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Abstract
The manual evaluation of natural language processing systems is costly and time-consuming, especially when targeting
people with specific attributes as evaluators. Current large language models (LLMs) are reported to outperform humans
at various tasks, and recently have been used as substitutes for human evaluators. LLMs also have shown the ability to
behave as specified in a prompt. This progress raises a fundamental question: can LLMs mimic the behavior of language
learners? In this study, we intentionally weaken LLMs aiming to make them simulate language learners on multiple-choice
reading comprehension tests. By comparing answer distributions from language learners and LLMs, we observe that prompts
designed to weaken the LLMs indeed degrade their performance. However, this degration does not bridge the gap between
the original LLMs and language learners, thereby hilighting a critical discrepancy between them.
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1. Introduction
In the field of Natural Language Processing (NLP), the
evaluation of systems is commonly categorized into two
approaches: automatic and manual evaluation. Manual
evaluation, which is considered more reliable, involves
methods ranging from subjective scoring on scales, such
as a 5-point rating, to task-based assessments like solving
comprehension questions. Despite its reliability, manual
evaluation requires greater time and cost investments
[1].

The difficulty of conducting manual evaluation signifi-
cantly increases when targeting individuals with specific
attributes, as access to these groups becomes more diffi-
cult. This has resulted in the diminished prioritization
of their participation, calling into question the trustwor-
thiness of manual evaluation. For instance, in the text
simplification task, which aims to make texts more read-
able and understandable, children, language learners, and
people with disabilities are considered ideal evaluators
for the simplicity of texts, as they are presumed to bene-
fit most from the simplification [2]. Nevertheless, stud-
ies on text simplification have relied on native speakers
or people who do not need simplified texts for manual
evaluation [3, 4], rarely involving individuals who need
simplification, probably due to significant disparities in
accessibility to diverse groups. Indeed, Sauberli et al.
[5] recently demonstrated subjective differences in per-
ceived text difficulty between people with and without
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Answer the following reading comprehension
question as if you are a CEFR B1 level English
learner. Learners at this level can understand
the main points of...

{1-shot exapmle}

CONTEXT: A friend once asked me why I travel
when I can see everything on the television.
I agreed that...
QUESTION: What is Sam Fradd's aim in this text?
OPTIONS:
A) to encourage people to keep...
B) to explain reasons for...
C) to describe the route...
D) to advertise his...
ANSWER:
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Figure 1: Overview of our experimental setup. We investi-
gate whether it is possible to make next-token probabilities of
LLM closer to selection distribution by language learners, by
weakening the LLM.

intellectual disabilities, highlighting the importance of
their involvement.

Recent advancements in NLP, especially with Large
Language Models (LLMs), may address this bottleneck.
One line of work has attempted to substitute manual
evaluation with assessments conducted by LLMs [6, 7, 8],
seeking immediate and inexpensive annotations of higher
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quality. Another set of studies has reported that LLMs
are capable of emulating a specific persona by including
attributes in a prompt [9, 10].

Therefore, we wonder if LLMs could be prompted to
serve as substitutes for specific personas. This study
specifically focuses on language learners, investigating
whether LLMs can mimic their response patterns. This
approach could potentially offer a more accessible means
of obtaining evaluations for tasks that ideally require
responses from specific target groups, such as predicting
the difficulty of questions without a pilot pretesting stage,
simply by providing their attributes in the prompt.

To judge the mimicability of LLMs, we compare re-
sponses to multiple-choice reading comprehension (RC)
tests, which have been widely used to measure language
comprehension [11], from language learners and NLP
systems. Using the CMCQRD dataset [12], which is a
recently released four-choice RC test dataset with se-
lection distributions from language learners, we aim to
investigate if LLM output can closely approximate these
distributions. While fine-tuning encoder models is one
approach to pursuing distributions closer to those of hu-
mans [13], prompting LLMs has the potential to target a
broader range of personas, suggesting enhanced applica-
bility.

Figure 1 illustrates the outline of our experimental
setup. Given that current models in the NLP field often
achieve or even surpass human-level performance on
various tasks [14], it is reasonable to presume that LLMs
could outperform the average language learner on RC
tests. Hence, LLMs need to be weakened to mimic lan-
guage learners. We try several prompting techniques to
degrade LLM performance and analyze their effects.

