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ABSTRACT

Membership inference attacks (MIAs) are widely used to assess a model’s vul-
nerability to privacy leakage by determining whether specific data instances were
part of its training set. Despite their significance as a privacy metric, existing eval-
uations of MIAs are often limited to isolated and inconsistent scenarios, hindering
comprehensive comparisons and practical insights. To address this limitation, we
analyze the full pipeline of training models and conducting MIAs, and present
a comprehensive benchmark for evaluating various MIA methods on deep learn-
ing models. We establish a reproducible benchmark suite with code and models,
leaderboards, detailed insights into the mechanisms of different MIA approaches,
and practical guidance for selecting and applying MIAs effectively. This work en-
hances the understanding and application of MIAs, providing a solid foundation
for advancing privacy-preserving machine learning research.

1 INTRODUCTION

The past decade has witnessed rapid advancements in machine learning. Overparameterized deep
neural networks (Vaswani et al., [2017; [Devlin et al., 2019} |Achiam et al.| [2023) have pushed the
boundaries of numerous application domains. However, unlike classical machine learning methods,
whose solutions can often be expressed analytically, training deep neural networks involves solving
ultra-high-dimensional nonconvex optimization problems, where the optima can only be approxi-
mated through numerical methods. As a result, despite their impressive performance, these models
are often regarded as black boxes with limited interpretability. In other words, deep neural networks
may rely on feature representations vastly different from those used by humans, leading to various
reliability concerns (Goodfellow et al.,[2015;|Zhang & Zhu, [2018} [Zhu et al., 2019).

In this work, we focus on the issue of membership inference attacks (MIA) (Shokri et al.l [2017),
which address the potential risks of data privacy leakage in machine learning. Specifically, an MIA
algorithm, denoted as f, solves a hypothesis testing problem: it determines whether a given data
instance x was included in the training set of a model M. A higher attack success rate indicates a
greater risk of data privacy leakage in the model. Thus, the performance of MIA serves as a critical
metric for assessing the privacy-preserving capabilities of machine learning algorithms and models.

Given the diversity of MIA methodologies and privacy requirements across different application
scenarios, it is both important and challenging to fairly and comprehensively benchmark the perfor-
mance of various MIA methods. These challenges stem from different factors in different stages of
the pipeline consisting of training a machine learning model and conducting membership inference
attacks. However, existing works usually conduct their evaluations in some specific scenarios, mak-
ing their results incomparable. Therefore, benchmarking different MIAs under different settings can
enable us to build a broader view of how different categories of MIA work and how to pick MIA
methods wisely under different circumstances.

In this work, we focus on MIA methods targeting classical deep learning rather than generative mod-
els, as the former are more extensively studied and better understood. Within this scope, we conduct
a comprehensive investigation of their performance across diverse scenarios. In addition, we pro-
vide in-depth analyses of several consistent and intriguing patterns observed in the results. Finally,
we propose a general guideline for practitioners to effectively select appropriate MIA methods for
real-world applications. Our contributions are summarized as follows:
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1. Benchmark Suite: We provide a publicly available suite, including code, datasets and model
700s, to support reproducible evaluation of MIAs in the full pipeline of model training and pri-
vacy evaluation. Notably, depending on the knowledge of data membership, we demonstrate
the attacking and auditing mode of MIA methods to ensure fair and comprehensive evaluation.
Altogether, we establish leaderboards to demonstrate the performance of MIAs.

2. Insights into MIA Mechanisms: We demonstrate the crucial role of the generalization gap in
current MIA performance and the high agreement among the top-performed MIA methods. We
also highlight the importance of selecting appropriate hyperparameters for MIA methods.

3. MIA Selection Guidance: Based on the observations in our benchmark, we offer guidance to
practitioners for selecting appropriate MIA methods tailored to different tasks.

2 RELATED WORKS AND SCOPE OF THE BENCHMARK

Table 1: An overview of different MIA methods (details in Appendix @ and their properties.

Metric

Technique LiRA RMIA MIA Quantile  Merlin ~ MLLeak1 MLLeak3 Shadow  BlindMI
Scalar Threshold v v v v

Sample-wise Threshold v v

Binary Classifier

Pairwise-distance v v
Shadow Model v v v v

Membership inference attacks (MIAs) have emerged as critical concerns in machine learning pri-
vacy, serving as powerful tools for privacy auditing. Extensive research efforts have been dedicated
to comprehending and enhancing MIAs across diverse scenarios. In this study, our benchmark
concentrates on MIAs targeting deep learning classifiers, presuming black-box access for the adver-
sary. Specifically, the attacker is limited to accessing the output logits of the model, as opposed to
the model parameters and their gradients. While white-box MIAs (Chen et al., 2022; Watson et al.}
2022; |[Leemann et al.l |2024) present a more severe threat to privacy, black-box MIAs align more
closely with real-world scenarios, especially given the increasing prevalence of machine learning
as a service (MLaaS) in various applications. Mathematically, the MIA method we investigate in
this work can be formulated as a hypothesis testing function m that maps the data instance x and
the corresponding output of the target model f(z) to a binary output m(z, f(z)) € {0,1}: with 1
indicating that z is in the training set for model f (i.e., member) and 0 otherwise (i.e., non-member).

There are several popular strategies adopted by many MIA methods. First, threshold control selects
scalar thresholds on a chosen metric, such as likelihood ratio or modified entropy of the model out-
puts, to separate members from non-members (Song & Mittal, |202 1} |Carlini et al., 2022). A natural
extension of scalar threshold is sample-wise threshold, which computes a threshold for each sample
(Zarifzadeh et al., [2024; Bertran et al., 2024]). In contrast to a scalar threshold, several MIAs (Shokri
et al.,|2017; Salem et al., 2018) employ binary classifiers to directly distinguish members and non-
members. In addition, [Hui et al.|(2021)); Zarifzadeh et al.| (2024) leverage pairwise distances between
data points to better distinguish between member and non-member data. Furthermore, the shadow
model (Shokri et al., 2017; | Ye et al., | 2022) is a popular technique that trains separate shadow mod-
els using the same distribution as the original training dataset. With the information on training
members for shadow models, we can better design the criteria to detect members. Because shadow
models are trained to mimic the behavior of the target model, the same criteria are then used for
the target models. We summarize the key techniques of different MIAs within the scope of our
investigation in Table[T|below. More details about these methods are deferred to Appendix

3 BENCHMARKING MEMBERSHIP INFERENCE ATTACKS

3.1 PIPELINE AND CHALLENGES

The full pipeline of training a machine learning model and conducting membership inference attacks
(MIA) is demonstrated in Figure |1} including (1) sample data to form a training set; (2) select the
model architecture; (3) use the training set to train the target model; (4) tune the hyper-parameters
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Figure 1: Pipeline of MIA. The pipeline consists of five steps: (1) data sampling; (2) select the model archi-
tecture; (3) model training; (4) tune the hyper-parameters of the MIA method; (5) evaluate the target model on
a data set consisting of both member and non-member data. Two distinct scenarios correspond to deploying
MIAs for attacking or auditing, respectively. In the context of attacking mode, MIA serves as a tool for at-
tackers to determine whether a specific data point was used in the training of a target model. In the context of
auditing mode, model owners employ MIA to audit the target model’s privacy-preserving capabilities.

of the MIA method; (5) evaluate the target model on a data set consisting of both members and non-
members. Each of these five phases may have different settings in various application scenarios,
making it challenging to fairly and comprehensively benchmark MIA methods.

Data. Recent studies (Niu et al., 2024; 2025) highlight the significant impact of data properties on
MIA performance, including training data and data being inferred. In addition, out-of-distribution
data, such as ambiguous or mislabelled data, further complicate the evaluation of MIA methods.

Models. The performance of MIA methods is highly dependent on the characteristics of the tar-
get model, especially the model capacity reflected by the architectures and number of parameters.
Intuitively, models with limited capacity struggle to encode data-specific information, while highly
expressive models are more likely to leak such information, thereby facilitating MIAs.

Training Algorithms. Key factors of training algorithms, including the initialization, the training
phases and the optimization methods, can affect how susceptible the model is to leaking data privacy,
because all of them can affect how the model encode data-specific information.

Hyperparameter Selection. Hyperparameters play a crucial role in determining the effectiveness
of MIA methods and should be chosen carefully but fairly. In this context, the availability of data
membership for evaluation is crucial. In Section[3.2] we discuss two modes for selecting the optimal
hyperparameters depending on the availability of data membership for evaluation.

Evaluation Metrics. The performance of MIA methods can be evaluated by various metrics, such
as precision, recall, and area under the curve (AUC), making it inherently a multi-objective op-
timization problem. Different application scenarios often prioritize different metrics, which may
lead to different preferences for MIA methods. Some cases would prefer a low false negative rate,
such as using machine unlearning (Bourtoule et al.,|2021) to remove the influence of sensitive data.
Conversely, some cases would prefer a low false positive rate, such as extracting training data from
generative models for reuse in fine-tuning. In many other cases, it is necessary to balance both false
positive and false negative rates, making metrics such as the F1 score a natural choice.

3.2 ATTACKING MODE AND AUDITING MODE OF MIAS
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One key stage in the pipeline as shown in Figure[I]is the selection of MIA hyperparameters, which
depends critically on whether membership information of the inference data is available. These two
scenarios correspond to the use of MIAs as either privacy attacks or auditing tools. In the attack sce-
nario, attackers lack access to member and non-member datasets, making hyper-parameter selection
a major challenge. In contrast, when used as an auditing tool, certain MIAs can leverage mem-
bership information to optimize hyperparameters, achieving stronger performance on fixed datasets
and models. To ensure fair and reproducible comparisons, it is essential to evaluate different MIAs
under consistent conditions. In this regard, we summarize two practical MIA scenarios below and
provide pseudocode for both in Appendix [E]

Attacking Mode. In this scenario, adversaries use MIA to determine whether a specific data point
was part of the target model’s training data. As attackers lack access to the target model’s ac-
tual training set, to select hyperparameters like scalar thresholds, they train shadow models using
shadow data that follows a distribution similar to that of the target model’s training data. The hy-
perparameters are then tuned using the performance of these shadow models. As shown in Figure[T}
both the original training and test sets are partitioned into dedicated subsets for the target model and
the shadow models. The MIA’s final performance is evaluated on the target model’s test set.

Auditing Mode. In this scenario, model owners employ MIA as a privacy audit tool to evaluate
the information leakage of their model. With explicit knowledge of which data points are members
(training data) and non-members, certain MIA methods, such as LiRA, RMIA, and Quantile, can
directly use this information to select optimal hyperparameters (e.g., thresholds) and improve per-
formance. As illustrated in Figure [I] we use the same member and non-member datasets for both
hyperparameter tuning and final evaluation.

One important application to use MIAs for privacy auditing is machine unlearning (MU). MU fine-
tunes pretrained models to remove the influence of data to forget (i.e. forget data) meanwhile pre-
serving model predictions on the remaining training set (i.e. retain data). For fair comparison, we
follow the same data split as in Figure [T| for MU except that the forget data, which is part of the
original training set but should be unlearned during finetuning, is considered as non-members in the
evaluation phase. This is consistent with existing MU literature (Cao & Yangl[2015} Fan et al.,2023;
Tarun et al.,|2023; |Huang et al., 2024).

Finally, we need to point out that the discrepancy between the attack mode and auditing mode only
exists for MIAs with hyperparameters to distinguish members and non-members. MIAs without
such hyperparameters, such as the ones using shadow models (Shokri et al.|, [2017) or using binary
classifiers [Salem et al.| (2018)), use exactly the same workflow for both attacking and auditing pur-
poses. Therefore, we do not distinguish attacking or auditing mode for these MIA methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We comprehensively evaluate different aspects that may affect the MIA performance as below.

MIA Methods. We consider a variety of MIA methods in this work, including LiRA, RMIA,
Metric MIA, Quantile, Merlin, ML-Leaks, Shadow, and BlindMI. Specifically, for Metric MIA,
we employ three distinct metrics Entropy, Modified Entropy and Confidence; for ML-Leaks,
we implement its two settings MLLeakl, MLLeak3; and for BlindMI, we incorporate the four
techniques One-class, Diff-W, Diff-Single and Diff-bi. Further details regarding the literature, the
implementation and configuration of these methods are provided in Appendix [D]

Data. We consider vision data, e.g., CIFAR10 (Krizhevsky et al.l 2009), CIFAR100 (Krizhevsky
et al., 2009), ImageNet100 (Russakovsky et al.l 2015). We also consider the superclass and the
mislabel scenarios. The details are deferred to Appendix [F2]

Architectures. We consider neural networks of different sizes, e.g., 4-layer CNN (Krizhevsky et al.,
2012), VGG-11 (Simonyan & Zisserman, 2015)), ResNet-18 (He et al., 2016)), ResNet-34, ResNet-
50, WideResNet-28-2 (Zagoruyko & Komodakis, 2016), and Swin Transformer-Tiny (Liu et al.,
2021)). The size of each model is presented in Table [5|of Appendix
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Training Algorithms. We include various training algorithms, including training from scratch and
fine-tuning. We also investigate several privacy-enhancing algorithms, including differential private
SGD (DP-SGD) (Abadi et al., [2016) and machine unlearning algorithms (Bourtoule et al., |2021)).
For each training algorithms, we monitor the MIA performance in the whole training duration.
Specifically, for machine unlearning methods (SalUn (Fan et al.| [2024) and SFR-on (Huang et al.,
2024)), we monitor the MIA performance across pretraining, unlearning and compare them with
retraining by retained data. We report the MIA performance on retain data, forget data and test data.

Hyperparameter Selection. We consider both attacking mode and auditing mode introduced in
Section [3.2]to select MIA hyperparameters in different contexts.

Evaluation Metrics. We use TP, FP, TN, FN to represent the number of true positive, false positive,
true negative and false negative, respectively. We consider the following metrics for comprehensive

evaluation: (1) Accuracy: the overall accuracy %; (2) Prec@P: precision on the

positive cases TP#EFP; (3) Rec@P: recall on the positive cases TPT—",-ipFI\I; (4) F1@P: Fl-score on the
2xPrec@PRec@P . (5) prec@N: precision on the negative cases %; (6) Rec@N:

Prec@P+Rec@P °
recall on the negative cases %; (7) F1@N: Fl1-score on the negative cases %.

positive cases

For MIAs using threshold to distinguish member and non-members, we also introducing the
following popular metrics in evaluating MIA: (1) AUC: the area under the ROC curve; (2)
TPR@0.1%FPR: the true positive rate when the false positive rate is 0.1%. However, these metrics
cannot be computed during attacking mode. The calculation of these metrics requires prior knowl-
edge of data membership, which contradicts the fundamental assumption of the attack scenario.
Therefore, we only report results on these metrics in the auditing mode.

