
21.95 layers (variance 6.05), summarization averaged 28.65 layers (variance 18.31), and
continuation averaged 30.27 layers (variance 12.59). These results reveal a clear pattern: tasks
requiring deeper contextual understanding, such as continuation and summarization, utilize
more layers compared to the simpler copying task. The higher variance in summarization
(18.31) and continuation (12.59) versus copying (6.05) suggests greater variability in layer
allocation, likely reflecting the diverse cognitive demands of generating concise summaries
or creative continuations. Detailed examples of these patterns are presented in Appendix A.

Published as a conference paper at COLM 2025

-o- Copying Summarization ~ -e- Continuation -o- Repetition Addition -o- Product

0.8 1

0.6 0.6

0.4 0.4

0.2 1 0.2 1

LN I S B S B B R S R S E— m— — 0.0 | L E B B B R S S R B S S — —
177 18 19 20 21 22 23 24 25 26 27 28 29 30 381 32 177 18 19 20 21 22 23 24 25 26 27 28 29 30 381 32

Figure 4: Percentage of tokens processed by transformer layers 17 to 32. The x-axis represents
the layer index, and the y-axis represents the percentage of tokens processed by the layer.

Math Reasoning. For math reasoning, we created a dataset of 100 samples, each featuring
a randomly generated list of 5-10 integers between 10 and 99. This controlled setup enables
us to test basic arithmetic operations systematically. FlexiDepth was prompted to process
each list with three subtasks: repeating the list, calculating the sum, and the product.

Please repeat the following list for 5 times: [...]

Please calculate the product of numbers in the following list: [...]

The layer usage pattern across these three tasks was as follows: repeating averaged 20.09
layers (variance 8.08), addition averaged 22.45 layers (variance 14.67), and multiplication
averaged 23.90 layers (variance 21.61). Appendix A provides additional results, showing
that tokens tied to arithmetic operations consistently require more layers than directly
copying numbers from the context.

3.5 Layer utilization pattern

To complement the token-centric analysis in prior subsections, we examine the overall layer
utilization pattern of FlexiDepth on Llama-3-8B-Instruct. We measure the percentage of
tokens processed by each transformer layer across the tasks outlined earlier: text generation
(copying, summarization, continuation) and math reasoning (repeating, addition, product).
Figure 4 visualizes the results, with the left plot showing language modeling tasks and the
right plot showing math reasoning tasks. Layer utilization exhibits a bowl-like pattern, with
higher token processing at the initial and final layers, and reduced usage in the middle
layers. For language tasks, copying exhibits the deepest dip in middle-layer usage, while
continuation utilizes the most middle layers, reflecting varying task complexity. Similarly, in
math reasoning, repeating shows the least middle-layer usage, whereas product requires the
most, which is consistent with increasing task difficulty. The overall layer usage distribution
approximately follows a long-tail pattern, where most tokens are processed by a few layers,
and others are selectively skipped. We hypothesize that early layers primarily parse and
understand input context, middle layers perform task-specific processing that varies with
complexity, and final layers focus on decoding for coherent output generation. Future
studies are needed to verify the specialized roles of different layers.

3.6 Ablation Studies

We present ablation studies in this section. All models are based on Llama-3-8B-Instruct
and trained using identical configurations as described in our implementation details.

Linear Router. In FlexiDepth, we employed a bottlenecked MLP as the router to facilitate
nuanced routing decisions. When replacing this component with a simpler linear layer

Published as a conference paper at COLM 2025

MMLU Hellaswag Winogrande GSMS8K HumanEval CoQA Retain %

Vanilla 0.673 0.706 0.744 0.679 0.299 0.784 100.0%
FlexiDepth 0.663 0.743 0.756 0.657 0.323 0.803 102.1%
Linear Router 0.619 0.684 0.701 0.131 0.055 0.716 68.7%
No KV Cache 0.525 0.699 0.745 0.366 0.226 0.775 84.3%
No Adapter 0.226 0.356 0.579 0.004 0.0 0.047 28.1%

Table 3: Ablation studies based on Llama-3-8B-Instruct.

