
Published as a conference paper at ICLR 2021

LEARNING MANIFOLD PATCH-BASED
REPRESENTATIONS OF MAN-MADE SHAPES

Dmitriy Smirnov
MIT
smirnov@mit.edu

Mikhail Bessmeltsev
Université de Montréal
bmpix@iro.umontreal.ca

Justin Solomon
MIT
jsolomon@mit.edu

ABSTRACT

Choosing the right representation for geometry is crucial for making 3D models
compatible with existing applications. Focusing on piecewise-smooth man-made
shapes, we propose a new representation that is usable in conventional CAD mod-
eling pipelines and can also be learned by deep neural networks. We demonstrate
its benefits by applying it to the task of sketch-based modeling. Given a raster
image, our system infers a set of parametric surfaces that realize the input in 3D.
To capture piecewise smooth geometry, we learn a special shape representation:
a deformable parametric template composed of Coons patches. Naı̈vely training
such a system, however, is hampered by non-manifold artifacts in the parametric
shapes and by a lack of data. To address this, we introduce loss functions that bias
the network to output non-self-intersecting shapes and implement them as part
of a fully self-supervised system, automatically generating both shape templates
and synthetic training data. We develop a testbed for sketch-based modeling,
demonstrate shape interpolation, and provide comparison to related work.

1 INTRODUCTION

While state-of-the art deep learning systems that output 3D geometry as point clouds, triangle
meshes, voxel grids, and implicit surfaces yield detailed results, these representations are dense, high-
dimensional, and incompatible with CAD modeling pipelines. In this work, we develop a 3D represen-
tation that is parsimonious, geometrically interpretable, and easily editable with standard tools, while
being compatible with deep learning. This enables a shape modeling system leveraging the ability of
neural networks to process incomplete, ambiguous input and produces useful, consistent 3D output.

Our primary technical contributions involve the development of machinery for learning parametric 3D
surfaces in a fashion that is efficiently compatible with modern deep learning pipelines and effective
for a challenging 3D modeling task. We automatically infer a template per shape category and incor-
porate loss functions that operate explicitly on the geometry rather than in the parametric domain or
on a sampling of surrounding space. Extending learning methodologies from images and point sets to
more exotic modalities like networks of surface patches is a central theme of modern graphics, vision,
and learning research, and we anticipate broad application of these developments in CAD workflows.

To test our system, we choose sketch-based modeling as a target application. Converting rough,
incomplete 2D input into a clean, complete 3D shape is extremely ill-posed, requiring hallucination
of missing parts and interpretation of noisy signal. To cope with these ambiguities, existing systems
either rely on hand-designed priors, severely limiting applications, or learn the shapes from data,
implicitly inferring relevant priors (Delanoy et al., 2018; Wang et al., 2018a; Lun et al., 2017).
However, the output of the latter methods often lacks resolution and sharp features necessary for
high-quality 3D modeling.

In industrial design, man-made shapes are typically modeled as collections of smooth parametric
patches (e.g., NURBS surfaces) whose boundaries form the sharp features. To learn such shapes ef-
fectively, we use a deformable parametric template (Jain et al., 1998)—a manifold surface composed
of patches, each parameterized by control points (Fig. 3a). This representation enables the model to
control the smoothness of each patch and introduce sharp edges between patches where necessary.

1

Published as a conference paper at ICLR 2021

Input

Automatically Computed Model Edited Model

Figure 1: Editing a 3D model produced by our method. Because we output 3D geometry as a collection
of consistent, well-placed NURBS patches, user edits can be made in conventional CAD software by
simply moving control points. Here, we are able to refine the trunk of a car model with just a few clicks.

Compared to traditional representations, deformable parametric templates have numerous benefits for
our task. They are intuitive to edit with conventional software, are resolution-independent, and can be
meshed to arbitrary accuracy. Since only boundary control points are needed, our representation has
relatively few parameters. Finally, this structure admits closed-form expressions for normals and other
geometric features, which can be used for loss functions that improve reconstruction quality (§3.2).

Training a model for such representations faces three major challenges: detection of non-manifold
surfaces, structural variation within shape categories, and lack of data. We address them as follows:

• We introduce several loss functions that encourage our patch-based output to form a manifold
mesh without topological artifacts or self-intersections.

• Some categories of man-made shapes exhibit structural variation. To address this, for each category
we algorithmically generate a varying deformable template, which allows us to support separate
structural variation using a variable number of parts (§3.1).

• Supervised methods mapping from sketches to 3D require a database of sketch-model pairs, and,
to-date, there are no such large-scale repositories. We use a synthetic sketch augmentation pipeline
inspired by artistic literature to simulate variations observed in natural drawings (§4.1). Although
our model is trained on synthetic sketches, it generalizes to natural sketches.

Our method is self-supervised: We predict patch parameters, but our data is not labeled with patches.

2 RELATED WORK

2.1 DEEP LEARNING FOR SHAPE RECONSTRUCTION

Learning to reconstruct 3D geometry has recently enjoyed significant research interest. Typical forms
of input are images (Gao et al., 2019; Wu et al., 2017; Delanoy et al., 2018; Häne et al., 2019) and point
clouds (Williams et al., 2019; Groueix et al., 2018; Park et al., 2019). When designing a network for
this task, two considerations affect the architecture: the loss function and the geometric representation.

Loss Functions. One popular direction employs a differentiable renderer and measures 2D image
loss between a rendering of the inferred 3D model and the input image (Kato et al., 2018; Wu et al.,
2016; Yan et al., 2016; Rezende et al., 2016; Wu et al., 2017; Tulsiani et al., 2017b; 2018). A
notable example is the work by Wu et al. (2017), which learns a mapping from a photograph to a
normal map, a depth map, a silhouette, and the mapping from these outputs to a voxelization. They
use a differentiable renderer and measure inconsistencies in 2D. Hand-drawn sketches, however,
cannot be interpreted as perfect projections of 3D objects: They are imprecise and often inconsistent
(Bessmeltsev et al., 2016). Another approach uses 3D loss functions, measuring discrepancies
between the predicted and target 3D shapes directly, often via Chamfer or a regularized Wasserstein
distance (Williams et al., 2019; Liu et al., 2010; Mandikal et al., 2018; Groueix et al., 2018; Park
et al., 2019; Gao et al., 2019; Häne et al., 2019). We build on this work, adapting Chamfer distance to
patch-based geometric representations and extending the loss function with new regularizers (§3.2).