4.2 EXPERIMENTAL RESULTS AND OBSERVATION
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Figure 2: Curves of MIA accuracy. The model is ResNet-18 trained on CIFAR-100. (a) MIA accuracy vs.
mislabel rate. The mislabel rates are 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. (b) MIA accuracy vs. training
epoch. The evaluation is conducted every 10 epochs. Gray dashed lines indicate the generalization gap. LiRA,
RMIA, three variants of Metric MIA, and Merlin in auditing mode are tested. Due to prohibitive computational
complexity, Quantile is not included in the evaluation. Note that Merlin exhibits trivial performance in both
settings.

In this section, we comprehensively study the performance of different MIA methods on each step
in the pipeline as discussed in Section[3.1]

4.2.1 DATA

We evaluate MIA methods on different datasets, including CIFAR10 (Table[T5]), CIFAR100 (Table[9)
and ImageNet100 (Table[T6). These results highlight the broad applicability of the MIA methods
under investigation.
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Table 2: Average Gap between auditing mode and attacking mode. For Different Dataset, we evaluate MIA
performance on CIFAR10(Table [I3)), CIFAR100(Table [0) and ImageNet(Table [I6). For Different Arch, we
evaluate MIA performance on 4-layer CNN (Table[T0) / VGG-11 (Table[TT) / ResNet18 (Table[d) / ResNet-34
(Table[I2) / ResNet-50 (Table[I3). For Different Algorithm, we evaluate MIA performance of SGD (Table [0)
and DP-SGD (Table [ZOI)

Epochs  Setting Methods
LiRA RMIA  Entropy l;:/lodlﬁed Confidence  Quantile  Merlin
ntropy
Different Dataset 2.85 2.24 3.96 3.67 3.54 0.11 1.76
200 Different Architecture 241 1.98 3.01 2.30 2.33 0.04 0.70
Different Algorithm 2.17 1.17 3.28 2.63 2.54 0.30 -1.17
Different Dataset 1.73 0.63 2.19 2.50 2.35 0.14 1.26
110 Different Architecture 322 1.00 3.38 3.53 341 0.26 1.44
Different Algorithm 1.18 0.51 1.98 2.09 2.06 0.21 0.62
Different Dataset 0.03 0.19 3.52 3.99 3.93 0.31 3.01
10 Different Architecture 0.53 0.46 7.01 6.77 6.64 0.82 5.47
Different Algorithm 0.22 0.13 3.53 3.79 3.69 0.29 2.49

Additionally, we benchmark MIA performance on CIFAR100 using superclass labels EL with results
presented in Table The findings reveal a performance degradation for most MIAs when models
are trained with superclasses. This is because, under the black-box access assumption in our study,
training with superclasses reduces the dimensionality of the model’s output, thereby limiting the
information available to MIA methods and making attacks more challenging.

Furthermore, we investigate how mislabeled data affects the performance of MIAs. Furthermore,
we examine the impact of mislabeled data on MIA performance. As shown in Figure 2] (a) and
Table mislabeled data generally makes MIAs more effective. A higher proportion of mislabeled
data leads to improved MIA performance until it eventually saturates. This is because mislabeled
data increases the conditional variance between input and label, forcing the model to learn more
data-specific correlations to fit the noisy labels, thereby enhancing the vulnerability to MIAs.

4.2.2 ARCHITECTURES

We evaluate MIAs on various models for CIFAR100. The model architectures, from small to big,
include a 4-layer CNN (Table[I0), VGG-11 (Table[TT), ResNet-18 (Table 0, ResNet-34 (Table[12),
ResNet-50 (Table , and Swin Transformer-Tiny (Table .The result indicate that MIA perfor-
mance varies among different architectures. The underlying reasons for this phenomenon will be
further explored in Section 3]

4.2.3 TRAINING ALGORITHMS

We monitor the performance of various MIAs throughout the training process. For each setting
considered, we report MIA performance at the early, intermediate, and final phases of training.
Figure[2)(b) provides a detailed view of the fine-grained trends in MIA performance during training.
These results consistently demonstrate that the performance of most MIA methods improves as the
training progresses, suggesting that the model increasingly encodes information from the training
data, thereby making it more susceptible to MIAs.

We also examine the impact of using a pretrained model on MIA performance. As shown in Table[19]
and Table 3] finetuning a pretrained model reduces the model’s vulnerability to MIAs. Compared
with training from scratch, finetuning typically employs a smaller learning rate and produces smaller
gradients, which implicitly slows down the process of encoding training data features into the model.

Furthermore, we report the performance of MIAs when the model is trained by privacy-enhancing
algorithms, such as DP-SGD in Table 20} Our result indicates that DP-SGD can indeed defend
models against various MIA methods while guarantee comparable utility.

For machine unlearning, we report results only in auditing mode. As shown in Table 22] most MIA
methods exhibit consistent performances across 4 models, including the pretrained model, unlearned
models by two MU methods and the retrained model, which indicates the effectiveness of unlearning

'CIFAR100 consists of 20 superclasses, each containing 5 classes.
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Table 3: Mean and Variance of Accuracy for each MIA Methods via Different Architecture and Datasets.

Epochs Metric MIA BlindMI

LiRA RMIA Entropy I\I:I:S_I::; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

a0 6501 6941 7386 7564 7556 7329 5609 6481 6469 5888 6549 7021 6852  61.25

(10.08) (7.72) (947) (868)  (867)  (1020) (1.57) (11.20)  (943) (5.19) (897) (10.70) (9.63) (7.85)
6095 6632 68.67  70.53 7053 6694 5564 5412 5627 5658 6322 6569 6405 5924
(639) (9.06) (795 (841)  (8.40) (1005 (1.60) (5.18)  (556) (5.36) (10.19) (10.91) (9.40) (7.59)
51.68 5247 5745 5830 5828 5243 5594 5055 5033 503 5051 5054 5079  50.55

(1.15) (1.22) (0720  (0.69)  (0.70)  (101) (1.07) (0.000  (0.26) (0.09) (0.73) (1.02) (0.74) (0.78)

110

10

Table 4: Mean and Variance of AUC and TPR@0.1 % FPR for each MIA Methods via Different Architecture
and Datasets.

Epochs Metrics Methods

Modified

LiRA RMIA Entropy Entropy Confidence Quantile Merlin
200 AUC 0.659(0.101) 0.764(0.097) 0.731(0.116) 0.755(0.098) 0.751(0.099) 0.749(0.109) 0.522(0.029)
TPR@0.1%FPR 0.85(0.764) 6.9(4.466) 4.7(3.571) 4.9(3.851) 4.8(3.789) 0.33(0.227) 0.97(0.860)
110 AUC 0.635(0.083) 0.725(0.120) 0.673(0.115) 0.695(0.110) 0.693(0.112) 0.686(0.114) 0.517(0.028)
TPR@0.1%FPR 0.49(0.5) 5.2(3.2) 4.3(2.8) 4.4(3.1) 4.3(3.0) 0.35(0.26) 0.97(0.98)
10 AUC 0.517(0.018) 0.532(0.019) 0.512(0.009) 0.530(0.013) 0.529(0.012) 0.528(0.013) 0.507(0.004)
TPR@0.1%FPR 0.1(0.08) 1.1(0.89) 2.1(1.4) 2.2(1.7) 2.2(1.7) 0.4(0.5) 0.9(0.9)

process. In Table [21] we focus more on MIA performance on the forget set which we consider as
non-members. The results indicate that metric-based MIAs (including LiRA, RMIA, MetricMIA,
Quantile and Merlin) generates similar results for unlearned and retrain models, whereas classifier-
based MIAs (including ML-Leaks and BlindMI) exhibit large discrepancies. From the perspective
of auditing privacy risk, this indicates that metric-based MIAs, which rely on thresholding statis-
tics, may overestimate unlearning effectiveness. In contrast, classifier-based MIAs expose residual
differences and enable a more stringent and informative assessment by learning a decision function
between members and non-members.

4.2.4 HYPERPARAMETER SELECTION

We assess the performance of MIAs in both attacking mode and auditing mode. For MIA methods
requiring setting threshold, selecting appropriate hyperparameters in auditing mode yields better
results than in attacking mode. In Table |2} we report the accuracy gap between the two modes for
these methods. Table @] shows that, across different epochs and settings, the Quantile MIA method
exhibits the smallest gap. In contrast, Metric MIAs (Entropy, Modified Entropy, Confidence) tend
to have larger gaps, indicating a higher sensitivity of their performance on hyperparameters.

4.2.5 EVALUATION METRICS

We evaluate the performance of MIA methods across various datasets (CIFAR10(Table @, CI-
FAR100(Table[9) and different architecture(4-layer CNN (Table[I0) / VGG-11 (Table[TT)) / ResNet-
18 (Table[9) / ResNet-34 (Table / ResNet-50 (Table[13)). Tables [3|and [4] present the mean and
variance of accuracy (maximum of auditing and attacking mode), AUC, and TPR@0.1%FPR un-
der the aforementioned scenarios. The results indicate that Metric MIA methods provide the best
accuracy among all methods across every epoch. Regarding AUC and TPR@0.1%FPR, the RMIA
method outperforms others. Moreover, RMIA maintains a high AUC with smaller variance com-
pared to other methods under the AUC curve, demonstrating its stability across different scenarios.

Furthermore, our extensive results reveal that various MIA methods are more likely to achieve near-
perfect performance in Rec@P and Prec@N compared to other metrics. This suggests that these
methods exhibit a bias toward predicting inputs as members, emphasizing the importance of using
multiple metrics to ensure a comprehensive and balanced evaluation.
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Figure 3: Relationship between MIA accuracy and the degree of overfitting. The analysis is conducted from
different aspects, e.g., (a) different datasets, “C” denotes CIFAR, “I” denotes ImageNet, (b) different architec-
tures, and (c) different training algorithms. The x-axis is the generalization gap. A larger generalization gap
indicates severer overfitting. The y-axis is the accuracy of MIA methods. Different colors represent different
settings. Different markers represent different MIA methods. LiRA (@), RMIA (V¥), Entropy (H), Modified
Entropy (A), Confidence (X), Quantile (#), and Merlin (+) in auditing mode are tested here.

5 FURTHER DISCUSSIONS

5.1 OVERFITTING LEADS TO MIA VULNERABILITY

We illustrate the relationship between MIA accuracy and the degree of overfitting in Figure 3| The
analysis is conducted from different aspects, e.g., different datasets, architectures, and training algo-
rithms, with the same settings as those in Section[4.2] Note that the degree of overfitting is indicated
by the generalization gap, i.e., the gap between the training accuracy and the test accuracy. Detailed
performance statistics of different settings are summarized in Table [§ of Appendix[G.1]

As depicted in Figure [3| the accuracy of most MIA methods exhibits a general upward trend as the
generalization gap of target models increases. In Figure [2] we also plot the generalization gap and
observe that it is strongly correlated with the MIA performance. Therefore, many of the observations
in Section including analyses across different datasets, models, and algorithms, can be under-
stood through the lens of overfitting. Specifically, overfitting plays a significant role in increasing
the model’s vulnerability to MIAs.

The underlying mechanism for this association can be attributed to the working principle of existing
MIA methods: these attacks determine the membership of a given data sample by leveraging discrep-
ancies in the output distributions of member and non-member data. Critically, such distributional
discrepancies are closely correlated with the extent of model overfitting: overfitting causes models to
“memorize” idiosyncrasies of their training data rather than learning generalizable patterns, thereby
amplifying the distinction between the outputs of member and non-member samples. Consequently,
models afflicted by more severe overfitting will exhibit larger distributional gaps between member
and non-member data, rendering them more susceptible to successful MIAs.

5.2 AGREEMENT OF TOP-PERFORMED MIA METHODS

We investigate the agreement among the results by strong MIA methods. Based on the analyses
in Section we pick four strong and methodologically distinct MIA methods: Quantile, Modi-
fied Entropy (Metric MIA), RMIA and Diff-w (BlindMI). Figure f]illustrates the agreement results
across different architectures on the CIFAR100 dataset. As depicted in the figure, a strong agree-
ment is observed among these MIA methods. The results indicate that top-performed MIAs generate
very similar instancewise predictions. In this context, if we ensemble these MIA methods together
by adding them in the descending order of performance, then we can hardly see any improvement.
In practice, we can choose either of these MIAs to get satisfactory results.

5.3 TAKE-AWAY: A GUIDELINE TO CHOOSE MIA METHODS TO EVALUATE PRIVACY

Membership Inference Attacks (MIAs) have emerged as a popular and critical tool for evaluating
the privacy risks of neural network models. Effectively leveraging MIAs for privacy attacking and
auditing necessitates a nuanced understanding of their varied performance and applicability under
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Figure 4: Agreement between different MIAs under CIFAR100 dataset with different architecture

different settings. Drawing from our comprehensive benchmark, this section offers a practical guide-
line for selecting the most appropriate MIA method for various scenarios.

1. Overfitting is crucial for the performance of all MIA methods. Our benchmark indicates that
the generalization gap is a consistent indicator of MIA vulnerability. We can introduce some
overfitting mitigation mechanisms during training to protect data privacy.

2. Even with a consistent generalization gap, the performance of MIA methods can vary signifi-
cantly. There is not yet a single MIA universally optimal across all settings. Specifically, our
benchmark demonstrates that Metric MIA (especially Modified Entropy) or RMIA exhibits the
best performance in a majority of scenarios. To audit the effectiveness of machine unlearning,
we recommend using classier-based MIAs in contrast to metric-based MIAs.

3. Hyperparameter selection also plays a crucial role in the performance of MIA methods. When
we use MIA for privacy attack and have no membership information, we should utilise shadow
models to select hyperparameters. Based on the attacking mode and auditing mode introduced in
Section[3.2] we conclude that MetricMIA (especially Modified Entropy) achieves the best perfor-
mance in the auditing mode. However, we see notable performance degradation for MetricMIA
in the attack mode, where RMIA or Quantile MIA obtain the superior performance.

4. There is no perfect MIA, as we always see a trade-off between false positive and false negative.
Ensembling multiple top-ranked MIA methods usually does not lead to improvement, as these
MIA methods have consistent instancewise predictions and similar performance.

6 CONCLUSION

In this paper, we present a comprehensive study of Membership Inference Attacks (MIAs) conducted
within the full pipeline of machine learning model training and privacy evaluation. Our experimen-
tal design meticulously encompasses various critical aspects, including data, model architectures,
training algorithms, hyperparameter selection and evaluation metrics. Based on our experimental
results, we provide practicable guidance for practitioners to select the most suitable MIA method
for their specific needs across general scenarios. Furthermore, we introduce an available and ex-
pandable suite designed to empower practitioners to conveniently evaluate various MIA methods
across diverse scenarios.