MMLU Hellaswag Winogrande GSM8K HumanEval CoQA Retain %

Vanilla 0.673 0706 0.744 0.679 0.299 0.784 100.0%
a=5—4 0671 0730 0740 0687 0347 = 0806 103.7%
Skipped ~ 232 0.98 1.03 3.49 6.40 401 -
a=1e—3 0663 0743 0.756 0.657 0.323 0.803 102.1%
Skipped = 412 200 397 1042 955 744 -
a=2—-3 0637 0721 0736 __ 0528 0140 = 0778 _ 86.6%
Skipped ~ ~ 6.10 3.85 5.60 1253 11.88 9.92 -

Table 4: The influence of the coefficient a for layer skipping.

followed by a sigmoid activation, as previously used in mixture-of-depth (MoD) (Raposo
et al., 2024), we observe a substantial decrease in performance, particularly on the math
reasoning task. Our analysis shows that the linear router mistakenly assigns too few layers
to tokens requiring complex computations, significantly reducing the GSM8K performance
from 0.657 to 0.131. Overall, the linear router retains only 68.7% of the original performance,
emphasizing the importance of the bottlenecked MLP for routing.

No KV Cache. We conducted an ablation study in which the KV cache is not computed
for tokens routed to skip layers (illustrated as "No KV Cache” in Figure 3). Removing the
KV cache results in substantial performance decline, retaining only 84.3% of the original
performance. This highlights the need to retain contextual information during generation.

No adapter. Many layer skipping methods do not have adapters. We therefore investigate
the performance of FlexiDepth without adapter. This simplification drastically reduces
model performance to merely 28.1% of the original FlexiDepth results. The adapter proves
critical in aligning latent representations between skipped and processed states, ensuring
representation coherence across the model’s layers.

Different Coefficient. We investigate the impact of the coefficient « in the layer skipping
loss (Equation 5). With & = 5e—4, the model only skips an average of 3.04 layers. Increas-
ing to &« = 2e—3 results in more layers being skipped (averaging 8.31 layers) but causes
significant performance drops on reasoning tasks, with GSM8K decreasing to 0.528 and
HumanEval to 0.140. The default value « = 1e—3 achieves a better balance.

4 Limitations

Although FlexiDepth reduces FLOPs by adaptively skipping transformer layers, our imple-
mentation does not lead to improved throughput on the existing GPU hardware (see Ap-
pendix B). In FlexiDepth, samples within the same batch can take different execution paths
during decoding. Consequently, each FlexiDepth layer must handle tokens that undergo full
processing alongside those that skip layers, requiring simultaneous management of both
computation and skip branches. This introduces overhead from control-flow management
and irregular memory accesses, outweighing the speedup of theoretical FLOP reductions.
We are currently exploring approaches to achieve actual throughput improvements with

Published as a conference paper at COLM 2025

FlexiDepth and have found that its framework can be adapted for early exit strategies
(see Appendix C). Future work could also investigate hardware-oriented optimizations to
address these bottlenecks, leveraging techniques such as token grouping (Rajbhandari et al.,
2022), expert sharding (Rajbhandari et al., 2022), and load balancing (Huang et al., 2024) to
better align with GPU architectures. Such hardware-tailored enhancements could further
unlock the efficiency potential of FlexiDepth in practice.

5 Related works

The existing language models can be broadly classified into three categories: encoder-
only models (e.g., BERT (Devlin et al., 2019)), encoder-decoder models (e.g., T5 (Raffel
et al., 2020)), and decoder-only models (e.g., GPT (Brown et al., 2020)). Across these
architectures, various conditional computation methods have been proposed to optimize
resource allocation by dynamically processing tokens.

In encoder-only models, conditional token processing has been explored to prune less critical
tokens during processing. For instance, POWER-BERT (Goyal et al., 2020) and LTP Kim
et al. (2022) utilize attention scores to assess token importance, dynamically eliminating
those deemed less significant. Similarly, LoT (Kim et al., 2023) introduces a router at each
layer to determine whether tokens should be processed or skipped, tailoring computation to
token relevance. These approaches leverage the bidirectional nature of encoders, allowing
noncausal routing decisions based on full sequence context.