Shape representation. As noted by Park et al. (2019), geometric representations in deep learning
broadly can be divided into three classes: voxel-, point-, and mesh-based. Voxel-based methods
(Delanoy et al., 2018; Wu et al., 2017; Zhang et al., 2018; Wu et al., 2018) yield dense reconstruction
that are limited in resolution, offer no topological guarantees, and cannot represent sharp features.
Point-based approaches represent geometry as a point cloud (Yin et al., 2018; Mandikal et al., 2018;
Fan et al., 2017; Lun et al., 2017; Yang et al., 2018), sidestepping memory issues, but do not capture
manifold connectivity.

2

Published as a conference paper at ICLR 2021

Some recent methods represent shapes using meshes (Bagautdinov et al., 2018; Baque et al., 2018;
Litany et al., 2018; Kanazawa et al., 2018; Wang et al., 2019; Nash et al., 2020). Our parametric
template representation allows us to more easily enforce piecewise smoothness and test for self-
intersections (§3.2). These properties are difficult to measure on meshes in a differentiable manner.
Compared to a generic template shape, such as a sphere, our category-specific templates improve
reconstruction quality and enable complex reconstruction constraints, e.g., symmetry. We compare
to the deformable mesh representations in §4.5.

Most importantly, our shape representation is native to modern CAD software and can be directly
edited in this software, as demonstrated in Figure 1. The key to this flexibility is the type of the para-
metric patches we use, which can be trivially converted to a NURBS representation (Piegl & Tiller,
1996), the standard surface type in CAD. Other common shape representations, such as meshes or
point clouds, cannot be easily converted into NURBS format: algorithmically fitting NURBS surfaces
is nontrivial and is an active area of research (Yumer & Kara, 2012; Krishnamurthy & Levoy, 1996).

Finally, some recent works parameterize 3D geometry using learned deep neural networks—e.g.,
they learn an implicit representation (Mescheder et al., 2019; Chen & Zhang, 2019; Genova et al.,
2019) or a mapping from parameter space to a collection of patches (Groueix et al., 2018; Deng et al.,
2020). These demonstrate impressive results but are not tuned to CAD applications; it is unclear how
their output can be converted to editable CAD shape representations.

2.2 SKETCH-BASED 3D SHAPE MODELING

3D reconstruction from sketches has a long history in graphics. A survey is beyond the scope of this
paper; see (Delanoy et al., 2018) or surveys by Ding & Liu (2016) and Olsen et al. (2009).

Unlike incremental sketch-based 3D modeling, where users progressively add new strokes (Cherlin
et al., 2005; Gingold et al., 2009; Chen et al., 2013; Igarashi et al., 1999), our method interprets
complete sketches, eliminating training for artists and enabling 3D reconstruction of legacy sketches.

Some systems interpret complete sketches without extra information. This input is extremely
ambiguous thanks to occlusions and inaccuracies. Hence, reconstruction algorithms rely on strong
3D shape priors. These priors are typically manually created, e.g., for humanoids, animals, and
natural shapes (Bessmeltsev et al., 2015; Entem et al., 2015; Igarashi et al., 1999). Our work focuses
on man-made shapes, which have characteristic sharp edges and are only piecewise smooth. Rather
than relying on expert-designed priors, we automatically learn category-specific shape priors.

A few deep learning approaches address sketch-based modeling. Nishida et al. (2016) and Huang
et al. (2017) train networks to predict procedural model parameters that yield detailed shapes from
a sketch. These methods produce complex high-resolution models but only for shapes that can
be procedurally generated. Lun et al. (2017) use a CNN-based architecture to predict multi-view
depth and normal maps, later converted to point clouds; Li et al. (2018) improve on their results
by first predicting a flow field from an annotated sketch. In contrast, we output a deformable
parametric template, which can be converted to a manifold mesh without post-processing. Wang et al.
(2018a) learn from unlabeled databases of sketches and 3D models with no correspondence using
an adverserial training approach. Another inspiration for our research is the work of Delanoy et al.
(2018), which reconstructs a 3D object as voxel grids; we compare to this work in Fig. 7.

3 ALGORITHM

Our learning pipeline outputs a parametrically-defined 3D surface. We describe our geometric rep-
resentation (§3.1), define our loss (§3.2), and specify our architecture and training procedure (§3.3).

3.1 REPRESENTATION

Patches. Our surfaces are collections of Coons patches (Coons, 1967), a commonly used and rich
subset of NURBS surfaces. A patch is specified by four boundary cubic Bézier curves sharing
endpoints (Fig. 3a). Each curve has control points p1,...,p4 ∈ R3. A Bézier curve c : [0,1]→ R3 is

3

Published as a conference paper at ICLR 2021

(b)

(c)

P(0, 0)

P(0, 1)

P(1, 1)

P(1, 0)

P(1, t)

P(s, 1)

P(s, 0)

P(0, t)

(a)

Figure 3: Our representation is composed of Coons patches (a) organized into a deformable template
(b). We use the following templates (c, top to bottom, left to right): bottle, knife, guitar, car, airplane,
coffee mug, gun, bathtub, 24-patch sphere, 54-patch sphere.

c(γ)=p1(1−γ)3+3p2γ(1−γ)2+3p3γ
2(1−γ)+p4γ

3, and a Coons patch P : [0,1]2→R3 is
P (s,t)=(1−t)c1(s)+tc3(1−s)+sc2(t)+(1−s)c4(1−t)

−(c1(0)(1−s)(1−t)+c1(1)s(1−t)+c3(1)(1−s)t+c3(0)) st. (1)

Templates. Templates specify patch connectivity. A template consists of the minimal d
cd

number of control points necessary to define the patches; shared control points are reused
(Fig. 3b, c). We allow the edge of one patch to be contained within the edge of another
using junction curves. A junction curve cd is constrained to a lie along a parent curve d and
is thus parameterized by s,t∈ [0,1], such that c(0)=d(s) and c(1)=d(t).