Our benchmark results also empirically demonstrate the underlying mechanisms of MIAs. Specifi-
cally, we find that for current MIA methods, the generalization gap is consistently a good indicator
for MIA performance. Furthermore, the results from the strongest existing MIA methods exhibit a
high degree of agreement, indicating performance saturation.

Given that our benchmark work explores MIAs across multiple dimensions, the experimental com-
plexity is considerably high, which consequently limits our exploration in other axes. Therefore, our
benchmark presented in this paper only focuses on vision data and traditional classification models.
Extending our benchmark to multimodal data and large generative models will be our future work.



Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308-318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Martin Bertran, Shuai Tang, Aaron Roth, Michael Kearns, Jamie H Morgenstern, and Steven Z Wu.
Scalable membership inference attacks via quantile regression. Advances in Neural Information
Processing Systems, 36, 2024.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2027 IEEE
symposium on security and privacy (SP), pp. 141-159. IEEE, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463-480. IEEE, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897-1914. IEEE, 2022.

Yufei Chen, Chao Shen, Yun Shen, Cong Wang, and Yang Zhang. Amplifying membership exposure
via data poisoning. Advances in Neural Information Processing Systems, 35:29830-29844, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186. Association for Computational
Linguistics, June 2019. URL https://aclanthology.org/N19-1423/.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In International Conference on Learning Representations, 2023.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gnOmIhQGNM.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, and Xiaolin
Huang. Unified gradient-based machine unlearning with remain geometry enhancement. arXiv
preprint arXiv:2409.19732, 2024.

Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhengiang Gong, and Yinzhi Cao.
Practical blind membership inference attack via differential comparisons. arXiv preprint
arXiv:2101.01341, 2021.

Bargav Jayaraman, Lingxiao Wang, Katherine Knipmeyer, Quanquan Gu, and David Evans. Revis-
iting membership inference under realistic assumptions. arXiv preprint arXiv:2005.10881, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

10


https://aclanthology.org/N19-1423/
https://openreview.net/forum?id=gn0mIhQGNM

Under review as a conference paper at ICLR 2026

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Gaussian membership inference privacy.
Advances in Neural Information Processing Systems, 36, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976-11986, 2022.

Jun Niu, Peng Liu, Xiaoyan Zhu, Kuo Shen, Yuecong Wang, Haotian Chi, Yulong Shen, Xiaohong
Jiang, Jianfeng Ma, and Yuqing Zhang. A survey on membership inference attacks and defenses
in machine learning. Journal of Information and Intelligence, 2024.

Jun Niu, Xiaoyan Zhu, Moxuan Zeng, Ge Zhang, Qingyang Zhao, Chunhui Huang, Yangming
Zhang, Suyu An, Yangzhong Wang, Xinghui Yue, et al. Comparing different membership in-
ference attacks with a comprehensive benchmark. IEEE Transactions on Information Forensics
and Security, 2025.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
Ml-leaks: Model and data independent membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246, 2018.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp- 3—18. IEEE, 2017.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations (ICLR 2015). Computational and
Biological Learning Society, 2015.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In 30th USENIX Security Symposium (USENIX Security 21), pp. 2615-2632, 2021.

Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effec-
tive machine unlearning. IEEE Transactions on Neural Networks and Learning Systems, 35(9):
13046-13055, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of
difficulty calibration in membership inference attacks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3eIrli0TwQ.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. En-
hanced membership inference attacks against machine learning models. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 3093-3106,
2022.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
attacks. In Forty-first International Conference on Machine Learning, 2024.

11


https://openreview.net/forum?id=3eIrli0TwQ

Under review as a conference paper at ICLR 2026

Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering, 19(1):27-39, 2018.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

12



Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

This work presents a benchmark for membership inference attacks (MIAs), which are designed to
assess a model’s susceptibility to privacy leakage. All experiments are conducted on publicly avail-
able datasets and standard deep learning models, without involving sensitive or personally identifi-
able data. The purpose of this benchmark is to improve the evaluation and understanding of MIAs,
thereby advancing privacy-preserving machine learning rather than enabling misuse. By providing
reproducible tools and practical guidance, our study aims to promote responsible development of
trustworthy Al systems.

B REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will include anonymized supplementary materials containing complete
algorithm implementations, experiment scripts for executing all the experiments.

C THE USE OF LLMS

Large language models (LLMs) were employed only as writing assistants, restricted to surface-level
editing such as grammar correction, clarity improvement, and formatting. LLMs were not used to
generate research ideas, claims, analyses, or conclusions. All text refined with LLM assistance was
carefully reviewed and, when necessary, rewritten by the authors. The authors bear full responsibil-
ity for the final content of this paper.

D DETAILS ABOUT MIA METHODS

In our benchmark, we consider MIA methods targeting classical deep learning as introduced below:

* Shadow: Shadow (Shokri et al.| |2017) is the first membership inference attack method. It first
trains shadow models using datasets drawn from the same distribution as the target model’s train-
ing data, enabling them to replicate its behavior. Since we know the training set for these shadow
models, we then then use the shadow models’ outputs on their member and non-member data as
samples to train a binary classifier to map the model’s output to the membership prediction.

* ML-Leaks: ML-Leaks (Salem et al., |2018) simplifies Shadow (Shokri et al.,2017)) in three dif-
ferent ways. The first one uses one shadow model and train one attack model; the second one
further improved by training shadow model with a different dataset; the third method discard the
shadow model technique and try to find a threshold depending on exact requirements. Given the
impact of the shadow model’s training dataset on MIA performance, the second method introduces
further complexities. Therefore, in this paper, we mainly consider the first simplification method
(MLLeak1) and the third method (MLLeak3).

e LiRA: LiRA (Carlini et al., [2022) trains shadow models in the same manner as Shokri et al.
(2017). It then calibrates confidence scores of the classifier for member and non-member, and
applies a likelihood-ratio statistical test to infer membership in the target model’s training data.

* Blind MI: Blind MI (Hui et al., [2021) is based on two key insights. First, non-member samples
can be regarded as a feature, and machine learning methods such as SVM can be utilized to learn
this feature for classification, which gives rise to the BlindMI-oneclass method. The second in-
sight is that removing or adding a non-member to a dataset shifts the dataset away from or towards
non-members in the hyper-dimensional space. Consequently, the authors propose the Blind-Diff
method. The paper lists three variants BlindMI Diff-W, BlindMI Diff-Single, BlindMI Diff-bi,
which consider different ways to build the original member and non-member datasets.

* Metric MIA: Metric-based MI (Song & Mittal, 2021)) considers three different scores: confi-
dence, entropy, modified entropy. These scores are believed to distinguish between member
and non-member samples. For each label, the method calculates its corresponding score and de-
termines a threshold based on the shadow model for the attack.

* Merlin: Merlin (Jayaraman et al., |2020) based on the intuition that, as a result of overfitting,
member records are more likely to be near local minima than non-member records, which suggests
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that for members, loss is more likely to increase at perturbed points near the original, whereas it
is equally likely to increase or decrease for non-members. Hence, it add small perturbation to the
input and use the output differences as score to distinguish the member and non-member data.

* Quantile: Quantile MIA [Bertran et al.| (2024) exploits the empirical observation that training
losses are typically lower than test losses. It trains a quantile-regression model to estimate the
quantile score of each sample and employs this score to discriminate members from non-members.

* RMIA: RMIAZarifzadeh et al.|(2024) is an extension of LiRa, it proposes the Pairwise Likelihood
ratio as scores to distinguish the member and non-member data. Specifically, pairwise likelihood
ratio tests testing the membership of a data point relative to another data point. Hence, it is more
robust with low computational overhead.

E PSEUDOCODE

We provide the pseudocode of the pipeline of MIA in Algorithm[I] with unique segments for attack-
ing and auditing modes highlighted in red and green, respectively.

Algorithm 1 Pipeline of MIA with 'Attacking / Auditing Mode.

Input: MIA method A; Training dataset Dy,.q;,,; Test dataset Dy.s;; Number of shadow models NV;
Split rate for shadow dataset 1 = 0.5; Sampling rate for sub-shadow dataset ro = 0.8.
# Data sampling

: Target member data Dy,,, shadow member data D, < Split Dy, 4;, With split rate rq

. Target non-member data D;,,, shadow non-member data Dy, <— Split D;.s; with split rate r;
# Select model architecture and model training

: Train target model M, on Dy,

:foriinl, ..., N do

Dy, < Sample Dy, with sampling rate 7o

Dy, + Sample D, with sampling rate ry

Train shadow model M, on Dy,

: end for
# Hyperparameter tuning

9: Collect metrics from My on Dy, and Dy, / { Mg}, on {Dgpn, }Y, and {Ds,,, 1Y,
10: Tuning the hyperparameters in A with the collected metrics
# Evaluation

11: Get the prediction results of Dy, and Dy, using the tuned A
Qutput: Prediction results (member/non-member)

DN =

AR A

F ADDITIONAL EXPERIMENTAL SETTINGS

F.1 EXPERIMENTS SETUPS FOR DIFFERENT MIA METHODS

Below we detail the hyper-parameters used for each MIA method; many values are directly borrowed
from the original papers.

For shadow-based attacks(Shadow, LiRA and RMIA), the utility is tpyically correlated with the
number of shadow models. However, training shadow models usually incurs substantial resource
consumption. Therefore, to ensure a fair comparison with other methods, we set the number of
shadow models to five in our experiments. Each shadow model is trained with the identical settings
described in Section[F.4]l All shadow-based attacks use the same shadow model. In Table[24] we also
provide a table showing how the utility of shadow-based MIA methods varies with the number of
models under the CIFAR-100 ResNet-18 scenario. Additionally, for Metric-based MIA and Merlin,
which need a single shadow model to set the threshold under the attack mode, we reuse the same
shadow models; the threshold is simply derived from the first model, ensuring complete consistency
across methods.

14



Under review as a conference paper at ICLR 2026

When an explicit attack model is needed (Shadow MIA, ML-Leak and Blind-MI), we train a small
binary classifier on the shadow logits. We use SGD with momentum 0.9, weight decay Se-4, initial
Ir 0.1 reduced x0.1 at steps 100, 150 and 200—is reused here to ensure consistency.

For quantile MIA method, our paper follows the same setting as [Bertran et al.| (2024). We employ
a ConvNeXt-Tiny (Liu et al.| [2022)) backbone pretrained on ImageNet, freeze its feature extractor,
and fit a quantile-regression head with Adam for five epochs. Separate quantile models are trained
for epochs 10th, 110th and 200th epochs.

F.2 DETAILS OF DATASETS

We provide the details of the datasets evaluated in this work as follows:

* CIFAR-100: CIFAR-100 (Krizhevsky et al.,2009) consists of 60000 32 x 32 color images in 100
classes, with 600 images per class. There are 50000 training images and 10000 test images. The
100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a “fine”
label (the class to which it belongs) and a “coarse” label (the superclass to which it belongs).

* CIFAR-10: Similar to CIFAR-100, CIFAR-10 (Krizhevsky et al.,[2009) consists of 60000 32 x 32
color images in 10 classes. There are 50000 training images and 10000 test images.

* ImageNet-100: ImageNet-100 is a subset of ImageNet-1k (Russakovsky et al.,[2015)). It contains
random 100 classes. The training set contains 1300 224 x 224 color images for each class, and
the validation set contains 50 images for each class.

We obtain target and shadow datasets from the original dataset by using Algorithm|[I] where the split
rate for shadow dataset r; = 0.5 and sampling rate for sub-shadow dataset 7o = 0.8 by default.

F.3 DETAILS OF ARCHITECTURES

We summarize the sizes of the evaluated models, e.g., 4-layer CNN (Krizhevsky et al.l [2012),
VGG-11 (Simonyan & Zisserman, 2015), ResNet-18 (He et all 2016), ResNet-34, ResNet-50,
WideResNet-28-2 (Zagoruyko & Komodakis, [2016), and Swin Transformer-Tiny (Liu et al., 2021},
in Table

Table 5: Sizes of different model architectures.

Model | 4-layer CNN VGG-11 ResNet-18  ResNet-34  ResNet-50 ~ WideResNet-28-2  Swin Transformer-Tiny
Size (MB) | 2.13 3543 42.87 81.50 90.73 5.72 105.56

F.4 DETAILS OF TRAINING ALGORITHMS

We provide the details of the training algorithms evaluated in this work as follows:

» Standard: For standard setting, we train the model from scratch for 200 epochs, and the batch
size is 128. If the models are CNNs, the adopted optimizer is SGD with an initial learning rate
of 0.1. If the model is Transformers, the adopted optimizer is Adam with an initial learning rate
of 1 x 10~*. The weight decay factor is 5 x 10~*. We adopt a step-wise learning rate decay
scheduler, where the learning rate decays by a factor of 0.1 at the 100th and 150th epoch.

* Fine-tuning: For the fine-tuning setting, the initial learning rate is set to 0.01 and 1 x 1075 for
SGD and Adam, respectively. Other configurations are the same as those in standard training.

* Privacy-enhancing: For privacy-enhancing setting, we adopt DP-SGD optimizer (Abadi et al.
2016). Specifically, the o of noise added to the gradient is 0.001 and the maximum gradient
norm is 10 to maintain utility. Additionally, the batch normalization layers are replaced by group
normalization layers. Other configurations are the same as those in standard training.

* Machine-unlearning: For machine unlearning setting, we adopt two competitive machine un-
learning methods, SalUn (Fan et al.| 2023)) and SFR-on (Huang et al., [2024). We sweep the
hyper-parameters for each method and select the one yielding minimal accuracy gap in terms of
forget, retain and test data to the retrain model. For SalUn, the learning rate is 0.01, epoch is 10
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and saliency mask ratio is 50%. For SFR-on, the learning rate for forget data is 0.5, learning rate
for retain data is 0.01 and + is 10.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 PERFORMANCE OF TARGET MODEL IN OUR EXPERIMENTS

To indicate the overfitting degree of different settings, we summarize the performance of different
model architectures and the performance of models trained on different datasets and training algo-
rithms in Table[6] Additionally, we provide performance summaries with fine-grained mislabel rates
and training epochs in Table[7]and 8] respectively.

