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Abstract— For robotic systems to be useful in everyday lives,
they need to perform dexterous manipulation tasks in messy
human environments. Enumerating all the possible physical
interactions a robot can make with its environment and other
objects is intractable, necessitating ways for robots to resolve
how to perform tasks online, and in real time. However, on-
the-fly globally optimal control is infeasible due to the high
required computational load. Workarounds that preempt the
computational cost by training or computing in advance lack
the necessary ability to recover when real events are not
foreseen by previous data or offline plans. Recent advances
in model predictive control (MPC) leverage significant model
simplification but demonstrate contact-implicit controllers ca-
pable of real time rates. These local model-based controllers
require extra assistance for even simple manipulation tasks. We
demonstrate using parallel local model-based control methods,
ultimately making hybrid decisions at two levels: a contact-
implicit locally optimal controller, wrapped by a layer which
considers the controller’s performance from a sampling of end
effector configurations. Our hierarchical controller is shown to
perform simulated rolling tasks with a sphere and a jack at
rates with expected real-time capability.

I. INTRODUCTION

High-quality, dexterous manipulation in the real world is
challenging because it can require significant computation,
rendering on-the-fly globally optimal control infeasible. One
workaround is to train a learned policy that can have fast
inference during deployment [1], albeit requiring training
time and a large dataset. Planning [2], [3], [4] can be used as
a dataset-free alternative, spending time offline to compute
high quality trajectories that reach global optimality. Some
recent online model predictive control (MPC) contributions
work effectively because they rely on pre-computed reference
trajectories [5]. Planning times for dynamics model-based
methods may be orders of magnitude faster than training
times for learning-based methods, though still prohibitively
long to use in real time. Further, many recent works in this
area restrict planning to 2D [6], [7] due to the complexity
of the 3D problem. Additionally, executing pre-planned
trajectories is non-trivial. Manipulation in the wild often
quickly deviates from optimal plans, necessitating online
control strategies that may never recover the original plan.

Alternative to leveraging offline training or planning, re-
cent works [8], [9] have made progress towards the global
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Fig. 1: A block diagram depicting our hierarchical controller (top
left block) that performs contact implicit, real-time control for
manipulation. See Section III-D for more information on run rates.

optimization problem by instead using local linear comple-
mentarity system (LCS) approximations to the global system
to formulate a more tractable MPC problem. These methods
have zero reliance on pre-computed reference trajectories and
thus are veritable real-time, on-the-fly controllers. However,
LCS models linearize geometry, preventing pushing in op-
posite directions. In practice, these LCS-based controllers
bypass this limitation via the use of heuristics to guide the
end effector to the right location, but this is restrictive and
limited in generalization.

In this work, we add a sampling layer on top of the
local LCS-based control (Figure 1). The sampling broadens
the controller’s local view into a global sampling of local
linearizations from different end effector positions. At each
sample, we compute the cost of the sample’s local LCS-based
optimization problem and choose to relocate the robot’s end
effector when there is ample cost benefit. Our hybrid solution
aims to perform real-time manipulation of arbitrary geometry
by combining global sampling with real-time control on local
linearizations, an effective approximation of the global multi-
contact MPC problem.

A. Contributions

In this paper, we contribute:

• A novel combination of global sampling with local
control for multi-contact manipulation.

• Measurements that demonstrate our approach is capable
of real-time rates.

• Preliminary presentation of two simulation experiments
to validate the efficacy of our approach.

Given this is work in progress, we emphasize the following
as future work in this line of research:

• Exploration of different sampling strategies.



Fig. 2: Left: A spherical end effector approaching a spherical
object on a flat table. Right: The linear complementarity system
(LCS) approximation of a geometry converts each contact into a
hyperplane tangent to the contact surface.

• Further tuning of our simulation experiments to improve
performance.

• Demonstration on hardware.

II. BACKGROUND

A. Linear Complementarity System
We use linear complementarity systems (LCS) as local

representations of multi-contact systems. An LCS is a dif-
ferential/difference equation coupled with a variable that is
the solution of a linear complementarity problem (LCP).
Generically, an LCP is defined as:

Definition 1: Given a vector q ∈ Rm, and a matrix
F ∈ Rm×m, the LCP(q, F ) describes the following math-
ematical program:

find λ ∈ Rm

subject to y = Fλ+ q,

0 ≤ λ ⊥ y ≥ 0.
In our context, the vector λ typically represents the contact
forces and slack variables, y represents the gap function, and
the orthogonality constraint embeds the hybrid structure.

Definition 2: A linear complementarity system describes
the trajectories (xk)k∈N0

and (λk)k∈N0
for an input sequence

(uk)k∈N0 starting from x0 such that

xk+1 = Axk +Buk +Dλk + d,

0 ≤ λk ⊥ Exk + Fλk +Huk + c ≥ 0,
(1)

where xk ∈ Rnx , λk ∈ Rnλ , uk ∈ Rnu , A ∈ Rnx×nx ,
B ∈ Rnx×nu , D ∈ Rnx×nλ , d ∈ Rnx , E ∈ Rnλ×nx , F ∈
Rnλ×nλ , H ∈ Rnλ×nu and c ∈ Rnλ .