A template provides hard topological constraints for our surfaces, an initialization of their geometry,
and, optionally, a means for regularization. Templates are crucial in ensuring that the patches have
consistent topology—an approach without templates would result in unstructured, non-manifold
patch collections. While our method works using a generic sphere template, we can define templates
per shape category to incorporate category-specific priors. These templates capture only coarse
geometric features and approximate scale. We outline an algorithm for obtaining templates below.

Algorithmic construction of templates. We design a simple system to construct a template auto-
matically given as input any collection of cuboids. Such a collection can be computed automatically
for a shape category, e.g., given a segmentation or using self-supervised methods such as (Smirnov
et al., 2020; Tulsiani et al., 2017a; Sun et al., 2019), or easily produced using standard CAD software.
We show templates algorithmically computed from pre-segmented shapes—we obtain a collection of
cuboids by taking the bounding box around each connected component of each segmentation class.

A generic cuboid decomposition cannot be used as a (a) (b) (c)

Figure 2: Summary of our template
algorithm. Given a collection of
cuboids (a), we form a quad mesh (b),
and merge faces to get a template (c).

template, since individual cuboids may overlap. We snap
cuboids to an integer lattice, split each face at grid coordi-
nates, and remove overlapping and interior faces to obtain a
manifold quad mesh. This mesh typically consists of many
faces, and so, we simplify it. We merge adjacent quads with a
greedy agglomerative algorithm, iterating over each quad in
order of descending area and merging with an adjacent quad
as long as the merge does not result in ill-defined junction
curves. We show an example of this process in Fig. 2. Given decompositions of multiple shapes in
a category, we use the median model w.r.t. Chamfer distance. Since models within a category are
aligned, the median provides a rough approximation of the typical geometry.

Structural variation using templates. For category-specific tem-
plates, we use the fact that template patches are consistently placed
on semantically meaningful parts to account for structural variation.
For instance, certain airplane models contain turbines, while others do not. We note which template
patches come from cuboids corresponding to turbines, and, during training, only use turbine patches
for models that contain turbines. This allows training on the entire airplane shape category, effectively
using two distinct templates. At test time, the user can toggle turbines on or off for any output model.

3.2 LOSS

We fit a collection of patches {Pi} to a target meshM by optimizing a differentiable loss function. Be-
low, we describe each term—a reconstruction loss generalizing Chamfer distance, a normal alignment
loss, a self-intersection regularizer, a patch flatness regularizer, and two template-based priors.

4

Published as a conference paper at ICLR 2021

Area-weighted Chamfer distance. Given two measurable shapes A,B ⊂R3 and point sets X and
Y sampled fromA andB, respectively, the directed Chamfer distance betweenX and Y is

Chdir(X,Y)=
1

|X|
∑
x∈X

min
y∈Y

d(x,y), (2)

whered(x,y)=‖x−y‖2. The symmetric Chamfer distance isCh(X,Y)=Chdir(X,Y)+Chdir(Y,X).

Chamfer distance is differentiable and thus a popular loss function in deep learning. However, the
distribution under which X and Y are sampled has significant impact. Sampling uniformly in patch
parameter space (a unit square) does not capture the surface area measure and, consequently, does
not yield uniform samples on the surface—regions with higher curvature end up oversampled. A
closed form arc-length parameterization does not even exist for a Bézier curve, and so a uniform
parameterization for even a one-dimensional patch is difficult to compute. Many works try to address
this issue by designing custom sampling procedures (Wang et al., 2012; Hernández-Mederos &
Estrada-Sarlabous, 2003; Elkott et al., 2002). These schemes are typically computationally expensive
and/or incompatible with a differentiable learning pipeline. To address this issue, following Smirnov
et al. (2020), we first define variational directed Chamfer distance, starting from equation 2:

Chdir(X,Y)=
1

|X|
∑
x∈X

min
y∈Y

d(x,y)≈Ex∼UA

[
inf
y∈Y

d(x,y)

]
=

1

Area(X)

∫
X

inf
y∈Y

d(x,y)dx
def
=Chvar

dir (A,B),

(3)
where UA is the uniform distribution onA. Chvar(A,B) is defined analogously.

While it is difficult to sample uniformly from patches, we can do so easily from their parametric
domain (the unit square). We perform a change of variables to get the following (derivation in §A.1):

Chvar
dir (P,M)=

E(s,t)∼U[0,1]2 [infy∈Md(P (s,t),y)|J(s,t)|]
E(s,t)∼U[0,1]2 [|J(s,t)|]

, (4)

where J(s,t) is the Jacobian of P (s,t). We approximate this expression via Monte Carlo integration.

Since we can precompute uniformly sampled random points from the target mesh, we do not need to
use area weights for Chvar

dir (M,P). Thus, our area-weighted Chamfer distance is

LCh(∪Pi, M) =

∑
i

∑
(s,t)∈U�

miny∈Md(P (s,t),y)|Ji(s,t)|∑
i

∑
(s,t)∈U�

|Ji(s,t)|
+

∑
x∈Mminy∈∪Pi

d(x,y)

|M |
, (5)

whereU�∼U[0,1]2 . We compute Ji(u,v) for a patch given its control points in closed-form.

Normal alignment. The normal alignment term is computed analogously to Chdir, except that
instead of Euclidean distance, we use dN (x,y) = ‖nx−ny‖22, where nx is the unit normal at x. For
each point y sampled from our predicted surface, we compare ny to nx, where x∈M is closest to y,
and, symmetrically, for each x′∈M , we compare nx′ to to ny′ , where y′∈∪Pi is closest to x′:

Lnormal(∪Pi,M)=

∑
i

∑
(u,v)∈U�

dN (NNM (Pi(u,v)),Pi(u,v))|Ji(u,v)|∑
i

∑
(u,v)∈U�

|Ji(u,v)|
+

∑
x∈MdN (x,NN∪Pi(x))

|M |
,

(6)
where NNY (x) is the nearest neighbor to x in Y under Euclidean distance.