Table 6: Performance summary in different architectures, datasets and training algorithms. For different
architectures, we train the model on CIFAR100 by a standard training scheme. For different datasets, the
model is ResNet18 if not specified. Note that the model trained on ImageNet-100 is WideResNet28 (WRN-
28). The mislabel ratio is 0.1 for mislabeled CIFAR-100. For fine-tuning setting, we fine-tune a ResNet50
(RN-50) pretrained on ImageNetlk. For privacy-enhancing setting, we adopt DP-SGD optimizer to train the
model.

| Training Accuracy  Training Loss  Test Accuracy ~ Test Loss  Accuracy Gap  Loss Gap
Different Datasets, ResNet'l8, Standard

CIFAR100 99.98 0.0054 62.34 1.6833 37.64 1.6779
CIFAR10 99.97 0.0020 89.06 0.4733 10.91 0.4713
ImageNet100 (WRN-28) 80.90 0.7006 76.40 0.8521 4.50 0.1515
Superclass CIFAR100 99.96 0.0029 74.58 1.1872 25.38 1.1843
Mislabeled CIFAR100 99.96 0.0067 49.46 2.7693 50.50 2.7626
CIFARI00, Different Architectures, Standard

ResNet-18 99.98 0.0054 62.34 1.6833 37.64 1.6779
4-layer CNN 64.06 1.2525 47.82 2.1517 16.24 0.8992
VGGl1 99.98 0.0079 61.94 1.5941 38.04 1.5862
ResNet34 99.99 0.0031 60.88 1.7420 39.11 1.7389
ResNet50 99.98 0.0029 61.94 1.8573 38.04 1.8544
Swin-T (pretrained) 98.85 0.0548 85.30 0.6903 13.55 0.6355
CIFAR100, ResNetl8, Different Training Algorithms

Standard 99.98 0.0054 62.34 1.6833 37.64 1.6779
Standard (RN-50) 99.98 0.0029 61.94 1.8573 38.04 1.8544
Fine-tuning (RN-50) 99.99 0.0006 81.46 0.2462 18.53 0.2456
Privacy-enhancing 95.70 0.2050 67.74 2.0177 27.96 1.8727

Table 7: Performance summary in different mislabel rates. The model is ResNet-18 trained on CIFAR-100 by
a standard training scheme.

Mislabel Rate Training Accuracy ~ Training Loss ~ Test Accuracy ~ Test Loss ~ Accuracy Gap  Loss Gap

0 99.98 0.0054 62.34 1.6833 37.64 1.6779
0.01 99.98 0.0051 61.88 1.7731 38.10 1.7680
0.05 99.98 0.0056 54.52 2.3324 45.46 2.3268
0.1 99.96 0.0067 49.46 2.7693 50.50 2.7626
0.2 99.98 0.0076 38.08 3.5541 61.90 3.5465
0.3 99.95 0.0077 28.56 4.3316 71.39 4.3239
0.4 99.96 0.0072 20.24 4.8633 79.72 4.8561
0.5 99.95 0.0077 13.96 5.3637 85.99 5.3560
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Table 8: Performance summary at different trainind epochs. The model is ResNet-18 trained on CIFAR-100
by a standard training scheme.

Epoch Training Accuracy ~ Training Loss ~ Test Accuracy ~ Test Loss ~ Accuracy Gap  Loss Gap
200 99.98 0.0054 62.34 1.6833 37.64 1.6779
190 99.98 0.0051 62.38 1.6935 37.60 1.6884
180 99.97 0.0053 62.52 1.7020 37.45 1.6967
170 99.96 0.0060 67.20 1.7033 37.76 1.6973
160 99.96 0.0068 62.22 1.7070 37.74 1.7002
150 99.96 0.0098 61.50 1.7345 38.46 1.7246
140 99.92 0.0112 61.80 1.7590 38.12 1.7479
130 99.84 0.0155 60.88 1.7741 38.96 1.7586
120 99.62 0.0255 61.98 1.7527 37.64 1.7272
110 99.02 0.0538 61.64 1.6987 37.38 1.6449
100 71.39 0.9672 48.74 2.2259 22.65 1.2587
90 67.45 1.1063 47.36 2.2759 20.09 1.1696
80 68.92 1.0604 48.72 2.2110 20.20 1.1505
70 70.27 0.9937 49.76 2.0981 20.51 1.1044
60 61.20 1.3343 44.04 2.3934 17.16 1.0591
50 67.82 1.0763 48.14 2.1618 19.68 1.0855
40 64.04 1.2320 48.14 2.0953 15.90 0.8633
30 58.26 1.4585 46.28 2.1908 11.68 0.7323
20 53.98 1.6317 44.84 2.1480 9.14 0.5163

10 42.63 2.1265 37.62 2.3711 5.01 0.2506

G.2 PERFORMANCE OF MIA METHODS IN DIFFERENT ARCHITECTURES

In this section, we first evaluate the performance of each MIA method on CIFAR-100 using ResNet-
18 as the baseline model for our paper. Subsequently, we present the performance of these MIA
methods on CIFAR-100 using a 4-layer CNN, VGG-11, ResNet-34, ResNet-50 (trained from
scratch) models.

For ResNet-18, Table [9] shows that Modified Entropy achieved the highest accuracy in audit mode,
while quantile MIA performed best in attack mode at epoch 200 and 110; at epochs 110 and 10.
However, Metric MIA showed the largest performance gap between audit and attack modes, while
RMIA exhibited the smallest difference.
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Table 9: The performance of different MIA methods for CIFAR-100 under ResNet-18. We pick three check-
points in the early, middle and final training phases for MIA evaluation. For MIA methods without a threshold
hyper-parameter, they follow the same workflow for both attacking and auditing.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI

Entro Modified

ntropy Entropy

Acc Altac?k 6542 7425 7849 80.25 80.30 80.63  56.19 73.63 75.05 63.00 68.40 77.95 75.43 67.17
Audit 69.36 75.82  80.65 81.97 81.90 80.63  56.36

Prec@P Ana(fk 68.81 70127129 7287 72.71 7388 5337 65.52 74.62 57.47 61.29 69.49 67.17 62.99
Audit 69.99 68.16 75.49 76.20 76.24 73.60 5691

Recop ~ AUack 5640 8450 8160 9638 9684 9446 973 g0 0 g50) 10000 9992 9966 9948 8324
Audit 67.78 96.92 90.76  92.90 92.68 9552 52.40

Attack 61.99 76.64 76.10 82.99 83.10 8291 8752

LiRA RMIA Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

Fl@p . 78.30 75.27 72.99 75.97 81.88 80.19 71.72
Audit 68.87 80.03 82.43 83.75 83.66 83.14 5456
200th acl 9 9
000 Prec@N And(fk 63068030 93.05 9466 9528 9232 1444 99.60 75.49 100.00  99.78 99.40 99.00 75.30
Audit 68.77 94.67 88.42 90.91 90.67 93.62  55.89
Rec@N Attack 74.44 64.00 61.58 64.12 63.76 66.60  69.09 4484 7418 26.00 36.88 56.24 5138 51.10

Audit 70.94 5471 70.54 71.04 71.12 65.74  60.32
Attack 68.28 71.31 74.11 76.45 76.40 77.38  24.90

Fl1@N R 61.84 74.83 41.27 53.86  71.84 67.65 69.88
Audit 69.84 69.35 78.47 79.76 79.71 7724 58.02
AUC Audit 0.745 0.839 0818 0.828 0.826 0.829  0.510 - - - - - - —
TPR@0.1%FPR  Audit 2.0 8.5 8.5 8.9 8.7 0.36 1.4 - - - - - - -
Acc Attack 62.09 73.31 7195 73.51 73.83 74.61 5532 5237 5131 61.40 764 7499 7164 66.09

Audit 66.72 74.09 75.10 77.52 71.57 75.12 56.23

Prec@P Altac.k 65.37 6949 69.00 7088 70.70 67.32 5289 51.21 69.29 56.45 67.77  68.20 65.21 64.12
Audit 67.12 66.68 70.98 72.19 72.11 68.84  57.30

Rec@P Alla(fk 5142 83127972 7980 8138 9364 9726 100.00 6.64 100.00  86.34  93.64 92.76 73.06
Audit 6540 96.32 84.92 89.52 89.92 91.78  48.92

Fl@P Attac?k 57.56 7569 7397 75.08 7567 7902 8300 67.73 12.00 72.99 7594 7892 76.59 68.30
Audit 66.27 78.80 7733 79.93 80.04 78.67 5278

110th . . i . X E .
Prec@N Ana(fk 3996 7900 7599 7689 7807 9247 1338 47.72 50.69  100.00  81.18  89.86 84.47 68.70
Audit 6629 93.37 81.23 86.21 86.61 87.67 5544
Rec@N Altac.k 72.76 6330 64.18 67.22 66.28 33.58 6852 67.74 95.98 26.00 5892  56.34 50.52 59.12
Audit 68.04 51.86 65.28 65.52 65.22 5846  63.54

Attack 65.75 70.41  69.59 71.73 71.69 67.85  23.05

F1@N R 55.95 66.34 41.27 6830  69.26 64.05 63.55
Audit 67.15 66.68 72.39 74.45 74.41 70.15  59.21
AUC Audit 0.711 0.829 0.772  0.792 0.791 0.788  0.504 - - - - - - -
TPR@0.1%FPR Audit 1.4 5.8 6.0 6.4 6.3 0.42 L5 - - - - - - -
Ace Attack 52.37 53.88 50.01 50.01 50.08 52.81 51.03 50.00 50.15 50.09 5045 50.58 50.85 5105

Audit 5246 5393 57.34 59.01 58.85 53.65 55.98
Attack 54.36 53.31 50.29 50.26 52.02 51.80  50.63

Prec@P i 5000 5124 5005 5231 5110 5062 51.24
Audit 5288 5334 53.18 5980  59.85 5399 5671

Rec@p ~ Attack 29.56 6236 172 1.94 206 8100 8392 10000 620 9736 1020 2692  69.88 4340
Audit 45.14 6280 5801 5500 5378  59.36 50.54

Fl@P Atiack 38.30 57.56 333 374 396 6319 5304 67 1106 6611 1707 3526 5871  47.00
Audit 52.15 57.68 5549 5730 5665 5157 5345

10th prec@y  Attack 5163 5470 5001 5001 5004 5644 1816 008 5165 5025 5039 5137 5091

Audit 59.78 54.78  56.78 58.34 58.04 5336 5539
Rec@N Al(a(fk 7518 4520 9830 98.08 98.10 2462 6315 66.67 94.10 2.82 90.70 7424 31.82 58.70
Audit 59.78 45.06 61.50  63.02 63.92 5794 6142

Attack 61.22 49.50  66.29 66.24 66.27 3428  27.05

Fl@N R 0.00 65.37 5.35 64.67  60.04 39.30 5453
Audit 5570 49.45 59.04 60.59 60.84 55.56 5825
AUC Audit 0.542 0.549 0.514 0551 0.550 0.549 0511 - - - - - - -
TPR@0.1%FPR Audit 0.02 0.10 2.0 2.4 2.4 0.4 14 - - - - - - —
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Table 10: The performance of different MIA methods for CIFAR-100 under 4-layer CNN.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy 1\}/5[:3-1:;; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace Allacfk 5593 63.31 53.18 60.94 60.90 61.03  52.61 50.00 5042 5116 50012 5561 53.63 53.57
Audit 56.02 63.44 5959  65.22 65.05 61.19  56.87
Prec@P Atta(?k 60.26 16075 53.10  57.82 57.75 5725 5171 50.00 55.80 50.60 62.00 5350 52.99 54.17
Audit 60.10 61.55 60.25 63.45 63.13 5724 56.21
Rec@P Atta(fk 3484 75225446 8092 8124 87.14 7884 100.00 4.04 98.18 0.62 85.68 64.38 46.36
Audit 3582 71.60 56.38 71.80 7234 88.52  62.18
Fl@P Allacrk 44156721 5377 67.44 67.51 69.10 6246 66.67 7.53 66.78 1.23 65.87 58.13 49.96
Audit 44.89 6620 58.25 67.37 67.42 69.52  59.04
200th Prec@®N Anac.k 54.17 6747 5326  68.22 68.37 73.08 5549 0.00 5022 69.46 5006 64.07 5462 5312
Audit 54.29 66.06 59.01 67.53 67.62 74.68  57.69
Rec@N Altaer 7702 5140 5190 4096 4056 3492 26.38 0.00 96.80 4.14 99.62  25.54 42.88 60.78
Audit 7622 5528 6280  58.64 57.76 33.86  51.56
Fl@N Altac.k 63.61 5835 52.57 51.17 50.92 4726 3576 0.00 66.13 781 6664 36.52 48.04 56.69
Audit 63.41 60.19 60.85 62.77 62.30 46.59 5445
AUC Audit 0.566 0.688 0.558  0.652 0.650 0.631  0.509 - - - - - - -
TPR@0.1%FPR Audit 0.16 0.84  0.02 0.03 0.03 0.00 0.03 - - - - - - -
Acc Altac.k 53.11 57.73 5210  54.92 55.20 56.05 51.89 50.00 5216 5031 50.06 5208 51.99 5122
Audit 56.68 57.80 5832 61.20 61.21 56.77 5658
Prec@P A“a‘fk 31735747 5178 5375 3390 34165120 50.00 54.98 50.16 53.41 51.24 51.51 51.61
Audit 56.80 57.63 59.28 61.12 61.29 5420 56.31
Rec@P Attac?k 93.10/59.44 6118 7044 71.94 78.72 8066 100.00 23.84 97.52 0.94 85.96 68.00 39.14
Audit 55.82 58.92 53.14  61.58 60.86 87.28  58.68
Fl@p Ana(fk 66.50 5844 5609 6098 61.62 64.17 6264 66.67 33.26 66.25 1.85 64.21 58.62 44.52
Audit 5630 5827 56.04  61.35 61.07 66.88  57.47
110th 2
o Prec@N Allac.k 63.53 5800 5257 57.13 57.82 6107 5445 0.00 51.38 55.56 50.03  56.45 5293 50.98
Audit 56.57 5798 57.54  61.29 61.13 67.37  56.87
Rec@N Anac.k 13.12 56.02 43.02  39.40 38.46 3338 23.12 0.00 80.48 310 99.18 1820 35.08 6330
Audit 57.54 56.68 63.50  60.82 61.56 2626 5448
Fl@eN Anmrk 2186 5699 4732 4664 46.19 4317 3246 0.00 62.72 5.87 66.51  27.53 42.84 56.48
Audit 57.05 57.32  60.37 61.05 61.35 3779 55.65
AUC Audit 0.583 0.604 0540  0.591 0.591 0.571  0.497 - - - - - - -
TPR@0.1%FPR Audit 0.00 2.2 0.03 0.03 0.03 0.0 0.0 - - - - - - -
Acc Altaer 50.55 51.28 49.35 52.21 52.46 51.40  50.41 50.00 50.55 50.12 5001 4981 50.46 49.98
Audit 51.86 52.01 5679  57.74 5775 51.80  56.93
Prec@P Attac.k 30.30° 5213 4938 5183 52.00 30915035 50.00 50.96 50.06 5322 49.73 50.31 49.98
Audit 51.35 51.55 57.64 5876 58.20 5115 57.62
Rec@P Alla(fk 9252 3134 5204 6266 6292 7854 5978 100.00 29.06 97.32 1.82 34.70 75.06 44.08
Audit 7096 67.02 5124 5194 54.98 80.14 5242
Fl@p Attac?k 65.17 39.15  50.68 56.73 56.96 61.77  54.66 66.67 3701 66.12 350 40.88 60.24 46.84
Audit 59.58 5827 54.25 55.14 56.55 62.44 5490
10th E . . . . K .
Prec@N At(a(fk 334250924931 5279 3311 3306 50.50 0.00 50.38 52.16 50.06  49.85 50.91 49.98
Audit 53.01 52.87 56.11 56.94 57.34 54.16 5636
Rec@N Attac.k 858 7122 4666 4176 42.00 2426 4104 0.00 72.04 2.90 98.40  64.92 25.86 55.88
Audit 32.76 37.00 6234  63.54 60.52 2346 6144
FI@N Ana«fk 1479 5938 4795  46.63 46.91 3330 45.28 0.00 5930 5.49 6636 56.40 3430 5277
Audit 4049 4353 59.06  60.06 58.89 3274 58.79
AUC Audit 0.524 0.526 0.510  0.526 0.527 0.523  0.505 - - - - - - -
TPR@0.1%FPR Audit 0.0 1.5 0.02 0.03 0.03 0.00 0.00 - - - - - - -

For 4-layer CNN, Table [I0] indicates that Modified Entropy achieved nearly the highest accuracy
in audit mode at epoch 200, 110 and 10, while RMIA MIA performed best in attack mode at
epoch 200, 110 and 10; Moreover, RMIA also consistently shows the best performance in AUC
and TPR@0.1%FPR. Additional, Metric MIA showed the largest performance gap between audit

and attack modes, while RMIA exhibited the smallest difference.

