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ABSTRACT

Membership inference attacks (MIAs) are widely used to assess a model’s vul-
nerability to privacy leakage by determining whether specific data instances were
part of its training set. Despite their significance as a privacy metric, existing eval-
uations of MIAs are often limited to isolated and inconsistent scenarios, hindering
comprehensive comparisons and practical insights. To address this limitation, we
analyze the full pipeline of training models and conducting MIAs, and present
a comprehensive benchmark for evaluating various MIA methods on deep learn-
ing models. We establish a reproducible benchmark suite with code and models,
leaderboards, detailed insights into the mechanisms of different MIA approaches,
and practical guidance for selecting and applying MIAs effectively. This work en-
hances the understanding and application of MIAs, providing a solid foundation
for advancing privacy-preserving machine learning research.

1 INTRODUCTION

The past decade has witnessed rapid advancements in machine learning. Overparameterized deep
neural networks (Vaswani et al., 2017; Devlin et al., 2019; Achiam et al., 2023) have pushed the
boundaries of numerous application domains. However, unlike classical machine learning methods,
whose solutions can often be expressed analytically, training deep neural networks involves solving
ultra-high-dimensional nonconvex optimization problems, where the optima can only be approxi-
mated through numerical methods. As a result, despite their impressive performance, these models
are often regarded as black boxes with limited interpretability. In other words, deep neural networks
may rely on feature representations vastly different from those used by humans, leading to various
reliability concerns (Goodfellow et al., 2015; Zhang & Zhu, 2018; Zhu et al., 2019).

In this work, we focus on the issue of membership inference attacks (MIA) (Shokri et al., 2017),
which address the potential risks of data privacy leakage in machine learning. Specifically, an MIA
algorithm, denoted as f , solves a hypothesis testing problem: it determines whether a given data
instance x was included in the training set of a model M . A higher attack success rate indicates a
greater risk of data privacy leakage in the model. Thus, the performance of MIA serves as a critical
metric for assessing the privacy-preserving capabilities of machine learning algorithms and models.

Given the diversity of MIA methodologies and privacy requirements across different application
scenarios, it is both important and challenging to fairly and comprehensively benchmark the perfor-
mance of various MIA methods. These challenges stem from different factors in different stages of
the pipeline consisting of training a machine learning model and conducting membership inference
attacks. However, existing works usually conduct their evaluations in some specific scenarios, mak-
ing their results incomparable. Therefore, benchmarking different MIAs under different settings can
enable us to build a broader view of how different categories of MIA work and how to pick MIA
methods wisely under different circumstances.

In this work, we focus on MIA methods targeting classical deep learning rather than generative mod-
els, as the former are more extensively studied and better understood. Within this scope, we conduct
a comprehensive investigation of their performance across diverse scenarios. In addition, we pro-
vide in-depth analyses of several consistent and intriguing patterns observed in the results. Finally,
we propose a general guideline for practitioners to effectively select appropriate MIA methods for
real-world applications. Our contributions are summarized as follows:
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1. Benchmark Suite: We provide a publicly available suite, including code, datasets and model
zoos, to support reproducible evaluation of MIAs in the full pipeline of model training and pri-
vacy evaluation. Notably, depending on the knowledge of data membership, we demonstrate
the attacking and auditing mode of MIA methods to ensure fair and comprehensive evaluation.
Altogether, we establish leaderboards to demonstrate the performance of MIAs.

2. Insights into MIA Mechanisms: We demonstrate the crucial role of the generalization gap in
current MIA performance and the high agreement among the top-performed MIA methods. We
also highlight the importance of selecting appropriate hyperparameters for MIA methods.

3. MIA Selection Guidance: Based on the observations in our benchmark, we offer guidance to
practitioners for selecting appropriate MIA methods tailored to different tasks.

2 RELATED WORKS AND SCOPE OF THE BENCHMARK

Table 1: An overview of different MIA methods (details in Appendix D) and their properties.

Technique LiRA RMIA Metric
MIA Quantile Merlin MLLeak1 MLLeak3 Shadow BlindMI

Scalar Threshold ✓ ✓ ✓ ✓
Sample-wise Threshold ✓ ✓
Binary Classifier ✓ ✓
Pairwise-distance ✓ ✓
Shadow Model ✓ ✓ ✓ ✓ ✓ ✓

Membership inference attacks (MIAs) have emerged as critical concerns in machine learning pri-
vacy, serving as powerful tools for privacy auditing. Extensive research efforts have been dedicated
to comprehending and enhancing MIAs across diverse scenarios. In this study, our benchmark
concentrates on MIAs targeting deep learning classifiers, presuming black-box access for the adver-
sary. Specifically, the attacker is limited to accessing the output logits of the model, as opposed to
the model parameters and their gradients. While white-box MIAs (Chen et al., 2022; Watson et al.,
2022; Leemann et al., 2024) present a more severe threat to privacy, black-box MIAs align more
closely with real-world scenarios, especially given the increasing prevalence of machine learning
as a service (MLaaS) in various applications. Mathematically, the MIA method we investigate in
this work can be formulated as a hypothesis testing function m that maps the data instance x and
the corresponding output of the target model f(x) to a binary output m(x, f(x)) ∈ {0, 1}: with 1
indicating that x is in the training set for model f (i.e., member) and 0 otherwise (i.e., non-member).

There are several popular strategies adopted by many MIA methods. First, threshold control selects
scalar thresholds on a chosen metric, such as likelihood ratio or modified entropy of the model out-
puts, to separate members from non-members (Song & Mittal, 2021; Carlini et al., 2022). A natural
extension of scalar threshold is sample-wise threshold, which computes a threshold for each sample
(Zarifzadeh et al., 2024; Bertran et al., 2024). In contrast to a scalar threshold, several MIAs (Shokri
et al., 2017; Salem et al., 2018) employ binary classifiers to directly distinguish members and non-
members. In addition, Hui et al. (2021); Zarifzadeh et al. (2024) leverage pairwise distances between
data points to better distinguish between member and non-member data. Furthermore, the shadow
model (Shokri et al., 2017; Ye et al., 2022) is a popular technique that trains separate shadow mod-
els using the same distribution as the original training dataset. With the information on training
members for shadow models, we can better design the criteria to detect members. Because shadow
models are trained to mimic the behavior of the target model, the same criteria are then used for
the target models. We summarize the key techniques of different MIAs within the scope of our
investigation in Table 1 below. More details about these methods are deferred to Appendix D.

3 BENCHMARKING MEMBERSHIP INFERENCE ATTACKS

3.1 PIPELINE AND CHALLENGES

The full pipeline of training a machine learning model and conducting membership inference attacks
(MIA) is demonstrated in Figure 1, including (1) sample data to form a training set; (2) select the
model architecture; (3) use the training set to train the target model; (4) tune the hyper-parameters
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Figure 1: Pipeline of MIA. The pipeline consists of five steps: (1) data sampling; (2) select the model archi-
tecture; (3) model training; (4) tune the hyper-parameters of the MIA method; (5) evaluate the target model on
a data set consisting of both member and non-member data. Two distinct scenarios correspond to deploying
MIAs for attacking or auditing, respectively. In the context of attacking mode, MIA serves as a tool for at-
tackers to determine whether a specific data point was used in the training of a target model. In the context of
auditing mode, model owners employ MIA to audit the target model’s privacy-preserving capabilities.

of the MIA method; (5) evaluate the target model on a data set consisting of both members and non-
members. Each of these five phases may have different settings in various application scenarios,
making it challenging to fairly and comprehensively benchmark MIA methods.

Data. Recent studies (Niu et al., 2024; 2025) highlight the significant impact of data properties on
MIA performance, including training data and data being inferred. In addition, out-of-distribution
data, such as ambiguous or mislabelled data, further complicate the evaluation of MIA methods.

Models. The performance of MIA methods is highly dependent on the characteristics of the tar-
get model, especially the model capacity reflected by the architectures and number of parameters.
Intuitively, models with limited capacity struggle to encode data-specific information, while highly
expressive models are more likely to leak such information, thereby facilitating MIAs.

Training Algorithms. Key factors of training algorithms, including the initialization, the training
phases and the optimization methods, can affect how susceptible the model is to leaking data privacy,
because all of them can affect how the model encode data-specific information.

Hyperparameter Selection. Hyperparameters play a crucial role in determining the effectiveness
of MIA methods and should be chosen carefully but fairly. In this context, the availability of data
membership for evaluation is crucial. In Section 3.2, we discuss two modes for selecting the optimal
hyperparameters depending on the availability of data membership for evaluation.

Evaluation Metrics. The performance of MIA methods can be evaluated by various metrics, such
as precision, recall, and area under the curve (AUC), making it inherently a multi-objective op-
timization problem. Different application scenarios often prioritize different metrics, which may
lead to different preferences for MIA methods. Some cases would prefer a low false negative rate,
such as using machine unlearning (Bourtoule et al., 2021) to remove the influence of sensitive data.
Conversely, some cases would prefer a low false positive rate, such as extracting training data from
generative models for reuse in fine-tuning. In many other cases, it is necessary to balance both false
positive and false negative rates, making metrics such as the F1 score a natural choice.

3.2 ATTACKING MODE AND AUDITING MODE OF MIAS

3
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One key stage in the pipeline as shown in Figure 1 is the selection of MIA hyperparameters, which
depends critically on whether membership information of the inference data is available. These two
scenarios correspond to the use of MIAs as either privacy attacks or auditing tools. In the attack sce-
nario, attackers lack access to member and non-member datasets, making hyper-parameter selection
a major challenge. In contrast, when used as an auditing tool, certain MIAs can leverage mem-
bership information to optimize hyperparameters, achieving stronger performance on fixed datasets
and models. To ensure fair and reproducible comparisons, it is essential to evaluate different MIAs
under consistent conditions. In this regard, we summarize two practical MIA scenarios below and
provide pseudocode for both in Appendix E.

Attacking Mode. In this scenario, adversaries use MIA to determine whether a specific data point
was part of the target model’s training data. As attackers lack access to the target model’s ac-
tual training set, to select hyperparameters like scalar thresholds, they train shadow models using
shadow data that follows a distribution similar to that of the target model’s training data. The hy-
perparameters are then tuned using the performance of these shadow models. As shown in Figure 1,
both the original training and test sets are partitioned into dedicated subsets for the target model and
the shadow models. The MIA’s final performance is evaluated on the target model’s test set.

Auditing Mode. In this scenario, model owners employ MIA as a privacy audit tool to evaluate
the information leakage of their model. With explicit knowledge of which data points are members
(training data) and non-members, certain MIA methods, such as LiRA, RMIA, and Quantile, can
directly use this information to select optimal hyperparameters (e.g., thresholds) and improve per-
formance. As illustrated in Figure 1, we use the same member and non-member datasets for both
hyperparameter tuning and final evaluation.

One important application to use MIAs for privacy auditing is machine unlearning (MU). MU fine-
tunes pretrained models to remove the influence of data to forget (i.e. forget data) meanwhile pre-
serving model predictions on the remaining training set (i.e. retain data). For fair comparison, we
follow the same data split as in Figure 1 for MU except that the forget data, which is part of the
original training set but should be unlearned during finetuning, is considered as non-members in the
evaluation phase. This is consistent with existing MU literature (Cao & Yang, 2015; Fan et al., 2023;
Tarun et al., 2023; Huang et al., 2024).

Finally, we need to point out that the discrepancy between the attack mode and auditing mode only
exists for MIAs with hyperparameters to distinguish members and non-members. MIAs without
such hyperparameters, such as the ones using shadow models (Shokri et al., 2017) or using binary
classifiers Salem et al. (2018), use exactly the same workflow for both attacking and auditing pur-
poses. Therefore, we do not distinguish attacking or auditing mode for these MIA methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We comprehensively evaluate different aspects that may affect the MIA performance as below.

MIA Methods. We consider a variety of MIA methods in this work, including LiRA, RMIA,
Metric MIA, Quantile, Merlin, ML-Leaks, Shadow, and BlindMI. Specifically, for Metric MIA,
we employ three distinct metrics Entropy, Modified Entropy and Confidence; for ML-Leaks,
we implement its two settings MLLeak1, MLLeak3; and for BlindMI, we incorporate the four
techniques One-class, Diff-W, Diff-Single and Diff-bi. Further details regarding the literature, the
implementation and configuration of these methods are provided in Appendix D.

Data. We consider vision data, e.g., CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), ImageNet100 (Russakovsky et al., 2015). We also consider the superclass and the
mislabel scenarios. The details are deferred to Appendix F.2.

Architectures. We consider neural networks of different sizes, e.g., 4-layer CNN (Krizhevsky et al.,
2012), VGG-11 (Simonyan & Zisserman, 2015), ResNet-18 (He et al., 2016), ResNet-34, ResNet-
50, WideResNet-28-2 (Zagoruyko & Komodakis, 2016), and Swin Transformer-Tiny (Liu et al.,
2021). The size of each model is presented in Table 5 of Appendix F.3.
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Training Algorithms. We include various training algorithms, including training from scratch and
fine-tuning. We also investigate several privacy-enhancing algorithms, including differential private
SGD (DP-SGD) (Abadi et al., 2016) and machine unlearning algorithms (Bourtoule et al., 2021).
For each training algorithms, we monitor the MIA performance in the whole training duration.
Specifically, for machine unlearning methods (SalUn (Fan et al., 2024) and SFR-on (Huang et al.,
2024)), we monitor the MIA performance across pretraining, unlearning and compare them with
retraining by retained data. We report the MIA performance on retain data, forget data and test data.

Hyperparameter Selection. We consider both attacking mode and auditing mode introduced in
Section 3.2 to select MIA hyperparameters in different contexts.

Evaluation Metrics. We use TP, FP, TN, FN to represent the number of true positive, false positive,
true negative and false negative, respectively. We consider the following metrics for comprehensive
evaluation: (1) Accuracy: the overall accuracy TP+TN

TP+TN+FP+FN ; (2) Prec@P: precision on the
positive cases TP

TP+FP ; (3) Rec@P: recall on the positive cases TP
TP+FN ; (4) F1@P: F1-score on the

positive cases 2×Prec@P·Rec@P
Prec@P+Rec@P ; (5) Prec@N: precision on the negative cases TN

TN+FN ; (6) Rec@N:
recall on the negative cases TN

TN+FP ; (7) F1@N: F1-score on the negative cases 2×Prec@N·Rec@N
Prec@N+Rec@N .

For MIAs using threshold to distinguish member and non-members, we also introducing the
following popular metrics in evaluating MIA: (1) AUC: the area under the ROC curve; (2)
TPR@0.1%FPR: the true positive rate when the false positive rate is 0.1%. However, these metrics
cannot be computed during attacking mode. The calculation of these metrics requires prior knowl-
edge of data membership, which contradicts the fundamental assumption of the attack scenario.
Therefore, we only report results on these metrics in the auditing mode.

4.2 EXPERIMENTAL RESULTS AND OBSERVATION

0.0 0.1 0.2 0.3 0.4 0.5
Epoch

60

70

80

90

M
IA

 A
cc

ur
ac

y

LiRA
RMIA
Entropy
Modified Entropy
Confidence
Merlin 40

50

60

70

80

Ge
ne

ra
liz

at
io

n 
Ga

p

Gen. Gap

(a) Mislabel Rate

25 50 75 100 125 150 175 200
Epoch

55

60

65

70

75

80

M
IA

 A
cc

ur
ac

y

LiRA
RMIA
Entropy
Modified Entropy
Confidence
Merlin

5

10

15

20

25

30

35

40

Ge
ne

ra
liz

at
io

n 
Ga

p

Gen. Gap

(b) Training Epoch

Figure 2: Curves of MIA accuracy. The model is ResNet-18 trained on CIFAR-100. (a) MIA accuracy vs.
mislabel rate. The mislabel rates are 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. (b) MIA accuracy vs. training
epoch. The evaluation is conducted every 10 epochs. Gray dashed lines indicate the generalization gap. LiRA,
RMIA, three variants of Metric MIA, and Merlin in auditing mode are tested. Due to prohibitive computational
complexity, Quantile is not included in the evaluation. Note that Merlin exhibits trivial performance in both
settings.

In this section, we comprehensively study the performance of different MIA methods on each step
in the pipeline as discussed in Section 3.1.

4.2.1 DATA

We evaluate MIA methods on different datasets, including CIFAR10 (Table 15), CIFAR100 (Table 9)
and ImageNet100 (Table 16). These results highlight the broad applicability of the MIA methods
under investigation.
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Table 2: Average Gap between auditing mode and attacking mode. For Different Dataset, we evaluate MIA
performance on CIFAR10(Table 15), CIFAR100(Table 9) and ImageNet(Table 16). For Different Arch, we
evaluate MIA performance on 4-layer CNN (Table 10) / VGG-11 (Table 11) / ResNet18 (Table 9) / ResNet-34
(Table 12) / ResNet-50 (Table 13). For Different Algorithm, we evaluate MIA performance of SGD (Table 9)
and DP-SGD (Table 20).

