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Abstract

Machine learning models have been shown to inherit biases from their training datasets.
This can be particularly problematic for vision-language foundation models trained on
uncurated datasets scraped from the internet. The biases can be amplified and propagated
to downstream applications like zero-shot classifiers and text-to-image generative models. In
this study, we propose a general approach for debiasing vision-language foundation models by
projecting out biased directions in the text embedding. In particular, we show that debiasing
only the text embedding with a calibrated projection matrix su�ces to yield robust classifiers
and fair generative models. The proposed closed-form solution enables easy integration into
large-scale pipelines, and empirical results demonstrate that our approach e�ectively reduces
social bias and spurious correlation in both discriminative and generative vision-language
models without the need for additional data or training.

1 Introduction

Foundation vision-language models, such as CLIP (Radford et al., 2021), DALLE-2 (Ramesh et al., 2022),
Imagen (Saharia et al., 2022), and Stable Di�usion (Rombach et al., 2022), which are trained on extensive
multimodal data at a massive scale, have led to a significant shift in the landscape of machine learning
systems. Specifically, contrastive vision-language encoders like CLIP have the ability to perform zero-shot
inferences without fine-tuning, and language embeddings can be used to train high-quality text-to-image
models (Rombach et al., 2022).

While vision-language models demonstrate impressive capabilities, it is important to recognize that they
may also exacerbate biases (Mehrabi et al., 2021; Agarwal et al., 2021; Wang et al., 2021; Cho et al.,
2022). Recent studies (Birhane et al., 2021) have shown that the datasets these models are trained on can
contain inappropriate image-text pairs with stereotypes, racist content, and ethnic slurs. The biases are
then propagated to downstream applications (Agarwal et al., 2021; Wang et al., 2021), resulting in biased
predictions. In addition to social biases, zero-shot models derived from vision-language models can also
su�er from more general forms of spurious correlations such as image background, leading to poor group
robustness (Zhang & Ré, 2022). Biases also exist in generative models, where generated images may exhibit
bias towards certain genders and races (Cho et al., 2022; Mishkin et al., 2022). Substantial progress has
been made recently toward mitigating biases in vision-language models (Parraga et al., 2022; Berg et al.,
2022; Zhang & Ré, 2022). However, many current approaches for addressing bias in models require training
or fine-tuning the models using resampled datasets or modified objectives, which can be computationally
intensive for foundation models.

In this work, we propose a general approach for self-debiasing foundation vision-language models by projecting
out biased directions in the text embedding. Given a vision-language encoder such as CLIP, we define a set
of biased directions in the embedding using prompts that describe the biases. For instance, prompts like
“a photo of a male/female” define a biased subspace in the latent space. One approach to mitigating these
biases is to construct a projection matrix, a linear transformation of the text embedding that projects out
the biased directions (Bolukbasi et al., 2016). However, solely relying on prompts to define biased directions
may be unstable and noisy (Gonen & Goldberg, 2019). To address this issue, we propose a calibration loss
that minimizes the discrepancy of a pair of prompt embeddings. For example, given a projection matrix that
removes gender information, the projected vectors of prompts “a photo of a male doctor” and “a photo of a
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female doctor” should be similar. Based on this principle, we design an objective to calibrate the projection
matrix, which has an easily solvable closed-form solution. This allows for the construction of the projection
matrix to be training-free and requires no downstream dataset or labels, making it suitable for large-scale
models. Empirically, we find that debiasing only the text embedding with a calibrated projection matrix
su�ces to improve the group robustness of zero-shot models on well-established benchmarks.

We then extend our approach to generative models such as Stable Di�usion (Rombach et al., 2022), a widely
adopted text-to-image model conditioned on text embeddings from CLIP (Radford et al., 2021). The inherent
challenge lies in the fact that generative models are distinctly dissimilar from zero-shot classification, where
the target classes are explicitly defined. With generative models, our objective is to develop a debiasing
matrix that is universally applicable to every prompt. This matrix can then be employed as a standard
preprocessing stage prior to feeding the text embedding into the generative model. To accomplish this, we
solve the calibration matrix with a set of positive pairs which comprise various prompts from the training
dataset, and debias the unseen prompts with the obtained matrix. Similar to debiasing zero-shot models, the
projection matrix improves the diversity of generated images from text-to-image models without altering the
model parameters.