Intersection regularization. We introduce a collision detection loss to detect patch intersections:

Lcoll({Pi})=
∑
i6=j

exp
(
−
(
min(d(T i,P j),d(T j ,P i))/ε

)2)
, (7)

where T i is a triangulation of patchPi, andP i is a set of points sampled from patchPi. To triangulate
a patch, we take a fixed triangulation of the parameter space (a unit square) and compute the image of
each vertex under the Coons patch map, keeping the original connectivity. With a small ε=10−6, this
expression is a smooth indicator for when two patches are intersecting. For a pair of adjacent patches
or those that share a junction, we truncate one patch at the adjacency before evaluating the loss.

Patch flatness regularization. To help patches to align to smooth regions and sharp creases to fall on
patch boundaries, we define a patch flatness regularizer, which discourages excessive curvature by
regularizing each Coons patch map P : [0,1]×[0,1]→R3 to be close to a linear map. For each patch,
we sample points U� in parameter space, compute their image P (U�), and fit a linear function using

5

Published as a conference paper at ICLR 2021

128x128
image

ResNet-18 fully
connected

patch flatness losspatch flatness loss

collision losscollision loss

template normals losstemplate normals loss

normal alignment lossnormal alignment loss

area-weighted Chamfer lossarea-weighted Chamfer loss

Coons
patches

template

ground truth

symmetry losssymmetry loss

(a) (b)

Figure 4: An overview of our data generation and augmentation (a) and learning (b) pipelines.

least-squares. Thus, P̂ (U�)=AU�+b≈P (U�) for some A,b. We define patch flatness loss as

Lflat({Pi})=
∑

i

∑
(u,v)∈U�

‖P̂i(u,v)−Pi(u,v)‖22|Ji(u,v)|∑
i

∑
(u,v)∈U�

|Ji(u,v)|
. (8)

Template normals regularization. For categories where a template is available, we not only ini-
tialize the network with the template geometry but also regularize the output using template normals.
This favorably positions patch seams and prevents patches from sliding over high-curvature regions:

Ltemplate({Pi},{Ti})=
∑

i

∑
(u,v)∈U�

‖nPi(u,v)−nTi
‖22|Ji(u,v)|∑

i

∑
(u,v)∈U�

|Ji(u,v)|
, (9)

where nTi is the normal vector of the ith template patch.

Global symmetry. Man-made shapes often exhibit global bilateral symmetries. Enforcing symmetry
is difficult in, e.g., meshes or implicit surfaces. In contrast, after computing a template’s symmetry
planes, we enforce symmetric positions of the corresponding control points as an additional loss term:

Lsym(∪Pi)=
1

|S|
∑

(i,j)∈S

‖(P i
x−a,P i

y,P
i
z)−(a−P j

x ,P
j
y ,P

j
z)‖22, (10)

whereS contains index pairs of symmetric control points (P i,P j). In the formula, we assume w.l.o.g.
symmetry plane x=a. We use this to enforce symmetrical reconstruction of airplanes and cars.

3.3 DEEP LEARNING PIPELINE

The final loss that we optimize is
L({Pi},M)=LCh(∪PiM)+αnormalLnormal(∪PiM)

+αflatLflat({Pi})+αcollLcoll({Pi})+αtemplateLtemplate({Pi},{Ti})+αsymLsym(∪Pi).
(11)

For models scaled to fit in a unit sphere, we use αnormal =0.008, αflat =2, and αcoll =0.00001 for all
experiments, and αtemplate=0.0001 and αsym=1 for experiments that use those regularizers.

Our network inputs one or more 128×128 images and outputs patch parameters. The architecture is
ResNet-18 (He et al., 2016) followed by hidden layers with 1024, 512, and 256 units, and an output
layer with size equal to the output dimension. Final layer weights are initialized to zero with bias
equal to the template parameters. For multi-view input, we encode each image and do max pooling
over the latent codes. We use ReLU and batch normalization after each layer except the last. We train
each network for 24 hours on a Tesla V100 GPU, using Adam (Kingma & Ba, 2014) and batch size
8 with learning rate 0.0001. At each iteration, we sample 7,000 points from the predicted and target
shapes. Our pipeline is illustrated in Fig. 4b.

4 EXPERIMENTAL RESULTS

We introduce a pipeline for generating realistic sketch data and train a network that coverts a sketch
image to a patch-based 3D representation. We show results on synthetic and human-drawn sketches,
demonstrate interpolation and quad meshing, compare to prior work, and do an ablation study (§A.2).

4.1 DATA PREPARATION

While there exist annotated datasets of 3D models and corresponding hand-drawn sketches (Gryadit-
skaya et al., 2019), such data are unavailable at the deep learning scale. Instead, we generate synthetic
data. Guided by Cole et al. (2012), we first render occluding contours and sharp edges using the
Arnold Toon Shader in Autodesk Maya for each model from representative camera views. Although
the contour images capture the main features of the 3D model, they lack some of the ambiguities of

6

Published as a conference paper at ICLR 2021

Figure 5: Results on synthetic sketches. For each category, from top to bottom: input sketch, output
3D model with sphere template (54 patches), output 3D model with category-specific template.

rough hand-drawn sketches (Liu et al., 2018). To this end, we vectorize the images using Bessmeltsev
& Solomon (2019) and augment the set of contours by stochastically splitting or truncating curves.
Finally, we rasterize each contour image using different stroke widths and pass it through the pencil
drawing generation model of Simo-Serra et al. (2018). We illustrate this pipeline in Fig. 4a.

Thus, we obtain realistic sketch images paired with 3D models. We train on the airplane, bathtub, gui-
tar, bottle, car, mug, gun, and knife categories of ShapeNet Core (v2) (Chang et al., 2015). We make the
meshes watertight using Huang et al. (2018) and normalize them to fit an origin-centered unit sphere.

4.2 REAL AND SYNTHETIC SKETCH RECONSTRUCTION

We pick a random 10%-90% test-train split for each category and evaluate in Fig. 5 as well as §A.5.

The templates for airplanes, guitars, guns, knives, and cars are generated automatically using
segmentations of Yi et al. (2016). For mugs, we start with an automatic template and add a hole in the
handle and a void in the interior. To demonstrate a template with distinct parts, for cars, we use the
segmentation during training, computing Chamfer and normal losses for wheels and body separately.
For bottle and bathtub templates, we simply place two and and five cuboids, respectively.