For encoder-decoder models, methods such as CoDA (Lei et al., 2023) and COLT5 (Ainslie
et al., 2023) enable conditional computation within the encoder component. By replacing
standard attention or feed-forward network (FFN) modules with lightweight alternatives
for certain tokens, these techniques assign varying computational resources based on token
complexity. However, their noncausal design constrains their applicability to decoder.

In decoder-only models, the autoregressive nature poses unique challenges for dynamic
token processing, as tokens must be generated sequentially while preserving contextual
dependencies. Piorneering efforts like MoD (Raposo et al., 2024) and SkipLayer (Zeng
et al., 2023) address this by deploying a router at each Transformer layer, enabling tokens
to dynamically bypass it. These models are trained end-to-end from scratch, integrating
the routing mechanism into the learning process. Duo-LLM (Alizadeh et al., 2024) also
employs a router for conditional computation, but with a distinct method. It first constructs
a dataset of oracle routing strategies via exhaustive enumeration and then trains the router
on this data. MindSkip (He et al., 2024a) enables skipping in pre-trained models via
learnable routers. It finds that bypassing FFN modules or entire layers significantly degrades
performance and instead proposes a method to skip the attention module efficiently. Unlike
these approaches, our method, FlexiDepth, enables adaptive layer-skipping in pre-trained
models without compromising generation performance by using a plug-in router and
adapter architecture.

6 Conclusion

We present FlexiDepth, an approach to dynamically skip layers in pre-trained large lan-
guage models. It achieves state-of-the-art performance without altering the original model
parameters. FlexiDepth offers valuable insights into the varying computational demands of
token generation. We constructed a dataset capturing these allocation patterns to encourage
further study of computational needs of tokens, thereby advancing the development of
more adaptive and resource-efficient language models.

Acknowledgements

This work was partially supported by the BioPACIFIC Materials Innovation Platform of
the National Science Foundation under Award No. DMR-1933487. We would like to thank
Facebook (now Meta) for donating the A100-40G GPUs for conducting the experiments.

10

Published as a conference paper at COLM 2025

References

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago Ontafién, Siddhartha Brahma, Yury
Zemlyanskiy, David C. Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, Yun-Hsuan Sung,
and Sumit Sanghai. Colt5: Faster long-range transformers with conditional computation.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2023, pp. 5085-5100, 2023.

Keivan Alizadeh, Iman Mirzadeh, Hooman Shahrokhi, Dmitry Belenko, Frank Sun, Minsik
Cho, Mohammad Hossein Sekhavat, Moin Nabi, and Mehrdad Farajtabar. Duo-llm: A
framework for studying adaptive computation in large language models. CoRR, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, and others. Evaluating large language
models trained on code. CoRR, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. CoRR, 2021.

DeepSeek-Al, Aixin Liu, Bei Feng, and others. Deepseek-v3 technical report. CoRR,
abs/2412.19437, 2024.

DeepSeek-Al Daya Guo, Dejian Yang, Haowei Zhang, and others. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement learning. CoRR, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
NAACL-HLT 2019, pp. 41714186, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and others. The llama 3 herd of
models. CoRR, abs/2407.21783, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti,
Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A
Aly, Beidi Chen, and Carole-Jean Wu. Layerskip: Enabling early exit inference and
self-speculative decoding. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A framework for few-shot language model evaluation, 2024. URL
https://zenodo.org/records/12608602.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan T. Chakaravarthy,
Yogish Sabharwal, and Ashish Verma. Power-bert: Accelerating BERT inference via
progressive word-vector elimination. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, pp. 3690-3699, 2020.

Shwai He, Tao Ge, Guoheng Sun, Bowei Tian, Xiaoyang Wang, Ang Li, and Dong Yu. Router-
tuning: A simple and effective approach for enabling dynamic-depth in transformers.
CoRR, 2024a.

11

https://zenodo.org/records/12608602

Published as a conference paper at COLM 2025

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all
attention is needed. CoRR, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7,2021, 2021.

Haiyang Huang, Newsha Ardalani, Anna Y. Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin S. Lee,
Carole-Jean Wu, and Benjamin Lee. Toward efficient inference for mixture of experts.
In Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report. CoRR, 2024.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters,
Pradeep Dasigi, Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh
Hajishirzi. Camels in a changing climate: Enhancing Im adaptation with tulu 2. CoRR,
2023.