Epochs Setting Methods

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin

200
Different Dataset 2.85 2.24 3.96 3.67 3.54 0.11 1.76
Different Architecture 2.41 1.98 3.01 2.30 2.33 0.04 0.70
Different Algorithm 2.17 1.17 3.28 2.63 2.54 0.30 -1.17

110
Different Dataset 1.73 0.63 2.19 2.50 2.35 0.14 1.26
Different Architecture 3.22 1.00 3.38 3.53 3.41 0.26 1.44
Different Algorithm 1.18 0.51 1.98 2.09 2.06 0.21 0.62

10
Different Dataset 0.03 0.19 3.52 3.99 3.93 0.31 3.01
Different Architecture 0.53 0.46 7.01 6.77 6.64 0.82 5.47
Different Algorithm 0.22 0.13 3.53 3.79 3.69 0.29 2.49

Additionally, we benchmark MIA performance on CIFAR100 using superclass labels 1, with results
presented in Table 18. The findings reveal a performance degradation for most MIAs when models
are trained with superclasses. This is because, under the black-box access assumption in our study,
training with superclasses reduces the dimensionality of the model’s output, thereby limiting the
information available to MIA methods and making attacks more challenging.

Furthermore, we investigate how mislabeled data affects the performance of MIAs. Furthermore,
we examine the impact of mislabeled data on MIA performance. As shown in Figure 2 (a) and
Table 17, mislabeled data generally makes MIAs more effective. A higher proportion of mislabeled
data leads to improved MIA performance until it eventually saturates. This is because mislabeled
data increases the conditional variance between input and label, forcing the model to learn more
data-specific correlations to fit the noisy labels, thereby enhancing the vulnerability to MIAs.

4.2.2 ARCHITECTURES

We evaluate MIAs on various models for CIFAR100. The model architectures, from small to big,
include a 4-layer CNN (Table 10), VGG-11 (Table 11), ResNet-18 (Table 9), ResNet-34 (Table 12),
ResNet-50 (Table 13), and Swin Transformer-Tiny (Table 14).The result indicate that MIA perfor-
mance varies among different architectures. The underlying reasons for this phenomenon will be
further explored in Section 5.

4.2.3 TRAINING ALGORITHMS

We monitor the performance of various MIAs throughout the training process. For each setting
considered, we report MIA performance at the early, intermediate, and final phases of training.
Figure 2 (b) provides a detailed view of the fine-grained trends in MIA performance during training.
These results consistently demonstrate that the performance of most MIA methods improves as the
training progresses, suggesting that the model increasingly encodes information from the training
data, thereby making it more susceptible to MIAs.

We also examine the impact of using a pretrained model on MIA performance. As shown in Table 19
and Table 13, finetuning a pretrained model reduces the model’s vulnerability to MIAs. Compared
with training from scratch, finetuning typically employs a smaller learning rate and produces smaller
gradients, which implicitly slows down the process of encoding training data features into the model.

Furthermore, we report the performance of MIAs when the model is trained by privacy-enhancing
algorithms, such as DP-SGD in Table 20. Our result indicates that DP-SGD can indeed defend
models against various MIA methods while guarantee comparable utility.

For machine unlearning, we report results only in auditing mode. As shown in Table 22, most MIA
methods exhibit consistent performances across 4 models, including the pretrained model, unlearned
models by two MU methods and the retrained model, which indicates the effectiveness of unlearning

1CIFAR100 consists of 20 superclasses, each containing 5 classes.
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Table 3: Mean and Variance of Accuracy for each MIA Methods via Different Architecture and Datasets.

Epochs Metric MIA BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200 65.01
(10.08)

69.41
(7.72)

73.86
(9.47)

75.64
(8.68)

75.56
(8.67)

73.29
(10.20)

56.09
(1.57)

64.81
(11.20)

64.69
(9.43)

58.88
(5.19)

65.49
(8.97)

70.21
(10.70)

68.52
(9.63)

61.25
(7.85)

110 60.95
(6.39)

66.32
(9.06)

68.67
(7.95)

70.53
(8.41)

70.53
(8.40)

66.94
(10.05)

55.64
(1.60)

54.12
(5.18)

56.27
(5.56)

56.58
(5.36)

63.22
(10.19)

65.69
(10.91)

64.05
(9.40)

59.24
(7.59)

10 51.68
(1.15)

52.47
(1.22)

57.45
(0.72)

58.30
(0.69)

58.28
(0.70)

52.43
(1.01)

55.94
(1.07)

50.55
(0.00)

50.33
(0.26)

50.13
(0.09)

50.51
(0.73)

50.54
(1.02)

50.79
(0.74)

50.55
(0.78)

Table 4: Mean and Variance of AUC and TPR@0.1 % FPR for each MIA Methods via Different Architecture
and Datasets.

Epochs Metrics Methods

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin

200 AUC 0.659(0.101) 0.764(0.097) 0.731(0.116) 0.755(0.098) 0.751(0.099) 0.749(0.109) 0.522(0.029)
TPR@0.1%FPR 0.85(0.764) 6.9(4.466) 4.7(3.571) 4.9(3.851) 4.8(3.789) 0.33(0.227) 0.97(0.860)

110 AUC 0.635(0.083) 0.725(0.120) 0.673(0.115) 0.695(0.110) 0.693(0.112) 0.686(0.114) 0.517(0.028)
TPR@0.1%FPR 0.49(0.5) 5.2(3.2) 4.3(2.8) 4.4(3.1) 4.3(3.0) 0.35(0.26) 0.97(0.98)

10 AUC 0.517(0.018) 0.532(0.019) 0.512(0.009) 0.530(0.013) 0.529(0.012) 0.528(0.013) 0.507(0.004)
TPR@0.1%FPR 0.1(0.08) 1.1(0.89) 2.1(1.4) 2.2(1.7) 2.2(1.7) 0.4(0.5) 0.9(0.9)

process. In Table 21, we focus more on MIA performance on the forget set which we consider as
non-members. The results indicate that metric-based MIAs (including LiRA, RMIA, MetricMIA,
Quantile and Merlin) generates similar results for unlearned and retrain models, whereas classifier-
based MIAs (including ML-Leaks and BlindMI) exhibit large discrepancies. From the perspective
of auditing privacy risk, this indicates that metric-based MIAs, which rely on thresholding statis-
tics, may overestimate unlearning effectiveness. In contrast, classifier-based MIAs expose residual
differences and enable a more stringent and informative assessment by learning a decision function
between members and non-members.

4.2.4 HYPERPARAMETER SELECTION

We assess the performance of MIAs in both attacking mode and auditing mode. For MIA methods
requiring setting threshold, selecting appropriate hyperparameters in auditing mode yields better
results than in attacking mode. In Table 2, we report the accuracy gap between the two modes for
these methods. Table 2 shows that, across different epochs and settings, the Quantile MIA method
exhibits the smallest gap. In contrast, Metric MIAs (Entropy, Modified Entropy, Confidence) tend
to have larger gaps, indicating a higher sensitivity of their performance on hyperparameters.

4.2.5 EVALUATION METRICS

We evaluate the performance of MIA methods across various datasets (CIFAR10(Table 15), CI-
FAR100(Table 9) and different architecture(4-layer CNN (Table 10) / VGG-11 (Table 11) / ResNet-
18 (Table 9) / ResNet-34 (Table 12) / ResNet-50 (Table 13)). Tables 3 and 4 present the mean and
variance of accuracy (maximum of auditing and attacking mode), AUC, and TPR@0.1%FPR un-
der the aforementioned scenarios. The results indicate that Metric MIA methods provide the best
accuracy among all methods across every epoch. Regarding AUC and TPR@0.1%FPR, the RMIA
method outperforms others. Moreover, RMIA maintains a high AUC with smaller variance com-
pared to other methods under the AUC curve, demonstrating its stability across different scenarios.

Furthermore, our extensive results reveal that various MIA methods are more likely to achieve near-
perfect performance in Rec@P and Prec@N compared to other metrics. This suggests that these
methods exhibit a bias toward predicting inputs as members, emphasizing the importance of using
multiple metrics to ensure a comprehensive and balanced evaluation.
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Figure 3: Relationship between MIA accuracy and the degree of overfitting. The analysis is conducted from
different aspects, e.g., (a) different datasets, “C” denotes CIFAR, “I” denotes ImageNet, (b) different architec-
tures, and (c) different training algorithms. The x-axis is the generalization gap. A larger generalization gap
indicates severer overfitting. The y-axis is the accuracy of MIA methods. Different colors represent different
settings. Different markers represent different MIA methods. LiRA (●), RMIA (▼), Entropy (■), Modified
Entropy (▲), Confidence (✕), Quantile (◆), and Merlin (+) in auditing mode are tested here.

5 FURTHER DISCUSSIONS

5.1 OVERFITTING LEADS TO MIA VULNERABILITY

We illustrate the relationship between MIA accuracy and the degree of overfitting in Figure 3. The
analysis is conducted from different aspects, e.g., different datasets, architectures, and training algo-
rithms, with the same settings as those in Section 4.2. Note that the degree of overfitting is indicated
by the generalization gap, i.e., the gap between the training accuracy and the test accuracy. Detailed
performance statistics of different settings are summarized in Table 6 of Appendix G.1.

As depicted in Figure 3, the accuracy of most MIA methods exhibits a general upward trend as the
generalization gap of target models increases. In Figure 2, we also plot the generalization gap and
observe that it is strongly correlated with the MIA performance. Therefore, many of the observations
in Section 4.2, including analyses across different datasets, models, and algorithms, can be under-
stood through the lens of overfitting. Specifically, overfitting plays a significant role in increasing
the model’s vulnerability to MIAs.

The underlying mechanism for this association can be attributed to the working principle of existing
MIA methods: these attacks determine the membership of a given data sample by leveraging discrep-
ancies in the output distributions of member and non-member data. Critically, such distributional
discrepancies are closely correlated with the extent of model overfitting: overfitting causes models to
“memorize” idiosyncrasies of their training data rather than learning generalizable patterns, thereby
amplifying the distinction between the outputs of member and non-member samples. Consequently,
models afflicted by more severe overfitting will exhibit larger distributional gaps between member
and non-member data, rendering them more susceptible to successful MIAs.

5.2 AGREEMENT OF TOP-PERFORMED MIA METHODS

We investigate the agreement among the results by strong MIA methods. Based on the analyses
in Section 4.2, we pick four strong and methodologically distinct MIA methods: Quantile, Modi-
fied Entropy (Metric MIA), RMIA and Diff-w (BlindMI). Figure 4 illustrates the agreement results
across different architectures on the CIFAR100 dataset. As depicted in the figure, a strong agree-
ment is observed among these MIA methods. The results indicate that top-performed MIAs generate
very similar instancewise predictions. In this context, if we ensemble these MIA methods together
by adding them in the descending order of performance, then we can hardly see any improvement.
In practice, we can choose either of these MIAs to get satisfactory results.

5.3 TAKE-AWAY: A GUIDELINE TO CHOOSE MIA METHODS TO EVALUATE PRIVACY

Membership Inference Attacks (MIAs) have emerged as a popular and critical tool for evaluating
the privacy risks of neural network models. Effectively leveraging MIAs for privacy attacking and
auditing necessitates a nuanced understanding of their varied performance and applicability under
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Figure 4: Agreement between different MIAs under CIFAR100 dataset with different architecture

different settings. Drawing from our comprehensive benchmark, this section offers a practical guide-
line for selecting the most appropriate MIA method for various scenarios.

1. Overfitting is crucial for the performance of all MIA methods. Our benchmark indicates that
the generalization gap is a consistent indicator of MIA vulnerability. We can introduce some
overfitting mitigation mechanisms during training to protect data privacy.

2. Even with a consistent generalization gap, the performance of MIA methods can vary signifi-
cantly. There is not yet a single MIA universally optimal across all settings. Specifically, our
benchmark demonstrates that Metric MIA (especially Modified Entropy) or RMIA exhibits the
best performance in a majority of scenarios. To audit the effectiveness of machine unlearning,
we recommend using classier-based MIAs in contrast to metric-based MIAs.

3. Hyperparameter selection also plays a crucial role in the performance of MIA methods. When
we use MIA for privacy attack and have no membership information, we should utilise shadow
models to select hyperparameters. Based on the attacking mode and auditing mode introduced in
Section 3.2, we conclude that MetricMIA (especially Modified Entropy) achieves the best perfor-
mance in the auditing mode. However, we see notable performance degradation for MetricMIA
in the attack mode, where RMIA or Quantile MIA obtain the superior performance.

4. There is no perfect MIA, as we always see a trade-off between false positive and false negative.
Ensembling multiple top-ranked MIA methods usually does not lead to improvement, as these
MIA methods have consistent instancewise predictions and similar performance.

6 CONCLUSION

In this paper, we present a comprehensive study of Membership Inference Attacks (MIAs) conducted
within the full pipeline of machine learning model training and privacy evaluation. Our experimen-
tal design meticulously encompasses various critical aspects, including data, model architectures,
training algorithms, hyperparameter selection and evaluation metrics. Based on our experimental
results, we provide practicable guidance for practitioners to select the most suitable MIA method
for their specific needs across general scenarios. Furthermore, we introduce an available and ex-
pandable suite designed to empower practitioners to conveniently evaluate various MIA methods
across diverse scenarios.

Our benchmark results also empirically demonstrate the underlying mechanisms of MIAs. Specifi-
cally, we find that for current MIA methods, the generalization gap is consistently a good indicator
for MIA performance. Furthermore, the results from the strongest existing MIA methods exhibit a
high degree of agreement, indicating performance saturation.

Given that our benchmark work explores MIAs across multiple dimensions, the experimental com-
plexity is considerably high, which consequently limits our exploration in other axes. Therefore, our
benchmark presented in this paper only focuses on vision data and traditional classification models.
Extending our benchmark to multimodal data and large generative models will be our future work.
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A ETHICS STATEMENT

This work presents a benchmark for membership inference attacks (MIAs), which are designed to
assess a model’s susceptibility to privacy leakage. All experiments are conducted on publicly avail-
able datasets and standard deep learning models, without involving sensitive or personally identifi-
able data. The purpose of this benchmark is to improve the evaluation and understanding of MIAs,
thereby advancing privacy-preserving machine learning rather than enabling misuse. By providing
reproducible tools and practical guidance, our study aims to promote responsible development of
trustworthy AI systems.

B REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will include anonymized supplementary materials containing complete
algorithm implementations, experiment scripts for executing all the experiments.

C THE USE OF LLMS

Large language models (LLMs) were employed only as writing assistants, restricted to surface-level
editing such as grammar correction, clarity improvement, and formatting. LLMs were not used to
generate research ideas, claims, analyses, or conclusions. All text refined with LLM assistance was
carefully reviewed and, when necessary, rewritten by the authors. The authors bear full responsibil-
ity for the final content of this paper.

D DETAILS ABOUT MIA METHODS

In our benchmark, we consider MIA methods targeting classical deep learning as introduced below:

• Shadow: Shadow (Shokri et al., 2017) is the first membership inference attack method. It first
trains shadow models using datasets drawn from the same distribution as the target model’s train-
ing data, enabling them to replicate its behavior. Since we know the training set for these shadow
models, we then then use the shadow models’ outputs on their member and non-member data as
samples to train a binary classifier to map the model’s output to the membership prediction.

• ML-Leaks: ML-Leaks (Salem et al., 2018) simplifies Shadow (Shokri et al., 2017) in three dif-
ferent ways. The first one uses one shadow model and train one attack model; the second one
further improved by training shadow model with a different dataset; the third method discard the
shadow model technique and try to find a threshold depending on exact requirements. Given the
impact of the shadow model’s training dataset on MIA performance, the second method introduces
further complexities. Therefore, in this paper, we mainly consider the first simplification method
(MLLeak1) and the third method (MLLeak3).

• LiRA: LiRA (Carlini et al., 2022) trains shadow models in the same manner as Shokri et al.
(2017). It then calibrates confidence scores of the classifier for member and non-member, and
applies a likelihood-ratio statistical test to infer membership in the target model’s training data.

• Blind MI: Blind MI (Hui et al., 2021) is based on two key insights. First, non-member samples
can be regarded as a feature, and machine learning methods such as SVM can be utilized to learn
this feature for classification, which gives rise to the BlindMI-oneclass method. The second in-
sight is that removing or adding a non-member to a dataset shifts the dataset away from or towards
non-members in the hyper-dimensional space. Consequently, the authors propose the Blind-Diff
method. The paper lists three variants BlindMI Diff-W, BlindMI Diff-Single, BlindMI Diff-bi,
which consider different ways to build the original member and non-member datasets.

• Metric MIA: Metric-based MI (Song & Mittal, 2021) considers three different scores: confi-
dence, entropy, modified entropy. These scores are believed to distinguish between member
and non-member samples. For each label, the method calculates its corresponding score and de-
termines a threshold based on the shadow model for the attack.