Contrary to our expectations, our preliminary experi-
mental results show that the prompts considered do not
lead LLMs to mimic language learners. Furthermore,
we observe that the questions LLMs tend to answer in-
correctly differ significantly from those that language
learners struggle with. This discrepancy suggests a need
for deeper analysis when we try to utilize LLM as a re-
placement for human evaluation.

2. Related Work

2.1. Human Response to Reading
Comprehension Dataset

Reading comprehension (RC) tests have been widely used
in psycholinguistic studies to assess how well readers,
especially language learners, understand the content of
a given text [15]. While these studies have seldom made
their original data publicly available, research in natural
language processing has made standard datasets avail-
able to measure the text comprehension abilities of ma-

chines [16, 17], sometimes for specific capabilities such
as reasoning in HotpotQA [18] and the use of external
knowledge in ReClor [19]. However, these datasets are
designed only to measure system performance, not for
comparison with human responses. As a result, human
responses to RC are absent from these datasets. There is
limited research that compares responses from machines
and humans, and even these studies typically offer only
summarized data [20]. This data shortage has hindered
research into machine emulation of human response.

In contrast to this scarcity, CMCQRD [12] is a unique
RC dataset which includes response data from language
learners. CMCQRD adopts a multiple-choice setting like
many of the RC datasets mentioned above, and includes
the distribution of the choices among options. RC tests
and participants are categorized based on the CEFRwhich
is a guideline used to describe achievements of foreign
language learners. Among the six reference levels (A1,
A2, B1, B2, C1, C2) of the CEFR, independent- (B1, B2)
and proficient-level (C1, C2) are considered in the CM-
CQRD dataset. In other words, each question in this
dataset is labeled with a difficulty level ranging from B1
to C2 according to the CEFR, and also includes the selec-
tion distribution by language learners whose proficiency
corresponds to these labeled levels. This information
enables a detailed analysis of the differences between lan-
guage learners and machines. Liusie et al. [13] compared
outputs from an ELECTRA-based classification model
with human responses, reporting low similarity due to
the model performing worse than language learners.

2.2. Prompts that Alter LLMs’ Behaviour
in Question Answering

Retrieving distributions for multiple-choice questions
from LLMs involves obtaining not only the final answer
but also the probabilities associated with each option.
While it is nontrivial to extract an answer or a probabil-
ity because of the auto-regressive nature of text genera-
tion by LLMs, Robinson et al. [21] demonstrated that a
multiple-choice prompt can lead to a higher probability
of generating option symbols as the next token, espe-
cially with one or few-shot settings. Unlike a traditional
cloze prompt, which selects the option with the highest
sequence’s probability without giving other options, a
multiple-choice prompt provides all options simultane-
ously and selects the one with the highest probability for
the option symbols.

However, even in this setting, it has been reported that
LLMs respond less robustly to certain prompts [22, 23].
Utilizing this vulnerability, Santurkar et al. [10] suggested
that LLMs can change the distributions of attitude op-
tions towards controversial social topics, when given
prompts that mimic the behavior of a human group with
specific attributes. LLMs’ behaviour will also change



when given a degree of certainty like ”Perhaps it’s” [24].
This change was observed in response to context-free
open-ended questions, highlighting an opportunity for
extended research in multiple-choice RC tests.

3. Experimental Setup
The primary objective of this work is to investigate
whether LLMs canmimic the responses of language learn-
ers in solvingmultiple-choice RC tests. In this section, we
outline our experimental setup, utilizing the CMCQRD
dataset [12], which includes responses from at least 100
language learners per question, providing information
about answer probability distributions. Our analysis com-
pares the next-token probability on each option by LLMs
with the choice patterns of language learners, aiming to
understand the extent of LLMs’ capability in emulating
learner-like understanding in RC tasks.

Assuming that up-to-date LLMs outperform average
language learners, degrading these models is needed to
bring their output distributions closer to those of lan-
guage learners. We employ several methods to weaken
the LLM performance and compare the results to the
language learners.