Metod Jazbec, Alexander Timans, Tin Hadzi Veljkovic, Kaspar Sakmann, Dan Zhang,
Christian Andersson Naesseth, and Eric T. Nalisnick. Fast yet safe: Early-exiting with
risk control. In Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun,
and Kurt Keutzer. Learned token pruning for transformers. In KDD “22: The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August
14 - 18, 2022, pp. 784-794, 2022.

Yeachan Kim, Junho Kim, Jun-Hyung Park, Mingyu Lee, and SangKeun Lee. Leap-of-
thought: Accelerating transformers via dynamic token routing. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 15757-15769, 2023.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan
Du, Vincent Y. Zhao, Yuexin Wu, Bo Li, Yu Zhang, and Ming-Wei Chang. Conditional
adapters: Parameter-efficient transfer learning with fast inference. In Advances in Neural
Information Processing Systems 36: NeurIPS 2023, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, ICML 2023, Honolulu,
Hawaii, USA, pp. 19274-19286, 2023.

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete
and backpropagation: Straight-through and beyond. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023a.

Liyuan Liu, Jianfeng Gao, and Weizhu Chen. Sparse backpropagation for moe training.
CoRR, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 2019.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han,

and Weipeng Chen. Shortgpt: Layers in large language models are more redundant than
you expect. CoRR, 2024.

12

Published as a conference paper at COLM 2025

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018, pp. 1797-1807, 2018.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling trans-
former inference. In Proceedings of the Sixth Conference on Machine Learning and Systems,
MLSys 2023, Miami, FL, USA, June 4-8, 2023, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res., pp. 140:1-140:67, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-
of-experts inference and training to power next-generation Al scale. In International
Conference on Machine Learning, ICML 2022, Baltimore, Maryland, USA, pp. 18332-18346,
2022.

David Raposo, Samuel Ritter, Blake A. Richards, Timothy P. Lillicrap, Peter Conway
Humphreys, and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in
transformer-based language models. CoRR, 2024.

Siva Reddy, Dangi Chen, and Christopher D. Manning. Coqa: A conversational question
answering challenge. Trans. Assoc. Comput. Linguistics, pp. 249-266, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732-8740,
2020.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters.
CoRR, 2024.

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng, Yu Cheng, and Tianlong Chen. DLO: dynamic
layer operation for efficient vertical scaling of llms. CoRR, 2024.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and Chitta Baral. Investigating accelera-
tion of llama inference by enabling intermediate layer decoding via instruction tuning
with ‘lite’. In Findings of the Association for Computational Linguistics: NAACL 2024, Mexico
City, Mexico, June 16-21, 2024, 2024.

An Yang, Baosong Yang, Beichen Zhang, and others. Qwen2.5 technical report. CoRR, 2024a.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer
collapse. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
6401-6417, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pp. 4791-4800, 2019.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao Lei, Zhifeng Chen, and Claire Cui.
Learning to skip for language modeling. CoRR, 2023.

13

Published as a conference paper at COLM 2025

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina
Rezaei, and Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for
large language models. CoRR, 2024.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong,
Jiajun Chen, and Lei Li. Multilingual machine translation with large language models:
Empirical results and analysis. In Kevin Duh, Helena Gémez-Adorno, and Steven Bethard
(eds.), Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City,
Mexico, June 16-21, 2024, pp. 2765-2781, 2024.

14

Published as a conference paper at COLM 2025

A Layer allocation Examples

In this section, we present examples to illustrate the layer allocation patterns of FlexiDepth,
using the pre-trained Llama-3-8B-Instruct model (Dubey et al., 2024) as the base.

Al Language Task

Copy: Here is an example where FlexiDepth uses 21.84 layers in average per token:

Please copy this paragraph: <paragraph>Bissouma penned a professional deal with the
northern club only in July 2016, four months after joining the reserves from AS Real Bamako.
The 20-year-old, whose previous deal ran until June 2019, says he is very happy at Stade
Pierre-Mauroy. “In football, when you put in the work you always get rewarded,” Bissouma
told the club’s website. ”I still have a lot of progress to make. I want to give myself
every chance of doing that and fulfilling my objectives. ”The first is to keep the club
in Ligue 1, and then I would also like to win a trophy with Lille.” Bissouma has scored
once in 17 appearances for the club since making his debut against Toulouse in September
2016.< /paragraph> Directly output the copied paragraph here:

Bissouma penned a professional deal club four
months after joining the AS Real Bamako.\nThe 20-year-old, whose
June 201 he happy ade Pierre-Mauroy
”’In football you put in the always get rewarded,” Biss
the ”| still have a to | myself
every chance that fulfilling my objectives.\n”The first is the
igue 1 I also like to win a trophy with Lille Bissouma
in making his debut against
oulouse .<|eot.id|>

This task requires minimal contextual understanding, as it involves direct reproduction,
which explains the relatively low layer usage. The first token ‘B’ requires much more layers
to generate because the generation of the first token involves the prefilling stage, where the
whole context is been processed.

Summarization: Here is an example using 29.15 layers in average per token:

Please summarize this paragraph into a single sentence: <paragraph>Bissouma penned
a professional deal with the northern club only in July 2016, four months after joining the
reserves from AS Real Bamako. The 20-year-old, whose previous deal ran until June 2019,
says he is very happy at Stade Pierre-Mauroy. ”In football, when you put in the work you
always get rewarded,” Bissouma told the club’s website. "I still have a lot of progress to
make. I want to give myself every chance of doing that and fulfilling my objectives. “The
first is to keep the club in Ligue 1, and then I would also like to win a trophy with Lille.”
Bissouma has scored once in 17 appearances for the club since making his debut against
Toulouse in September 2016.< /paragraph> Directly output the summarized paragraph
here:

Bissouma, who signed a professional deal with Lille in July 2016 and has scored
once in 17 appearances, is happy at the club and aims to keep them in Ligue 1 and
win a trophy.<|eot_id| >

Summarization involves understanding and condensing the input into a concise form,
requiring deeper contextual abstraction and rephrasing, which leads to a higher layer usage
of 29.15 compared to copying. We observe that tokens forming predictable collocations,
such as “souma” following “Bis” in "Bissouma” or “trophy” after “win a” in “win a trophy,”
require fewer layers due to their low uncertainty after the initial tokens are generated.

Continuation: Here is an example that utilizes 31.14 layers in average:

Please continue writing this paragraph: <paragraph>Bissouma penned a professional deal
with the northern club only in July 2016, four months after joining the reserves from AS Real

15

Published as a conference paper at COLM 2025

Bamako. The 20-year-old, whose previous deal ran until June 2019, says he is very happy at
Stade Pierre-Mauroy. “In football, when you put in the work you always get rewarded,”
Bissouma told the club’s website. “I still have a lot of progress to make. I want to give
myself every chance of doing that and fulfilling my objectives. “The first is to keep the club
in Ligue 1, and then I would also like to win a trophy with Lille.” Bissouma has scored
once in 17 appearances for the club since making his debut against Toulouse in September
2016.< /paragraph> Directly output the continued paragraph here:

Despite his young age, Bissouma has already shown impressive maturity in his
performances, with his manager, Marcel Blondeau, praising him for his ability to
adapt to the team's system. ”He is a very intelligent player,” Blondeau said. "He can
play in different positions and has a good understanding of the game. He is also
very strong in the tackle and can win the ball back.” With his contract running until
2021, Bissouma is expected to continue playing a crucial role in Lille's midfield for
the coming seasons.<|eot_id|>

Continuation demands creative generation and the maintenance of contextual coherence,
necessitating long-range dependencies and novel content creation, which results in a higher
layer usage of 31.14. The generation process typically engages more layers, except for
predictable tokens like names ("Bissouma” and ”"Blondeau”), which require fewer layers
due to their memorized nature and low uncertainty.

A.2 Math Task

Repeating: Here is an example that uses 20.15 layers in average:
Please repeat the following list for 5 times: [63, 15, 43, 75, 72, 61, 48, 71]
Here is the repeated

[63

[63]

]

Repeating is a memory-based task requiring minimal computation, as it involves recalling
and reproducing the input list, which explains the low layer usage. This example fits within
the reported variance (8.08), reflecting the task’s consistent layer needs.