In short, this work makes the following contributions:

• We present a simple and general approach for debiasing vision-language models;
• The proposed approach does not require training, data, or labels, making it computationally e�cient for

use with foundation models;
• We evaluate our approach through experiments on both discriminative (zero-shot, text-image retrieval)

and generative (di�usion) vision-language models.

2 Related Works

Vision-Language models (Radford et al., 2021; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al.,
2022) have become increasingly widespread in recent years. However, these models are known to su�er from
spurious correlations and can be biased towards certain races and gender. Birhane et al. (2021) study the
datasets these models are trained on and show that the data biases can be inherited by the models. Various
methods have been proposed to address biases, but many of them only address single-modality models.

Biases in Language Models Large-scale language models have been shown to contain harmful or
misrepresentative biases (Blodgett et al., 2020; Nadeem et al., 2020; Weidinger et al., 2021). Previous research
has demonstrated the presence of gender bias in natural language processing systems (Bolukbasi et al., 2016;
Zhao et al., 2019) as well as racial bias (Manzini et al., 2019; Garg et al., 2018). Bolukbasi et al. (2016)
first proposed the use of orthogonal projections to remove gender biases in word embeddings. This approach
was later extended to debiasing sentence embeddings (Liang et al., 2020). Alternative methods include
regularizing the models with constraints on training data (Zhao et al., 2017; Huang et al., 2019) or directly
modifying the dataset (Sun et al., 2019; Zhao et al., 2019). However, scaling these approaches to large
foundation models can be challenging as they often require retraining the backbone encoders.

Biases in Vision Models Gender and racial biases have also been widely explored in computer vision
(Alvi et al., 2018; Wang & Deng, 2020), for discriminative models (Wang et al., 2019) and generative models
(Xu et al., 2018; Grover et al., 2019; Cho et al., 2022). Many debiasing approaches aim to learn good
representations via adversarial training (Madras et al., 2018; Wang et al., 2020), or augmenting the biased
dataset (Ramaswamy et al., 2021; Chuang & Mroueh, 2021). Beyond social bias, many works study spurious
correlations, a more general form of bias that can include features such as image background or other
non-target attributes that are correlated with labels. This problem of spurious correlations is often studied
and tackled as a group robustness problem (Sagawa et al., 2019; Izmailov et al., 2022). SJ: there s probably
more work on spurious correlation, look e.g. at Josh’s shortcuts paper Kirichenko et al. (2022) show that
last layer re-training is su�cient for robustness to spurious correlations, which aligns with our finding that
debiasing the zero-shot weights su�ces to yield robust classifiers.
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Biases in Vision-Language Models Recently, biases in multimodal settings have gained significant
attention (Agarwal et al., 2021; Hall et al., 2023). Wang et al. (2021) propose to remove dimensions in the
CLIP embedding that are highly correlated with gender attributes. Berg et al. (2022) debias the CLIP
models with prompt learning via an adversarial approach. Seth et al. (2023) learn additive residual image
representations to o�set the biased representations. Recently, Zhang & Ré (2022) address the group robustness
of vision-language models with contrastive learning. These previous works are data-oriented, where models are
trained or finetuned on labeled datasets. In contrast, our approach is fully zero-shot, which does not require
any downstream dataset and model training. To debias generative models, a recent work (Friedrich et al.,
2023) pre-defines a look-up table to provide fair guidance for text-to-image di�usion models. Nevertheless,
this method encounters limitations when faced with previously unseen classes that are absent from the look-up
table and cannot be applied to discriminative models, while our approach generalizes well to new concepts.
There is another line of work focusing on removing malignant concepts in generative models. Schramowski
et al. (2023) advocate for steering the di�usion process away from inappropriate content by subtracting the
text embedding with unsafe guidance. Subsequent studies (Gandikota et al., 2023; Kumari et al., 2023) have
built upon this idea by selectively fine-tuning parameters within these generative models. In contrast to
these e�orts, our methodology aims to balance group proportions within the output distribution. Notably,
our technique is versatile enough for implementation in both discriminative and generative models and is
characterized by its computational e�ciency.