Dataset The CMCQRD dataset consists of 4-choice
English RC tests, labeled with difficulty levels ranging
from CEFR B1 to C2. A subset of CMCQRD includes
responses from non-native English speakers whose pro-
ficiency aligns with the difficulty label [12, 13]. We refer
to this set of responses as the human distribution.

Table 1 shows the statistics of the CMCQRD dataset.
The average accuracies of language learners are around
60%, while the accuracies of their mode selections are
around 90%. In this experiment, we exclusively use ques-
tions at levels B1 and B2 with a human distribution, cor-
responding to intermediate levels of proficiency. Our
focus on these levels is driven by our aim to assess the
ability of LLMs to reproduce the challenges faced by lan-
guage learners who are not fully proficient in reading
comprehension.

LLM Settings Since the outputs of LLMs are auto-
regressive and free-form, some techniques are required
to increase the likelihood of desired tokens in subse-
quent outputs. To this end, we employ a multiple-choice
prompting approach for RC, as described in Robinson
et al. [21]. This approach provides LLMs with a single
natural language prompt that concatenates the context,
a question, options, and an option-symbol-prompting
word, such as ”Answer:”. We take advantage of the next-
token probabilities to the distribution by LLM. The logits
of next tokens associated with option symbols, {A, B, C,
D} on 4-choice tests, are normalized using softmax.

Table 1
Statistics of CMCQRD dataset. We use RC tests at B1 and B2
levels with responses.

w/o responses w/ responses
CEFR Num Num Num Num Mode Avg
Level Text QA Text QA Acc Acc
B1 5 25 23 115 0.913 0.590
B2 21 160 37 262 0.882 0.594
C1 13 86 12 83 0.880 0.613
C2 3 20 6 42 0.833 0.681

We adopt GPT-4o1 and LLaMa-2-70B [25] with one-
shot prompting. We run LLaMa-2-70B using theHugging-
Face library with 4-bit quantization.2 The temperature
parameter is set to 1.0 for both models.

Evaluation To compare human and LLM outputs, we
use mode accuracy, average accuracy, and KL divergence
following Liusie et al. [13], and also correct/wrong F1
score. Below is the description of these metrics.

1. Mode Accuracy: how frequently the most plausi-
ble symbol by LLM is the correct answer, denoted
as

Mode Accuracy = 𝔼[argmax𝑦(𝑝
LLM) = 𝑦ans],

where 𝑝 represents probabilities for each option
and 𝑦ans is the correct option.

2. Average Accuracy: how frequently the correct
option is selected on average by LLM, denoted as

Average Accuracy = 𝔼[𝑦LLM = 𝑦ans].

3. KL Divergence: the similarity between two distri-
butions [26], denoted as

KL Divergence = ∑
𝑜
𝑙𝑜 log

𝑙𝑜
ℎ𝑜
,

where 𝑜 represents an option selection, with the
LLM and human distribution fixed to 𝑙 and ℎ, re-
spectively.

4. Correct/Wrong F1: the macro-averaged f1 score
focused on question-wise correct and wrong con-
sistency on mode options, denoted as

Correct/Wrong F1 = 1
2
(F1correct + F1wrong),

where each F1 score is calculated based on the
elements of confusion matrix, such as TPcorrect =
∑𝑖[(𝑦

𝐿𝐿𝑀
𝑖 = 𝑦𝑎𝑛𝑠𝑖 ) ∧ (𝑦𝐻𝑢𝑚𝑎𝑛

𝑖 = 𝑦𝑎𝑛𝑠𝑖 )] and
FPwrong = ∑𝑖[(𝑦

𝐿𝐿𝑀
𝑖 ≠ 𝑦𝑎𝑛𝑠𝑖 ) ∧ (𝑦𝐻𝑢𝑚𝑎𝑛

𝑖 = 𝑦𝑎𝑛𝑠𝑖 )].

Furthermore, we calculate the summation of the prob-
abilities for option symbols appearing as the next token
to evaluate the effectiveness of the prompts.
1https://openai.com/index/hello-gpt-4o/
2https://huggingface.co/meta-llama/Llama-2-70b-hf
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Table 2
Result on CMCQRD Dataset. Values on KL and C/W F1 are those compared to Human language learners above.