With a generic sphere template, we produce a compact piecewise-smooth surface of comparable qual-
ity to the more conventional deformable meshes. Our algorithmic construction of category-specific
templates, however, enables higher-quality reconstruction of sharp features and details.

7

Published as a conference paper at ICLR 2021

NURBS Patches (ours)NURBS Patches (ours)NURBS Patches (ours)NURBS Patches (Rhino) Quad Mesh (ours)Quad Mesh (Instant Meshes)

400 singularities 44 singularities

392 singularities + 24 singularities (turbines)

524 singularities 24 singularities

218 singularities 24 singularities

58 patches

72 patches

22 patches

22 patches

10000 patches

10000 patches

10000 patches

10000 patches

Quad Mesh (Instant Meshes)

400 singularities400 singularities 44 singularities

524 singularities524 singularities

218 singularities218 singularities

24 singularities24 singularities

Quad Mesh (ours)

44 singularities44 singularities

24 singularities

24 singularities

24 singularities

24 singularities

44 singularities (body)

Figure 6: We convert two airplane and two guitar models to NURBS patches using Rhino 3D and
compare to our Coons patches. Corresponding Coons patches across models of the same category
are the same color. We also show quad meshes generated using Instant Meshes (Jakob et al., 2015)
and those from our patch decompositions. Singular points are in pink. Our representation is much
more compact and hence easily editable. We produce fewer singularities and only in known places.
Furthermore, unlike with other methods, our patches and quad meshes are consistent across models.

We demonstrate our method’s ability to incorporate details from
different views. We show our output when given a single view of
an airplane as well as when given an additional view. The combined
model incorporates elements not visible in the original view.

We also test on real sketches. Each artist was asked to sketch
an airplane without having seen any sketches from our dataset.
The results are similar to those on synthetic sketches, demon-
strating that our dataset is reflective of choices that humans
make when sketching 3D objects.

4.3 3D MODEL INTERPOLATION

Our representation is naturally well-suited for interpolating between 3D
models. As each model is composed of a small number of consistently
placed patches, we linearly interpolate the patch parameters (e.g., vertex
positions) to generate models “between” our network outputs. We also
perform interpolation in the latent space learned by our model (the output of
the first 1024-dimensional hidden layer). While latent-space interpolation is
similar to patch-space, each interpolant better resembles a realistic model due
to the learned priors. We demonstrate patch-space (right) and latent-space
(left) interpolation between two car models.

4.4 QUAD MESHING AND NURBS DECOMPOSITION

Many algorithms have been designed for converting triangle meshes into NURBS patches (Krishna-
murthy & Levoy, 1996; Eck & Hoppe, 1996; Bernardini et al.). By fitting a template to a 3D model,
our method automatically converts the model to a set of Coons patches. Moreover, our Coons patches
are placed consistently, thus establishing correspondences between models. In Fig. 6, we compare
our Coons patches to NURBS patches automatically obtained using Rhino 3D, a commercial CAD
program. Our decomposition is significantly more sparse and usable for further editing.

A common task in computer graphics is converting surfaces into quad meshes. We can easily obtain a
quad mesh from our patch decomposition by simply subdividing (see §A.4 for details). We compare
our quad meshes to those produced by Instant Meshes (Jakob et al., 2015), a recent quad meshing
algorithm, in Fig. 4.4. It is commonly desired to minimize the number of singular points (vertices
with valence not equal to four) and to consistently position them in a quad mesh. Our algorithm
achieves both of these goals—the number and location of singularities is determined by our template.
While the Instant Meshes results contain between 215 and 524 singular points, our quad meshes
contain only 24 (guitars), 44 (airplane without turbines), or 68 (airplane with turbines).

8

Published as a conference paper at ICLR 2021

(b) (d)

(a) (c)(c)

(e)

Figure 7: Comparisons to (Delanoy et al., 2018) using their data (a) and our data (b), to (Lun et al.,
2017) (c), to AtlasNet (d), and to Pixel2Mesh (e). Our results are in blue for each comparison.

4.5 COMPARISONS

In Fig. 7, we compare to the sketch-based reconstruction methods of Delanoy et al. (2018) (a) and Lun
et al. (2017) (c). Although we use the same species of input used to train these methods rather than
attempting to re-train their models on our data, the visual quality of our predictions is comparable to
theirs. Moreover, our output representation sparsely captures smooth and sharp features, independent
of resolution. In contrast, Delanoy et al. (2018) produce a 643 voxel grid—a dense, fixed-resolution
representation, which cannot be edited directly and offers no topological guarantees. In Fig. 7b, we
evaluate their system on contours from our dataset, demonstrating that our task of reconstruction with
a prior on class (airplane) rather than structure (cylinders and cuboids) is misaligned with theirs: Since
our data is not well-approximated by CSG models, their method cannot extract meaningful output.

Although Lun et al. (2017) ultimately produce a mesh, they perform a computationally expensive
post-processing procedure, since their forward pass returns a labeled point cloud. Our method directly
outputs the parameters for surface patches with no further optimization. Additionally, their final mesh
contains more components (triangles) than our output (patches), making it less useful for editing.

In Fig. 7d, we compare to AtlasNet (Groueix et al., 2018). We retrain our model with their renderings,
using the 54-face sphere template. While our 3D reconstructions capture the same degree of detail,
they do not suffer from topological defects. In particular, AtlasNet’s surfaces contains many patch
intersections and holes. Extracting a watertight mesh would require significant post-processing.
Additionally, each patch in our representation is parameterized sparsely by control points, in contrast
to AtlasNet’s patches, which must be sampled using a deep decoder network.

In Pixel2Mesh, Wang et al. (2018b) input an image and output a triangle mesh. We train our sphere
template models on their data. While their meshes have 2466 vertices (7398 degrees of freedom) we
output 54 patches (816 degrees of freedom)—a more editable and interpretable representation. As
shown in Fig. 7e, the low dimensionality of our output is not at the expense of expressiveness.