For CIFAR100 under VGG, Table[IT|indicate: Modified Entropy attained the highest accuracy under
audit mode, whereas quantile MIA achieved the best accuracy in attack mode at 200,110, and 10
epochs. Regarding AUC and TPR at 0.1% FPR, RMIA outperformed other methods at epochs 200
and 110, while entropy MIA performed best at epoch 10. Merlin showed the largest performance
discrepancy between audit and attack modes.
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Table 11: The performance of different MIA methods for CIFAR-100 under VGG-11.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy Moiloﬁpe;l Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Acc Aua‘fk 66.07° 7520 7841 S0l 80.14 8068 57.51 73.89 62.32 63.00 71.41 78.91 76.25 66.79
Audit 68.97 76.65 80.30  82.03 81.97 80.73  52.56
Prec@P Attac?k 69.52 73.63 72.12 73.73 73.69 73.19 5424 65.73 57.03 5747 6364 7055 67.96 6343
Audit 70.92 68.32 7457 7588 75.84 7326 65.57
Rec@P Ana‘fk 57.24 78529260 95.10 9374 9684 96.02 99.84 100.0 100.0 99.82  99.26 99.32 79.32
Audit 64.30 99.38 91.96  93.90 93.82 96.78  10.78
Fle@P Altac.k 62.78 7600 81.09  83.06 82.52 8337 69.32 79.27 72.63 72.99 7173 8248 80.70 70.49
Audit 67.45 8097 8236  83.94 83.88 83.40 1852
200th k . . . E . X
Prec@N Anac.k 63.66 7699 8966  93.10 o141 93.33 8268 99.67 100.0 100.0 99.58  98.75 98.74 72.40
Audit 67.35 98.86 89.51 92.00 91.90 9526  51.39
Rec@N Allaer 7490 7188 6420 66.12 06.54 64.52 1900 47.94 24.64 26.00 4298  58.56 53.18 54.26
Audit 73.64 5392 68.64  70.16 70.12 64.68 9434
FI@N Attac.k 68.82 7435 7483 77.32 77.01 76.96 309 64.74 39.54 41.27 60.04 7352 69.13 62.03
Audit 70.35 69.78 7770  79.61 79.55 77.05  66.54
AUC Audit 0.734 0.856 0.810  0.822 0.821 0.820  0.587 - - - - - - -
TPR@0.1%FPR Audit 0.881 10.96 7.244  7.779 7.593 0.150  0.000 - - - - - - -
Acc Attac.k 65.18 7443 7403  76.62 76.64 76.85  56.85 6231 672 614 264 7618 7347 66.04
Audit 67.57 7545 76.04 7873 78.66 76.82  53.01
Prec@P Aua‘fk 68.18 7235 6852 7048 7045 7002539 57.05 60.51 56.45 65.55 69.3 66.62 63.94
Audit 70.34 6745 7178 7347 73.34 69.77  61.82
Rec@P Attac?k 56.94 79.08 8892  91.62 91.78 939  94.56 99.58 99.04 99.84 0542 94.02 04.08 73.58
Audit 60.76 98.36 8582  89.94 90.06 94.66 1547
Flep Atk 6205 7557 77400 1967 701 8022 6B6T o g5y gain 7772 7979 7800 6842
Audit 65.20 80.03 78.17 80.87 80.84 80.33  25.09
110th 2
0t Prec@N Altd(‘:k 63.03 7693 84.22 88.03 88.21 90.74  77.87 08.35 97.36 9931 91.59 007 89.93 68.89
Audit 65.46 9697 82.37 87.03 87.12 91.70  51.72
Rec@N Anagk 7342 69.78 59.14  61.62 61.50 59.80  19.14 25.04 3536 2,96 4986 5834 5286 585
Audit 74.38 52.54 6626  67.52 67.26 5898 9028
Fl@eN Allacrk 6783 73.18 6949 724 7247 72093073 39.92 51.88 37.3 64.57  71.01 66.58 63.27
Audit 69.64 68.15 7344  76.04 7591 7179 60.77
AUC Audit 0.721 0.845 0.777  0.789 0.796 0.789  0.585 - - - - - - -
TPR@0.1%FPR Audit 0.960 7.800 7.228 7.525 7.413 0.100  0.000 - - - - - - -
Acc A‘““fk 31645073 5035 5131 51.09 08 5047 50.00 50.20 50.09 50.44  49.68 50.51 51.33
Audit 51.70 51.16 5699  57.34 57.37 51.16  54.99
Prec@P Attac.k 51405083 5023 50.98 30.84 30405039 50.00 53.52 50.05 50.76  46.06 50.36 51.59
Audit 50.90 50.89 57.96  58.18 57.96 5092 5597
Rec@P Anaék 6234 44747642 6834 6586 7494 614 100.0 3.04 97.36 29.26 3.74 70.46 43.24
Audit 5634 66.18 50.88 52.18 53.68 64.04 4678
Fl@p Attac?k 56.34 4759  60.62 584 5738 60.37 5535 66.67 575 66.11 1712 6.92 58.74 47.05
Audit 57.47 57.54 54.19 55.02 55.74 56.73  50.96
10th . . . . . . .
Prec@N Ana‘fk 52165065 5073 5199 3155 3155 5060 0 50.10 51.65 5031 49.83 50.85 51.14
Audit 51.66 51.66 56.23 56.65 56.86 51.56 5429
Rec@N Atta(?k 41.06 56.72 24.28 34.28 36.32 26.66  39.54 0 97.36 97.36 7162 95.62 30.56 5042
Audit 36.36 36.14 63.10  62.50 61.06 38.28  63.20
FI@N Altacfk 4595 5351 32.84 4132 42.61 35.14 4439 0 66.16 66.16 501 65.52 38.18 5497
Audit 42.68 42.53 59.47 59.43 59.44 4394 5840
AUC Audit 0515 0513 0510  0.518 0.518 0.512  0.509 - - - - - - -
TPR@0.1%FPR Audit 0.222 1280 2.507 2.189 2.234 0320 0.233 - - - - - - -
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Table 12:

The performance of different MIA methods for CIFAR-100 under ResNet-34.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy 1\}/5[:3-1:;; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Acc Alla(fk 65.05 7427 8120 8276 82.79 83.09  56.57 75.69 63.86 6339 7246 7984 7722 69.54
Audit 69.48 7577 82.82  83.93 83.78 83.16  56.66
Prec@P Atta(?k 69.10 72,12 74.19 7562 7347 73825362 67.30 58.05 57.73 64.49 7131 68.74 64.63
Audit 71.80 67.38 7730  78.43 78.18 76.40  56.80
Rec@P Atta(fk 5444 79.12 9570 9670 97.16 97.16 - 9728 99.94 100.00  100.00  99.96  99.84 99.84 86.30
Audit 64.16 99.90 9292  93.60 93.72 9596  55.60
Fl@P Alw?k 60.90 75.46  83.58 84.87 84.95 8518 69.14 80.43 73.45 73.20 7840 8320 81.42 73.91
Audit 67.77 8048 8440 8535 85.25 85.07 5620
200th Prec@®N Anac.k 6242 76.88 93.94 9542 96.01 96.05 8536 09.88 10000 10000 9991 9973 9971 7939
Audit 67.61 99.81 91.13  92.07 92.16 9457  56.52
Rec@N Altaer 7366 6942 51442772 44.96 09021586 59.84 54.60 26.78 5278  66.70 68.82 68.42
Audit 74.80 51.64 7272 7426 73.84 7036 5772
Fl@N Attac.k 68.40 7296 6791 43.41 62.01 80.32  26.75 74.80 70.56 1225 6341 7801 79.97 70.90
Audit 71.02 68.06 80.89 82.21 81.99 80.69  57.11
AUC Audit 0.741 0.844 0.836  0.846 0.843 0.856  0.508 - - - - - - -
TPR@0.1%FPR Audit 1.82 11.1 6.70 7.10 7.00 0.66 1.87 - - - - - - -
Acc Altac.k 6222 7443 7531 71.57 77.83 77.68  54.96 50.00 60.40 6245 7341 7715 73.67 68.46
Audit 66.71 7542 77.69 79.71 79.75 7749  56.50
Prec@P Ana‘fk 64.02 7036 6964 7119 7139 7110 5269 50.00 55.82 57.12 66.05  70.00 66.61 65.65
Audit 67.51 67.65 73.57 7490 74.71 7087 5772
Rec@P Attac?k 3580 8442 8976 92.62 92.88 93.28  97.12 100.00 99.78 99.94 96.34  95.02 94.92 77.44
Audit 64.42 9744 86.44  89.38 89.94 93.34 4858
Flep Atk 5963 7675 7843 8050 8073 BOGO 6832 gi59 7260 7837 8061 7828 7106
Audit 6593 79.86 7949  81.50 81.62 80.57 52.76
110th 2
o Prec@N Al[d(?k 60.83 8053 8560 8944 8981 90.23 8163 0.00 98.96 99.76 9324 9225 91.17 72.50
Audit 6598 9543 8356  86.83 87.36 90.25  55.61
Rec@N Anac.k 68.64 6444 60.86  62.52 62.78 62.00 12.80 0.00 2102 2496 5048 59.28 5242 5048
Audit 69.00 53.40 6894  70.04 69.56 61.64 6442
Fl@eN Amurk 0450 7159 7114 7360 7390 7355 2213 0.00 34.68 39.93 6550  72.18 66.57 65.35
Audit 6746 6848 7555 7754 7745 7325 59.69
AUC Audit 0.712 0.842 0.795 0812 0.811 0.810  0.507 - - - - - - -
TPR@0.1%FPR Audit 0.62 7.90  6.80 7.10 7.10 0.74 2.38 - - - - - - -
Acc Amurk 004 5181 4982 5157 3143 3200 5071 50.00 49.90 50.22 50.00  50.17 50.52 50.26
Audit 5029 52.17 5696 5847 58.25 53.53 5648
Prec@P Attac.k 51.92 53.15 49.83 51.51 51.39 5151 5049 50.00 4936 50.11 0.00 50.09 50.35 50.29
Audit 56.17 51.57 57.86  58.63 58.60 5371 5724
Rec@P Ana‘fk 108 3052 5174 53.58 529 68.32 7282 100.00 7.66 97.16 0.00 92.82 75.30 44.42
Audit 2.64 7140 5122 5756 56.22 5112 5126
Fl@p Attac?k 2.12 3878 50.77 52.52 52.16 5873 59.63 66.67 13.26 66.12 0.00 65.07 60.35 4718
Audit 5.04 59.88 5434  58.09 57.38 5238  54.08
10th Prec@N At(a(fk 50.02 5127 49.81 51.64 51.48 5297 5127 0.00 49.95 5339 5000 5116 51.03 5023
Audit 50.15 53.53 5624 5832 57.93 5337 55.87
Rec@N Attac.k 99.00 73.10 47.90  49.56 49.90 35.68  28.60 0.00 0214 308 10000 7.52 25.74 56.10
Audit 97.94 3294 6270  59.38 60.28 5594 61.70
FI@N Ana?k 66.46 60.27 48.84  50.58 50.68 4264 3672 0.00 6478 6.18 66.67 1311 3422 53.00
Audit 71.02 68.06 80.89 8221 81.99 80.69  57.11
AUC Audit 0.492 0528 0.505  0.531 0.531 0.531  0.514 - - - - - - -
TPR@0.1%FPR Audit 0.16 140  2.10 2.10 2.10 0.12 1.62 - - - - - - -

For CIFAR-100 under ResNet-34, Table [I2] indicates: Modified Entropy attained the highest accu-
racy under audit mode, whereas quantile MIA achieved the best accuracy in attack mode at 200,110,

and 10 epochs.

For CIFAR-100 under ResNet-50(trained from scratch), Table [I3] indicates: Modified Entropy at-
tained the highest accuracy under audit mode, whereas quantile MIA achieved the best accuracy in
attack mode at 200, 110, 10 epochs. Regarding AUC and TPR at 0.1% FPR, Modified Entropy also
outperformed other methods at epochs 200 and 110 and 10 epochs.