3 Biases and Spurious Correlations

We consider a dataset where each input x œ X is associated with multiple attributes, including the target
class y œ Y and a spurious attribute a œ A. We focus on the case where biases are present and the attribute a
is spuriously correlated with the label y. For instance, the class “doctor” could be correlated with the spurious
attribute “gender” in the datasets foundation models are trained on (Birhane et al., 2021). Importantly, these
biases can be transferred to downstream tasks, both discriminative and generative.

Discriminative Models First, we examine the biases present in zero-shot classifiers obtained via a vision-
language encoder such as CLIP. These classifiers are built by assigning each row of the linear classifier weight
— œ RK◊d to be the embedding of a “class prompt”, for example, “a photo of a [class name]” (Radford et al.,
2021). Importantly, it does not require any data or training to construct these zero-shot classifiers. However,
it is possible for these zero-shot classifiers to inherit biases from the dataset used to train the vision-language
models. To study these biases, we utilize the group robustness framework proposed by Sagawa et al. (2019).
In this setting, groups are defined by a combination of the labels and spurious attributes: G œ Y ◊ A. Given
a distribution Pg conditioned on g œ G and a loss function ¸ : Y ◊ Y æ R, group robustness requires that the
classifier f : X æ Y achieves a small gap between its worst-group error and average error:

max
gœG

Ex,y≥Pg [¸(f(x), y)] ≠ Ex,y≥P [¸(f(x), y)] . (1)

Our goal is to attain superior group robustness, namely, minimizing the discrepancy in error rates. The
definition of metrics for text-image retrievals, such as maximal skewness (Geyik et al., 2019), will be deferred
to the experiment section.

Generative Models A text-to-image model learns a conditional distribution P̂ (X|Z = z), where z is the
embedding of the prompt. However, the biased nature of the dataset used to train the generative model
can a�ect the distribution P̂ . To measure the bias present in generative models, recent works (Choi et al.,
2020; Teo & Cheung, 2021) propose using statistical parity. Specifically, given a classifier h : X æ A for
the spurious attribute, the discrepancy of the generative distribution P̂ is defined as the L2 norm between
empirical and uniform distributions (Choi et al., 2020):

Ûÿ

aœA

!
Ex≥P̂

#
h(x)=a

$
≠ 1/|A|

"2
. (2)

In practice, the expectation is estimated empirically with samples. A fair generative model minimizes the
discrepancy by ensuring that each attribute a œ A has an equal probability of occurring in the data.
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CelebA Waterbird
Male Female Land Water

dark hair / landbird 0.83 0.78 0.75 0.66
blond hair / waterbird 0.77 0.85 0.65 0.70

Table 1: Cosine similarity between classifier
weights and spurious directions: in both datasets,
the classifier weights are biased toward certain spurious
attributes. The labels and spurious attributes are binary
variables in both datasets.

A photo of a male doctor.

A photo of a female doctor.
A photo of a doctor.

Figure 1: Calibration with Positive Pairs. Upon
projecting out irrelevant features (such as gender), the
embeddings of group prompts (zi and zj) should exhibit
similarity and contain only information pertaining to the
target class (e.g. doctor).

4 Debiasing Discriminative Models

It is essential for a robust classifier to evade dependence on irrelevant features present in images. This
necessitates the classifier to be invariant to image backgrounds and insensitive to attributes such as race or
gender. Prior research has employed datasets with target labels and spurious attributes to quantify and
eliminate biases (Sagawa et al., 2019; Zhang & Ré, 2022). However, this approach is not feasible in a zero-shot
setting, where data and training are prohibitive.

4.1 Measuring Biases with Prompts

In contrast to previous approaches, our proposed method for measuring biases utilizes prompts, drawing
inspiration from studies on debiasing word embeddings (Bolukbasi et al., 2016). The use of vision-language
contrastive training allows for the description of irrelevant features through natural language. As such,
embeddings of prompts such as “a photo of a [irrelevant attribute]" can capture these spurious features in the
visual embedding. Consequently, the bias of a classifier can be quantified by computing the cosine similarity
between its weights and the corresponding spurious feature. Table 1 illustrates the cosine similarity between
the embeddings of prompts that describe the target classes and irrelevant attributes, using two popular
group robustness benchmarks: Waterbird (Sagawa et al., 2019) and CelebA (Liu et al., 2015). The details
of datasets and the specific prompts can be found in section 5 and appendix C.1. The results demonstrate
that the classifier weights are inclined towards certain irrelevant attributes (gender or image background),
implying that the classifiers could use these spurious directions to make predictions.