Vector xk represents the state and often consists of the
generalized positions qk and velocities vk. In computing the
LCS representation of a given system, all of the quantities
A,B,D, d,E, F,H, c are functions of state xcurrent. For a
given k, xk, and uk, the corresponding complementarity
variable λk can be found by solving LCP(Exk+Huk+c, F )
(see Definition 1). Similarly, xk+1 can be computed using
the first equation in (1) when xk, uk, and λk are known.
Given an input uk and state xk, we represent the next state
with xk+1 = LCS(xk, uk).

While certain LCPs may lack or have multiple solutions,
for the sake of simplicity, here we assume that the mapping
exists and is unique.

B. C3

A common cost metric for evaluating a trajectory x0:N

coupled with its contact forces λ0:N−1 and control inputs
u0:N−1 is given by

fcost(x0:N , λ0:N−1, u0:N−1) = . . .
N−1∑
k=0

(xT
kQkxk + uT

kRkuk) + xT
NQNxN

s.t. xk+1 = Axk +Buk +Dλk + d,

Exk + Fλk +Huk + c ≥ 0,

λk ≥ 0,

λT
k (Exk + Fλk +Huk + c) = 0,

(x,λ,u) ∈ C,
for k = 0, . . . , N − 1, given x0,

(2)

where N is the planning horizon, Qk, QN are positive
semidefinite matrices, Rk are positive definite matrices, C is a
convex set (e.g. input bounds, safety constraints, or goal con-
ditions), and xT = [xT

1 , . . . , x
T
N ], λT = [λT

0 , λ
T
1 , . . . , λ

T
N−1],

uT = [uT
0 , u

T
1 , . . . , u

T
N−1]. Prior work [8] developed a real-

time, multi-contact controller called Consensus Complemen-
tarity Control (C3) that efficiently solves the mathematical
optimization problem to minimize this cost:

γ(xcurrent, xgoal) = min
xk,λk,uk

fcost(xk, λk, uk), (3)

x∗, λ∗, u∗(xcurrent, xgoal) = arg min
xk,λk,uk

fcost(xk, λk, uk).

(4)

One control loop of C3 is executed by solving the opti-
mization, applying u∗[0] from (4) to solve the LCS in (1)
and obtain xk+1, and sending this desired state to a high-rate
impedance controller. This process is repeated in every time
step in a receding horizon manner.

III. METHODS

C3 has been demonstrated to work well in real scenarios
including rolling a ball through a trajectory with a Franka
arm and in a variety of simulation examples. However,
these demonstrations require additional heuristics to force
the end effector out of regions where the local LCS view is
antagonistically simplified. These heuristics depend on the
system and the goal, and bake in a priori knowledge for
what regions are more amiable towards allowing C3 to make
progress towards the goal.

It is the aim of this work to replace the heuristic-based,
scenario-specific repositioning rules with a global sampling-
based, geometry-agnostic scheme. A high-level controller
trades off current C3 efficacy with future investment: we
directly compare the costs from (3) with the end effector
in its current location to the end effector at other sampled
locations, plus costs on travel and switching states. The high-
level controller switches between C3 mode and repositioning
mode based on these cost comparisons.

Given the current state xcurrent, goal state xgoal, a target
number of additional samples to consider ns, a strategy for



generating the next sample xsample = fsample(xcurrent), and
a few cost hyperparameters, the algorithm for running our
hybrid controller is provided in Algorithm 1. Its output is
the next state xnext to send to the impedance controller.

A. Generating Samples

The LCS approximation of the object-end effector pair ap-
proximates the object’s geometry as a hyperplane intersecting
and tangent to the object’s closest point to the robot’s end
effector (Figure 2). When the end effector is between the
object and the goal, C3 cannot make progress towards the
goal by contacting the hypothetical hyperplane (the normal
force would have to be negative), so it chooses no contact.

Thus the goal of sampling other end effector locations is to
generate other LCS approximations with substantially differ-
ent hyperplane simplifications. In practice, sampling around
the object produces a diverse set of LCS approximations, and
quickly one amenable towards making progress is found.

In this work, we generate samples as a radially symmetric
fixed number of samples about the (x, y) position of the
object (in the sphere example) and a random sampling
on a 2D circle or on the surface of a 3D sphere.
For random sampling, any sample to which our algorithm
chooses to reposition is stored and pursued while other
samples are randomly generated. If lower cost, other samples
can supersede the actively pursued sample. Any sampling
strategy is defined as xsample = fsample(xcurrent).

It remains future work to explore other possible sampling
strategies, e.g. using cross-entropy methods. More discussion
in Section V.