For CIFAR-100 under Swin Transformer Tiny with pretrain, Table [T4]indicates: Modified Entropy

attained the highest accuracy under audit mode
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Table 13: The performance of different MIA methods for CIFAR-100 under ResNet-50 trained from scratch.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy hé:ig‘;; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace Attack 64.52 7225 7832  80.25 80.26 80.89  55.77 71.24 76.85 6232 7545 7791 7471 66.46

Audit 69.04 7348 81.04 82.29 8222 81.00  56.90

Prec@p Atta(?k 67.18 71.23  70.59 7233 72.36 73.29  53.10 63.50 7572 57.03 6718 6941 66.47 60.60
Audit 70.82 65.36 7595 76.90 76.98 7373 57.69

Rec@P Alta(fk S6.78 7464 97.10 9798 97:94 97:22 9874 99.88 79.04  100.00  99.54  99.80 99.74 83.44
Audit 64.74 9992 90.84 9230 91.94 96.32 5176

Fle@P Altac.k 61.54 7290 8175 83.22 83.23 8357 69.06 77.64 71.35 72.63 80.22  81.88 79.77 70.21
Audit 67.64 79.03 82.73 83.90 83.80 8352  54.56

200th Prec@N Allac.k 62.57 7337 9536 96.87 96.81 95.87  91.04 99.72 78.08 10000 99.11 99.64 99.48 343
Audit 67.53 99.83 88.61 90.37 90.00 94.69  56.26

Rec@N Allaer 7226 6986 3954 6252 6258 64.56 1280 42.60 74.66 24.64 5126  54.02 49.68 45.76
Audit 7332 47.04 7124  72.28 72.50 65.68  62.04

Fl@N Altac.k 67.07 71.57 7331 75.99 76.02 77.16 2244 59.70 7633 39.64 67.66 7172 66.27 56.38
Audit 70.30 63.95 78.98 80.32 80.31 77.56  59.01

AUC Audit 0.734 0.824 0.825 0.836 0.834 0.840  0.518 - - - - - - -
TPR@0.1%FPR Audit 0.66 6.40  7.455 7.968 7.817 0.52 1.481 - - - - - - -
Acc Altac.k 61.45 72.34 7097 73.85 73.78 73.06 54.28 50.34 55.66 60.23 7083 73.67 7028 6442
Audit 65.83 73.62 74.04 76.52 76.55 73.96  56.76
Prec@P Alla(fk 6380 71.00 6568 67.54 6749 6592 5230 55.17 67.32 55.72 67.19  67.37 64.47 62.70
Audit 69.66 6625 70.77 75.21 72.48 68.39  57.64
Rec@P Attac?k 52.94 7552 87.82 91.82 91.76 95.50 97.52 99.62 22.00 99.72 8140  91.80 00.34 7118
Audit 56.08 96.30  81.90 85.42 85.60 89.10  51.02

Attack 57.86 73.19 75.16 77.83 77.78 78.00  68.08

Fl@Pp i 71.02 33.16 71.49 73.62 7171 75.25 66.67
Audit 62.14 78.50 75.93 78.44 78.50 77.38  54.13
110th 2
o Prec@N Attdc_k 39.78 7386 8163 87.23 87.13 o184 8166 98.05 53.38 98.67 76.41 87.14 83.87 66.67
Audit 63.25 9323 78.52 82.26 82.42 84.37  56.06
Rec@N Anagk 69.96 69.19 54.12 55.88 55.80 50.62  11.04 19.06 89.32 20.74 6026  55.54 50.22 57.66
Audit 7558 5094 66.18 67.62 67.50 58.82  62.50
Fl@N Allac;k 6447 7143 6509 68.12 68.03 65271945 31.92 66.83 34.28 67.38  67.84 62.82 61.84
Audit 68.87 65.88 71.83 74.23 74.22 69.31  59.11
AUC Audit 0.698 0.823 0.756  0.783 0.781 0772 0.517 - - - - - - -

TPR@0.1%FPR Audit 0.60 4.70  5.788 6.397 6.148 0.36 1.598 - - - - - - -

Acc Attagrk 087 5168 5039 5124 30.78 3136 5024 50.00 50.66 50.06 50.31 50.07 49.82 49.81
Audit 51.22 51.73  56.98 57.71 57.78 51.81  56.04

Prec@P Altac.k 5225 5162 5032 5091 30.56 30875017 50.00 51.17 50.03 5126 5049 49.88 49.78
Audit 51.13 51.71 58.20 58.33 58.14 51.72 5430

Rec@P Attaujk 20.18 53.64 61.78 69.28 70.12 79.62 7136 100.00 28.92 08.44 12.60 72 73.58 0.8
Audit 55.02 5232 49.54 54.42 55.54 5444 53.96

Fl@p Alta(?k 29.12 52.61 55.46 58.69 58.76 62.08  58.92 66.67 30.65 66.34 20.23 12.63 50.45 46,04
Audit 53.01 52.01 53.52 56.31 56.81 53.04 55.11

10th . A . . . . .
Prec@N Alla(fk 3054 51755051 S1.94 5127 3313 5042 0.00 50.46 51.85 50.18  50.04 49.66 49.83
Audit 51.32 51.75 56.08 57.28 57.45 51.91  55.80
Rec@N Atta(?k 81.56 49.72  39.00 33.20 31.44 23.10  29.12 0.00 72.40 1.68 88.02  92.92 26.06 56.80
Audit 47.42 51.14 6442 61.12 60.02 49.18  58.12

Attack 62.41 50.71 4401 40.51 38.98 3220  36.92

Fl@N . 0.00 59.47 325 6392  65.05 34.18 53.09
Audit 49.29 51.44 59.96 59.14 58.71 50.51  56.94
AUC Audit 0511 0.521 0.510  0.522 0.522 0.519  0.501 - - - - - - -
TPR@0.1%FPR Audit 0.06 020 2311 1.990 1.987 0.200  2.025 - - - - - - -
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Table 14: The performance of different MIA methods for CIFAR-100 under Swin Transformer-Tiny with

pretrain. The model is pretrained on ImageNet-1k.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy l\ésil(:]:; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace Attack 56.59 57.16 63.94 65.01 64.78 6524 5251 56.31 57.59 55.19 61.27 61.89 63.04 53.40
Audit 57.31 6243 6691 67.93 67.84 65.16 5643
Prec@p Attack 6221 70.69 59.17 59.88 59.71 59.78 5133 53.37 54.11 52.74 58.83 56.76 57.66 52.57
Audit 59.22 57.15 62.98 63.52 63.49 59.60 56.75
Rec@P Attack 33.58 2446 89.96 90.94 90.86 93.16  97.18 99.98 99.94 99.98 75.12 99.78 98.12 69.56
Audit 46.94 99.32 82.04 84.26 83.96 94.14  54.06
Fl@p Attack 43.62 36.34 7139 72.21 72.07 72.83  67.17 69.59 70.21 69.05 65.98 72.36 72.64 59.88
Audit 52.37 7255 71.26 7243 72.30 7299 5537
200th Prec@N Attack 54.51 54.33  79.07 81.18 80.89 84.51 73.55 99.84 99.61 99.81 65.59 99.09 93.70 55.02
Audit 56.05 97.41 74.25 76.63 76.33 86.06 56.14
Rec@N Attack 79.60 89.86 37.92 39.08 38.70 37.32 7.84 12.64 15.24 10.40 47.42 24.00 27.96 37.24
Audit 67.68 25.54 51.78 51.60 51.72 36.18 58.80
Fl@N Attack 64.71 67.72 51.26 52.76 52.35 5178 14.17 22.44 26.44 18.84 55.04 38.64 43.07 44.42
Audit 61.32 4047 61.01 61.67 61.66 50.94 5744
AUC Audit 0.585 0.682 0.644 0.667 0.652 0.637 0514 - - - - - - -
TPR@0.1%FPR Audit 0.26 9.68 2.81 2.36 2.16 0.18 1.83 - - - - - - -
Ace Attack 56.20 58.93 6344  64.38 64.05 64.37 5245  58.94 5744 5509 5924 6158  62.65  52.82
Audit 5721 61.07 6659  67.50 67.41 6470 56.34
prec@p  Altack 6437 6855 5881 59.60 59.44 59.17 5130 54.93 5403 5268  57.95 5658 5749 5211
Audit 5926 5623 6258 6332 63.23 5933 56.54
Rec@P Attack 27.78 33.00 89.68 89.28 88.48 92.76  96.82 99.58 99.86 99.98 67.32 99.58 97.10 69.68
Audit 46.14 99.86 82.52 83.20 83.20 93.50 5478
Fl@p Attack 38.81 44.55 71.04 71.48 71.11 7225  67.06 70.80 70.12 69.00 62.29 72.16 72.22 59.63
Audit 51.88 7195 71.18 71.91 71.85 72.59  55.65
110th Prec@®N Attack 53.95 55.88 7828  78.65 71.47 8325 7176  97.76 99.08 99.80 61.02  98.25 90.68 54.25
Audit 5590 99.38 7435 75.51 75.45 84.67 56.15
Rec@N Attack 84.62 84.86 37.20 39.48 39.62 35.98 8.08 18.30 15.02 10.20 51.16 23.58 28.20 35.96
Audit 68.28 2228 50.66 51.80 51.62 3590 57.90
Fl@N Attack 65.89 67.39 50.43 52.57 52.43 5024 1452 30.83 26.09 18.51 55.66 38.03 43.02 43.25
Audit 61.47 36.40 60.26 61.45 61.30 5042 57.01
AUC Audit 0.584 0.670 0.641 0.664 0.650 0.640 0515 - - - - - - -
TPR@0.1%FPR Audit 022 9.86  2.89 2.45 2.03 0.58 1.96 - - - - - - -
Ace Attack 52.68 54.14 52.04 52.92 53.16 5228  50.79 50.00 50.52 50.29 52.12 52.66 52.18 51.64
Audit 53.63 54.78 58.55 59.31 59.23 5326  56.40
Prec@p Attack 54.75 56.79 51.65 52.38 52.46 68.87  50.43 50.00 50.27 50.15 51.96 52.02 51.72 51.56
Audit 54.87 53.73  59.11 59.68 59.66 52.11  56.89
Rec@P Attack 30.88 34.62 63.82 64.28 67.32 8.32 92.00  100.00 96.34 98.52 56.24 68.38 65.72 54.14
Audit 40.90 68.94 55.48 57.40 57.02 80.36  52.86
Fl@p Attack 39.49 43.02 57.09 57.72 58.97 14.85  65.15 66.67 66.07 66.46 54.01 59.09 57.88 52.82
Audit 46.87 6039 57.24 58.52 58.31 63.23  54.80
10th Prec@N Attack 51.87 5298 52.67 53.78 54.41 5121 5449 0.00 56.22 58.19 52.31 53.88 52.99 51.73
Audit 52.89 56.67 58.06 58.97 58.84 57.12 5598
Rec@N Attack 74.48 73.66 4026  41.56 39.00 96.24  9.58 0.00 4.70 2.06 48.00  36.94 38.64 49.14
Audit 66.36 40.62 61.62 61.22 61.44 26.16  59.94
Fl@N Attack 61.15 61.63 45.64 46.89 45.43 66.85  16.30 0.00 8.67 3.98 50.06  43.83 44.69 50.40
Audit 58.87 47.32 59.78 60.07 60.11 35.88 57.89
AUC Audit 0.534 0.573 0.534  0.549 0.548 0.542  0.505 - - - - - - -
TPR@0.1%FPR Audit 0.18 2.72 3.23 3.23 3.25 1.40 1.48 - - - - - - -
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G.3 PERFORMANCE OF MIA METHODS IN DIFFERENT DATASETS

Table 15: The performance of different MIA methods for CIFAR-10 under ResNet-18.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy I\;:I‘(:S?pe;i Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace Anac.k 50.93 5541 59.87  60.55 60.68 60.98  53.51 52.90 5974 5413 5030 5938 5034 5188
Audit 52.68 5833 65.68  66.17 66.17 61.19  56.87
Prec@P Allaer 272 6368 3633 3662 3676 5739 5218 51.49 57.38 52.15 5533 5521 55.33 51.31
Audit 5391 5458 61.04 6122 61.23 5724 5621
Rec@P Attac.k 18.04 2266 87.80 9020 89.68 8526 83.92 100.00 7574 100.00  96.60  99.36 96.94 73.40
Audit 36.92 99.28 86.70  88.20 88.16 88.52  62.18
Fl@p Attack 26.88 33.70 68.63  69.57 69.52 68.60  64.36 67.98 65.29 68.55 7036 70.98 7045 60.40

Audit 43.18 70.44 71.64
200th Attack 50.56 5327 7236

72.28 72.27 69.52  59.04
75.92 75.43 71.35 5897

Prec@N R 100.00 64.32 100.00  86.61 96.81 87.66 53.30
Audit 52.04 96.02 77.05 78.91 78.86 74.68  57.69
Rec@N A[(a(fk 83.82 88.16 31.94 30.90 31.68 36.70  23.08 5.80 4374 8.6 22.00 19.40 2174 30.36
Audit 68.44 1738 4466  44.14 44.18 3386 51.56
Fl@N Attac.k 63.07 6641 44.32 43.92 44.62 4847 33.18 10.96 52.07 15.25 3509 3232 34.84 38.69
Audit 59.12 2943  56.55 56.61 56.63 46.59 5445
AUC Audit 0.508 0.621 0.631 0.635 0.637 0.631  0.509 - - - - - - -
TPR@0.1%FPR Audit 0.16 0.70  0.36 0.41 0.36 0.40 0.22 - - - - - - -
Acc Attac.k 50.54 56.22  56.06 56.43 56.67 56.71  52.46 50.00 55.80 51.63 5565 56.97 55.97 5264
Audit 52.81 57.95 61.66 62.40 62.31 56.77  56.58
Prec@P Anafk 51.81 61.17 53.88 54.02 54.15 5421  51.32 50.00 53.54 50.83 5348 5425 53.70 51.94
Audit 5424 54.69 58.19 58.49 58.55 5420 56.31
Rec@P Allacrk 1548 3406 84.10 86.38 87.12 8634 95.58 100.00 87.74 99.84 86.88  88.96 86.70 70.70
Audit 3592 92.66 82.84 85.40 84.34 87.28  58.68
Fl@p Attack 23.84 43.76  65.68 66.47 66.78 66.60  66.78 66.67 66.50 67.36 6620 6740 66.32 50.88

Audit 43.22 68.78 68.36
110th Attack 50.32 54.31 63.80

69.43 69.11 66.88  57.47
66.03 67.06 66.47  67.88

Prec@N ° 000 6606 9553 6505 6935 6549 5413
Audit 5210 7600 7023 7296 7201 6737 5687

Rec@y  Atack 8560 7838 2802 2648 2622 2708 934 00 i o gun oie oo oy
Audit 6970 2324 4048 3940 4028 2626 5448

Plon  Allack 6338 6416 3894 3780 3770 348 1642 o ool s s o
Audit 59.63 3560 5136 5117 5166 3779 5565

AUC Audit 0520 0.620 0565 0578 0575 0571 0503 - - - - - - -

TPR@0.1%FPR Audit 006 1.1 034 032 034 026 0.09 - - - - - - -

e Auack 009 5144 5070 5106 5097 SLaz 4986 o T T T T T
Audit 50.11 5213 5746 5801 5790 5180 5693

Prec@p  Attack 5055 51395057 30625055 5083 9915000 5009 s001 5040 5167 5104 4972
Audit 51.18 5165 5720 5734 5719 5115 57.62

Rec@p ~ Atack 8325330 6242 8610 8842 866L T34 0000 5408 9900 1880 2662 5966 4216
Audit 476 6672 5930 6258 6282  80.14 5242

Flep Ak 1429 5233 5587 6376 6433 6407 6007 o o0 oo a0 asia ssol 4563

Audit 871 5822 5823
10th Attack 50.05 51.50 5091

Prec@N ]
Audit 50.56 53.01 57.75
ac) 9
Rec@N AltdL.k 91.86 49.58 3898
Audit 9546 37.54 55.62
Fl@N Attack 64.80 50.52 44.15

Audit 65.68 43.95 56.66
AUC Audit 0.492 0.521  0.505
TPR@0.1%FPR Audit 0.06 0.18 0.35

59.85 59.87 62.44  54.90
53.54 53.86 54.80 49.71
58.82 58.76 54.16  56.36
16.02 13.52 1620 24.30
53.44 52.98 2346 6144
24.66 21.61 25.01  32.64
56.00 55.72 3274 5879
0.518 0.518 0.523  0.505 - - - - - - -
0.34 0.34 0.40 0.07 - - - - - - -

0.00 50.32 60.00 50.09  50.58 51.46 49.59

0.00 46.32 0.12 81.50  75.10 42.76 57.36

0.00 48.26 0.24 62.05 6045 46.71 5331

For CIFAR-10 under ResNet-18.