B1 B2
Mode Avg C/W Sum Mode Avg C/W Sum

System Prompt Acc Acc KL↓ F1↑ Prob. Acc Acc KL↓ F1↑ Prob.

Human - 0.913 0.585 - - - 0.885 0.592 - - -

GPT-4o

NONE 0.974 0.974 0.570 0.552 0.994 0.931 0.929 0.576 0.633 0.971
PORTRAY 0.974 0.971 0.566 0.552 0.988 0.927 0.927 0.580 0.606 0.975

ESL 0.965 0.964 0.563 0.544 0.895 0.927 0.926 0.554 0.651 0.842
UNCERTAIN 0.713 0.719 0.795 0.471 0.155 0.828 0.805 0.711 0.572 0.228

MASK 0.922 0.918 0.562 0.512 0.868 0.851 0.852 0.578 0.608 0.798

LLaMa-2-70b

NONE 0.930 0.839 0.338 0.518 0.993 0.854 0.756 0.354 0.611 0.992
PORTRAY 0.930 0.831 0.320 0.518 0.984 0.847 0.740 0.332 0.604 0.980

ESL 0.922 0.750 0.211 0.512 0.973 0.851 0.674 0.263 0.658 0.969
UNCERTAIN 0.922 0.646 0.163 0.512 0.966 0.839 0.556 0.226 0.646 0.971

MASK 0.843 0.750 0.294 0.553 0.988 0.755 0.644 0.391 0.533 0.983

Prompt Design We employ 4 types of prompt designs
below. See Appendix A for the examples.

• NONE: Only the context, question, and candidate
answers are given.

• PORTRAY: Similar to Santurkar et al. [10], a role
is assigned at the beginning of the prompt, for
example, ”Answer the following reading compre-
hension question as if you are a CEFR B1 level
English learner.”, followed by a description of the
level defined by CEFR. 3

• ESL: Bonner et al. [27] suggested that LLMs seem
to have the ability to control outputs based on a
targeted CEFR level provided in a prompt. We
ask LLMs the most plausible answer from lan-
guage learners at a specific CEFR level, such as
”What do you think is the most plausible answer
by CEFR B1 level learners to the following reading
comprehension test?”. In addition, we inject the
explanation like ”Given the context and consider-
ing that the test takers are at a CEFR B1 level, the
most plausible answer they might choolse could
be” after ”ANSWER:”.

• UNCERTAIN: as reported in Zhou et al. [24], the
expression of uncertainty will change LLMs’ be-
havior. We inject the expression like ”I’m not
sure because there are some sentences I don’t
understand, but maybe the answer is,” after ”AN-
SWER:”.

• MASK: Laufer [28] argued that language learn-
ers need to know 95% of the vocabulary in a text
to comprehend its content. To simulate the sce-
nario where 5% of the vocabulary are not known,
top 5% unfrequent words within a context are
masked. Unfrequent words in question and op-
tions are also masked based on this threshold.

3https://www.coe.int/en/web/common-european-framework-reference-languages/
cefr-descriptors

The word frequency is calculated based on SUB-
TLEXus [29].

4. Results
Table 2 shows the performance of LLMs on CMCQRD
given each prompt. Overall, contrary to our expectations,
the results reveal the limited ability of LLMs to mimic
language learners when solving multiple-choice RC tests.

LLMs tend not to be distracted. First, the distribu-
tions by LLMs, especially from GPT-4o, show more skew-
ness in NONE compared to those from humans. In other
words, compared to the small gap between Human and
the LLM in the mode accuracy, the average accuracy sees
much a wider gap. For GPT-4o, there is almost no differ-
ence between these accuracies, which demonstrates that
the most plausible next token is only one option symbol
regardless of its correctness.

Prompts affect outputs differently across LLMs.
The results show the difference in the function of prompts
between GPT-4o and LLaMa-2-70b. For LLaMa-2-70b, the
sum of the probabilities for option symbols exceeds 95%
across all prompts, indicating that the prompts effectively
induce the generation of these symbols. On the other
hand, GPT-4o behaves differently, particularly with UN-
CERTAIN prompt, where the probability of generating
non-symbol tokens is considerable. This shows that the
function of prompts differs across LLMs.