• Merlin: Merlin (Jayaraman et al., 2020) based on the intuition that, as a result of overfitting,
member records are more likely to be near local minima than non-member records, which suggests
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that for members, loss is more likely to increase at perturbed points near the original, whereas it
is equally likely to increase or decrease for non-members. Hence, it add small perturbation to the
input and use the output differences as score to distinguish the member and non-member data.

• Quantile: Quantile MIA Bertran et al. (2024) exploits the empirical observation that training
losses are typically lower than test losses. It trains a quantile-regression model to estimate the
quantile score of each sample and employs this score to discriminate members from non-members.

• RMIA: RMIAZarifzadeh et al. (2024) is an extension of LiRa, it proposes the Pairwise Likelihood
ratio as scores to distinguish the member and non-member data. Specifically, pairwise likelihood
ratio tests testing the membership of a data point relative to another data point. Hence, it is more
robust with low computational overhead.

E PSEUDOCODE

We provide the pseudocode of the pipeline of MIA in Algorithm 1, with unique segments for attack-
ing and auditing modes highlighted in red and green, respectively.

Algorithm 1 Pipeline of MIA with Attacking / Auditing Mode.

Input: MIA methodA; Training dataset Dtrain; Test dataset Dtest; Number of shadow models N ;
Split rate for shadow dataset r1 = 0.5; Sampling rate for sub-shadow dataset r2 = 0.8.
# Data sampling

1: Target member data Dtm, shadow member data Dsm ← Split Dtrain with split rate r1
2: Target non-member data Dtn, shadow non-member data Dsn ← Split Dtest with split rate r1

# Select model architecture and model training
3: Train target model Mt on Dtm

4: for i in 1, ..., N do
5: Dsmi

← Sample Dsm with sampling rate r2
6: Dsni

← Sample Dsn with sampling rate r2
7: Train shadow model Msi on Dsmi

8: end for
# Hyperparameter tuning

9: Collect metrics from Mt on Dtm and Dtn / {Msi}Ni=1 on {Dsmi
}Ni=1 and {Dsni

}Ni=1

10: Tuning the hyperparameters in A with the collected metrics
# Evaluation

11: Get the prediction results of Dsm and Dsn using the tuned A
Output: Prediction results (member/non-member)

F ADDITIONAL EXPERIMENTAL SETTINGS

F.1 EXPERIMENTS SETUPS FOR DIFFERENT MIA METHODS

Below we detail the hyper-parameters used for each MIA method; many values are directly borrowed
from the original papers.

For shadow-based attacks(Shadow, LiRA and RMIA), the utility is tpyically correlated with the
number of shadow models. However, training shadow models usually incurs substantial resource
consumption. Therefore, to ensure a fair comparison with other methods, we set the number of
shadow models to five in our experiments. Each shadow model is trained with the identical settings
described in Section F.4. All shadow-based attacks use the same shadow model. In Table 24, we also
provide a table showing how the utility of shadow-based MIA methods varies with the number of
models under the CIFAR-100 ResNet-18 scenario. Additionally, for Metric-based MIA and Merlin,
which need a single shadow model to set the threshold under the attack mode, we reuse the same
shadow models; the threshold is simply derived from the first model, ensuring complete consistency
across methods.
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When an explicit attack model is needed (Shadow MIA, ML-Leak and Blind-MI), we train a small
binary classifier on the shadow logits. We use SGD with momentum 0.9, weight decay 5e-4, initial
lr 0.1 reduced ×0.1 at steps 100, 150 and 200—is reused here to ensure consistency.

For quantile MIA method, our paper follows the same setting as Bertran et al. (2024). We employ
a ConvNeXt-Tiny (Liu et al., 2022) backbone pretrained on ImageNet, freeze its feature extractor,
and fit a quantile-regression head with Adam for five epochs. Separate quantile models are trained
for epochs 10th, 110th and 200th epochs.

F.2 DETAILS OF DATASETS

We provide the details of the datasets evaluated in this work as follows:

• CIFAR-100: CIFAR-100 (Krizhevsky et al., 2009) consists of 60000 32×32 color images in 100
classes, with 600 images per class. There are 50000 training images and 10000 test images. The
100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a “fine”
label (the class to which it belongs) and a “coarse” label (the superclass to which it belongs).

• CIFAR-10: Similar to CIFAR-100, CIFAR-10 (Krizhevsky et al., 2009) consists of 60000 32×32
color images in 10 classes. There are 50000 training images and 10000 test images.

• ImageNet-100: ImageNet-100 is a subset of ImageNet-1k (Russakovsky et al., 2015). It contains
random 100 classes. The training set contains 1300 224 × 224 color images for each class, and
the validation set contains 50 images for each class.

We obtain target and shadow datasets from the original dataset by using Algorithm 1, where the split
rate for shadow dataset r1 = 0.5 and sampling rate for sub-shadow dataset r2 = 0.8 by default.

F.3 DETAILS OF ARCHITECTURES

We summarize the sizes of the evaluated models, e.g., 4-layer CNN (Krizhevsky et al., 2012),
VGG-11 (Simonyan & Zisserman, 2015), ResNet-18 (He et al., 2016), ResNet-34, ResNet-50,
WideResNet-28-2 (Zagoruyko & Komodakis, 2016), and Swin Transformer-Tiny (Liu et al., 2021),
in Table 5.

Table 5: Sizes of different model architectures.

Model 4-layer CNN VGG-11 ResNet-18 ResNet-34 ResNet-50 WideResNet-28-2 Swin Transformer-Tiny
Size (MB) 2.13 35.43 42.87 81.50 90.73 5.72 105.56

F.4 DETAILS OF TRAINING ALGORITHMS

We provide the details of the training algorithms evaluated in this work as follows:

• Standard: For standard setting, we train the model from scratch for 200 epochs, and the batch
size is 128. If the models are CNNs, the adopted optimizer is SGD with an initial learning rate
of 0.1. If the model is Transformers, the adopted optimizer is Adam with an initial learning rate
of 1 × 10−4. The weight decay factor is 5 × 10−4. We adopt a step-wise learning rate decay
scheduler, where the learning rate decays by a factor of 0.1 at the 100th and 150th epoch.

• Fine-tuning: For the fine-tuning setting, the initial learning rate is set to 0.01 and 1 × 10−5 for
SGD and Adam, respectively. Other configurations are the same as those in standard training.

• Privacy-enhancing: For privacy-enhancing setting, we adopt DP-SGD optimizer (Abadi et al.,
2016). Specifically, the σ of noise added to the gradient is 0.001 and the maximum gradient
norm is 10 to maintain utility. Additionally, the batch normalization layers are replaced by group
normalization layers. Other configurations are the same as those in standard training.

• Machine-unlearning: For machine unlearning setting, we adopt two competitive machine un-
learning methods, SalUn (Fan et al., 2023) and SFR-on (Huang et al., 2024). We sweep the
hyper-parameters for each method and select the one yielding minimal accuracy gap in terms of
forget, retain and test data to the retrain model. For SalUn, the learning rate is 0.01, epoch is 10
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and saliency mask ratio is 50%. For SFR-on, the learning rate for forget data is 0.5, learning rate
for retain data is 0.01 and γ is 10.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 PERFORMANCE OF TARGET MODEL IN OUR EXPERIMENTS

To indicate the overfitting degree of different settings, we summarize the performance of different
model architectures and the performance of models trained on different datasets and training algo-
rithms in Table 6. Additionally, we provide performance summaries with fine-grained mislabel rates
and training epochs in Table 7 and 8, respectively.

Table 6: Performance summary in different architectures, datasets and training algorithms. For different
architectures, we train the model on CIFAR100 by a standard training scheme. For different datasets, the
model is ResNet18 if not specified. Note that the model trained on ImageNet-100 is WideResNet28 (WRN-
28). The mislabel ratio is 0.1 for mislabeled CIFAR-100. For fine-tuning setting, we fine-tune a ResNet50
(RN-50) pretrained on ImageNet1k. For privacy-enhancing setting, we adopt DP-SGD optimizer to train the
model.

Training Accuracy Training Loss Test Accuracy Test Loss Accuracy Gap Loss Gap
Different Datasets, ResNet18, Standard
CIFAR100 99.98 0.0054 62.34 1.6833 37.64 1.6779
CIFAR10 99.97 0.0020 89.06 0.4733 10.91 0.4713
ImageNet100 (WRN-28) 80.90 0.7006 76.40 0.8521 4.50 0.1515
Superclass CIFAR100 99.96 0.0029 74.58 1.1872 25.38 1.1843
Mislabeled CIFAR100 99.96 0.0067 49.46 2.7693 50.50 2.7626
CIFAR100, Different Architectures, Standard
ResNet-18 99.98 0.0054 62.34 1.6833 37.64 1.6779
4-layer CNN 64.06 1.2525 47.82 2.1517 16.24 0.8992
VGG11 99.98 0.0079 61.94 1.5941 38.04 1.5862
ResNet34 99.99 0.0031 60.88 1.7420 39.11 1.7389
ResNet50 99.98 0.0029 61.94 1.8573 38.04 1.8544
Swin-T (pretrained) 98.85 0.0548 85.30 0.6903 13.55 0.6355
CIFAR100, ResNet18, Different Training Algorithms
Standard 99.98 0.0054 62.34 1.6833 37.64 1.6779
Standard (RN-50) 99.98 0.0029 61.94 1.8573 38.04 1.8544
Fine-tuning (RN-50) 99.99 0.0006 81.46 0.2462 18.53 0.2456
Privacy-enhancing 95.70 0.2050 67.74 2.0177 27.96 1.8727

Table 7: Performance summary in different mislabel rates. The model is ResNet-18 trained on CIFAR-100 by
a standard training scheme.

Mislabel Rate Training Accuracy Training Loss Test Accuracy Test Loss Accuracy Gap Loss Gap
0 99.98 0.0054 62.34 1.6833 37.64 1.6779

0.01 99.98 0.0051 61.88 1.7731 38.10 1.7680
0.05 99.98 0.0056 54.52 2.3324 45.46 2.3268
0.1 99.96 0.0067 49.46 2.7693 50.50 2.7626
0.2 99.98 0.0076 38.08 3.5541 61.90 3.5465
0.3 99.95 0.0077 28.56 4.3316 71.39 4.3239
0.4 99.96 0.0072 20.24 4.8633 79.72 4.8561
0.5 99.95 0.0077 13.96 5.3637 85.99 5.3560
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Table 8: Performance summary at different trainind epochs. The model is ResNet-18 trained on CIFAR-100
by a standard training scheme.

Epoch Training Accuracy Training Loss Test Accuracy Test Loss Accuracy Gap Loss Gap
200 99.98 0.0054 62.34 1.6833 37.64 1.6779
190 99.98 0.0051 62.38 1.6935 37.60 1.6884
180 99.97 0.0053 62.52 1.7020 37.45 1.6967
170 99.96 0.0060 67.20 1.7033 37.76 1.6973
160 99.96 0.0068 62.22 1.7070 37.74 1.7002
150 99.96 0.0098 61.50 1.7345 38.46 1.7246
140 99.92 0.0112 61.80 1.7590 38.12 1.7479
130 99.84 0.0155 60.88 1.7741 38.96 1.7586
120 99.62 0.0255 61.98 1.7527 37.64 1.7272
110 99.02 0.0538 61.64 1.6987 37.38 1.6449
100 71.39 0.9672 48.74 2.2259 22.65 1.2587
90 67.45 1.1063 47.36 2.2759 20.09 1.1696
80 68.92 1.0604 48.72 2.2110 20.20 1.1505
70 70.27 0.9937 49.76 2.0981 20.51 1.1044
60 61.20 1.3343 44.04 2.3934 17.16 1.0591
50 67.82 1.0763 48.14 2.1618 19.68 1.0855
40 64.04 1.2320 48.14 2.0953 15.90 0.8633
30 58.26 1.4585 46.28 2.1908 11.68 0.7323
20 53.98 1.6317 44.84 2.1480 9.14 0.5163
10 42.63 2.1265 37.62 2.3711 5.01 0.2506

G.2 PERFORMANCE OF MIA METHODS IN DIFFERENT ARCHITECTURES

In this section, we first evaluate the performance of each MIA method on CIFAR-100 using ResNet-
18 as the baseline model for our paper. Subsequently, we present the performance of these MIA
methods on CIFAR-100 using a 4-layer CNN, VGG-11, ResNet-34, ResNet-50 (trained from
scratch) models.

For ResNet-18, Table 9 shows that Modified Entropy achieved the highest accuracy in audit mode,
while quantile MIA performed best in attack mode at epoch 200 and 110; at epochs 110 and 10.
However, Metric MIA showed the largest performance gap between audit and attack modes, while
RMIA exhibited the smallest difference.
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Table 9: The performance of different MIA methods for CIFAR-100 under ResNet-18. We pick three check-
points in the early, middle and final training phases for MIA evaluation. For MIA methods without a threshold
hyper-parameter, they follow the same workflow for both attacking and auditing.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 65.42 74.25 78.49 80.25 80.30 80.63 56.19

73.63 75.05 63.00 68.40 77.95 75.43 67.17
Audit 69.36 75.82 80.65 81.97 81.90 80.63 56.36

Prec@P
Attack 68.81 70.12 71.29 72.87 72.77 73.88 53.37

65.52 74.62 57.47 61.29 69.49 67.17 62.99
Audit 69.99 68.16 75.49 76.20 76.24 73.60 56.91

Rec@P
Attack 56.40 84.50 81.60 96.38 96.84 94.46 97.93

99.78 75.92 100.00 99.92 99.66 99.48 83.24
Audit 67.78 96.92 90.76 92.90 92.68 95.52 52.40

F1@P
Attack 61.99 76.64 76.10 82.99 83.10 82.91 87.52

78.30 75.27 72.99 75.97 81.88 80.19 71.72
Audit 68.87 80.03 82.43 83.75 83.66 83.14 54.56

Prec@N
Attack 63.06 80.50 93.05 94.66 95.28 92.32 14.44

99.60 75.49 100.00 99.78 99.40 99.00 75.30
Audit 68.77 94.67 88.42 90.91 90.67 93.62 55.89

Rec@N
Attack 74.44 64.00 61.58 64.12 63.76 66.60 69.09

44.84 74.18 26.00 36.88 56.24 51.38 51.10
Audit 70.94 54.71 70.54 71.04 71.12 65.74 60.32

F1@N
Attack 68.28 71.31 74.11 76.45 76.40 77.38 24.90

61.84 74.83 41.27 53.86 71.84 67.65 69.88
Audit 69.84 69.35 78.47 79.76 79.71 77.24 58.02

AUC Audit 0.745 0.839 0.818 0.828 0.826 0.829 0.510 – – – – – – –
TPR@0.1%FPR Audit 2.0 8.5 8.5 8.9 8.7 0.36 1.4 – – – – – – –

110th

Acc
Attack 62.09 73.31 71.95 73.51 73.83 74.61 55.32

52.37 51.31 61.40 72.64 74.99 71.64 66.09
Audit 66.72 74.09 75.10 77.52 77.57 75.12 56.23

Prec@P
Attack 65.37 69.49 69.00 70.88 70.70 67.32 52.89

51.21 69.29 56.45 67.77 68.20 65.21 64.12
Audit 67.12 66.68 70.98 72.19 72.11 68.84 57.30

Rec@P
Attack 51.42 83.12 79.72 79.80 81.38 95.64 97.26

100.00 6.64 100.00 86.34 93.64 92.76 73.06
Audit 65.40 96.32 84.92 89.52 89.92 91.78 48.92

F1@P
Attack 57.56 75.69 73.97 75.08 75.67 79.02 83.00

67.73 12.00 72.99 75.94 78.92 76.59 68.30
Audit 66.27 78.80 77.33 79.93 80.04 78.67 52.78

Prec@N
Attack 59.96 79.00 75.99 76.89 78.07 92.47 13.38

47.72 50.69 100.00 81.18 89.86 84.47 68.70
Audit 66.29 93.37 81.23 86.21 86.61 87.67 55.44

Rec@N
Attack 72.76 63.50 64.18 67.22 66.28 53.58 68.52

67.74 95.98 26.00 58.92 56.34 50.52 59.12
Audit 68.04 51.86 65.28 65.52 65.22 58.46 63.54

F1@N
Attack 65.75 70.41 69.59 71.73 71.69 67.85 23.05

55.95 66.34 41.27 68.30 69.26 64.05 63.55
Audit 67.15 66.68 72.39 74.45 74.41 70.15 59.21

AUC Audit 0.711 0.829 0.772 0.792 0.791 0.788 0.504 – – – – – – –
TPR@0.1%FPR Audit 1.4 5.8 6.0 6.4 6.3 0.42 1.5 – – – – – – –

10th

Acc
Attack 52.37 53.88 50.01 50.01 50.08 52.81 51.03

50.00 50.15 50.09 50.45 50.58 50.85 51.05
Audit 52.46 53.93 57.34 59.01 58.85 53.65 55.98

Prec@P
Attack 54.36 53.31 50.29 50.26 52.02 51.80 50.63

50.00 51.24 50.05 52.31 51.10 50.62 51.24
Audit 52.88 53.34 53.18 59.80 59.85 53.99 56.71