4.2 Debiasing via Orthogonal Projection

As the zero-shot weights can also be viewed as natural language embeddings, a straightforward approach is to
follow the debiasing pipeline employed in word and sentence embeddings (Bolukbasi et al., 2016; Liang et al.,
2020). In particular, to make the classifier invariant to irrelevant features, we align the classifier weights with
the orthogonal complement of the embeddings associated with spurious prompts. Let A œ Rd◊m be a matrix
whose columns are the embeddings of spurious prompts. The orthogonal projection matrix is then:

P0 = I ≠ A(AT A)≠1AT .

We can use the projection matrix to eliminate spurious directions in a text embedding z as P0z.

4.3 Calibrating the Projection Matrix

It is essential to acknowledge that the estimation of the irrelevant feature directions may introduce an
approximation error in the projection matrix (Gonen & Goldberg, 2019). Additionally, in certain scenarios,
it may be challenging to thoroughly describe the irrelevant attribute using a limited number of prompts,
resulting in increased uncertainty in the projection matrix estimation. This issue is also evident in our
empirical results (Table 2 and 4), where the use of orthogonal projection fails to enhance performance.

To improve the estimation of the projection matrix, we propose to leverage positive pairs of prompts that are
expected to have the same semantic meaning after projection. In particular, the embedding of prompts such
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as “a photo of a [class name] with [spurious attribute]” should only contain information about “[class name]”
after projecting out the spurious information, as Figure 1 illustrates. Motivated by this intuition, we propose
to regularize the di�erence between the projected embeddings using a set of positive pairs S:

min
P

ÎP ≠ P0Î2 + ⁄

|S|
ÿ

(i,j)œS

ÎPzi ≠ PzjÎ2 , (3)

where (zi, zj) is the embedding of pair (i, j) in S and (i, j) are prompts that describe the same class but
di�erent spurious attributes. The loss encourages the linear projection P to be invariant to the di�erence
between (i, j), i.e., the spurious attributes. The optimization problem has a convenient closed-form solution,
as demonstrated in Lemma 4.1.
Lemma 4.1. The minimizer of the calibration loss is

P ú = P0
1

I + ⁄

|S|
ÿ

(i,j)œS

(zi ≠ zj)(zi ≠ zj)T
2≠1

.

We can obtain an interpretation of the minimizer by relating it to singular value decomposition (SVD). Let
Zdi� œ Rd◊|S|, where the columns of Zdi� enumerate the pairwise di�erence zi ≠ zj for all (i, j) œ S. The
matrix Zdi� defines a subspace that represents the variation in the embedding when the irrelevant feature is
changed. Using Zdi�, the minimizer can be written as P ú = P0(I + ⁄ÕZdi�ZT

di�)≠1, where we define ⁄Õ = ⁄/|S|
to simplify the notation. Assume that the SVD of Zdi� is U�V T . Then we have Zdi�ZT

di� = U�2UT . The
optimal solution P ú can then be rewritten as

P ú = P0(U(I + ⁄Õ�2)UT )≠1 = P0 U(I + ⁄Õ�2)≠1UT

¸ ˚˙ ˝
Calibration Matrix

.

We can see that U(I + ⁄Õ�2)≠1UT acts as a calibration term. Before multiplying the text embedding with the
projection matrix P0, variation due to the change of the spurious feature, namely, the eigenvectors with large
squared singular value in Zdi� (spurious direction) will be down-weighted due to the inverse (I + ⁄Õ�2)≠1.
Therefore, varying the spurious attributes should result in similar embeddings after multiplying the calibration
matrix.

4.4 Relation to an Equalization Loss

Finally, we provide an equivalent form of the calibrated projection. Ideally, we want each row of the classifier
weight — œ RK◊d to have similar cosine similarity to pairs of embeddings in S. For instance, the embedding
of “a photo of a doctor” should be equally similar to “a photo of a male doctor” and “a photo of a female
doctor”. In this section, we will show that the optimum of the calibration loss does satisfy this criterion.