LLaMa-2-70b is better than GPT-4o in weakening.
A key distinction between responses from language learn-
ers and LLMs is that while both show high Mode Accu-
racy, LLMs demonstrate substantially higher Average
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Accuracy compared to humans, indicating that distribu-
tions by LLMs are generally skewed. Therefore, an LLM
suited for weakening can maintain Mode Accuracy while
reducing Average Accuracy. In this aspect, LLaMa-2-70b
is better than GPT-4o. GPT-4o shows minimal changes in
Average Accuracy even with weakening prompts, includ-
ing UNCERTAIN that drops accuracies and Sum Probabil-
ity. Thus, its distributions remain distinct from language
learners, as reflected by the persistently high KL diver-
gence. In contrast, LLaMa-2-70b shows the ability to
reduce Average Accuracy while maintaining Mode Accu-
racy, especially with ESL and UNCERTAIN prompts.

Prompt design plays a crucial role. Prompt designs
markedly influence the outputs from LLMs, as exempli-
fied by the difference between PORTRAY and ESL results
on LLaMa-2-70b. While both prompts are designed to
emulate language learner-like outputs and include the
description of the targeted CEFR level, PORTRAY fails to
weaken performance, whereas ESL leads to reductions
in Average Accuracy and KL Divergence. This suggests
that there is much room for prompt engineering in other
designs, including UNCERTAIN.

Language Learners and LLMmistake different ques-
tions. Whereas KL divergence measures the similar-
ity between two distributions, Correct/Wrong F1 score
directly measures the consistency of most plausible an-
swers by humans and LLMs. LLMs show a low F1 score re-
gardless of the prompt given, indicating a discrepancy be-
tween questions that lead to human errors and those that
lead to LLM errors. LLaMa-2-70b observes the largest
drop in KL divergence with UNCERTAIN prompt com-
pared to NONE. However, this does not correspond with
a substantial improvement in the F1 score, suggesting
that the LLM does not mimic human error patterns effec-
tively. Since distributions by LLMs are generally skewed
compared to those by language learners, the reduction of
KL divergence is achievable by simply increasing the tem-
perature parameter. This result reveals the importance
of not only comparing distributions but also examining
the consistency of the mode answers to mimic humans.

5. Discussion
Our results so far seem to demonstrate the inability of
LLMs to mimic human language learners when solving
RC tests, even when provided with weakening prompts.
In particular, we identify differences in the questions that
language learners and the LLMs tend to answer incor-
rectly. In this section, we turn our attention to an analysis
of the underlying factors for these discrepancies.

We analyze the influence of the complexity of context
on accuracy gaps between language learners and LLM

Table 3
Correlation between the gap and complexity measures. N, H,
and U mean NONE, Human, and UNCERTAIN, respectively. *
means statistical significance on 𝑝 < 0.05.

N-H N-U Avg
Δ Average B1 0.254 0.193 -
Accuracy B2 0.164 0.200 -

Passage B1 -0.14 0.01 342.2
Length B2 0.14* 0.04 656.7

FKGL
B1 0.31* 0.23* 9.69
B2 0.05 -0.02 9.22

Word Freq B1 -0.18 -0.08 6.53
(per 1k words) B2 -0.01 0.13* 6.44

(NONE-Human), and also the gaps between the LLMwith
and without a weakening prompt (NONE-UNCERTAIN).
We select LLaMa-2-70b because of its ability to be weak-
ened. Among the features used in prior research by Sug-
awara et al. [20], we select Passage Length, FKGL[30],
and Word Frequency as indicators of complexity. Corre-
lations are measured between these indicators and the
accuracy gaps for each individual question.