Rec@P
Attack 29.56 62.56 1.72 1.94 2.06 81.00 83.92

100.00 6.20 97.36 10.20 26.92 69.88 43.40
Audit 45.14 62.80 58.01 55.00 53.78 59.36 50.54

F1@P
Attack 38.30 57.56 3.33 3.74 3.96 63.19 53.04

66.67 11.06 66.11 17.07 35.26 58.71 47.00
Audit 52.15 57.68 55.49 57.30 56.65 51.57 53.45

Prec@N
Attack 51.63 54.70 50.01 50.01 50.04 56.44 18.16

0.00 50.08 51.65 50.25 50.39 51.37 50.91
Audit 59.78 54.78 56.78 58.34 58.04 53.36 55.39

Rec@N
Attack 75.18 45.20 98.30 98.08 98.10 24.62 63.15

66.67 94.10 2.82 90.70 74.24 31.82 58.70
Audit 59.78 45.06 61.50 63.02 63.92 57.94 61.42

F1@N
Attack 61.22 49.50 66.29 66.24 66.27 34.28 27.05

0.00 65.37 5.35 64.67 60.04 39.30 54.53
Audit 55.70 49.45 59.04 60.59 60.84 55.56 58.25

AUC Audit 0.542 0.549 0.514 0.551 0.550 0.549 0.511 – – – – – – –
TPR@0.1%FPR Audit 0.02 0.10 2.0 2.4 2.4 0.4 1.4 – – – – – – –
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Table 10: The performance of different MIA methods for CIFAR-100 under 4-layer CNN.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 55.93 63.31 53.18 60.94 60.90 61.03 52.61

50.00 50.42 51.16 50.12 55.61 53.63 53.57
Audit 56.02 63.44 59.59 65.22 65.05 61.19 56.87

Prec@P
Attack 60.26 60.75 53.10 57.82 57.75 57.25 51.71

50.00 55.80 50.60 62.00 53.50 52.99 54.17
Audit 60.10 61.55 60.25 63.45 63.13 57.24 56.21

Rec@P
Attack 34.84 75.22 54.46 80.92 81.24 87.14 78.84

100.00 4.04 98.18 0.62 85.68 64.38 46.36
Audit 35.82 71.60 56.38 71.80 72.34 88.52 62.18

F1@P
Attack 44.15 67.21 53.77 67.44 67.51 69.10 62.46

66.67 7.53 66.78 1.23 65.87 58.13 49.96
Audit 44.89 66.20 58.25 67.37 67.42 69.52 59.04

Prec@N
Attack 54.17 67.47 53.26 68.22 68.37 73.08 55.49

0.00 50.22 69.46 50.06 64.07 54.62 53.12
Audit 54.29 66.06 59.01 67.53 67.62 74.68 57.69

Rec@N
Attack 77.02 51.40 51.90 40.96 40.56 34.92 26.38

0.00 96.80 4.14 99.62 25.54 42.88 60.78
Audit 76.22 55.28 62.80 58.64 57.76 33.86 51.56

F1@N
Attack 63.61 58.35 52.57 51.17 50.92 47.26 35.76

0.00 66.13 7.81 66.64 36.52 48.04 56.69
Audit 63.41 60.19 60.85 62.77 62.30 46.59 54.45

AUC Audit 0.566 0.688 0.558 0.652 0.650 0.631 0.509 – – – – – – –
TPR@0.1%FPR Audit 0.16 0.84 0.02 0.03 0.03 0.00 0.03 – – – – – – –

110th

Acc
Attack 53.11 57.73 52.10 54.92 55.20 56.05 51.89

50.00 52.16 50.31 50.06 52.08 51.99 51.22
Audit 56.68 57.80 58.32 61.20 61.21 56.77 56.58

Prec@P
Attack 51.73 57.47 51.78 53.75 53.90 54.16 51.20

50.00 54.98 50.16 53.41 51.24 51.51 51.61
Audit 56.80 57.63 59.28 61.12 61.29 54.20 56.31

Rec@P
Attack 93.10 59.44 61.18 70.44 71.94 78.72 80.66

100.00 23.84 97.52 0.94 85.96 68.00 39.14
Audit 55.82 58.92 53.14 61.58 60.86 87.28 58.68

F1@P
Attack 66.50 58.44 56.09 60.98 61.62 64.17 62.64

66.67 33.26 66.25 1.85 64.21 58.62 44.52
Audit 56.30 58.27 56.04 61.35 61.07 66.88 57.47

Prec@N
Attack 65.53 58.00 52.57 57.13 57.82 61.07 54.45

0.00 51.38 55.56 50.03 56.45 52.93 50.98
Audit 56.57 57.98 57.54 61.29 61.13 67.37 56.87

Rec@N
Attack 13.12 56.02 43.02 39.40 38.46 33.38 23.12

0.00 80.48 3.10 99.18 18.20 35.98 63.30
Audit 57.54 56.68 63.50 60.82 61.56 26.26 54.48

F1@N
Attack 21.86 56.99 47.32 46.64 46.19 43.17 32.46

0.00 62.72 5.87 66.51 27.53 42.84 56.48
Audit 57.05 57.32 60.37 61.05 61.35 37.79 55.65

AUC Audit 0.583 0.604 0.540 0.591 0.591 0.571 0.497 – – – – – – –
TPR@0.1%FPR Audit 0.00 2.2 0.03 0.03 0.03 0.0 0.0 – – – – – – –

10th

Acc
Attack 50.55 51.28 49.35 52.21 52.46 51.40 50.41

50.00 50.55 50.12 50.11 49.81 50.46 49.98
Audit 51.86 52.01 56.79 57.74 57.75 51.80 56.93

Prec@P
Attack 50.30 52.13 49.38 51.83 52.00 50.91 50.35

50.00 50.96 50.06 53.22 49.73 50.31 49.98
Audit 51.35 51.55 57.64 58.76 58.20 51.15 57.62

Rec@P
Attack 92.52 31.34 52.04 62.66 62.92 78.54 59.78

100.00 29.06 97.32 1.82 34.70 75.06 44.08
Audit 70.96 67.02 51.24 51.94 54.98 80.14 52.42

F1@P
Attack 65.17 39.15 50.68 56.73 56.96 61.77 54.66

66.67 37.01 66.12 3.52 40.88 60.24 46.84
Audit 59.58 58.27 54.25 55.14 56.55 62.44 54.90

Prec@N
Attack 53.42 50.92 49.31 52.79 53.11 53.06 50.50

0.00 50.38 52.16 50.06 49.85 50.91 49.98
Audit 53.01 52.87 56.11 56.94 57.34 54.16 56.36

Rec@N
Attack 8.58 71.22 46.66 41.76 42.00 24.26 41.04

0.00 72.04 2.90 98.40 64.92 25.86 55.88
Audit 32.76 37.00 62.34 63.54 60.52 23.46 61.44

F1@N
Attack 14.79 59.38 47.95 46.63 46.91 33.30 45.28

0.00 59.30 5.49 66.36 56.40 34.30 52.77
Audit 40.49 43.53 59.06 60.06 58.89 32.74 58.79

AUC Audit 0.524 0.526 0.510 0.526 0.527 0.523 0.505 – – – – – – –
TPR@0.1%FPR Audit 0.0 1.5 0.02 0.03 0.03 0.00 0.00 – – – – – – –

For 4-layer CNN, Table 10 indicates that Modified Entropy achieved nearly the highest accuracy
in audit mode at epoch 200, 110 and 10, while RMIA MIA performed best in attack mode at
epoch 200, 110 and 10; Moreover, RMIA also consistently shows the best performance in AUC
and TPR@0.1%FPR. Additional, Metric MIA showed the largest performance gap between audit
and attack modes, while RMIA exhibited the smallest difference.

For CIFAR100 under VGG, Table 11 indicate: Modified Entropy attained the highest accuracy under
audit mode, whereas quantile MIA achieved the best accuracy in attack mode at 200,110, and 10
epochs. Regarding AUC and TPR at 0.1% FPR, RMIA outperformed other methods at epochs 200
and 110, while entropy MIA performed best at epoch 10. Merlin showed the largest performance
discrepancy between audit and attack modes.
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Table 11: The performance of different MIA methods for CIFAR-100 under VGG-11.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 66.07 75.20 78.41 80.61 80.14 80.68 57.51

73.89 62.32 63.00 71.41 78.91 76.25 66.79
Audit 68.97 76.65 80.30 82.03 81.97 80.73 52.56

Prec@P
Attack 69.52 73.63 72.12 73.73 73.69 73.19 54.24

65.73 57.03 57.47 63.64 70.55 67.96 63.43
Audit 70.92 68.32 74.57 75.88 75.84 73.26 65.57

Rec@P
Attack 57.24 78.52 92.60 95.10 93.74 96.84 96.02

99.84 100.0 100.0 99.82 99.26 99.32 79.32
Audit 64.30 99.38 91.96 93.90 93.82 96.78 10.78

F1@P
Attack 62.78 76.00 81.09 83.06 82.52 83.37 69.32

79.27 72.63 72.99 77.73 82.48 80.70 70.49
Audit 67.45 80.97 82.36 83.94 83.88 83.40 18.52

Prec@N
Attack 63.66 76.99 89.66 93.10 91.41 95.33 82.68

99.67 100.0 100.0 99.58 98.75 98.74 72.40
Audit 67.35 98.86 89.51 92.00 91.90 95.26 51.39

Rec@N
Attack 74.90 71.88 64.20 66.12 66.54 64.52 19.00

47.94 24.64 26.00 42.98 58.56 53.18 54.26
Audit 73.64 53.92 68.64 70.16 70.12 64.68 94.34

F1@N
Attack 68.82 74.35 74.83 77.32 77.01 76.96 30.9

64.74 39.54 41.27 60.04 73.52 69.13 62.03
Audit 70.35 69.78 77.70 79.61 79.55 77.05 66.54

AUC Audit 0.734 0.856 0.810 0.822 0.821 0.820 0.587 – – – – – – –
TPR@0.1%FPR Audit 0.881 10.96 7.244 7.779 7.593 0.150 0.000 – – – – – – –

110th

Acc
Attack 65.18 74.43 74.03 76.62 76.64 76.85 56.85

62.31 67.2 61.4 72.64 76.18 73.47 66.04
Audit 67.57 75.45 76.04 78.73 78.66 76.82 53.01

Prec@P
Attack 68.18 72.35 68.52 70.48 70.45 70.02 53.9

57.05 60.51 56.45 65.55 69.3 66.62 63.94
Audit 70.34 67.45 71.78 73.47 73.34 69.77 61.82

Rec@P
Attack 56.94 79.08 88.92 91.62 91.78 93.9 94.56

99.58 99.04 99.84 95.42 94.02 94.08 73.58
Audit 60.76 98.36 85.82 89.94 90.06 94.66 15.47

F1@P
Attack 62.05 75.57 77.40 79.67 79.71 80.22 68.67

72.54 75.12 72.12 77.72 79.79 78.00 68.42
Audit 65.20 80.03 78.17 80.87 80.84 80.33 25.09

Prec@N
Attack 63.03 76.93 84.22 88.03 88.21 90.74 77.87

98.35 97.36 99.31 91.59 90.7 89.93 68.89
Audit 65.46 96.97 82.37 87.03 87.12 91.70 51.72

Rec@N
Attack 73.42 69.78 59.14 61.62 61.50 59.80 19.14

25.04 35.36 22.96 49.86 58.34 52.86 58.5
Audit 74.38 52.54 66.26 67.52 67.26 58.98 90.28

F1@N
Attack 67.83 73.18 69.49 72.4 72.47 72.09 30.73

39.92 51.88 37.3 64.57 71.01 66.58 63.27
Audit 69.64 68.15 73.44 76.04 75.91 71.79 60.77

AUC Audit 0.721 0.845 0.777 0.789 0.796 0.789 0.585 – – – – – – –
TPR@0.1%FPR Audit 0.960 7.800 7.228 7.525 7.413 0.100 0.000 – – – – – – –

10th

Acc
Attack 51.64 50.73 50.35 51.31 51.09 50.8 50.47

50.00 50.20 50.09 50.44 49.68 50.51 51.33
Audit 51.70 51.16 56.99 57.34 57.37 51.16 54.99

Prec@P
Attack 51.40 50.83 50.23 50.98 50.84 50.40 50.39

50.00 53.52 50.05 50.76 46.06 50.36 51.59
Audit 50.90 50.89 57.96 58.18 57.96 50.92 55.97

Rec@P
Attack 62.34 44.74 76.42 68.34 65.86 74.94 61.4

100.0 3.04 97.36 29.26 3.74 70.46 43.24
Audit 56.34 66.18 50.88 52.18 53.68 64.04 46.78

F1@P
Attack 56.34 47.59 60.62 58.4 57.38 60.37 55.35

66.67 5.75 66.11 37.12 6.92 58.74 47.05
Audit 57.47 57.54 54.19 55.02 55.74 56.73 50.96

Prec@N
Attack 52.16 50.65 50.73 51.99 51.55 51.55 50.60

0 50.10 51.65 50.31 49.83 50.85 51.14
Audit 51.66 51.66 56.23 56.65 56.86 51.56 54.29

Rec@N
Attack 41.06 56.72 24.28 34.28 36.32 26.66 39.54

0 97.36 97.36 71.62 95.62 30.56 59.42
Audit 36.36 36.14 63.10 62.50 61.06 38.28 63.20

F1@N
Attack 45.95 53.51 32.84 41.32 42.61 35.14 44.39

0 66.16 66.16 59.1 65.52 38.18 54.97
Audit 42.68 42.53 59.47 59.43 59.44 43.94 58.40

AUC Audit 0.515 0.513 0.510 0.518 0.518 0.512 0.509 – – – – – – –
TPR@0.1%FPR Audit 0.222 1.280 2.507 2.189 2.234 0.320 0.233 – – – – – – –
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Table 12: The performance of different MIA methods for CIFAR-100 under ResNet-34.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 65.05 74.27 81.20 82.76 82.79 83.09 56.57

75.69 63.86 63.39 72.46 79.84 77.22 69.54
Audit 69.48 75.77 82.82 83.93 83.78 83.16 56.66

Prec@P
Attack 69.10 72.12 74.19 75.62 75.47 75.82 53.62

67.30 58.05 57.73 64.49 71.31 68.74 64.63
Audit 71.80 67.38 77.30 78.43 78.18 76.40 56.80

Rec@P
Attack 54.44 79.12 95.70 96.70 97.16 97.16 97.28

99.94 100.00 100.00 99.96 99.84 99.84 86.30
Audit 64.16 99.90 92.92 93.60 93.72 95.96 55.60

F1@P
Attack 60.90 75.46 83.58 84.87 84.95 85.18 69.14

80.43 73.45 73.20 78.40 83.20 81.42 73.91
Audit 67.77 80.48 84.40 85.35 85.25 85.07 56.20

Prec@N
Attack 62.42 76.88 93.94 95.42 96.01 96.05 85.36

99.88 100.00 100.00 99.91 99.73 99.71 79.39
Audit 67.61 99.81 91.13 92.07 92.16 94.57 56.52

Rec@N
Attack 75.66 69.42 51.44 27.72 44.96 69.02 15.86

59.84 54.60 26.78 52.78 66.70 68.82 68.42
Audit 74.80 51.64 72.72 74.26 73.84 70.36 57.72

F1@N
Attack 68.40 72.96 67.91 43.41 62.01 80.32 26.75

74.80 70.56 42.25 63.41 78.01 79.97 79.90
Audit 71.02 68.06 80.89 82.21 81.99 80.69 57.11

AUC Audit 0.741 0.844 0.836 0.846 0.843 0.856 0.508 – – – – – – –
TPR@0.1%FPR Audit 1.82 11.1 6.70 7.10 7.00 0.66 1.87 – – – – – – –

110th

Acc
Attack 62.22 74.43 75.31 77.57 77.83 77.68 54.96

50.00 60.40 62.45 73.41 77.15 73.67 68.46
Audit 66.71 75.42 77.69 79.71 79.75 77.49 56.50

Prec@P
Attack 64.02 70.36 69.64 71.19 71.39 71.10 52.69

50.00 55.82 57.12 66.05 70.00 66.61 65.65
Audit 67.51 67.65 73.57 74.90 74.71 70.87 57.72

Rec@P
Attack 55.80 84.42 89.76 92.62 92.88 93.28 97.12

100.00 99.78 99.94 96.34 95.02 94.92 77.44
Audit 64.42 97.44 86.44 89.38 89.94 93.34 48.58

F1@P
Attack 59.63 76.75 78.43 80.50 80.73 80.69 68.32

66.67 71.59 72.69 78.37 80.61 78.28 71.06
Audit 65.93 79.86 79.49 81.50 81.62 80.57 52.76

Prec@N
Attack 60.83 80.53 85.60 89.44 89.81 90.23 81.63

0.00 98.96 99.76 93.24 92.25 91.17 72.50
Audit 65.98 95.43 83.56 86.83 87.36 90.25 55.61