We consider the following objective for obtaining a debiased text embedding z œ Rd of a prompt given its
initialization z0 œ Rd from the text encoder:

min
z

Îz ≠ z0Î2 + ⁄

|S|
ÿ

(i,j)œS

(zT zi ≠ zT zj)2. (4)

The loss encourages the embedding z to have similar cosine similarity to embeddings in positive pairs while
maintaining proximity to the initialization z0. Objective (4) has the same optimal solution as the calibration
loss (3).
Lemma 4.2. The minimizer of objective (4) reads

zú =
1

I + ⁄

|S|
ÿ

(i,j)œS

(zi ≠ zj)(zi ≠ zj)T
2≠1

¸ ˚˙ ˝
Calibration Matrix

z0

In particular, we have P0zú = P úz0 where P ú
is the minimizer of the calibration loss (3).
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Backbone CLIP ResNet-50 CLIP ViT-L/14

Dataset Waterbird CelebA Waterbird CelebA
WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

methods using data and labels
ERM Linear 7.9 93.5 85.6 11.9 94.7 82.8 65.9 97.6 31.7 28.3 94.7 66.4
ERM Adapter 60.8 96.0 35.2 36.1 94.2 58.1 78.4 97.8 19.4 36.7 94.2 57.5
WiSE-FT 49.8 91.0 41.2 85.6 88.6 3.0 65.9 97.6 31.7 80.0 87.4 7.4
DFR (Sub) 63.9 91.8 27.9 76.9 92.5 15.6 51.9 95.7 43.8 76.3 92.1 15.8
DFR (Up) 51.3 92.4 41.1 89.6 91.8 2.2 65.9 96.1 30.2 83.7 91.2 7.5
CA 83.7 89.4 5.7 90.0 90.7 0.7 86.9 96.2 9.3 84.6 90.4 5.8

methods without data and labels
Zero-shot 39.6 77.3 37.7 75.9 82.3 6.4 45.3 84.4 39.1 72.8 87.6 14.9
Orth-Proj (Ours) 48.1 83.6 35.4 61.4 86.4 25.0 61.4 86.4 25.0 71.1 87.0 15.9
Orth-Cali (Ours) 74.0 78.7 4.7 82.2 84.4 2.2 68.8 84.5 15.7 76.1 86.2 10.1

Table 2: Group Robustness of Vision-Language Models. For each backbone, the first blocks contain methods
that require data and labels, while the second blocks contain zero-shot methods. The numbers for the first block are
adopted from Zhang & Ré (2022). The proposed calibration loss achieves comparable or even smaller gaps between
average and worst group accuracy without the need for any data or labels.

Lemma 4.2 shows that the optimal solution of (4) is equivalent to multiplying the original embedding z with
the calibration matrix defined before. Applying the projection P0 to zú leads to the same weight as in Lemma
4.1. The equalization objective has a similar motivation as the equalization step proposed by Bolukbasi et al.
(2016) in their work on removing gender bias from word embeddings. Given a set of word embeddings that
has the same semantic meaning except for gender, their approach centers these embeddings by simply setting
them to the average embedding of the set. After centering, any word in the dictionary will be equidistant
to all words in the set. However, their approach fails to extend to debiasing zero-shot classifiers as we are
primarily concerned with the embedding of z instead of zi and zj . Our approach di�ers in that we modify
the embedding of the target prompt z, rather than the embedding of positive pairs, making it applicable for
debiasing general vision-language models.

5 Experiments: Discriminative Models

5.1 Group Robustness against Spurious Correlations

By following the setting of Zhang & Ré (2022), we evaluate our approach on two popular benchmarks for
evaluating spurious correlations, Waterbird (Sagawa et al., 2019) and CelebA (Liu et al., 2015). On Waterbird,
a water/land background is a confounding factor for the waterbirds/landbirds class, while on CelebA the
binary gender is the spurious feature for blond/dark hair. As such, both datasets contain four groups defined
by the labels and the spurious attributes.