Table 3 shows the correlations, some of which are sta-
tistically significant. For Passage Length, there is a weak
positive correlation with the gap between NONE and
Human at the B2 level, which means that the longer the
context, the harder it is for language learners to answer
correctly compared to the LLM. This implies that a longer
context may hinder B2 level language learners from find-
ing the evidence needed to answer more than it does the
LLM. FKGL, a readability metric based on the number
of words and syllables per sentence, shows a weak-to-
moderate positive correlation with the gap between LLM
and human, and also the gap between LLMs with and
without uncertainty prompt. Since FKGL is designed to
show a lower value on easier texts, these statistically
significant gaps imply that the LLM shows a higher accu-
racy in more complex contexts. UNCERTAIN prompt can
slightly smooth this trend, but it does not enable the LLM
to emulate the tendency of language learners. Finally, for
Word Freqency, there is a weak positive correlation with
gap between NONE and UNCERTAIN at B2 level. This
may imply that UNCERTAIN weaken LLMs more when
a context is composed of more common words.

Overall, these surface-level complexity indicators are
not sufficient to explain the difference between language
learners and LLMs. We reserve deeper analysis, such as
semantic considerations, for our further research.

6. Conclusion
In conclusion, our research reveals that LLMs does not
behave as second language learners even with potentially



performance-weakening prompts we provide. We also
observe that the performance varies depending on the
model and prompts used, even though a limited set of
models and prompts are considered. Expanding the va-
riety of these elements, including prompts with more
sophisticated approaches such as chain-of-thought [23]
and automatic prompt tuning [31], will be critical for a
more comprehensive evaluation of the mimicability.

Our findings demonstrate that discrepancies between
language learners and LLMs in terms of easiness of ques-
tions, highlighting the necessity for micro-level analysis.
Nonetheless, the limited size of CMCQRD dataset used
in this research presents challenges in drawing compre-
hensive conclusions. The development of datasets incor-
porating diverse personas beyond language learners is
essential when trying to use LLMs as the complement of
human evaluators.
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A. Prompt Examples

Table 4
Examples of designed prompts.

NONE
CONTEXT: I won’t pretend being a flight attendant is easy. But since I started the
job, I’ve been everywhere, from the US to Australia. I work with incredible people, I
have a lot of time off, and life is never boring - which ...
QUESTION: What does Jack say about attending his job interview?
A) He was surprised at the age range of people there.
B) He made sure he seemed different from the others.
C) He wondered whether he had enough qualifications.
D) He realised there were too many people for the jobs available.
ANSWER:\n

PORTRAY
Answer the following reading comprehension questions as if you are a CEFR B1
level English learner. Learners at this level can understand the main points of clear
standard input on familiar matters regularly encountered in work, school, leisure,
etc. But sometimes it may be difficult to understand the main ideas of complex text
on both concrete and abstract topics, including technical discussions in his/her field
of specialisation.

{Same as NONE from CONTEXT: to ANSWER:\n}
ESL

You are an ESL teacher. What do you think is the most plausible answer by CEFR
B1 level learners to the following reading comprehension test? Learners at this
level can understand the main points of clear standard input on familiar matters
regularly encountered in work, school, leisure, etc. But sometimes it may be difficult
to understand the main ideas of complex text on both concrete and abstract topics,
including technical discussions in his/her field of specialisation.

{Same as NONE from CONTEXT: to D) he ...}
ANSWER:
Given the context and considering that the test takers are at a CEFR B1 level, the
most plausible answer they might choose could be:\n

UNCERTAIN
{Same as NONE from CONTEXT: to D) he ...}
ANSWER:
I’m not sure because there are some sentences I don’t understand, but maybe the
answer is:\n

MASK
CONTEXT: I won’t [MASK] being a flight [MASK] is easy. But since I started the job,
I’ve been everywhere, from the US to Australia. I work with incredible people, I have
a lot of time off, and life is never [MASK] - which ...
QUESTION: What does Jack say about attending his job interview?
A) He was surprised at the age range of people there.
B) He made sure he seemed different from the others.
C) He [MASK] whether he had enough qualifications.
D) He realised there were too many people for the jobs available.
ANSWER:\n


	1 Introduction
	2 Related Work
	2.1 Human Response to Reading Comprehension Dataset
	2.2 Prompts that Alter LLMs' Behaviour in Question Answering

	3 Experimental Setup
	4 Results
	5 Discussion
	6 Conclusion
	A Prompt Examples