Rec@N
Attack 68.64 64.44 60.86 62.52 62.78 62.00 12.80

0.00 21.02 24.96 50.48 59.28 52.42 59.48
Audit 69.00 53.40 68.94 70.04 69.56 61.64 64.42

F1@N
Attack 64.50 71.59 71.14 73.60 73.90 73.55 22.13

0.00 34.68 39.93 65.50 72.18 66.57 65.35
Audit 67.46 68.48 75.55 77.54 77.45 73.25 59.69

AUC Audit 0.712 0.842 0.795 0.812 0.811 0.810 0.507 – – – – – – –
TPR@0.1%FPR Audit 0.62 7.90 6.80 7.10 7.10 0.74 2.38 – – – – – – –

10th

Acc
Attack 50.04 51.81 49.82 51.57 51.43 52.00 50.71

50.00 49.90 50.22 50.00 50.17 50.52 50.26
Audit 50.29 52.17 56.96 58.47 58.25 53.53 56.48

Prec@P
Attack 51.92 53.15 49.83 51.51 51.39 51.51 50.49

50.00 49.36 50.11 0.00 50.09 50.35 50.29
Audit 56.17 51.57 57.86 58.63 58.60 53.71 57.24

Rec@P
Attack 1.08 30.52 51.74 53.58 52.96 68.32 72.82

100.00 7.66 97.16 0.00 92.82 75.30 44.42
Audit 2.64 71.40 51.22 57.56 56.22 51.12 51.26

F1@P
Attack 2.12 38.78 50.77 52.52 52.16 58.73 59.63

66.67 13.26 66.12 0.00 65.07 60.35 47.18
Audit 5.04 59.88 54.34 58.09 57.38 52.38 54.08

Prec@N
Attack 50.02 51.27 49.81 51.64 51.48 52.97 51.27

0.00 49.95 53.39 50.00 51.16 51.03 50.23
Audit 50.15 53.53 56.24 58.32 57.93 53.37 55.87

Rec@N
Attack 99.00 73.10 47.90 49.56 49.90 35.68 28.60

0.00 92.14 3.28 100.00 7.52 25.74 56.10
Audit 97.94 32.94 62.70 59.38 60.28 55.94 61.70

F1@N
Attack 66.46 60.27 48.84 50.58 50.68 42.64 36.72

0.00 64.78 6.18 66.67 13.11 34.22 53.00
Audit 71.02 68.06 80.89 82.21 81.99 80.69 57.11

AUC Audit 0.492 0.528 0.505 0.531 0.531 0.531 0.514 – – – – – – –
TPR@0.1%FPR Audit 0.16 1.40 2.10 2.10 2.10 0.12 1.62 – – – – – – –

For CIFAR-100 under ResNet-34, Table 12 indicates: Modified Entropy attained the highest accu-
racy under audit mode, whereas quantile MIA achieved the best accuracy in attack mode at 200,110,
and 10 epochs.

For CIFAR-100 under ResNet-50(trained from scratch), Table 13 indicates: Modified Entropy at-
tained the highest accuracy under audit mode, whereas quantile MIA achieved the best accuracy in
attack mode at 200, 110, 10 epochs. Regarding AUC and TPR at 0.1% FPR, Modified Entropy also
outperformed other methods at epochs 200 and 110 and 10 epochs.

For CIFAR-100 under Swin Transformer Tiny with pretrain, Table 14 indicates: Modified Entropy
attained the highest accuracy under audit mode
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Table 13: The performance of different MIA methods for CIFAR-100 under ResNet-50 trained from scratch.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 64.52 72.25 78.32 80.25 80.26 80.89 55.77

71.24 76.85 62.32 75.45 77.91 74.71 66.46
Audit 69.04 73.48 81.04 82.29 82.22 81.00 56.90

Prec@P
Attack 67.18 71.23 70.59 72.33 72.36 73.29 53.10

63.50 75.72 57.03 67.18 69.41 66.47 60.60
Audit 70.82 65.36 75.95 76.90 76.98 73.73 57.69

Rec@P
Attack 56.78 74.64 97.10 97.98 97.94 97.22 98.74

99.88 79.04 100.00 99.54 99.80 99.74 83.44
Audit 64.74 99.92 90.84 92.30 91.94 96.32 51.76

F1@P
Attack 61.54 72.90 81.75 83.22 83.23 83.57 69.06

77.64 77.35 72.63 80.22 81.88 79.77 70.21
Audit 67.64 79.03 82.73 83.90 83.80 83.52 54.56

Prec@N
Attack 62.57 73.37 95.36 96.87 96.81 95.87 91.04

99.72 78.08 100.00 99.11 99.64 99.48 73.43
Audit 67.53 99.83 88.61 90.37 90.00 94.69 56.26

Rec@N
Attack 72.26 69.86 59.54 62.52 62.58 64.56 12.80

42.60 74.66 24.64 51.26 54.02 49.68 45.76
Audit 73.32 47.04 71.24 72.28 72.50 65.68 62.04

F1@N
Attack 67.07 71.57 73.31 75.99 76.02 77.16 22.44

59.70 76.33 39.64 67.66 71.72 66.27 56.38
Audit 70.30 63.95 78.98 80.32 80.31 77.56 59.01

AUC Audit 0.734 0.824 0.825 0.836 0.834 0.840 0.518 – – – – – – –
TPR@0.1%FPR Audit 0.66 6.40 7.455 7.968 7.817 0.52 1.481 – – – – – – –

110th

Acc
Attack 61.45 72.34 70.97 73.85 73.78 73.06 54.28

59.34 55.66 60.23 70.83 73.67 70.28 64.42
Audit 65.83 73.62 74.04 76.52 76.55 73.96 56.76

Prec@P
Attack 63.80 71.00 65.68 67.54 67.49 65.92 52.30

55.17 67.32 55.72 67.19 67.37 64.47 62.70
Audit 69.66 66.25 70.77 75.21 72.48 68.39 57.64

Rec@P
Attack 52.94 75.52 87.82 91.82 91.76 95.50 97.52

99.62 22.00 99.72 81.40 91.80 90.34 71.18
Audit 56.08 96.30 81.90 85.42 85.60 89.10 51.02

F1@P
Attack 57.86 73.19 75.16 77.83 77.78 78.00 68.08

71.02 33.16 71.49 73.62 77.71 75.25 66.67
Audit 62.14 78.50 75.93 78.44 78.50 77.38 54.13

Prec@N
Attack 59.78 73.86 81.63 87.23 87.13 91.84 81.66

98.05 53.38 98.67 76.41 87.14 83.87 66.67
Audit 63.25 93.23 78.52 82.26 82.42 84.37 56.06

Rec@N
Attack 69.96 69.19 54.12 55.88 55.80 50.62 11.04

19.06 89.32 20.74 60.26 55.54 50.22 57.66
Audit 75.58 50.94 66.18 67.62 67.50 58.82 62.50

F1@N
Attack 64.47 71.43 65.09 68.12 68.03 65.27 19.45

31.92 66.83 34.28 67.38 67.84 62.82 61.84
Audit 68.87 65.88 71.83 74.23 74.22 69.31 59.11

AUC Audit 0.698 0.823 0.756 0.783 0.781 0.772 0.517 – – – – – – –
TPR@0.1%FPR Audit 0.60 4.70 5.788 6.397 6.148 0.36 1.598 – – – – – – –

10th

Acc
Attack 50.87 51.68 50.39 51.24 50.78 51.36 50.24

50.00 50.66 50.06 50.31 50.07 49.82 49.81
Audit 51.22 51.73 56.98 57.77 57.78 51.81 56.04

Prec@P
Attack 52.25 51.62 50.32 50.91 50.56 50.87 50.17

50.00 51.17 50.03 51.26 50.49 49.88 49.78
Audit 51.13 51.71 58.20 58.33 58.14 51.72 54.30

Rec@P
Attack 20.18 53.64 61.78 69.28 70.12 79.62 71.36

100.00 28.92 98.44 12.60 7.22 73.58 42.82
Audit 55.02 52.32 49.54 54.42 55.54 54.44 53.96

F1@P
Attack 29.12 52.61 55.46 58.69 58.76 62.08 58.92

66.67 39.65 66.34 20.23 12.63 59.45 46.04
Audit 53.01 52.01 53.52 56.31 56.81 53.04 55.11

Prec@N
Attack 50.54 51.75 50.51 51.94 51.27 53.13 50.42

0.00 50.46 51.85 50.18 50.04 49.66 49.83
Audit 51.32 51.75 56.08 57.28 57.45 51.91 55.80

Rec@N
Attack 81.56 49.72 39.00 33.20 31.44 23.10 29.12

0.00 72.40 1.68 88.02 92.92 26.06 56.80
Audit 47.42 51.14 64.42 61.12 60.02 49.18 58.12

F1@N
Attack 62.41 50.71 44.01 40.51 38.98 32.20 36.92

0.00 59.47 3.25 63.92 65.05 34.18 53.09
Audit 49.29 51.44 59.96 59.14 58.71 50.51 56.94

AUC Audit 0.511 0.521 0.510 0.522 0.522 0.519 0.501 – – – – – – –
TPR@0.1%FPR Audit 0.06 0.20 2.311 1.990 1.987 0.200 2.025 – – – – – – –
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Table 14: The performance of different MIA methods for CIFAR-100 under Swin Transformer-Tiny with
pretrain. The model is pretrained on ImageNet-1k.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 56.59 57.16 63.94 65.01 64.78 65.24 52.51 56.31 57.59 55.19 61.27 61.89 63.04 53.40
Audit 57.31 62.43 66.91 67.93 67.84 65.16 56.43

Prec@P
Attack 62.21 70.69 59.17 59.88 59.71 59.78 51.33 53.37 54.11 52.74 58.83 56.76 57.66 52.57
Audit 59.22 57.15 62.98 63.52 63.49 59.60 56.75

Rec@P
Attack 33.58 24.46 89.96 90.94 90.86 93.16 97.18 99.98 99.94 99.98 75.12 99.78 98.12 69.56
Audit 46.94 99.32 82.04 84.26 83.96 94.14 54.06

F1@P
Attack 43.62 36.34 71.39 72.21 72.07 72.83 67.17 69.59 70.21 69.05 65.98 72.36 72.64 59.88
Audit 52.37 72.55 71.26 72.43 72.30 72.99 55.37

Prec@N
Attack 54.51 54.33 79.07 81.18 80.89 84.51 73.55 99.84 99.61 99.81 65.59 99.09 93.70 55.02
Audit 56.05 97.41 74.25 76.63 76.33 86.06 56.14

Rec@N
Attack 79.60 89.86 37.92 39.08 38.70 37.32 7.84 12.64 15.24 10.40 47.42 24.00 27.96 37.24
Audit 67.68 25.54 51.78 51.60 51.72 36.18 58.80

F1@N
Attack 64.71 67.72 51.26 52.76 52.35 51.78 14.17 22.44 26.44 18.84 55.04 38.64 43.07 44.42
Audit 61.32 40.47 61.01 61.67 61.66 50.94 57.44

AUC Audit 0.585 0.682 0.644 0.667 0.652 0.637 0.514 – – – – – – –
TPR@0.1%FPR Audit 0.26 9.68 2.81 2.36 2.16 0.18 1.83 – – – – – – –

110th

Acc
Attack 56.20 58.93 63.44 64.38 64.05 64.37 52.45 58.94 57.44 55.09 59.24 61.58 62.65 52.82
Audit 57.21 61.07 66.59 67.50 67.41 64.70 56.34

Prec@P
Attack 64.37 68.55 58.81 59.60 59.44 59.17 51.30 54.93 54.03 52.68 57.95 56.58 57.49 52.11
Audit 59.26 56.23 62.58 63.32 63.23 59.33 56.54

Rec@P
Attack 27.78 33.00 89.68 89.28 88.48 92.76 96.82 99.58 99.86 99.98 67.32 99.58 97.10 69.68
Audit 46.14 99.86 82.52 83.20 83.20 93.50 54.78

F1@P
Attack 38.81 44.55 71.04 71.48 71.11 72.25 67.06 70.80 70.12 69.00 62.29 72.16 72.22 59.63
Audit 51.88 71.95 71.18 71.91 71.85 72.59 55.65

Prec@N
Attack 53.95 55.88 78.28 78.65 77.47 83.25 71.76 97.76 99.08 99.80 61.02 98.25 90.68 54.25
Audit 55.90 99.38 74.35 75.51 75.45 84.67 56.15

Rec@N
Attack 84.62 84.86 37.20 39.48 39.62 35.98 8.08 18.30 15.02 10.20 51.16 23.58 28.20 35.96
Audit 68.28 22.28 50.66 51.80 51.62 35.90 57.90

F1@N
Attack 65.89 67.39 50.43 52.57 52.43 50.24 14.52 30.83 26.09 18.51 55.66 38.03 43.02 43.25
Audit 61.47 36.40 60.26 61.45 61.30 50.42 57.01

AUC Audit 0.584 0.670 0.641 0.664 0.650 0.640 0.515 – – – – – – –
TPR@0.1%FPR Audit 0.22 9.86 2.89 2.45 2.03 0.58 1.96 – – – – – – –

10th

Acc
Attack 52.68 54.14 52.04 52.92 53.16 52.28 50.79 50.00 50.52 50.29 52.12 52.66 52.18 51.64
Audit 53.63 54.78 58.55 59.31 59.23 53.26 56.40

Prec@P
Attack 54.75 56.79 51.65 52.38 52.46 68.87 50.43 50.00 50.27 50.15 51.96 52.02 51.72 51.56
Audit 54.87 53.73 59.11 59.68 59.66 52.11 56.89

Rec@P
Attack 30.88 34.62 63.82 64.28 67.32 8.32 92.00 100.00 96.34 98.52 56.24 68.38 65.72 54.14
Audit 40.90 68.94 55.48 57.40 57.02 80.36 52.86

F1@P
Attack 39.49 43.02 57.09 57.72 58.97 14.85 65.15 66.67 66.07 66.46 54.01 59.09 57.88 52.82
Audit 46.87 60.39 57.24 58.52 58.31 63.23 54.80

Prec@N
Attack 51.87 52.98 52.67 53.78 54.41 51.21 54.49 0.00 56.22 58.19 52.31 53.88 52.99 51.73
Audit 52.89 56.67 58.06 58.97 58.84 57.12 55.98

Rec@N
Attack 74.48 73.66 40.26 41.56 39.00 96.24 9.58 0.00 4.70 2.06 48.00 36.94 38.64 49.14
Audit 66.36 40.62 61.62 61.22 61.44 26.16 59.94

F1@N
Attack 61.15 61.63 45.64 46.89 45.43 66.85 16.30 0.00 8.67 3.98 50.06 43.83 44.69 50.40
Audit 58.87 47.32 59.78 60.07 60.11 35.88 57.89

AUC Audit 0.534 0.573 0.534 0.549 0.548 0.542 0.505 – – – – – – –
TPR@0.1%FPR Audit 0.18 2.72 3.23 3.23 3.25 1.40 1.48 – – – – – – –
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G.3 PERFORMANCE OF MIA METHODS IN DIFFERENT DATASETS

Table 15: The performance of different MIA methods for CIFAR-10 under ResNet-18.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 50.93 55.41 59.87 60.55 60.68 60.98 53.51

52.90 59.74 54.13 59.30 59.38 59.34 51.88
Audit 52.68 58.33 65.68 66.17 66.17 61.19 56.87

Prec@P
Attack 52.72 65.68 56.33 56.62 56.76 57.39 52.18

51.49 57.38 52.15 55.33 55.21 55.33 51.31
Audit 53.91 54.58 61.04 61.22 61.23 57.24 56.21

Rec@P
Attack 18.04 22.66 87.80 90.20 89.68 85.26 83.92

100.00 75.74 100.00 96.60 99.36 96.94 73.40
Audit 36.92 99.28 86.70 88.20 88.16 88.52 62.18

F1@P
Attack 26.88 33.70 68.63 69.57 69.52 68.60 64.36

67.98 65.29 68.55 70.36 70.98 70.45 60.40
Audit 43.18 70.44 71.64 72.28 72.27 69.52 59.04

Prec@N
Attack 50.56 53.27 72.36 75.92 75.43 71.35 58.97

100.00 64.32 100.00 86.61 96.81 87.66 53.30
Audit 52.04 96.02 77.05 78.91 78.86 74.68 57.69

Rec@N
Attack 83.82 88.16 31.94 30.90 31.68 36.70 23.08

5.80 43.74 8.26 22.00 19.40 21.74 30.36
Audit 68.44 17.38 44.66 44.14 44.18 33.86 51.56

F1@N
Attack 63.07 66.41 44.32 43.92 44.62 48.47 33.18

10.96 52.07 15.25 35.09 32.32 34.84 38.69
Audit 59.12 29.43 56.55 56.61 56.63 46.59 54.45