We evaluate our approach against several baselines, including zero-shot classification (Radford et al., 2021),
empirical risk minimization (ERM) with linear probing (Kumar et al., 2022), and ERM with non-linear
adapter (Gao et al., 2021). Additionally, we also consider three recent methods designed to improve the
group robustness of vision-language foundation classifiers:

• Weight Space Ensembling (WiSE-FT) (Wortsman et al., 2022), which trains a linear classifier first using
ERM and then combines the classifier outputs with the initial zero-shot predictions;

• Deep Feature Reweighting (DFR) (Kirichenko et al., 2022), which trains a linear probe on embeddings
obtained from a pre-trained model using group-balanced data. Following Zhang & Ré (2022), the group
labels are replaced with zero-shot predictions;

• Contrastive Adapter (CA) (Zhang & Ré, 2022), which trains adapters using contrastive learning to bring
embeddings in the same class closer.
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Waterbird CelebA
WG Avg Gap WG Avg Gap

Proj only 48.1 83.6 35.4 61.4 86.4 25.0
Cali only 55.6 81.6 26.0 81.6 84.7 3.1
Proj + Cali 74.0 78.7 4.7 82.2 84.4 2.2

Table 4: Dissecting Orthogonal Projections. We
evaluate variants of orthogonal projection with ResNet-50
backbone.

CLIP ViT-B/32 CLIP ViT-L/14
Gen Race Age Gen Race Age

Zero-shot .206 .743 .797 .206 .768 .703
Orth-Proj .146 .755 .635 .349 .605 .706
Orth-Cali .102 .638 .641 .200 .461 .662

Table 5: Measuring biases on FairFace. We
MaxSkew@1000 (the smaller the better) on FairFace vali-
dation set.

It is important to note that all of the baselines except the zero-shot classifier require at least training
data and class labels, while our debiasing approach does not require access to any input data, labels, or
group labels, which follows the principles of zero-shot learning.

Waterbird CelebA
WG Avg Gap WG Avg Gap

⁄ = 200 71.8 80.8 9.0 80.7 83.9 3.2
⁄ = 400 72.9 79.5 6.6 81.6 84.2 2.6
⁄ = 600 73.5 79.2 5.7 81.9 84.3 2.4
⁄ = 1000 74.0 78.7 4.7 82.2 84.4 2.2

Table 3: Sensitivity to ⁄. We vary the
weighting parameter ⁄ and evaluate group ro-
bustness with ResNet-50 backbone.

We evaluate the performance of our proposed approach using
two CLIP backbones: ResNet-50 (He et al., 2016) and ViT-L/14
(Dosovitskiy et al., 2020). The results are presented in Table 2.
The results indicate that a simple application of the orthogonal
projection (Orth-Proj) by itself only yields limited improvement
of the worst group accuracy, whereas the calibration loss (Orth-
Cali) significantly improves robustness across datasets and base
models. The proposed Orth-Cali method achieves comparable or
even smaller gaps between average (Avg) and worst group (WG)
accuracy compared to the state-of-the-art contrastive adapter
(Zhang & Ré, 2022), without the need for any data or labels.
Note that the baselines generally achieve better average accuracy
as they require fine-tuning on the target datasets.

Empirically, we found that gradually increasing the parameter ⁄ improves the worst group accuracy and leads
to a stable solution as shown in Table 3. Therefore, for all the experiments on discriminative models, we set
⁄ to 1000 by default. To investigate the importance of orthogonal projection and calibration, we present
an ablation study in Table 4. The results indicate that the calibration loss alone (P0 = I) performs well on
the CelebA dataset, as the spurious feature (gender) is relatively easy to describe with prompts. However,
performance drops on the Waterbird dataset without a good initialization from the orthogonal projection.
More ablation studies can also be found in Appendix D, where we demonstrate the importance of class names
in positive pairs.

5.2 Debiased Information Retrieval

Fairness in text-image retrieval has gained increasing attention in recent years. Building on the work of
Berg et al. (2022), we propose to utilize the MaxSkew metric, introduced by Geyik et al. (2019), to evaluate
the level of fairness in the retrieval results. Specifically, we conduct our analysis on the FairFace dataset
(Kärkkäinen & Joo, 2019), which is specifically designed to address issues of fairness in facial recognition
systems. Given a ranked list of images in response to a text query, let ra,k be the ratio of the top k images
that are labeled with attribute a. Then MaxSkew@k is defined as maxaœA log ra,k

1/|A| . It quantifies the maximal
discrepancy between the ratio of top k images labeled with a specific sensitive attribute, denoted as ra,k, and
the uniform weight 1/|A|, where A represents the set of sensitive attributes. The MaxSkew metric provides a
useful measure of fairness in text-image retrieval systems, by assessing the degree to which the retrieval results
are evenly distributed across sensitive attributes. A small MaxSkew value indicates that the distribution of
retrieved images across di�erent sensitive attributes is close to being uniform.