Table [T3] indicates that: Modified Entropy attained the highest

accuracy under audit mode, whereas quantile MIA achieved the best accuracy in attack mode at
200,110, and 10 epochs. Regarding AUC and TPR at 0.1% FPR, RMIA outperformed other methods
at epochs 200 and 110, while Modified Entropy MIA performed best at epoch 10. Additional, Metric
MIA showed the largest performance gap between audit and attack modes, while Quantile MIA

exhibited the smallest difference.

G.4 PERFORMANCE OF MIA METHODS UNDER MISLABEL SCENARIO
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Table 16: The performance of different MIA methods for ImageNet100 under WideResNet-28-2.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI

LiRA RMIA Entropy bégﬂ‘f;; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

; 9
Acc Alld(?k 5148 60.32 5412 56.18 55.98 51.06  52.10 50.00 51.06 5032 5332 5676 56.14 54.10
Audit 57.46 60.58 61.64 63.08 62.90 5727  52.62

Prec@p  Allack S075 38435380 5494 5486 5054 SLIA 500 5054 soq6 5188 5493 5500 53.99
Audit 5471 5839 6204 6236 6277 5463 5653

Rec@p ~ Atack 9968 7152 5828 - 68.68 6736 9832 9601 000 953 10000 0176 7536 6748 55.52
Audit 86.60 73.64 5996 6600 6340 8577 22.66

Attack 67.26 64.32 55.95 61.05 60.55 66.77  66.73

Fl@P i 6667 6677 6681 6628 63.54  60.61 5474

Audit 67.06 65.13 60.98  64.13 6308 6675 3235

200th . ; : ; ; . I

Precon  Auack OLIL 6330 5449 58245778 69.34 67.00 o, 6934 10000 6436 6076  57.94 5422

Audit 67.88 6432 6126  63.89 6303 6691 51.64

e 9

Rec@N Atk 328 4912 4996 4368 4440 380 812 180 064 1488 3816 4480 5268

Audit 2832 4752 6332  60.16 6240 2878 8257
FloN Attack 633 5532 5213 4992 50.21 721 448 a1 127 2417 4688 5053 5344

Audit 39.97 5466 6227 6197 6271 4025 6354
AUC Audit 0.584 0.652 0.567 0592 0592 0589 0523 - - - - - - -
TPR@O.1%FPR Audit 00 54 53 6.5 62 0.3 0.0 - - - - - - -
Ace Auack 5074 5462 5284 5390 5392 5358 5000 oo oo o0 oo oo 00

Audit 54.04 55.14 59.94  60.70 60.84 5392  53.08
Prec@P AltaLtk 5038 5406 5360 53.62 5360 3365 5000 50.00 50.10 50.08 50.73 5221 52.25 5251
Audit 5286 54.12 60.34  61.59 61.27 53.87 57.01

Attack 99.20 61.52 4228 57.72 58.44 53.15  100.00

Rec@P R 100.00 98.88 99.84 91.76  68.52 62.72 46.36
Audit 74.72 6748 58.00  56.88 58.92 5452 25.02
Fl@p Ana(fk 6682 5755 4727 3560 5591 3340 6667 66.67 66.51 66.70 6534 59.26 57.01 49.25
Audit 61.92 60.07 59.15 59.14 60.07 54.19 3478
110th 2 .03 .3 . 54. .3 5 .
o Prec@N Attack 7403 35.36  52.34 5422 34.31 3351 0.00 0.00 57.58 75.00 56.90  54.22 53.38 51.99

Audit 56.89 56.82 59.57 59.94 60.44 5396 51.97
Rec@N Ana(?k 228 4772 63.40 50.08 49.40 5400  0.00 0.00 152 048 1088 3728 42,68 58.08
Audit 33.36 42.80 61.88 64.52 62.76 5332 8114

Attack 4.42 5126 57.34 5207 51.74 5375 0.00

Fl@N R 0.00 2.96 0.95 18.27  44.18 47.43 54.86
Audit 42.06 4883 60.70  62.15 61.58 53.64  63.36
AUC Audit 0.548 0.567 0.535 0.553 0.552 0.552  0.514 - - - - - - —
TPR@0.1%FPR Audit 0.0 2.2 5.2 53 5.4 0.3 0.0 - - - - - - -
Acc Atiack 50.40 51.74 - 50.28 3096 3068 5158 5000 50.00 50.44 49.92 50.18  49.24 50.76 50.92

Audit 52.14 51.88 58.60 58.80 59.14 51.94  53.78
Attack 50.21 51.73  51.12 52.68 51.88 51.30  50.00

Prec@P R 50.00 50.28 49.96 50.89  48.89 50.52 51.04
Audit 51.86 52.96 59.70  60.46 60.28 5229 5584
Rec@P Alla(fk 9624 52121276 18.88 18.72 6378 100.00 100.00 79.84 99.48 1032 3340 73.76 45.00
Audit 59.68 33.68 52.92 50.88 53.60 4424 36.09
Fl@p Altac?k 659951922042 2780 2751 3686 6667 66.67 61.70 66.52 17.16  39.69 59.97 47.83
Audit 5550 41.17 56.11 55.26 56.74 4793 4385
10th Prec@®N Attack 54.81 51.75 50.16 50.58 50.41 5204  0.00 0.00 51.07 40.91 5010 4942 5141 50.82

Audit 5252 51.38 57.72 57.60 58.23 51.68  52.79
Rec@N Attautk 4.56 51.36  87.80 83.04 82.64 3936 0.00 0.00 21.04 036 9004  65.08 2776 56.84
Audit 44.60 70.08 64.28 66.72 64.68 59.63 7146

Attack 842 51.56 63.85 62.87 62.63 4482 0.00

Fl@N R 0.00 29.80 0.71 6438  56.18 36.05 53.66
Audit 4824 59.29  60.83 61.82 61.28 5537  60.72
AUC Audit 0.522 0.522 0.511 0.519 0.520 0.519  0.506 - - - - - - -
TPR@0.1%FPR Audit 0.0 1.1 43 5.6 54 4.0 0.0 - - - - - - -
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Table 17: The performance of different MIA methods for mislabeled (10%) CIFAR-100 under ResNet-18.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy l\llilziﬁ;’; Confidence Quantile Merlin ML-Leakl ML-Leak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace Allafk 69.03 79.95 83.55 86.25 86.36 86.18  62.19 30.55 58.63 66.53 880 8477 79.44 7237
Audit 73.75 80.98 85.07 87.51 87.43 86.28  52.15
Prec@P Attack 73.64 74.82 77.22 80.03 80.06 79.93  57.06 72.12 78.22 59.91 7499  76.98 70.97 67.32
Audit 75.01 7277  80.19 83.05 82.79 80.60  67.89
Rec@P Attack 59.28 90.28 95.18  96.60 96.84 96.62  98.56 99.62 23.92 99.96 98.42  99.20 99.64 86.94
Audit 71.24 99.02 93.16  94.26 94.50 9556  8.16
Fl@P Attack 65.68 81.83 8526 87.54 87.65 87.49 7227 83.67 36.64 74.92 85.12 86.69 82.90 75.88
Audit 73.07 83.89 86.19 88.30 88.26 8745 1457
200th Prec@N Attack 6592 87.75 9372  95.71 96.00 9573 9472 99.39 55.09 99.88 9770  98.88 99.40 81.57
Audit 72.61 98.47 91.84  93.36 93.59 94.55 5114
Rec@N Attack 78.78 69.62 7192  75.90 75.88 7574 25.82 61.48 93.34 33.10 67.18  70.34 59.24 57.80
Audit 7626 6294  76.98 80.76 80.36 77.00  96.14
Fl@N Attack 71.78 77.64 81.39 84.66 84.76 84.57  40.58 75.97 69.29 49.72 79.62  82.20 74.24 67.66
Audit 7439 7679 8376  86.61 86.47 84.88  66.77
AUC Audit 0.797 0.895 0.871 0.892 0.891 0.896  0.626 - - - - - - -
TPR@0.1%FPR Audit 0.48 14.0 8.1 9.2 89 0.48 0.0 - - - - - - -
Acc Allac.k 66.84 80.08  78.08 81.15 81.54 8140 61.98 70.54 50.35 65.60 76.54  81.62 75.60 70.18
Audit 70.94 80.03 80.14 8329 83.43 81.54  53.09
Prec@P Attack 69.61 74.74  73.49 76.02 75.98 7472 57.03 63.05 71.08 59.28 76.19 75.49 68.45 67.68
Audit 73.16 7198 77.06  79.64 79.51 75.10  66.56
Rec@P Attack 59.78 90.86 87.76  91.00 92.24 9490 97.24 99.22 1.18 99.66 7720 93.64 94.98 77.26
Audit 66.14 98.34 8584  89.44 90.08 94.38 1242
Fl@p Attack 64.32 82.02 79.99 82.84 83.32 83.61 71.89 77.11 2.32 74.34 76.69  83.59 79.56 72.15
Audit 69.47 83.12 81.21 84.26 84.46 83.64  20.93
110th Prec@N Attack 64.76 88.35 84.81 88.79 90.13 93.01  90.64 98.17 50.18 98.93 76.90  91.63 91.80 73.51
Audit 69.11 97.38 84.02  87.96 88.56 9244 5170
Rec@N Attack 73.90 69.30 6834  71.30 70.84 67.90 26.72 41.86 99.52 31.54 7588  69.60 56.22 63.10
Audit 75.74 6172 7444 7714 76.78 68.70  93.76
Fl@N Attack 69.03 77.67 75.69  79.09 79.33 78.50  41.27 58.69 66.72 47.83 76.38  79.11 69.73 67.91
Audit 7227 7555 7894  82.19 82.25 78.82  66.65
AUC Audit 0.764 0.890 0.835  0.866 0.866 0.862  0.625 - - - - - - -
TPR@0.1%FPR Audit 1.5 8.9 8.7 9.4 9.5 0.2 0.0 - - - - - - -
Acc Attack 51.65 5336 5035 5273 5300 5230 5241 g, o0 5041 5011 5047 5020 5159 50.07
Audit 51.12 53.87 5748 5874 58.92 53.19 5347
Prec@Pp Attack 52.84 54.13 5037  52.27 52.46 51.50 5144 50.00 56.77 50.06 5213 50.66 5112 50.08
Audit 5291 53.81 57.70  59.30 59.31 52.53 5552
Rec@P Attack 30.68 44.06 47.10  62.74 64.06 78.98  85.82  100.00 3.44 97.06 1152 1540 72.86 42.04
Audit 20.34 5460 56.08 5574 56.80 66.26  34.90
Flep Attack 38.82 4858 48.68  57.03 57.68 6235 6433 66.67 6.49 66.05 18.87  23.62 60.08 45.71
Audit 2938 5420 56.88  57.46 58.03 58.60  42.86
10th Prec®N Attack 51.16 52.83 5033  53.41 53.85 5493  57.26 0.00 50.21 51.80 50.26  50.12 5277 50.06
Audit 50.69 5393 5728 @ 5825 58.56 5432 5253
Rec@N Attack 72.62 62.66 53.60  42.72 41.94 25.62  19.00 0.00 97.38 3.16 89.42  85.00 30.32 58.10
Audit 81.90 53.14 5888  61.74 61.04 40.12  72.04
Fl@N Attack 60.03 57.33 5191 4747 47.16 3494 2853 0.00 66.26 5.96 6435 63.06 38.51 53.78
Audit 62.62 53.53 58.07  59.94 59.77 46.15  60.76
AUC Audit 0511 0.547 0518  0.548 0.550 0542 0.526 - - - - - - -
TPR@0.1%FPR Audit 0.18 0.18 18 2.6 2.6 0.22 0.00 - - - - - - -

G.5 PERFORMANCE OF MIA METHODS UNDER META CLASS SCENARIO

G.6 PERFORMANCE OF MIA METHODS UNDER DIFFERENT ALGORITHMS
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Table 18: The performance of different MIA methods for superclass CIFAR-100 under ResNet-18.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI

Modified

LiRA RMIA Entropy Entropy

Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

Acc Alta(?k 58.27 65.34 71.20 72.31 72.28 71.96  55.71 66.09 63.17 50.12 70.91 69.13 67.56 55.56
Audit 62.02 66.09 73.66 74.67 74.65 72.51  54.02

Prec@p Allac.k 62.24 65.65 64.67 65.00 65.05 64.50 53.22 50.64 67.18 55.02 6388 61.89 60.76 53.08
Audit 64.01 59.62  67.70 68.44 68.29 65.90  64.00

Rec@P A“a‘fk 4206 6436 9446 9668 9632 97:66 9438 99.56 71.06  100.00  96.24  99.58 99.16 75.42
Audit 55.51 99.74 9048  91.56 92.02 9328 1838

Fl@p Altaer 50.20 65.00 76.63 77.74 77.65 77.69  68.06 74.59 69.06 70.98 7679 7634 75.35 62.92
Audit 5922 74.63 7745 78.33 78.40 77.24  28.56

200th 2
oot Prec@N Altd(?k 36.25 6505 8964 93.52 9291 9319 75.20 98.67 69.28 100.00  92.38  98.93 97.72 59.22
Audit 60.59 99.20 85.65 87.25 87.71 88.50 5235
Rec@N Alla(?k 7448 66.32 4794 4794 48.24 46.26  17.04 .62 65.28 1824 4558 38.68 35.96 35.70
Audit 69.02 3244 56.84 57.78 57.28 5174 89.66