AUC Audit 0.508 0.621 0.631 0.635 0.637 0.631 0.509 – – – – – – –
TPR@0.1%FPR Audit 0.16 0.70 0.36 0.41 0.36 0.40 0.22 – – – – – – –

110th

Acc
Attack 50.54 56.22 56.06 56.43 56.67 56.71 52.46

50.00 55.80 51.63 55.65 56.97 55.97 52.64
Audit 52.81 57.95 61.66 62.40 62.31 56.77 56.58

Prec@P
Attack 51.81 61.17 53.88 54.02 54.15 54.21 51.32

50.00 53.54 50.83 53.48 54.25 53.70 51.94
Audit 54.24 54.69 58.19 58.49 58.55 54.20 56.31

Rec@P
Attack 15.48 34.06 84.10 86.38 87.12 86.34 95.58

100.00 87.74 99.84 86.88 88.96 86.70 70.70
Audit 35.92 92.66 82.84 85.40 84.34 87.28 58.68

F1@P
Attack 23.84 43.76 65.68 66.47 66.78 66.60 66.78

66.67 66.50 67.36 66.20 67.40 66.32 59.88
Audit 43.22 68.78 68.36 69.43 69.11 66.88 57.47

Prec@N
Attack 50.32 54.31 63.80 66.03 67.06 66.47 67.88

0.00 66.06 95.53 65.05 69.35 65.49 54.13
Audit 52.10 76.00 70.23 72.96 72.01 67.37 56.87

Rec@N
Attack 85.60 78.38 28.02 26.48 26.22 27.08 9.34

0.00 23.86 3.42 24.42 24.98 25.24 34.58
Audit 69.70 23.24 40.48 39.40 40.28 26.26 54.48

F1@N
Attack 63.38 64.16 38.94 37.80 37.70 38.48 16.42

0.00 35.06 6.60 35.51 36.73 36.44 42.20
Audit 59.63 35.60 51.36 51.17 51.66 37.79 55.65

AUC Audit 0.520 0.620 0.565 0.578 0.575 0.571 0.503 – – – – – – –
TPR@0.1%FPR Audit 0.06 1.1 0.34 0.32 0.34 0.26 0.09 – – – – – – –

10th

Acc
Attack 50.09 51.44 50.70 51.06 50.97 51.42 49.86

50.00 50.31 50.02 50.15 50.86 51.21 49.76
Audit 50.11 52.13 57.46 58.01 57.90 51.80 56.93

Prec@P
Attack 50.55 51.39 50.57 50.62 50.55 50.83 49.91

50.00 50.29 50.01 50.40 51.67 51.04 49.72
Audit 51.18 51.65 57.20 57.34 57.19 51.15 57.62

Rec@P
Attack 8.32 53.30 62.42 86.10 88.42 86.64 75.42

100.00 54.28 99.92 18.80 26.62 59.66 42.16
Audit 4.76 66.72 59.30 62.58 62.82 80.14 52.42

F1@P
Attack 14.29 52.33 55.87 63.76 64.33 64.07 60.07

66.67 52.21 66.66 27.39 35.14 55.01 45.63
Audit 8.71 58.22 58.23 59.85 59.87 62.44 54.90

Prec@N
Attack 50.05 51.50 50.91 53.54 53.86 54.80 49.71

0.00 50.32 60.00 50.09 50.58 51.46 49.59
Audit 50.56 53.01 57.75 58.82 58.76 54.16 56.36

Rec@N
Attack 91.86 49.58 38.98 16.02 13.52 16.20 24.30

0.00 46.32 0.12 81.50 75.10 42.76 57.36
Audit 95.46 37.54 55.62 53.44 52.98 23.46 61.44

F1@N
Attack 64.80 50.52 44.15 24.66 21.61 25.01 32.64

0.00 48.26 0.24 62.05 60.45 46.71 53.31
Audit 65.68 43.95 56.66 56.00 55.72 32.74 58.79

AUC Audit 0.492 0.521 0.505 0.518 0.518 0.523 0.505 – – – – – – –
TPR@0.1%FPR Audit 0.06 0.18 0.35 0.34 0.34 0.40 0.07 – – – – – – –

For CIFAR-10 under ResNet-18. Table 15 indicates that: Modified Entropy attained the highest
accuracy under audit mode, whereas quantile MIA achieved the best accuracy in attack mode at
200,110, and 10 epochs. Regarding AUC and TPR at 0.1% FPR, RMIA outperformed other methods
at epochs 200 and 110, while Modified Entropy MIA performed best at epoch 10. Additional, Metric
MIA showed the largest performance gap between audit and attack modes, while Quantile MIA
exhibited the smallest difference.

G.4 PERFORMANCE OF MIA METHODS UNDER MISLABEL SCENARIO
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Table 16: The performance of different MIA methods for ImageNet100 under WideResNet-28-2.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 51.48 60.32 54.12 56.18 55.98 51.06 52.10

50.00 51.06 50.32 53.32 56.76 56.14 54.10
Audit 57.46 60.58 61.64 63.08 62.90 57.27 52.62

Prec@P
Attack 50.75 58.43 53.80 54.94 54.86 50.54 51.14

50.00 50.54 50.16 51.88 54.93 55.00 53.99
Audit 54.71 58.39 62.04 62.36 62.77 54.63 56.53

Rec@P
Attack 99.68 71.52 58.28 68.68 67.56 98.32 96.01

100.00 98.32 100.00 91.76 75.36 67.48 55.52
Audit 86.60 73.64 59.96 66.00 63.40 85.77 22.66

F1@P
Attack 67.26 64.32 55.95 61.05 60.55 66.77 66.73

66.67 66.77 66.81 66.28 63.54 60.61 54.74
Audit 67.06 65.13 60.98 64.13 63.08 66.75 32.35

Prec@N
Attack 91.11 63.30 54.49 58.24 57.78 69.34 67.00

0.00 69.34 100.00 64.36 60.76 57.94 54.22
Audit 67.88 64.32 61.26 63.89 63.03 66.91 51.64

Rec@N
Attack 3.28 49.12 49.96 43.68 44.40 3.80 8.12

0.00 3.80 0.64 14.88 38.16 44.80 52.68
Audit 28.32 47.52 63.32 60.16 62.40 28.78 82.57

F1@N
Attack 6.33 55.32 52.13 49.92 50.21 7.21 14.48

0.00 7.21 1.27 24.17 46.88 50.53 53.44
Audit 39.97 54.66 62.27 61.97 62.71 40.25 63.54

AUC Audit 0.584 0.652 0.567 0.592 0.592 0.589 0.523 – – – – – – –
TPR@0.1%FPR Audit 0.0 5.4 5.3 6.5 6.2 0.3 0.0 – – – – – – –

110th

Acc
Attack 50.74 54.62 52.84 53.90 53.92 53.58 50.00

50.00 50.20 50.16 51.32 52.90 52.70 52.22
Audit 54.04 55.14 59.94 60.70 60.84 53.92 53.08

Prec@P
Attack 50.38 54.06 53.60 53.62 53.60 53.65 50.00

50.00 50.10 50.08 50.73 52.21 52.25 52.51
Audit 52.86 54.12 60.34 61.59 61.27 53.87 57.01

Rec@P
Attack 99.20 61.52 42.28 57.72 58.44 53.15 100.00

100.00 98.88 99.84 91.76 68.52 62.72 46.36
Audit 74.72 67.48 58.00 56.88 58.92 54.52 25.02

F1@P
Attack 66.82 57.55 47.27 55.60 55.91 53.40 66.67

66.67 66.51 66.70 65.34 59.26 57.01 49.25
Audit 61.92 60.07 59.15 59.14 60.07 54.19 34.78

Prec@N
Attack 74.03 55.36 52.34 54.22 54.31 53.51 0.00

0.00 57.58 75.00 56.90 54.22 53.38 51.99
Audit 56.89 56.82 59.57 59.94 60.44 53.96 51.97

Rec@N
Attack 2.28 47.72 63.40 50.08 49.40 54.00 0.00

0.00 1.52 0.48 10.88 37.28 42.68 58.08
Audit 33.36 42.80 61.88 64.52 62.76 53.32 81.14

F1@N
Attack 4.42 51.26 57.34 52.07 51.74 53.75 0.00

0.00 2.96 0.95 18.27 44.18 47.43 54.86
Audit 42.06 48.83 60.70 62.15 61.58 53.64 63.36

AUC Audit 0.548 0.567 0.535 0.553 0.552 0.552 0.514 – – – – – – –
TPR@0.1%FPR Audit 0.0 2.2 5.2 5.3 5.4 0.3 0.0 – – – – – – –

10th

Acc
Attack 50.40 51.74 50.28 50.96 50.68 51.58 50.00

50.00 50.44 49.92 50.18 49.24 50.76 50.92
Audit 52.14 51.88 58.60 58.80 59.14 51.94 53.78

Prec@P
Attack 50.21 51.73 51.12 52.68 51.88 51.30 50.00

50.00 50.28 49.96 50.89 48.89 50.52 51.04
Audit 51.86 52.96 59.70 60.46 60.28 52.29 55.84

Rec@P
Attack 96.24 52.12 12.76 18.88 18.72 63.78 100.00

100.00 79.84 99.48 10.32 33.40 73.76 45.00
Audit 59.68 33.68 52.92 50.88 53.60 44.24 36.09

F1@P
Attack 65.99 51.92 20.42 27.80 27.51 56.86 66.67

66.67 61.70 66.52 17.16 39.69 59.97 47.83
Audit 55.50 41.17 56.11 55.26 56.74 47.93 43.85

Prec@N
Attack 54.81 51.75 50.16 50.58 50.41 52.04 0.00

0.00 51.07 40.91 50.10 49.42 51.41 50.82
Audit 52.52 51.38 57.72 57.60 58.23 51.68 52.79

Rec@N
Attack 4.56 51.36 87.80 83.04 82.64 39.36 0.00

0.00 21.04 0.36 90.04 65.08 27.76 56.84
Audit 44.60 70.08 64.28 66.72 64.68 59.63 71.46

F1@N
Attack 8.42 51.56 63.85 62.87 62.63 44.82 0.00

0.00 29.80 0.71 64.38 56.18 36.05 53.66
Audit 48.24 59.29 60.83 61.82 61.28 55.37 60.72

AUC Audit 0.522 0.522 0.511 0.519 0.520 0.519 0.506 – – – – – – –
TPR@0.1%FPR Audit 0.0 1.1 4.3 5.6 5.4 4.0 0.0 – – – – – – –
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Table 17: The performance of different MIA methods for mislabeled (10%) CIFAR-100 under ResNet-18.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin ML-Leak1 ML-Leak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 69.03 79.95 83.55 86.25 86.36 86.18 62.19

80.55 58.63 66.53 82.80 84.77 79.44 72.37
Audit 73.75 80.98 85.07 87.51 87.43 86.28 52.15

Prec@P
Attack 73.64 74.82 77.22 80.03 80.06 79.93 57.06 72.12 78.22 59.91 74.99 76.98 70.97 67.32
Audit 75.01 72.77 80.19 83.05 82.79 80.60 67.89

Rec@P
Attack 59.28 90.28 95.18 96.60 96.84 96.62 98.56 99.62 23.92 99.96 98.42 99.20 99.64 86.94
Audit 71.24 99.02 93.16 94.26 94.50 95.56 8.16

F1@P
Attack 65.68 81.83 85.26 87.54 87.65 87.49 72.27 83.67 36.64 74.92 85.12 86.69 82.90 75.88
Audit 73.07 83.89 86.19 88.30 88.26 87.45 14.57

Prec@N
Attack 65.92 87.75 93.72 95.71 96.00 95.73 94.72 99.39 55.09 99.88 97.70 98.88 99.40 81.57
Audit 72.61 98.47 91.84 93.36 93.59 94.55 51.14

Rec@N
Attack 78.78 69.62 71.92 75.90 75.88 75.74 25.82 61.48 93.34 33.10 67.18 70.34 59.24 57.80
Audit 76.26 62.94 76.98 80.76 80.36 77.00 96.14

F1@N
Attack 71.78 77.64 81.39 84.66 84.76 84.57 40.58 75.97 69.29 49.72 79.62 82.20 74.24 67.66
Audit 74.39 76.79 83.76 86.61 86.47 84.88 66.77

AUC Audit 0.797 0.895 0.871 0.892 0.891 0.896 0.626 – – – – – – –
TPR@0.1%FPR Audit 0.48 14.0 8.1 9.2 8.9 0.48 0.0 – – – – – – –

110th

Acc
Attack 66.84 80.08 78.08 81.15 81.54 81.40 61.98

70.54 50.35 65.60 76.54 81.62 75.60 70.18
Audit 70.94 80.03 80.14 83.29 83.43 81.54 53.09

Prec@P
Attack 69.61 74.74 73.49 76.02 75.98 74.72 57.03 63.05 71.08 59.28 76.19 75.49 68.45 67.68
Audit 73.16 71.98 77.06 79.64 79.51 75.10 66.56

Rec@P
Attack 59.78 90.86 87.76 91.00 92.24 94.90 97.24 99.22 1.18 99.66 77.20 93.64 94.98 77.26
Audit 66.14 98.34 85.84 89.44 90.08 94.38 12.42

F1@P
Attack 64.32 82.02 79.99 82.84 83.32 83.61 71.89 77.11 2.32 74.34 76.69 83.59 79.56 72.15
Audit 69.47 83.12 81.21 84.26 84.46 83.64 20.93

Prec@N
Attack 64.76 88.35 84.81 88.79 90.13 93.01 90.64 98.17 50.18 98.93 76.90 91.63 91.80 73.51
Audit 69.11 97.38 84.02 87.96 88.56 92.44 51.70

Rec@N
Attack 73.90 69.30 68.34 71.30 70.84 67.90 26.72 41.86 99.52 31.54 75.88 69.60 56.22 63.10
Audit 75.74 61.72 74.44 77.14 76.78 68.70 93.76

F1@N
Attack 69.03 77.67 75.69 79.09 79.33 78.50 41.27 58.69 66.72 47.83 76.38 79.11 69.73 67.91
Audit 72.27 75.55 78.94 82.19 82.25 78.82 66.65

AUC Audit 0.764 0.890 0.835 0.866 0.866 0.862 0.625 – – – – – – –
TPR@0.1%FPR Audit 1.5 8.9 8.7 9.4 9.5 0.2 0.0 – – – – – – –

10th

Acc
Attack 51.65 53.36 50.35 52.73 53.00 52.30 52.41

50.00 50.41 50.11 50.47 50.20 51.59 50.07
Audit 51.12 53.87 57.48 58.74 58.92 53.19 53.47

Prec@P
Attack 52.84 54.13 50.37 52.27 52.46 51.50 51.44 50.00 56.77 50.06 52.13 50.66 51.12 50.08
Audit 52.91 53.81 57.70 59.30 59.31 52.53 55.52

Rec@P
Attack 30.68 44.06 47.10 62.74 64.06 78.98 85.82 100.00 3.44 97.06 11.52 15.40 72.86 42.04
Audit 20.34 54.60 56.08 55.74 56.80 66.26 34.90

F1@P
Attack 38.82 48.58 48.68 57.03 57.68 62.35 64.33 66.67 6.49 66.05 18.87 23.62 60.08 45.71
Audit 29.38 54.20 56.88 57.46 58.03 58.60 42.86

Prec@N
Attack 51.16 52.83 50.33 53.41 53.85 54.93 57.26 0.00 50.21 51.80 50.26 50.12 52.77 50.06
Audit 50.69 53.93 57.28 58.25 58.56 54.32 52.53

Rec@N
Attack 72.62 62.66 53.60 42.72 41.94 25.62 19.00 0.00 97.38 3.16 89.42 85.00 30.32 58.10
Audit 81.90 53.14 58.88 61.74 61.04 40.12 72.04

F1@N
Attack 60.03 57.33 51.91 47.47 47.16 34.94 28.53 0.00 66.26 5.96 64.35 63.06 38.51 53.78
Audit 62.62 53.53 58.07 59.94 59.77 46.15 60.76

AUC Audit 0.511 0.547 0.518 0.548 0.550 0.542 0.526 – – – – – – –
TPR@0.1%FPR Audit 0.18 0.18 1.8 2.6 2.6 0.22 0.00 – – – – – – –

G.5 PERFORMANCE OF MIA METHODS UNDER META CLASS SCENARIO

G.6 PERFORMANCE OF MIA METHODS UNDER DIFFERENT ALGORITHMS
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Table 18: The performance of different MIA methods for superclass CIFAR-100 under ResNet-18.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 58.27 65.34 71.20 72.31 72.28 71.96 55.71

66.09 68.17 59.12 70.91 69.13 67.56 55.56
Audit 62.02 66.09 73.66 74.67 74.65 72.51 54.02

Prec@P
Attack 62.24 65.65 64.67 65.00 65.05 64.50 53.22

59.64 67.18 55.02 63.88 61.89 60.76 53.98
Audit 64.01 59.62 67.70 68.44 68.29 65.90 64.00