To measure the bias, we query the validation set of FairFace based on 10 prompts that are uncorrelated
with facial expressions or sensitive attributes, e.g., “a photo of a [concept] person”, where the [concept] is a
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neutral concept such as evil or smart. The detailed prompts are described in Appendix C. We measure the
MaxSkew based on three labeled attributes of FairFace: gender, race, and age. Table 5 shows the average
MaxSkew@1000 over concepts, demonstrating that our approach significantly reduces the MaxSkew across
di�erent attributes and backbones.

6 Debiasing Generative Models

We now explore the possibility of extending the methodology developed for discriminative models to generative
models. Our primary focus is on addressing social group biases, specifically gender and race discrepancy, as
measured by metric (1). In particular, our running example and main experiment is to query the generative
model using profession-related prompts, specifically “a photo of a [profession]". Empirically, the generated
images were found to exhibit a strong bias towards certain gender and race, and we attempt to improve the
diversity of generated images with the proposed equalization loss in this section. We also demonstrate that
our approach can address spurious correlations beyond social biases.

A Single Matrix for Comprehensive Debiasing Unlike the well-defined targets prevalent in zero-shot
classification, the nature of generative models requires a more universal solution. Specifically, we seek to
derive a debiasing matrix capable of accommodating any prompt. This matrix could subsequently be treated
as a standardized preprocessing step, applied prior to the introduction of the embedding into the generator.

To achieve this, we optimize the equalization loss with positive pairs consisting of an enumeration of “a
photo of a [attribute] [profession]” where the [attribute] is a member of the set of gender or races and the
[profession] is a job title sampled from a training set. For instance, to mitigate gender bias, we adopt S =
{(“a photo of a male doctor”, “a photo of a female doctor”), · · · , (“a photo of a male engineer”, “a photo of a
female engineer”) }. By solving the calibration matrix with professions in the training set, we expect the
obtained matrix can also mitigate the biases in unseen professions. Note that we optimize the equalization
loss (4) without applying the initial orthogonal projection matrix P0. This is because our goal is to balance
rather than completely eliminate biased information in the generated images.

7 Experiments: Generative Models

To evaluate the e�ectiveness of our approach in the context of generative models, we conducted experiments
using the Stable Di�usion (SD) v2.1 framework (Rombach et al., 2022). We construct a list of professions
that consists of 100 job titles with GPT-4 (OpenAI, 2023) and randomly separate them into 80 training
and 20 testing professions. The complete list can be found in appendix C. In alignment with the framework
proposed by Kärkkäinen & Joo (2019), we consider the gender attributes of male and female, and racial
attributes of White, Asian, Black, Indian, and Latino.

It is essential to recognize gender and race are complex social constructs that cannot be simply reduced to
binary or discrete categories. The choice of using binary gender and discrete race attributes in our work was
primarily based on the existing literature and benchmark datasets that have commonly adopted this setting
for evaluation purposes (Barocas et al., 2019).

Evaluating generative models can be challenging without the use of human labels. Inspired by Cho et al.
(2022), we used sensitive attribute classifiers to predict the sensitive attributes of the generated images.
The discrepancy, as defined in equation 2, was then calculated. In particular, we generate 100 images for
each train / test profession for evaluation, resulting in 10000 images for each model. We then leverage the
CLIP classifier to predict the sensitive attributes to calculate the discrepancy. An alternative to CLIP is the
FairFace classifier (Kärkkäinen & Joo, 2019); however, we found that the domain shift between the FairFace
dataset and the generated images significantly impairs its performance. The debiased and biased models
share the same random seed for fair comparison. We set ⁄ = 500 for all the experiments in this section. Note
that it only takes a few seconds to compute the calibrated projection matrix on a single CPU.
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Figure 2: Improving Gender Diversity of Stable Di�usion. We fix the random seed of initial latent noise of
Stable Di�usion (Rombach et al., 2022) and generate the images with the training / testing prompt “a photo of a
doctor / firefighter”. The results demonstrate that applying the calibration matrix to the prompt embedding improves
the balance between male and female in the generated images.