5 DISCUSSION AND CONCLUSION

As 3D data become more readily available, the need for processing, modifying, and generating 3D
models in a usable fashion increases. While the quality of results produced by deep learning systems
improves, it is necessary to think carefully about their format, particularly with respect to existing use
cases. By carefully designing representations together with compatible learning algorithms, we can
harness these data for the purpose of simplifying workflows in design, modeling, and manufacturing.

Our system is a step toward practical 3D modeling assisted by deep learning. Our sparse patch-based
representation is close to what is used in artistic and engineering practice, and we accompany it with
new geometric regularizers that greatly improve the reconstruction process. Unlike meshes or voxel
occupancy functions, this representation can easily be edited and tuned after 3D reconstruction, and
it captures a trade-off between smoothness and sharp edges reasonable for man-made shapes.

Our work suggests several avenues for future research. While we use pre-trained networks to generate
sketch data, we could couple the training of these pieces to alleviate dependence on sketch–3D model
pairs. We also could leverage literature in computer-aided geometric design to identify other structures
amenable to learning. Particularly, multiresolution representations (e.g., subdivision surfaces) might
enable learning both high-level smooth structure and geometric details like filigree independently.

Perhaps the most important challenge remaining from our work—and others—involves inferring
shape topology. While our system supports structural variability and modular parts, scaling this
towards completely learned topology is nontrivial. This limitation is reasonable for shape classes we
consider, but generic sketch reconstruction requires automatically adding and connecting patches.

9

Published as a conference paper at ICLR 2021

6 ACKNOWLEDGEMENTS

The MIT Geometric Data Processing group acknowledges the generous support of Army Research
Office grant W911NF2010168, of Air Force Office of Scientific Research award FA9550-19-1-031,
of National Science Foundation grant IIS-1838071, from the CSAIL Systems that Learn program,
from the MIT–IBM Watson AI Laboratory, from the Toyota–CSAIL Joint Research Center, from a
gift from Adobe Systems, from an MIT.nano Immersion Lab/NCSOFT Gaming Program seed grant,
and from the Skoltech–MIT Next Generation Program. This work was also supported by the National
Science Foundation Graduate Research Fellowship under Grant No. 1122374. We acknowledge
the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) grant
RGPIN-2019-05097 (“Creating Virtual Shapes via Intuitive Input”) and from the Fonds de recherche
du Québec - Nature et technologies (FRQNT) grant 2020-NC-270087.

REFERENCES

Timur Bagautdinov, Chenglei Wu, Jason Saragih, Pascal Fua, and Yaser Sheikh. Modeling facial
geometry using compositional vaes. In CVPR, June 2018.

Pierre Baque, Edoardo Remelli, François Fleuret, and Pascal Fua. Geodesic convolutional shape
optimization. arXiv preprint arXiv:1802.04016, 2018.

Fausto Bernardini, Chandrajit L Bajaj, Jindong Chen, and Daniel R Schikore. Automatic reconstruc-
tion of 3d cad models from digital scans. International Journal of Computational Geometry &
Applications, 9(04n05):327–369.

Mikhail Bessmeltsev and Justin Solomon. Vectorizing Line Drawings via Polyvector Fields. ACM
TOG, 38(1), 2019.

Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh. Modeling char-
acter canvases from cartoon drawings. ACM Trans. Graph., 34(5):162:1–162:16, November 2015.

Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer. Gesture3D: Posing 3D Characters via
Gesture Drawings. ACM TOG, 35(6):165:1–165:13, 2016.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical report, Stanford University –
Princeton University – Toyota Technological Institute at Chicago, 2015.

Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 3-Sweep. ACM TOG, 32(6):
1–10, 2013.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR, pp.
5939–5948, 2019.

Joseph Jacob Cherlin, Faramarz Samavati, Mario Costa Sousa, and Joaquim A. Jorge. Sketch-based
modeling with few strokes. SCCG, 1(212):137, 2005.

Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam Finkelstein,
Thomas Funkhouser, and Szymon Rusinkiewicz. Where do people draw lines? Communications
of the ACM, 55(1):107, 2012.

S. A. Coons. Surfaces for computer-aided design of space forms. Technical report, 1967.

Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A Efros, and Adrien Bousseau. 3d sketching
using multi-view deep volumetric prediction. Conference on Computer Graphics and Interactive
Techniques, 1(1):1–22, 2018.

Zhantao Deng, Jan Bednařı́k, Mathieu Salzmann, and Pascal Fua. Better patch stitching for
parametric surface reconstruction. arXiv preprint arXiv:2010.07021, 2020.

Chao Ding and Ligang Liu. A survey of sketch based modeling systems. Front. Comput. Sci., 10(6):
985–999, December 2016.

10

Published as a conference paper at ICLR 2021

Matthias Eck and Hugues Hoppe. Automatic reconstruction of b-spline surfaces of arbitrary
topological type. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pp. 325–334, 1996.

Diaa F Elkott, Hoda A Elmaraghy, and Waguih H Elmaraghy. Automatic sampling for cmm
inspection planning of free-form surfaces. international Journal of production Research, 40(11):
2653–2676, 2002.

Even Entem, Loic Barthe, Marie-Paule Cani, Frederic Cordier, and Michiel van de Panne. Modeling
3d animals from a side-view sketch. Comput. Graph., 46(C):221–230, February 2015.

Haoqiang Fan, Hao Su, and Leonidas Guibas. DeepPointSet : A Point Set Generation Network for
3D Object Reconstruction from a Single Image. In CVPR, 2017.

Jun Gao, Chengcheng Tang, Vignesh Ganapathi-Subramanian, Jiahui Huang, Hao Su, and Leonidas J.
Guibas. DeepSpline: Data-Driven Reconstruction of Parametric Curves and Surfaces. pp. 1–13,
2019.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas
Funkhouser. Learning shape templates with structured implicit functions. In ICCV, pp.
7154–7164, 2019.

Yotam Gingold, Takeo Igarashi, and Denis Zorin. Structured annotations for 2D-to-3D modeling.
ACM TOG, 28(5):1, 2009.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. AtlasNet:
A Papier-Mache Approach to Learning 3D Surface Generation. CVPR, pp. 216–224, 2018.

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Frédo Durand, and Adrien
Bousseau. Opensketch: A richly-annotated dataset of product design sketches. ACM TOG, 38, 11
2019.

Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface prediction. TPAMI, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Victoria Hernández-Mederos and Jorge Estrada-Sarlabous. Sampling points on regular parametric
curves with control of their distribution. Computer Aided Geometric Design, 20(6):363–382, 2003.

H. Huang, E. Kalogerakis, E. Yumer, and R. Mech. Shape synthesis from sketches via procedural
models and convolutional networks. IEEE TVCG, 23(8):2003–2013, Aug 2017.

Jingwei Huang, Hao Su, and Leonidas Guibas. Robust watertight manifold surface generation
method for shapenet models. arXiv preprint arXiv:1802.01698, 2018.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching interface for 3d
freeform design. In Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’99, pp. 409–416, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co. ISBN
0-201-48560-5.

Anil K. Jain, Yu Zhong, and Marie-Pierre Dubuisson-Jolly. Deformable template models: A review.
Signal Process., 71(2):109–129, December 1998.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant field-aligned
meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH ASIA), 34(6), November
2015. doi: 10.1145/2816795.2818078.

Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In ECCV, 2018.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In CVPR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

Published as a conference paper at ICLR 2021

Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes. In
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 313–324,
New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917464.

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. Robust flow-guided
neural prediction for sketch-based freeform surface modeling. ACM Trans. Graph., 37(6),
December 2018.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape completion
with graph convolutional autoencoders. CVPR, 2018.

Chenxi Liu, Enrique Rosales, and Alla Sheffer. Strokeaggregator: Consolidating raw sketches into
artist-intended curve drawings. ACM TOG, 37(4), 2018.

M. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa. Fast directional chamfer matching. In CVPR,
pp. 1696–1703, June 2010.

Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui Wang. 3d shape
reconstruction from sketches via multi-view convolutional networks. In 3DV, 2017.

Priyanka Mandikal, K L Navaneet, Mayank Agarwal, and R Venkatesh Babu. 3D-LMNet: Latent
embedding matching for accurate and diverse 3d point cloud reconstruction from a single image.
In BMVC, 2018.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In CVPR, 2019.

Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W Battaglia. Polygen: An autoregressive
generative model of 3d meshes. arXiv preprint arXiv:2002.10880, 2020.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau.
Interactive sketching of urban procedural models. ACM Trans. Graph., 35(4), 2016.

Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and Joaquim A. Jorge. Sketch-based
modeling: A survey. Computers & Graphics, 33(1):85–103, feb 2009.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In CVPR, June 2019.

Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag, New York, NY, USA, second
edition, 1996.

Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and
Nicolas Heess. Unsupervised learning of 3d structure from images. In Advances in neural
information processing systems, pp. 4996–5004, 2016.

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. Mastering Sketching: Adversarial
Augmentation for Structured Prediction. ACM TOG, 37(1), 2018.

Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim, Richard Zhang, and Justin Solomon. Deep
parametric shape predictions using distance fields. In CVPR, 2020.

Chunyu Sun, Qianfang Zou, Xin Tong, and Yang Liu. Learning adaptive hierarchical cuboid
abstractions of 3d shape collections. ACM TOG, 38(6), 2019.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In CVPR, 2017a.

Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. Multi-view Supervision for
Single-view Reconstruction via Differentiable Ray Consistency. 2017b.

Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Multi-view consistency as supervisory signal
for learning shape and pose prediction. In CVPR, pp. 2897–2905, 2018.

12

Published as a conference paper at ICLR 2021

Jian Wang, Xiang Jiang, LA Blunt, Richard K Leach, and Paul J Scott. Intelligent sampling for the
measurement of structured surfaces. Measurement Science and Technology, 23(8):085006, 2012.

Lingjing Wang, Jifei Wang, Cheng Qian, and Yi Fang. Unsupervised learning of 3d model recon-
struction from hand-drawn sketches. In ACM MM, ACM MM, pp. 1820–1828. Association for
Computing Machinery, Inc, 2018a. 26th ACM Multimedia conference, MM 2018 ; Conference
date: 22-10-2018 Through 26-10-2018.

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In ECCV, 2018b.

Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 3dn: 3d deformation network.
In CVPR, 2019.

Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and Daniele Panozzo.
Deep geometric prior for surface reconstruction. In CVPR, pp. 10130–10139, 2019.

Jiajun Wu, Tianfan Xue, Joseph J Lim, Yuandong Tian, Joshua B Tenenbaum, Antonio Torralba, and
William T Freeman. Single image 3d interpreter network. In ECCV, 2016.

Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, William T Freeman, and Joshua B Tenenbaum.
MarrNet: 3D Shape Reconstruction via 2.5D Sketches. In Advances In Neural Information
Processing Systems, 2017.

Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Freeman, and Joshua B
Tenenbaum. Learning 3D Shape Priors for Shape Completion and Reconstruction. In ECCV, 2018.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective transformer nets:
Learning single-view 3d object reconstruction without 3d supervision. In Advances in neural
information processing systems, pp. 1696–1704, 2016.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep
grid deformation. In CVPR, June 2018.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. SIGGRAPH Asia, 2016.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. P2p-net: Bidirectional point displace-
ment net for shape transform. ACM Transactions on Graphics(Special Issue of SIGGRAPH), 37
(4):152:1–152:13, 2018.

Mehmet Ersin Yumer and Levent Burak Kara. Surface creation on unstructured point sets using
neural networks. Computer-Aided Design, 44(7):644 – 656, 2012.

Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Joshua B Tenenbaum, William T Freeman, and
Jiajun Wu. Learning to Reconstruct Shapes from Unseen Classes. In NeurIPS, 2018.