Rec@P
Attack 42.06 64.36 94.46 96.68 96.32 97.66 94.38

99.56 71.06 100.00 96.24 99.58 99.16 75.42
Audit 55.51 99.74 90.48 91.56 92.02 93.28 18.38

F1@P
Attack 50.20 65.00 76.63 77.74 77.65 77.69 68.06

74.59 69.06 70.98 76.79 76.34 75.35 62.92
Audit 5922 74.63 77.45 78.33 78.40 77.24 28.56

Prec@N
Attack 56.25 65.05 89.64 93.52 92.91 95.19 75.20

98.67 69.28 100.00 92.38 98.93 97.72 59.22
Audit 60.59 99.20 85.65 87.25 87.77 88.50 52.35

Rec@N
Attack 74.48 66.32 47.94 47.94 48.24 46.26 17.04

32.62 65.28 18.24 45.58 38.68 35.96 35.70
Audit 69.02 32.44 56.84 57.78 57.28 51.74 89.66

F1@N
Attack 64.09 65.68 62.47 63.39 63.51 62.26 27.78

49.03 65.22 30.85 61.04 55.61 52.57 44.55
Audit 64.53 48.89 68.33 69.52 69.32 65.30 66.10

AUC Audit 0.637 0.733 0.741 0.755 0.747 0.750 0.565 – – – – – – –
TPR@0.1%FPR Audit 0.4 1.0 0.4 0.5 0.3 0.1 0.0 – – – – – – –

110th

Acc
Attack 56.00 65.33 61.62 63.77 63.67 66.07 54.89

50.00 54.32 56.70 63.64 66.17 62.84 58.94
Audit 58.98 65.29 66.58 68.77 68.83 66.17 54.39

Prec@P
Attack 58.75 65.53 60.75 62.28 62.28 60.46 52.73

50.00 59.35 53.60 60.10 60.90 58.55 57.50
Audit 60.36 66.04 62.35 63.23 63.32 60.67 58.98

Rec@P
Attack 40.28 64.68 65.68 69.84 69.32 92.90 94.48

100.00 27.42 99.80 81.14 90.32 87.92 68.56
Audit 52.32 62.94 83.6 89.72 89.52 91.96 28.84

F1@P
Attack 47.79 65.10 63.12 65.84 65.61 73.25 67.68

66.67 37.51 69.74 69.06 72.75 70.29 62.54
Audit 56.05 64.45 71.46 74.18 74.17 73.11 38.74

Prec@N
Attack 54.56 65.13 62.65 65.67 65.41 84.68 73.49

0.00 52.81 98.55 70.98 81.28 75.76 61.07
Audit 57.92 64.60 75.20 82.31 82.12 83.40 52.91

Rec@N
Attack 71.72 65.98 57.56 57.70 58.02 39.24 15.30

0.00 81.22 13.60 46.14 42.02 37.76 49.32
Audit 65.64 67.64 49.48 47.82 48.14 40.38 79.94

F1@N
Attack 61.98 65.55 60.00 61.43 61.49 53.63 25.33

0.00 64.00 23.90 55.93 55.40 50.40 54.57
Audit 61.54 66.09 59.69 60.49 60.70 54.41 63.67

AUC Audit 0.613 0.733 0.661 0.685 0.683 0.681 0.555 – – – – – – –
TPR@0.1%FPR Audit 0.4 1.7 0.4 0.4 0.3 0.1 0.0 – – – – – – –

10th

Acc
Attack 51.52 52.65 50.16 50.06 50.25 51.97 50.76

50.00 50.05 50.00 50.24 50.19 50.18 50.07
Audit 52.01 52.75 55.67 56.90 56.74 52.31 53.98

Prec@P
Attack 52.92 52.56 53.31 51.06 54.79 51.22 50.54

50.00 50.21 50.00 50.67 50.68 50.15 50.09
Audit 53.10 52.63 56.02 57.26 57.67 52.08 56.72

Rec@P
Attack 27.52 54.50 2.58 2.88 2.86 82.78 70.64

100.00 11.68 99.96 18.28 14.16 60.98 39.98
Audit 34.46 55.00 52.80 54.40 50.68 57.94 33.58

F1@P
Attack 36.21 53.51 4.92 5.45 5.44 63.28 58.93

66.67 18.95 66.66 26.87 22.14 55.04 44.47
Audit 41.80 53.79 54.36 55.79 53.95 54.85 42.19

Prec@N
Attack 51.03 52.75 50.08 50.03 50.13 55.13 51.26

0.00 50.03 50.00 50.15 50.11 50.23 50.06
Audit 51.49 52.88 55.36 56.57 56.01 52.60 52.83

Rec@N
Attack 75.52 50.80 97.74 97.24 97.64 21.16 30.88

0.00 88.42 0.04 82.20 86.22 39.38 60.16
Audit 69.56 50.50 58.54 59.40 62.80 46.68 74.38

F1@N
Attack 60.90 51.76 66.23 66.07 66.25 30.58 38.54

0.00 63.90 0.08 62.29 63.38 44.15 54.65
Audit 59.17 51.66 56.91 57.95 59.21 49.46 61.78

AUC Audit 0.520 0.534 0.510 0.533 0.533 0.532 0.513 – – – – – – –
TPR@0.1%FPR Audit 0.1 1.1 0.4 0.4 0.4 0.2 0.0 – – – – – – –
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Table 19: The performance of different MIA methods for CIFAR-100 under ResNet-50 with pretrain. The
model is pretrained on ImageNet-1k.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 50.60 59.76 71.73 72.55 72.55 71.86 52.28

58.83 51.24 56.12 70.71 64.27 65.24 53.59
Audit 50.36 59.87 74.66 75.12 75.10 72.03 56.38

Prec@P
Attack 51.27 57.77 64.77 65.43 65.38 64.37 51.19

54.84 50.63 53.26 63.24 58.32 59.00 52.48
Audit 50.36 58.08 70.15 70.45 70.28 66.17 57.50

Rec@P
Attack 24.22 72.56 95.30 95.60 95.88 97.94 97.90

99.98 100.00 100.00 98.94 99.98 99.90 71.74
Audit 75.46 70.92 85.84 86.54 86.98 90.14 48.92

F1@P
Attack 32.90 64.33 77.12 77.69 77.74 77.68 67.23

70.83 67.22 69.50 77.16 73.67 74.19 60.62
Audit 60.41 63.86 77.21 77.67 77.74 76.32 52.86

Prec@N
Attack 50.39 63.12 91.11 91.84 92.28 95.69 76.03

70.83 100.00 100.00 97.57 99.93 99.67 55.36
Audit 51.08 62.67 81.76 82.56 82.92 84.54 55.55

Rec@N
Attack 76.98 46.96 48.16 49.50 49.22 45.78 6.66

17.68 2.48 12.24 42.48 28.56 30.58 35.04
Audit 25.62 48.82 63.48 63.70 63.22 53.92 63.84

F1@N
Attack 60.91 53.85 63.01 64.33 64.20 61.93 12.25

30.04 4.84 21.81 59.19 44.42 46.80 42.91
Audit 34.12 54.88 71.47 71.91 71.74 65.84 59.41

AUC Audit 0.495 0.658 0.761 0.753 0.765 0.765 0.502 – – – – – – –
TPR@0.1%FPR Audit 0.0 0.0 6.0 5.8 5.9 0.0 1.8 – – – – – – –

110th

Acc
Attack 50.56 60.54 70.07 70.91 70.77 71.39 52.40

55.47 52.09 56.26 70.75 65.27 65.87 53.35
Audit 50.42 60.76 73.03 73.76 73.72 70.88 56.49

Prec@P
Attack 50.72 59.42 63.99 64.58 64.37 64.80 51.26

52.90 51.07 53.24 63.98 59.02 59.49 52.44
Audit 50.28 59.35 68.92 69.23 69.27 64.55 57.77

Rec@P
Attack 39.28 66.46 91.80 92.60 93.06 93.64 97.92

99.84 100.00 100.00 94.96 99.96 99.46 71.90
Audit 75.02 68.28 83.90 85.54 85.26 92.64 48.24

F1@P
Attack 44.27 62.75 75.41 76.09 76.10 76.60 67.29

69.16 67.61 69.57 76.45 74.21 74.45 60.65
Audit 60.21 63.50 75.67 76.53 76.44 76.08 52.58

Prec@N
Attack 50.46 61.96 85.50 86.93 87.48 88.54 76.79

98.58 100.00 100.00 90.23 99.87 98.35 55.33
Audit 50.83 62.66 79.43 81.08 80.84 86.97 55.57

Rec@N
Attack 61.84 54.62 48.34 49.22 48.48 49.14 6.88

11.10 4.18 12.52 46.54 30.58 32.28 34.80
Audit 25.82 53.24 62.16 61.98 62.18 49.12 64.74

F1@N
Attack 55.57 58.06 61.76 62.85 62.39 63.20 12.63

19.95 8.02 22.25 61.41 46.82 48.61 42.73
Audit 34.24 57.57 69.71 70.26 70.29 62.78 59.81

AUC Audit 0.496 0.667 0.747 0.747 0.754 0.756 0.508 – – – – – – –
TPR@0.1%FPR Audit 0.0 0.0 6.3 6.3 6.2 1.7 2.3 – – – – – – –

10th

Acc
Attack 50.16 59.92 60.72 62.86 62.86 63.05 52.49

50.00 50.17 54.04 53.26 62.69 61.18 56.44
Audit 50.18 60.32 65.40 67.32 67.20 63.39 56.70

Prec@P
Attack 50.16 58.99 57.70 58.56 58.71 58.23 51.41

50.00 50.09 52.11 51.69 57.82 57.21 55.00
Audit 50.11 57.16 62.69 63.42 63.56 58.66 57.68

Rec@P
Attack 49.14 65.08 80.36 87.94 86.70 92.32 91.08

100.00 100.00 99.58 99.58 93.84 88.70 70.88
Audit 81.74 82.38 76.10 81.42 80.62 90.74 50.34

F1@P
Attack 49.65 61.89 67.17 70.31 70.01 71.42 65.72

66.67 66.74 68.42 68.06 71.55 69.59 61.94
Audit 62.13 67.49 68.74 71.30 71.08 71.25 53.76

Prec@N
Attack 50.16 61.06 67.65 75.80 74.58 81.48 60.91

0.00 100.00 95.29 94.29 83.66 74.87 59.06
Audit 50.49 68.47 69.59 74.06 73.51 79.56 55.94

Rec@N
Attack 51.18 54.76 41.08 37.78 39.02 33.78 13.90

0.00 0.34 8.50 6.94 31.54 33.66 42.00
Audit 18.62 38.26 54.70 53.04 53.78 36.04 63.06

F1@N
Attack 50.66 57.74 51.12 50.43 51.23 47.76 22.63

0.00 0.68 15.61 12.93 45.81 46.44 49.09
Audit 27.21 49.09 61.25 61.81 62.12 49.61 59.29

AUC Audit 0.493 0.651 0.651 0.666 0.669 0.656 0.514 – – – – – – –
TPR@0.1%FPR Audit 0.5 0.0 0.0 0.0 0.0 0.0 0.0 – – – – – – –
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Table 20: The performance of different MIA methods for CIFAR-100 under ResNet-18 trained with DP-SGD.

Epoch Metric Mode
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

200th

Acc
Attack 50.55 63.98 59.93 64.58 64.60 65.93 58.69 57.13 60.90 60.98 60.33 65.27 58.01 53.88
Audit 50.54 64.74 64.32 68.11 68.07 66.52 56.18

Prec@P
Attack 52.73 58.75 56.98 60.12 60.17 60.95 55.44

54.13 58.58 56.45 58.38 59.92 54.75 52.71
Audit 52.68 59.18 62.15 64.23 64.16 61.77 57.11

Rec@P
Attack 10.64 93.86 81.10 86.60 86.38 88.68 88.50

93.54 74.42 96.12 72.00 92.24 92.32 75.40
Audit 10.62 95.04 73.26 81.76 81.86 86.68 49.62

F1@P
Attack 17.71 72.27 66.93 70.97 70.93 72.24 68.18

68.57 65.56 71.13 64.48 72.65 68.74 62.05
Audit 17.68 72.94 67.25 71.94 71.94 72.14 53.10

Prec@N
Attack 50.31 84.74 67.22 76.05 75.87 79.23 71.52

76.23 64.94 86.94 63.48 83.15 75.53 56.81
Audit 50.30 87.41 67.44 74.91 74.95 77.68 55.46

Rec@N
Attack 90.46 34.10 38.76 42.56 42.82 43.18 28.88

20.72 47.38 25.84 48.66 38.30 23.70 32.36
Audit 90.46 34.44 55.38 54.46 54.28 46.36 62.74

F1@N
Attack 64.66 48.63 49.17 54.58 54.74 55.90 41.15

32.58 54.79 39.84 55.09 52.44 36.08 41.23
Audit 64.65 49.41 60.82 63.07 62.96 58.07 58.88

AUC Audit 0.350 0.721 0.624 0.667 0.667 0.688 0.519 – – – – – – –
TPR@0.1%FPR Audit 0.1 6.9 2.2 2.8 2.8 0.2 1.8 – – – – – – –

110th

Acc
Attack 51.17 58.16 54.92 58.20 58.02 58.92 54.99

50.00 54.94 52.60 54.44 58.52 54.10 52.95
Audit 51.26 59.40 59.67 62.55 62.50 59.26 56.54

Prec@P
Attack 54.62 55.61 54.43 56.21 56.06 56.21 53.07

50.00 55.10 51.39 54.86 56.53 52.66 52.17
Audit 56.30 56.68 60.17 61.55 61.49 56.69 57.10

Rec@P
Attack 13.82 80.88 60.48 74.22 74.16 80.70 86.16

100.00 53.36 96.28 50.14 73.80 81.22 70.78
Audit 11.26 79.72 57.20 66.88 66.88 78.44 52.60

F1@P
Attack 22.06 65.91 57.29 63.97 63.85 66.27 65.69

66.67 54.22 67.01 52.39 64.02 63.89 60.07
Audit 18.77 66.26 58.65 64.10 64.07 65.82 54.76

Prec@N
Attack 50.67 64.96 55.54 62.07 61.84 65.80 63.25

0.00 54.79 70.57 54.09 62.27 58.96 54.59
Audit 50.70 65.84 59.21 63.74 63.70 65.02 56.06

Rec@N
Attack 88.52 35.44 49.36 42.18 41.88 37.14 23.82

0.00 56.52 8.92 58.74 43.24 26.98 35.12
Audit 91.26 39.08 62.14 58.22 58.12 40.08 60.48

F1@N
Attack 64.45 45.86 52.27 50.23 49.94 47.48 34.61

0.00 55.64 15.84 56.32 51.04 37.02 42.74
Audit 65.19 49.05 60.64 60.86 60.78 49.59 58.19

AUC Audit 0.446 0.639 0.562 0.606 0.606 0.609 0.522 – – – – – – –
TPR@0.1%FPR Audit 0.08 2.8 2.1 2.9 2.9 0.6 1.6 – – – – – – –

10th

Acc
Attack 49.69 51.97 50.58 51.78 51.94 51.87 50.89

50.00 51.25 50.05 51.25 50.64 50.45 50.78
Audit 50.17 52.45 57.36 57.94 57.92 52.19 55.91

Prec@P
Attack 44.56 52.39 50.59 51.57 51.75 51.38 50.65

50.00 52.31 50.03 52.81 54.49 50.33 51.00
Audit 50.10 52.75 58.17 58.74 58.34 53.37 56.72

Rec@P
Attack 2.54 43.26 50.00 58.60 57.38 69.76 69.04

100.00 28.34 93.68 23.50 7.76 67.80 39.80
Audit 86.14 47.02 52.42 53.34 55.38 34.66 49.90

F1@P
Attack 4.81 47.39 50.29 54.86 54.42 59.17 58.43

66.67 36.76 65.22 32.53 13.59 57.78 44.71
Audit 63.35 49.72 55.14 55.91 56.82 42.03 53.09

Prec@N
Attack 49.84 51.68 50.57 52.06 52.18 52.91 51.40

0.00 50.86 50.39 50.80 50.34 50.69 50.64
Audit 50.61 52.21 56.70 57.27 57.54 51.62 55.28

Rec@N
Attack 96.84 60.68 51.16 44.96 46.50 33.98 32.74

0.00 74.16 6.42 79.00 93.52 33.10 61.76
Audit 14.20 57.88 62.30 62.54 60.46 69.72 61.92

F1@N
Attack 65.81 55.82 50.86 48.25 49.18 41.38 40.00

0.00 60.34 11.39 61.84 65.45 40.05 55.65
Audit 22.18 54.90 59.37 59.79 58.96 59.32 58.41

AUC Audit 0.487 0.531 0.513 0.529 0.530 0.528 0.501 – – – – – – –
TPR@0.1%FPR Audit 0.0 1.5 2.3 2.3 2.8 1.0 1.6 – – – – – – –

G.7 PERFORMANCE OF MIA METHODS UNDER UNLEARNING SCENARIO

G.8 PERFORMANCE OF MIA METHODS WITH DIFFERENT NUMBER SHADOW MODELS
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Table 21: The performance of different MIA methods for CIFAR-100 under ResNet-18 across pretrain, retrain,
SalUn and SFR-on (full class unlearn setting). The performance of each MIA method is evaluated on retain
data (members) and forget data (non-members).