7.1 Measuring the Generalization of Calibration

Gender Race
before after before after

train 0.56 0.14 0.70 0.23
test 0.54 0.16 0.69 0.26

Table 6: Di�erence between em-
beddings (⁄ = 500).

We first examine whether minimizing the calibration loss with train-
ing prompts can yield a calibration matrix that also works for unseen
(testing) professions. In particular, we measure the average L2 di�er-
ence between the projected embedding

q
(i,j)œStest

ÎPzi ≠ PzjÎ /|Stest| for
testing prompts and show the results in Table 6. We can see that the
calibration matrix successfully minimizes the di�erence after projection,
even for unseen professions.

7.2 Quantitative and Qualitative Results
Gender Race

Train SD 0.472±0.225 0.485±0.160
Ours 0.395±0.205 0.434±0.163

Test SD 0.412±0.255 0.528±0.184
Ours 0.354±0.253 0.455±0.169

Table 7: Discrepancy between Groups. Cali-
bration matrix reduces the discrepancy over gender
and race. The calibration matrix derived from the
training set generalizes well to testing set.

The results presented in Table 7 demonstrate a significant
reduction in both gender and race discrepancy after debias-
ing. Importantly, the improvements are observed for both
training and testing professions, implying that the obtained
debiasing matrix can generalize beyond training prompts.
To further illustrate the e�ectiveness of our approach, we
present quantitative results for mitigating gender bias in Fig-
ure 2. By applying the calibration matrix to balance the male
and female directions, the gender diversity of the generated
images significantly improved. Additional examples can be
found in appendix D.

Compared to gender bias, we found that addressing racial bias is a more challenging task. One source of
complexity is the ambiguity of ethnicity, as individuals may identify with multiple races. Nevertheless, as
Figure 3 and Table 7 demonstrate, the diversity in the output images is improved by simply debiasing the
prompt embedding with the calibration matrix.
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Figure 3: Improving Racial Diversity of Stable Di�usion. We again generate the images with Stable Di�usion.
After applying the calibration matrix, the race attributes are more diverse in the generated images.

7.3 Human Evaluation

Gender Race

SD 0.472±0.257 0.723±0.185
Ours 0.372±0.253 0.589±0.188

Table 8: Human Evaluation on
Group Discrepancy. We calculate the
discrepancy on testing professions with
human annotations. Our approach im-
proves the diversity of Stable Di�usion
by a non-trivial margin.

Despite the scalability, the prediction from a trained classifier could
be erroneous. Therefore, we also evaluate our approach with human
evaluation, where we invite annotators of di�erent genders, races, and
nationalities to label the sensitive attributes of the generated images.
Details and the interface are included in appendix C.2. For human
evaluation, we generate 25 images for each test profession, resulting
in 500 images for each model. As Table 8 shows, our approach greatly
improves the diversity of the generated images, namely, reducing the
discrepancy between the ratio of groups.

7.4 Beyond Social Biases
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Figure 4: Debiasing generation against Non-
social Biases. The results demonstrate the ability
of the proposed method to generate images of water-
birds in both land and water backgrounds.

Our approach can also be applied to address general
spurious attributes beyond social biases. As an exam-
ple, we draw inspiration from the WaterBird dataset
(Sagawa et al., 2019) and debias the prompt “a photo
of a waterbird” by using {“a photo of a [animal] with
water background” and “a photo of a [animal] with land
background” } as positive pairs, where we construct
a list of 100 names of animals with GPT-4 (OpenAI,
2023). As Figure 4 illustrates, our approach success-
fully generates images of water birds in both land and
water backgrounds, whereas the original models only
generated images with water background.
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8 Conclusion

In this work, we present a new approach to debiasing vision-language foundation models by utilizing prompts
to mitigate biases. The proposed calibrated projection e�ectively mitigates biases in both discriminative
and generative vision-language models without any additional training or data. A potential area for future
exploration involves the application of our technique to concept removal. This would allow for the use
of our projection methods in eradicating copyrighted and inappropriate content in text-to-image models.
Furthermore, the outlined objective can be expanded to accommodate non-linear scenarios, addressing more
intricate biases in the model, by employing alternative optimization methods like stochastic gradient descent.
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