13

Published as a conference paper at ICLR 2021

A APPENDIX

A.1 CHANGE OF VARIABLES FOR VARIATIONAL CHAMFER DISTANCE

We derive the expression for area-weighted variational Chamfer distance:

Chvar
dir (P,M)=

1

Area(P)

∫

P

inf
y∈M

d(x,y)dx (12)

=
1

Area(P)

1∫

0

1∫

0

inf
y∈M

d(P (s,t),y)|J(s,t)|dsdt (13)

=
1

Area(P)
· 1

Area(�)

1∫

0

1∫

0

inf
y∈M

d(P (s,t),y)|J(s,t)|dsdt (14)

=
1

Area(P)
E(s,t)∼U�

[
inf
y∈M

d(P (s,t),y)|J(s,t)|
]

(15)

=
E(s,t)∼U�

[infy∈Md(P (s,t),y)|J(s,t)|]
E(s,t)∼U�

[|J(s,t)|]
(16)

A.2 ABLATION STUDY

We perform an ablation study of our method on an airplane model, demonstrating the effect of training
without each term in our loss function as well as the difference between a category-specific template,
a 54-patch sphere template, and a lower resolution 24-patch template. The results are shown in Fig. 8.
We also show an ablation results on the knife model in Fig. 9.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: An ablation study of our model without normal alignment loss (a), without collision
detection loss (b), without patch flatness loss (c), without template normal loss (d), without symmetry
loss (e), as well as using 24-patch (f) and 54-patch (g) sphere templates compared to the final result (h).

14

Published as a conference paper at ICLR 2021

(a) (b) (c) (d) (e)

self-intersection

Figure 9: An ablation study of our model without normal alignment loss (a), without collision
detection loss (b), without patch flatness loss (c), without template normal loss (d), compared to the
final result (e).

The ablation study demonstrates the contribution of each component of our system method to the final
result. Training without collision detection loss results in patch intersections. Omitting the normal loss
causes the 3D surface to suffer in smoothness. Patch flatness and and template normal losses encour-
age patch seams to align to sharp features. While both sphere templates capture the geometry, using
more patches captures greater details, and using a non-generic template further improves the model.

We additionally provide a quantitative ablation study for the knives and airplanes category in Table 1.
We train a model without each of the normals, flatness, template normals, and collision loss terms
for 50000 steps. for each model, we report the average Chamfer loss, normals loss, flatness loss,
and template normals loss (as defined in §3.2) on the test set, in addition to the average number of
intersecting patch pairs. The results demonstrate that each loss term contributes to our full model
without sacrificing reconstruction quality.

Model Ch. Loss Norm. Loss Flat. Loss Temp. Norm. Loss # Int. Pairs
airplanes (full) 0.0118 0.725 0.0000732 0.792 0.0220

airplanes (no norm.) 0.0105 1.09 0.0000941 0.935 0.0357
airplanes (no flat.) 0.0119 0.748 0.000254 0.866 0.0302

airplanes (no temp. norm.) 0.0114 0.723 0.0000734 0.889 0.0110
airplanes (no coll.) 0.0112 0.727 0.000113 1.07 3.09

knives (full) 0.0124 0.635 0.0000950 0.669 0
knives (no norm.) 0.0124 1.12 0.0000902 1.46 3.95
knives (no flat.) 0.0122 0.648 0.00132 0.733 0.0263

knives (no temp. norm.) 0.0126 0.671 0.0000886 1.03 0.132
knives (no coll.) 0.0122 0.631 0.0000963 0.722 0.0263

Table 1: Quantitative ablation study of our loss function.

15

Published as a conference paper at ICLR 2021

A.3 QUANTITATIVE COMPARISON TO PIXEL2MESH

We compare to Pixel2Mesh quantitatively in Table 2. We select 2500 random test set views and com-
pute Chamfer distance using 5000 sampled points. While obtain comparable Chamfer distance values,
our representation is significantly more compact, editable, and less prone to non-manifold artifacts.

Category CD DOF
P2M ours P2M ours

airplane 0.022 0.025 7398 816
car 0.018 0.022 7398 816

Table 2: Quantitative comparison to Pixel2Mesh. We report Chamfer distance (CD) and degrees of
freedom in the representation (DOF). We obtain comparable Chamfer distance using a representation
that is an order of magnitude more compact and without non-manifold artifacts.

A.4 QUAD MESH GENERATION

Given a collection of Coons patches, we obtain a quad mesh by subdividing each patch into some
number of quads. In order for the quad mesh to be uniform, we determine the number of subdivisions
for each boundary curve of each patch by solving an integer linear problem (ILP). Our free variables
are the number of subdivisions per curve, and the objective function encourages the number of
subdivisions to be proportional to the arc length of each curve. The constraints ensure that opposite
curves for each patch are subdivided into an equal number of segments, and when one curve contains
multiple other curves (due to edge junctions), the numbers of subdivisions are compatible. In
particular, we solve the following ILP:

minimize
∑
i∈I

(xi−αsi)2

s.t. xi=xO(i) ∀i∈E

xi=
∑

j∈J (i)

xj ∀i∈E

xi∈Z+ ∀i∈E ,
where xi is the number of subdivisions for curve i, si is the arc length of curve i, E contains all of the
curves,Omaps a curve to the opposite curve in its patch,J maps a curve to a list of curves contained
within it, and α is a parameter that controls the coarseness of the resulting quad mesh.

We solve the ILP using MOSEK, subdivide our Coons patches to obtain a quad mesh, and then
perform surface-preserving Laplacian smoothing in MeshLab for 10 iterations with maximum angle
displacement of 5◦.

16

Published as a conference paper at ICLR 2021

A.5 ADDITIONAL QUALITATIVE RESULTS

We show models from the test set for each shape category produced by our full model trained with
category-specific templates.

Figure 10: Airplanes from the test set.

17

Published as a conference paper at ICLR 2021

Figure 11: Bathtubs from the test set.

18

Published as a conference paper at ICLR 2021

Figure 12: Bottles from the test set.

19

Published as a conference paper at ICLR 2021

Figure 13: Cars from the test set.

20

Published as a conference paper at ICLR 2021

Figure 14: Guitars from the test set.

21

Published as a conference paper at ICLR 2021

Figure 15: Guns from the test set.

22

Published as a conference paper at ICLR 2021

Figure 16: Knives from the test set.

23

Published as a conference paper at ICLR 2021

Figure 17: Mugs from the test set.

24

	Introduction
	Related Work
	Sketch-based 3D shape modeling

	Algorithm
	Representation

	Experimental Results
	Real and Synthetic Sketch Reconstruction

	Acknowledgements
	Appendix
	Quantitative Comparison to Pixel2Mesh
	Quad Mesh Generation
	Additional Qualitative Results