B. Evaluating Samples

Each of these sample locations is scored based on its C3
cost from (3) plus costs on travel distance and switching to
repositioning mode,

csample(xsample, xgoal) =

γ(xsample, xgoal) + wtravel · ∥qsample − qcurrent∥+ wrepos, (5)

with wtravel as a travel distance cost weight, wrepos as a fixed
cost to repositioning, and where the only difference between
qsample and qcurrent is the end effector location. wrepos exists
to ensure switching back to C3 mode once the end effector
reaches the end of a repositioning move, if it hasn’t already
switched modes.

C. Hierarchy

After generating lists of candidate samples and their
associated costs, the high-level controller determines whether
to run C3 or to reposition. This switch is implemented
with hysteresis (of size h) such that if the controller is
currently running C3, it switches only if repositioning is
better by h, and vice versa. The algorithm for this decision
process and actions is provided in Algorithm 1 and depicted
schematically in the upper left block in Figure 1.

Algorithm 1 Hybrid C3 with global sampling

Require: xcurrent, xgoal, ns, fsample(.), wtravel, wrepos, h,doing c3
1: copt ← γ(xcurrent, xgoal) from (3)
2: ucurrent ← u∗(xcurrent, xgoal) from (4)
3: xnext ← LCS(xcurrent, ucurrent) from (1)
4: if doing c3 then
5: copt ← copt − h
6: else
7: copt ← copt + h
8: end if
9: for i ∈ {1, . . . , ns} do

10: xsample,i ← fsample(xcurrent)
11: ci ← csample(xsample,i, xgoal) from (5)
12: if ci < copt then
13: copt ← ci
14: xnext ← point along curve from xcurrent to xsample,i
15: end if
16: end for
17: return xnext

Fig. 3: Manipulating a sphere in C3 (left) and repositioning modes
(right). The cyan spheres indicate sampled end effector locations,
the dark blue sphere indicates the best sample location, and the
pink lines visualize the corresponding end effector motions.

D. Real-Time Rates

On a 12th generation Intel Core i7-12700H with 20
threads, our algorithm for the jack example (Section IV-
B) with ns = 3 currently runs at up to 23 Hz. We expect
the additional speedup gained by using an off-the-shelf i9
processor will increase our speed to over 30 Hz, a rate at
which we are confident our controller can be effective in
real time. Results presented here were obtained via running
our simulation at < 1 real-time rates that achieve an effective
30 Hz control loop for testing purposes.

IV. EXPERIMENTS

For both experiments presented herein, we simulate and
control a Franka Panda robotic arm using Drake. The arm
has a spherical end effector with no additional degrees of
freedom. The objects are assumed to be rigid.



Fig. 4: Manipulating a sphere to track a circular trajectory. The
cyan spheres indicate sampled end effector locations, the pink /
dark blue sphere indicates the best sample location, and the orange
lines visualize the object’s traversed trajectory.

Fig. 5: Manipulating a jack to traverse a trajectory. The object’s
trajectory is shown by the orange path, sample locations by cyan
spheres, and the best sample location demarked by a pink sphere.

A. Trajectory Tracking with a Sphere

This experiment focuses on tracking a circular trajectory
using a spherical object. Figure 3 shows the controller
running in C3 mode (left) and repositioning mode (right).
Our hierarchical controller effectively manipulates the sphere
to follow a circular trajectory, as depicted in Figure 4 by the
orange path the sphere traversed.

B. Trajectory Tracking with a Jack

In this experiment, we use a more complex non-convex
shape. This objective is achieved using a jack, formed by the
intersection of three mutually perpendicular capsules. Figure
5 illustrates preliminary results for manipulating the jack to
traverse a circular trajectory.

V. FUTURE WORK

In addition to refining the performance on our presented
examples, we plan on demonstrating our work on hardware.
Additionally, in the progress provided in this paper, we
used simple sampling strategies which are fairly effective
in bringing the end effector to a new location from which
it can make further progress to the goal once it is not able
to anymore. However, we plan to explore other sampling
schema in a future conference paper in this line of work. Here
we briefly discuss some considerations for how to generate
samples, i.e. how to define fsample(x).

a) Leveraging Object at Zero Velocity: With every
control loop, ns samples are considered. In practice, we
choose ns to be a small number (typically < 4) to increase
the speed of the control loop. Depending on the geometry
of the object, there are often repositioning maneuvers during
which the object is stationary, and thus previously generated
samples and their costs are still valid. We plan on leveraging
this and keeping track of valid past samples to help inform
the next samples. This could allow ns to shrink, increasing
the speed of the control loop without compromising the
breadth of considered samples.

b) Cross-Entropy Sampling: The sample cost calcu-
lated in (5) is effectively a scalar field over the 3-dimensional
end effector location space. We can use cross-entropy meth-
ods to intelligently choose a new sample location xsample
based on the costs c of prior stored samples S.

VI. CONCLUSION

In this work, we presented a novel combination of a sam-
pling layer with a local LCS-based controller with the ability
to perform real-time multi-contact control in simulated ex-
amples with no a priori specified contact or repositioning
scheduling.
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