Addition: Here is an example that uses 22.31 layers in average:

Please calculate the sum of numbers in the following list: [63, 15, 43, 75, 72, 61, 48, 71]

Let's calculate the the in
63 + 78

78 121

121 196

196 268

268 329

329 377

377 448

The sum

Addition requires iterative computation, using more layers than repeating since FlexiDepth
calculates each intermediate sum. The right-hand side of each equation (e.g., 78", 7121”)

16

Published as a conference paper at COLM 2025

Method MMLU Hellaswag Winogrande GSM8K HumanEval CoQA

Vanilla 32.21 11.19 26.55 5.53 10.34 8.29
FlexiDepth 33.43 11.20 26.17 5.46 10.18 7.78

Table 5: Throughput (iterations/s) comparison across benchmarks.

demands more layers due to the transformer’s internal computation, while the left-hand
side (e.g., "63 + 15”) generally uses fewer layers as it copies numbers from the input. We also
find that the initial tokens on the left-hand side, such as "63” in 63 + 15”, use slightly more
layers than the rest of the left-hand side tokens. We hypothesize that this is to determine
which intermediate result to copy from the context.

Production: Here is an example that uses 24.51 layers in average:

Please calculate the product of numbers in the following list: [63, 15, 43, 75, 72,
61, 48, 71] To the the in I'll multiply each
number individually

Here's the step-by calculation
1.63 x 15 =945
2.945 40515
405 3026125
302612 218171500
218171 13311439500
133114395 637385920000
637385 45213914128000
The final product of the : 452139141280

Multiplication involves complex iterative computations, as FlexiDepth handles large inter-
mediate results and maintains numerical precision, resulting in higher layer usage. The
right-hand side of each equation (e.g., “945”, "40515”) consistently uses the full number of
layers to compute the product, reflecting the task’s high computational demand. Similar
to addition, on the left-hand side, initial tokens like ”63 x 15” in the first step may use
slightly more layers to identify the intermediate result to copy from the context. Subsequent
tokens (e.g., 7945 x 43”, 740515 x 75”) exhibit a gradually decreasing trend in layer usage,
possibly due to increasing certainty when retrieving intermediate results as the computation
progresses.

B Throughput

We evaluated the throughput of FlexiDepth compared to the vanilla Llama-3-8B-
Instruct (Dubey et al., 2024) across the paper’s benchmarks. Experiments were conducted on
8 A6000 GPUs with a batch size of 8 and 5-shot examples. For multi-token generation tasks,
we fixed the output length at 5 tokens to ensure consistent comparison. All measurements
were obtained using the Im-evaluation-harness toolkit (Gao et al., 2024), with throughput
reported as iterations per second. Table 5 presents the results across six benchmarks.

C FlexiExit

We extend FlexiDepth's layer-skipping mechanism into an early-exit framework called Flex-
iExit, which allows tokens to exit at intermediate layers. In FlexiExit, we adapt FlexiDepth's
router and adaptor modules so that a token flagged for skipping at a given layer bypasses

17

Published as a conference paper at COLM 2025

MMLU Hellaswag Winogrande GSM8K HumanEval CoQA Retain %

Model

Llama-3-8B 0.673 0.706 0.744 0.679 0.299 0.784 100.0%
FlexiExit ~_ 0.676 0741 075 0681 0220 0787 969%
Skipped 2.17 1.81 3.63 4.68 1.61 3.16 -

Table 6: Performance and skipping patterns of FlexiExit

the attention modules in all subsequent layers and is processed solely by lightweight adap-
tors. We applied FlexiExit to the Llama-3-8B-Instruct model, training it under the same

conditions as FlexiDepth but with a reduced layer-skipping weight of « = 3 x 107%. As
shown in Table 6, FlexiExit retains the performance of the original Llama-3-8B-Instruct,
while skipping an average of 1.61 to 4.68 layers. The current design of the router and adapter

remains effective in supporting early exit scenarios.

18

	Introduction
	Method
	Routing
	Attention skipping
	FFN skipping
	Layer-skipping loss

	Experiments
	Implementation details
	Main results
	FlexiDepth on different language models
	Layer allocation dataset
	Layer utilization pattern
	Ablation Studies

	Limitations
	Related works
	Conclusion
	Layer allocation Examples
	Language Task
	Math Task

	Throughput
	FlexiExit