Model Metric
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy Modified
Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

Pre-train

Accuracy 64.10 61.30 61.40 61.40 61.50 63.90 57.30 50.00 47.20 50.00 50.00 50.00 47.00 47.80
Precision@P 58.36 59.31 84.34 85.62 85.71 58.19 71.60 50.00 48.12 50.00 50.00 50.00 48.12 48.29

Recall@P 98.40 72.00 28.00 27.40 27.60 98.80 24.20 100.00 71.60 100.00 100.00 100.00 76.80 62.00
F1@P 73.27 65.04 42.04 41.52 41.75 73.24 36.17 66.67 57.56 66.67 66.67 66.67 59.17 54.29

Precision@N 94.90 64.38 56.83 56.79 56.85 96.03 54.39 0.00 44.53 0.00 0.00 0.00 42.57 46.93
Recall@N 29.80 50.60 94.80 95.40 95.40 29.00 90.40 0.00 22.80 0.00 0.00 0.00 17.20 33.60

F1@N 45.36 56.66 71.06 71.19 71.25 44.55 67.92 0.00 30.16 0.00 0.00 0.00 24.50 39.16
AUC 0.64 0.61 0.61 0.61 0.61 0.64 0.57 0.50 0.47 0.50 0.50 0.50 0.47 0.48

TPR@0.1FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Retrain

Accuracy 63.50 63.90 60.90 61.10 61.00 63.50 57.70 83.60 83.40 90.00 86.00 96.20 81.00 69.00
Precision@P 70.15 74.05 84.28 84.05 84.38 69.68 75.50 76.09 90.34 83.33 84.35 100.00 73.00 66.67

Recall@P 47.00 42.80 26.80 27.40 27.00 47.80 22.80 98.00 74.80 100.00 88.40 92.40 98.40 76.00
F1@P 56.29 54.25 40.67 41.33 40.91 56.70 35.02 85.66 81.84 90.91 86.33 96.05 83.82 71.03

Precision@N 60.15 59.77 56.48 56.63 56.55 60.27 54.53 97.19 78.50 100.00 87.82 92.94 97.55 72.09
Recall@N 80.00 85.00 95.00 94.80 95.00 79.20 92.60 69.20 92.00 80.00 83.60 100.00 63.60 62.00

F1@N 68.67 70.19 70.84 70.91 70.90 68.45 68.64 80.84 84.71 88.89 85.66 96.34 77.00 66.67
AUC 0.64 0.64 0.61 0.61 0.61 0.64 0.58 0.84 0.83 0.90 0.86 0.96 0.81 0.69

TPR@0.1FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00

SalUn

Accuracy 63.50 61.30 61.30 61.40 61.40 63.50 56.50 99.60 77.20 100.00 99.80 67.20 99.80 99.80
Precision@P 69.01 67.28 84.66 84.76 84.76 69.79 69.70 100.00 100.00 100.00 100.00 60.59 100.00 99.60

Recall@P 49.00 44.00 27.60 27.80 27.80 47.60 23.00 99.20 54.40 100.00 99.60 98.40 99.60 100.00
F1@P 57.31 53.20 41.63 41.87 41.87 56.60 34.59 99.60 70.47 100.00 99.80 75.00 99.80 99.80

Precision@N 60.47 58.40 56.75 56.82 56.82 60.24 53.89 99.21 68.68 100.00 99.60 95.74 99.60 100.00
Recall@N 78.00 78.60 95.00 95.00 95.00 79.40 90.00 100.00 100.00 100.00 100.00 36.00 100.00 99.60

F1@N 68.12 67.01 71.05 71.11 71.11 68.51 67.42 99.60 81.43 100.00 99.80 52.33 99.80 99.80
AUC 0.64 0.61 0.61 0.61 0.61 0.64 0.56 1.00 0.77 1.00 1.00 0.67 1.00 1.00

TPR@0.1FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.54 1.00 1.00 0.00 1.00 0.00

SFR-on

Accuracy 62.70 60.90 61.00 61.20 61.20 63.10 56.10 80.60 68.80 98.00 76.80 98.40 78.00 73.60
Precision@P 68.30 64.23 81.61 83.33 82.18 68.77 72.93 72.43 84.56 96.15 68.82 100.00 69.89 69.41

Recall@P 47.40 49.20 28.40 28.00 28.60 48.00 19.40 98.80 46.00 100.00 98.00 96.80 98.40 84.40
F1@P 55.96 55.72 42.14 41.92 42.43 56.54 30.65 83.59 59.59 98.04 80.86 98.37 81.73 76.17

Precision@N 59.72 58.83 56.66 56.73 56.78 60.06 53.52 98.11 62.91 100.00 96.53 96.90 97.30 80.10
Recall@N 78.00 72.60 93.60 94.40 93.80 78.20 92.80 62.40 91.60 96.00 55.60 100.00 57.60 62.80

F1@N 67.65 65.00 70.59 70.87 70.74 67.94 67.89 76.28 74.59 97.96 70.56 98.43 72.36 70.40
AUC 0.63 0.61 0.61 0.61 0.61 0.63 0.56 0.81 0.69 0.98 0.77 0.98 0.78 0.74

TPR@0.1FPR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00
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Table 22: The performance of different MIA methods for CIFAR-100 under ResNet-18 across pretrain, retrain,
SalUn and SFR-on (full class unlearn setting). The performance of each MIA method is evaluated on retain
data (members) and test data (non-members).

Model Metric
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI
Lira RMIA Entropy Modified Entropy Confidence Quantile Merlin ML-Leak1 ML-Leak3 Shadow One-class Diff-w Diff-single Diff-bi

Pre-train

Accuracy 69.53 74.09 80.84 82.16 82.11 80.81 56.54 72.26 75.19 62.98 68.84 78.29 75.32 67.30
Precision@P 70.06 66.30 75.53 76.31 76.33 73.99 57.22 64.35 74.86 57.46 61.62 69.84 67.06 63.13

Recall@P 68.20 97.96 91.25 93.27 93.09 95.03 51.83 99.82 75.85 100.00 99.92 99.58 99.54 83.15
F1@P 69.12 79.08 82.65 83.94 83.88 83.20 54.39 78.25 75.35 72.98 76.23 82.10 80.13 71.77

Precision@N 69.02 96.09 88.95 91.35 91.14 93.05 55.97 99.59 75.53 100.00 99.79 99.26 99.10 75.33
Recall@N 70.86 50.21 70.44 71.04 71.13 66.60 61.24 44.70 74.52 25.96 37.77 57.00 51.10 51.44

F1@N 69.93 65.96 78.62 79.93 79.90 77.64 58.49 61.70 75.02 41.23 54.79 72.42 67.43 61.14
AUC 0.75 0.82 0.82 0.83 0.83 0.83 0.51 – – – – – – –

TPR@0.1FPR 0.01 0.19 0.09 0.09 0.09 0.00 0.02 – – – – – – –

Retrain

Accuracy 67.00 77.41 80.05 82.07 82.04 80.71 56.45 73.22 74.90 65.44 78.46 80.14 75.84 68.24
Precision@P 71.20 69.49 74.59 76.31 76.22 73.88 57.36 65.27 73.53 59.13 72.22 72.17 67.80 64.61

Recall@P 57.10 97.72 91.15 93.01 93.13 95.03 50.25 99.25 77.83 100.00 92.50 98.12 98.44 80.66
F1@P 63.38 81.22 82.04 83.84 83.83 83.13 53.57 78.75 75.62 74.31 81.11 83.16 80.30 71.75

Precision@N 64.19 96.16 88.62 91.05 91.17 93.04 55.74 98.44 76.45 100.00 89.58 97.07 97.16 74.27
Recall@N 76.90 57.10 68.94 71.13 70.94 66.40 62.64 47.18 71.97 30.87 64.42 62.15 53.24 55.81

F1@N 69.98 71.65 77.55 79.86 79.80 77.49 58.99 63.79 74.15 47.18 74.94 75.78 68.79 63.73
AUC 0.71 0.86 0.81 0.82 0.82 0.83 0.51 – – – – – – –

TPR@0.1FPR 0.01 0.22 0.06 0.07 0.07 0.00 0.01 – – – – – – –

SalUn

Accuracy 68.31 74.51 79.98 81.36 81.31 80.30 56.90 74.71 69.01 63.68 68.66 77.90 74.59 67.45
Precision@P 69.50 66.72 74.85 75.76 75.89 73.28 57.50 66.59 74.92 57.93 61.50 69.63 66.58 63.80

Recall@P 65.25 97.82 90.30 92.24 91.78 95.37 52.90 99.17 57.16 99.98 99.80 98.97 98.75 80.68
F1@P 67.31 79.33 81.85 83.19 83.08 82.88 55.10 79.68 64.85 73.35 76.10 81.75 79.53 71.25

Precision@N 67.25 95.91 87.78 90.08 89.60 93.38 56.39 98.38 65.37 99.93 99.46 98.22 97.58 73.73
Recall@N 71.37 51.20 69.65 70.48 70.84 65.23 60.90 50.25 80.86 27.38 37.52 56.84 50.43 54.21

F1@N 69.25 66.76 77.67 79.08 79.12 76.80 58.56 66.52 72.30 42.98 54.49 72.01 66.50 62.48
AUC 0.73 0.83 0.82 0.83 0.83 0.83 0.51 – – – – – – –

TPR@0.1FPR 0.01 0.19 0.08 0.08 0.08 0.00 0.02 – – – – – – –

SFR-on

Accuracy 68.81 73.13 78.33 80.30 80.20 78.86 56.88 58.66 65.04 63.06 72.55 77.16 74.20 66.84
Precision@P 68.58 68.77 73.55 75.08 74.99 72.24 57.79 54.74 72.26 57.52 64.76 69.12 66.41 63.30

Recall@P 69.43 84.72 88.48 90.71 90.62 93.76 51.06 99.94 48.84 99.92 98.93 98.18 97.94 80.14
F1@P 69.00 75.92 80.33 82.16 82.07 81.60 54.22 70.74 58.28 73.01 78.28 81.13 79.15 70.73

Precision@N 69.05 80.11 85.55 88.26 88.15 91.11 56.16 99.65 61.36 99.69 97.73 96.86 96.08 72.94
Recall@N 68.20 61.53 68.18 69.89 69.77 63.97 62.70 17.38 81.25 26.21 46.17 56.13 50.45 53.55

F1@N 68.62 69.60 75.88 78.01 77.89 75.17 59.25 29.59 69.92 41.50 62.71 71.08 66.16 61.76
AUC 0.74 0.82 0.80 0.82 0.82 0.82 0.52 – – – – – – –

TPR@0.1FPR 0.01 0.18 0.08 0.08 0.08 0.00 0.02 – – – – – – –

Table 23: The performance of different MIA methods for CIFAR-100 under ResNet-18 on retrain model
(10% random subset unlearn setting). The performance of each MIA method is evaluated on retain data
(members) and forget data (non-members).

Model Metric
Membership Inference Attack Algorithms

Metric MIA ML-Leaks BlindMI
Lira RMIA Entropy Modified Entropy Confidence Quantile Merlin MLLeak1 MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

Retrain

Accuracy 66.22 78.58 80.48 82.74 82.66 81.12 58.60 76.32 69.00 65.90 77.18 80.66 76.68 68.50
Precision@P 70.12 70.96 76.22 78.18 78.09 74.50 59.13 68.16 74.04 59.46 73.04 72.70 68.56 64.98

Recall@P 56.52 96.76 88.60 90.84 90.80 94.64 55.68 98.80 58.52 99.96 86.16 98.20 98.56 80.24
F1@P 62.59 81.88 81.95 84.03 83.97 83.37 57.35 80.67 65.37 74.56 79.06 83.55 80.87 71.81

Precision@N 63.58 94.91 86.39 89.07 89.01 92.65 58.13 97.82 65.71 99.87 83.13 97.23 97.44 74.18
Recall@N 75.92 60.40 72.36 74.64 74.52 67.60 61.52 53.84 79.48 31.84 68.20 63.12 54.80 56.76

F1@N 69.21 73.82 78.75 81.22 81.12 78.17 59.77 69.45 71.94 48.29 74.93 76.55 70.15 64.31
AUC 0.70 0.87 0.81 0.83 0.83 0.84 0.50 – – – – – – –

TPR@0.1FPR 0.00 0.20 0.13 0.14 0.14 0.00 0.03 – – – – – – –
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Table 24: The performance of LiRA and RMIA methods for CIFAR-100 under ResNet-18 with different
numbers of shadow models .

Epochs Metrics Mode LIRA RMIA

# shadow 5 16 32 64 5 16 32

200 epochs

Acc Attack 65.77 67.45 68.07 67.97 72.62 74.10 73.17
Audit 69.37 72.24 72.55 72.65 75.18 74.39 74.29

Prec@P Attack 69.41 75.78 75.87 73.02 73.02 70.50 72.58
Audit 70 77.63 77.32 77.09 69.26 66.20 66.10

Rec@P Attack 56.4 51.3 53 53.34 71.16 82.88 74.48
Audit 67.8 62.48 63.82 64.46 90.54 99.68 99.74

F1@P Attack 62.23 61.18 62.4 62.48 72.38 76.19 73.52
Audit 68.88 69.24 69.92 70.21 78.48 79.56 79.51

Prec@N Attack 63.2 63.19 63.89 63.9 72.24 79.23 73.79
Audit 68.78 68.61 69.2 69.46 86.35 99.35 99.47

Rec@N Attack 75.14 83.6 83.14 82.6 73.48 65.32 71.86
Audit 70.94 82 81.28 80.84 59.82 49.10 48.84

F1@N Attack 68.7 71.98 72.25 77.06 72.85 71.61 72.81
Audit 69.84 74.71 74.75 74.72 70.76 65.72 65.51

Auc Audit 0.745 0.772 0.774 0.776 0.839 0.839 0.839
PR@0.1 FPF Audit 2.0 4.0 6.0 7.4 9.3 11.0 11.0

110 epochs

Acc Attack 62.49 64.41 64.37 64.36 72.33 73.28 73.11
Audit 66.72 69.06 69.46 69.68 74.23 74.31 73.61

Prec@P Attack 63.81 70.4 68.92 70.87 71.71 70.20 71.31
Audit 67.17 71.35 73.7 73.94 67.36 67.30 65.88

Rec@P Attack 57.7 58.37 52.34 48.76 73.76 80.90 77.34
Audit 65.4 63.7 60.52 60.78 94.00 94.56 97.94

F1@P Attack 60.6 49.9 59.5 57.77 72.72 75.17 74.20
Audit 66.27 67.31 66.46 66.72 78.48 78.64 78.77

Prec@N Attack 61.4 61.17 61.58 60.95 72.99 77.47 75.25
Audit 66.29 67.21 66.51 66.71 90.08 90.86 95.99

Rec@N Attack 67.28 78.92 76.4 79.96 70.90 65.66 68.88
Audit 68.04 74.42 78.4 78.58 54.46 54.06 49.28

F1@N Attack 64.2 68.92 68.2 69.17 71.93 71.08 71.92
Audit 67.15 70.63 71.92 72.16 67.88 67.79 65.12

Auc Audit 0.711 0.74 0.742 0.744 0.830 0.833 0.832
PR@0.1 FPF Audit 1.4 3.8 3.2 5.7 6.7 8.5 7.3

10 epochs

Acc Attack 52.35 52.5 53.38 53.12 53.79 53.65 53.64
Audit 52.46 53.01 53.19 53.09 53.91 53.98 53.96

Prec@P Attack 54.56 54.86 56.25 56.39 53.27 53.46 53.29
Audit 52.88 53.51 53.6 53.51 53.32 53.48 53.38

Rec@P Attack 28.1 28.2 30.44 27.54 61.80 60.14 58.43
Audit 45.14 45.9 47.44 47.08 62.80 61.16 62.56

F1@P Attack 37.1 37.25 39.5 37.01 57.22 56.60 55.97
Audit 48.71 49.41 50.33 50.09 54.76 57.06 57.61

Prec@N Attack 51.58 51.68 52.32 52.06 54.51 54.45 54.07
Audit 52.15 52.64 52.86 52.76 54.76 54.65 54.78

Rec@N Attack 76.6 76.8 76.32 78.7 45.78 47.64 48.34
Audit 59.78 60.12 58.94 59.1 45.02 46.80 45.36

F1@N Attack 61.65 61.79 62.08 62.67 49.77 50.82 51.05
Audit 55.7 56.13 55.74 55.75 49.91 50.42 49.36

Auc Audit 0.526 0.532 0.535 0.536 0.549 0.550 0.550
PR@0.1 FPF Audit 0.02 0.28 0.38 0.2 0.1 0.2 0.2
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