Attack 64.09 65.68 62.47 63.39 63.51 62.26  27.78

Fl@N R 49.03 65.22 30.85 61.04  55.61 52.57 44.55
Audit 64.53 48.89 68.33 69.52 69.32 65.30  66.10
AUC Audit 0.637 0.733  0.741 0.755 0.747 0.750  0.565 - - - - - - -
TPR@0.1%FPR Audit 0.4 1.0 0.4 0.5 0.3 0.1 0.0 - - - - - - -
Ace Attack 56.00 65.33 61.62 63.77 63.67 66.07  54.89 50.00 543 56.70 6364 66.17 62.84 58.94

Audit 58.98 65.29 66.58 68.77 68.83 66.17  54.39

Prec@P Attac?k 38.75 65,33 6075 62.28 62.28 6046 52.73 50.00 59.35 53.60 60.10  60.90 58.55 57.50
Audit 60.36 66.04  62.35 63.23 63.32 60.67  58.98

Rec@P Atlac.k 40.28 64.68 65.68 69.84 69.32 92.90 94.48 100.00 2742 99.80 3L14 9032 87.02 68.56
Audit 5232 6294  83.6 89.72 89.52 91.96 28.84

Attack 47.79 65.10 63.12 65.84 65.61 7325 67.68

Fl@P . 66.67 3751 69.74 69.06 7275 70.29 62.54
Audit 56.05 64.45 71.46 74.18 74.17 73.11  38.74
110th acl S X 5. 5. X 3.
Prec@N Amb_k 3456 6513 62.65 65.67 6541 8468 73.49 0.00 52.81 98.55 70.98  81.28 75.76 61.07
Audit 57.92 64.60 7520 82.31 82.12 8340 5291
Rec@N Attack 71.72 6598 57.56  57.70 58.02 39.24 1530 0.00 81.22 13.60 4614 42.02 3776 4932

Audit 65.64 67.64 4948 47.82 48.14 40.38  79.94
Attack 61.98 65.55 60.00 61.43 61.49 53.63 2533

Fl@N R 0.00 64.00 23.90 5593 5540 50.40 54.57
Audit 61.54 66.09 59.69 60.49 60.70 5441  63.67
AUC Audit 0.613 0.733  0.661 0.685 0.683 0.681  0.555 - - - - - - -
TPR@O0.1%FPR Audit 0.4 1.7 0.4 0.4 0.3 0.1 0.0 - - - - - - -
Ace Attack 51.52 52.65 50.16 50.06 50.25 5197  50.76 50.00 50.05 50.00 5024 50.19 50.18 50.07

Audit 52.01 52.75 55.67 56.90 56.74 5231 5398
Attack 52.92 52.56 53.31 51.06 54.79 51.22 50.54

Prec@P _ 5000 5021 5000  50.67 S50.68 5015 5000
Audit 53.10 52.63 5602 5726  57.67 5208 5672
Rec@p ~ Attack 27.52 5450 258 2.8 286 827870640000 1168 9996 1828 1416 6098 3998
Audit 3446 5500 5280 5440  50.68 5794 3358
Flep ~ Atack 3621 5351 492 545 Sad 6328 OSB3 Ll67 1895 6666 2687 2214 5504 4447
Audit 4180 5379 5436 5579 5395 5485 4219
10th ck 51, . ! . . . .
Precon  Atack SLO3 52755008 500350035513 SL26 00 sh 03 5000 soas s001 5023 50.06

Audit 51.49 52.88 5536 56.57 56.01 52.60 52.83
Rec@N Allac.k 75.52 50.80 97.74 97.24 97.64 21.16  30.88 0.00 88.42 0.04 820 8622 3938 60.16
Audit 69.56 50.50 58.54 59.40 62.80 46.68  74.38

Attack 60.90 51.76  66.23 66.07 66.25 30.58  38.54

Fl@N R 0.00 63.90 0.08 62.29  63.38 44.15 54.65
Audit 59.17 51.66 5691 57.95 59.21 4946 61.78
AUC Audit 0.520 0.534  0.510 0.533 0.533 0532 0.513 - - - - - - -
TPR@0.1%FPR Audit 0.1 1.1 0.4 0.4 0.4 0.2 0.0 - - - - - - -
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Table 19: The performance of different MIA methods for CIFAR-100 under ResNet-50 with pretrain. The

model is pretrained on ImageNet-1k.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy l\ésil(:]:; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Ace AIla(fk 50.60 59.76  71.73 72.55 72.55 71.86 5228 58.83 5124 56.12 7071 6427 65.24 53.59
Audit 50.36 59.87 74.66 75.12 75.10 72.03 5638
Prec@P Allagrk 3127 5777 6477 6543 65.38 6437 5119 54.84 50.63 53.26 63.24 58.32 59.00 52.48
Audit 50.36 58.08 70.15 70.45 70.28 66.17  57.50
Rec@P A[mék 2422 7256 95.30 95.60 9588 97.94 9190 99.98 100.00  100.00 98.94 99.98 99.90 71.74
Audit 7546 70.92 8584 86.54 86.98 90.14  48.92
Fl@Pp Altaék 3290 64.33  77.12 77.69 77.74 77.68 6723 70.83 67.22 69.50 77.16 73.67 74.19 60.62
Audit 60.41 63.86 77.21 71.67 71.74 7632 52.86
200th Prec@N Alta(?k 50.39 63.12 91.11 91.84 92.28 95.69  76.03 70.83 100.00  100.00 97.57 99.93 99.67 5536
Audit 51.08 62.67 81.76 82.56 82.92 84.54  55.55
Rec@N Al[a(fk 76.98 4696 48.16 49.50 49.22 45.78 6.66 17.68 2.48 12.24 42.48 28.56 30.58 35.04
Audit 25.62 48.82 63.48 63.70 63.22 5392  63.84
Fl@N Atta(?k 6091 53.85 63.01 64.33 64.20 61.93 1225 30.04 484 2181 5019 4442 46.80 4291
Audit 34.12 54.88 7147 7191 71.74 65.84  59.41
AUC Audit 0.495 0.658 0.761 0.753 0.765 0.765  0.502 - - - - - - -
TPR@0.1%FPR Audit 0.0 0.0 6.0 58 59 0.0 1.8 - - - - - - -
Acc Atta(?k 50.56 60.54 70.07 70.91 70.77 7139 5240 5547 52.00 56.26 7075 65.07 65.87 5335
Audit 50.42 60.76  73.03 73.76 73.72 70.88  56.49
Prec@P Alla(fk 50.72 59.42  63.99 64.58 64.37 64.80 51.26 52.90 51.07 5304 63.98 50.02 59.49 $2.44
Audit 50.28 59.35 68.92 69.23 69.27 64.55 5777
Rec@P Allacrk 3928 66.46 9180 92.60 93.06 93.64 - 97.92 99.84 100.00  100.00 94.96 99.96 99.46 71.90
Audit 75.02 68.28 83.90 85.54 85.26 92.64 4824
Fl@p Alta(fk 4427 62775 7541 76.09 76.10 76.60  67.29 69.16 67.61 69.57 76.45 7421 74.45 60.65
Audit 60.21 63.50 75.67 76.53 76.44 76.08 5258
110th ac 5 .93 K B 3
o Prec@N Altdk_k 30466196 85.50 86.93 87.48 8854 76.79 98.58 100.00  100.00 90.23 99.87 98.35 55.33
Audit 50.83 62.66 79.43 81.08 80.84 86.97 55.57
Rec@N Alta(?k 61.84 54.62 4834 49.22 48.48 49.14 6.88 11.10 418 1252 46,54 30.58 3298 34.80
Audit 25.82 5324 62.16 61.98 62.18 49.12  64.74
Fl@N Alla(fk 55.57 58.06 61.76 62.85 62.39 6320 12.63 19.95 8.02 2225 6141 46.82 48.61 073
Audit 3424 57.57 69.71 70.26 70.29 62.78  59.81
AUC Audit 0496 0.667 0.747 0.747 0.754 0.756  0.508 - - - - - - -
TPR@0.1%FPR Audit 0.0 0.0 6.3 6.3 6.2 1.7 23 - - - - - - -
Ace Alla(fk 50.16 59.92  60.72 62.86 62.86 63.05 5249 50.00 50.17 S4.04 53.26 62.69 61.18 56.44
Audit 50.18 60.32 65.40 67.32 67.20 63.39  56.70
Prec@P Atta(?k 30,16 38.99 57.70 58.56 3871 3823 5141 50.00 50.09 52.11 51.69 57.82 57.21 55.00
Audit 50.11 57.16  62.69 63.42 63.56 58.66  57.68
Rec@P Am“fk 49.14 6508 8036 8794 8670 9232 9108 100.00 100.00  99.58 99.58  93.84 88.70 70.88
Audit 81.74 8238 76.10 81.42 80.62 90.74  50.34
Fl@p Allacrk 49.65 6189 67.17 70.31 7001 71426572 66.67 66.74 68.42 68.06 71.55 69.59 61.94
Audit 62.13 67.49 68.74 71.30 71.08 71.25  53.76
10th Prec@N Allac.k 50.16 61.06 67.65 75.80 74.58 8148 6091 0.00 100.00 95.20 9429 33.66 74.87 50.06
Audit 50.49 68.47 69.59 74.06 73.51 79.56  55.94
Rec@N Altaer 51.18 54.76 41.08 37.78 39.02 3378 13.90 0.00 034 8.50 6.94 3154 33.66 42.00
Audit 18.62 3826 54.70 53.04 53.78 36.04  63.06
Fl@N Altac.k 50.66 57.74 S51.12 50.43 51.23 47776 22.63 0.00 0.68 15.61 12.93 4581 46,44 49.09
Audit 2721 49.09 61.25 61.81 62.12 49.61  59.29
AUC Audit 0.493 0.651  0.651 0.666 0.669 0.656  0.514 - - - - - - -
TPR@0.1%FPR Audit 0.5 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - - -
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Table 20: The performance of different MIA methods for CIFAR-100 under ResNet-18 trained with DP-SGD.

Membership Inference Attack Algorithms

Epoch Metric Mode Metric MIA ML-Leaks BlindMI
LiRA RMIA Entropy 1\}/5[:3-1:;; Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Acc Attack 50.55 63.98 59.93 64.58 64.60 6593 5869  57.13 60.90 60.98 6033 6527 58.01 53.88
Audit 50.54 64.74 6432  68.11 68.07 66.52  56.18
Prec@P Atta(?k 32.73 5875 56.98 60.12 60.17 60.95 5544 54.13 58.58 56.45 5838  59.92 54.75 52.71
Audit 52.68 59.18 62.15 64.23 64.16 61.77  57.11
Rec@P Ana(fk 10.6493.86  81.10  86.60 8638 8868 88.50 93.54 74.42 96.12 72.00 9224 92.32 75.40
Audit 10.62 95.04 7326  81.76 81.86 86.68  49.62
Fl@P Allacrk 17.71 72.27 6693 7097 70.93 7224 6818 68.57 65.56 71.13 64.48 7265 68.74 62.05
Audit 17.68 72.94 6725 7194 71.94 72.14 5310
200th Prec@N Anac.k 50.31 84.74 6722 76.05 75.87 7923 7152 76.23 64.94 86.94 6348 8315 75.53 56.81
Audit 5030 87.41 6744 7491 74.95 77.68 5546
Rec@N Altaer 9046 3410 3876 4256 4282 4318 2888 20.72 47.38 25.84 48.66  38.30 23.70 32.36
Audit 90.46 3444 5538 54.46 54.28 4636 6274
Fl@N Attac.k 64.66 48.63 49.17 54.58 54.74 5590 41.15 3258 5479 3984 5500 5244 36.08 41.23
Audit 64.65 49.41 60.82 63.07 62.96 58.07 58.88
AUC Audit 0350 0.721 0.624  0.667 0.667 0.688  0.519 - - - - - - -
TPR@0.1%FPR Audit 0.1 6.9 2.2 2.8 2.8 0.2 1.8 - - - - - - -
Acc Altac.k 51.17 58.16 5492 5820 58.02 5892 5499 50.00 54.04 $2.60 saas 5852 54.10 5295
Audit 51.26 59.40 59.67 62.55 62.50 5926  56.54
Prec@P Ana‘fk 3462 5561 5443 5621 36.06 3621 5307 50.00 55.10 51.39 54.86  56.53 52.66 52.17
Audit 5630 56.68 60.17 61.55 61.49 56.69 57.10
Rec@P Attac?k 13.82 8088 60.48 74.22 74.16 8070 86.16 100.00 53.36 96.28 50.14  73.80 81.22 70.78
Audit 11.26 79.72 5720  66.88 66.88 78.44  52.60
Flep Atk 2206 639157296397 6385 6627 6569 si go1 5239 6402 6389 6007
Audit 18.77 66.26 58.65 64.10 64.07 65.82 5476
110th 3 9
0t Prec@N Alld(?k 50.67 6496 5554  62.07 61.84 65.80 6325 0.00 5479 70.57 5400 6227 58.96 5450
Audit 50.70 65.84 59.21 63.74 63.70 65.02  56.06
Rec@N Anac.k 88.52 3544 4936  42.18 41.88 37.14 2382 0.00 56.52 892 $874 4324 26.98 35.12
Audit 91.26 39.08 62.14 5822 58.12 40.08  60.48
Fl@eN Amurk 0445 4586 5227 5023 49.94 4748 - 3401 0.00 55.64 15.84 5632 51.04 37.02 42.74
Audit 65.19 49.05 60.64  60.86 60.78 49.59 5819
AUC Audit 0446 0.639 0562  0.606 0.606 0.609  0.522 - - - - - - -
TPR@0.1%FPR Audit 0.08 2.8 2.1 2.9 2.9 0.6 1.6 - - - - - - -
Acc Anmrk 4969 51975058 5178 3194 S187 5089 50.00 51.25 50.05 5125  50.64 50.45 50.78
Audit 50.17 5245 5736 5794 57.92 52.19 5591
Prec@P Attac.k 44.56 52395059 5157 3175 5138 5065 50.00 52.31 50.03 5281 5449 50.33 51.00
Audit 50.10 52.75 58.17 58.74 58.34 5337 5672
Rec@P Ana‘fk 254 4326 50.00  38.60 5738 6976 69.04 100.00 28.34 93.68 23.50 7.76 67.80 39.80
Audit 86.14 47.02 5242 5334 55.38 34.66  49.90
Fl@p Attac?k 4.81 4739 5029 @ 54.86 54.42 59.17 5843 66.67 36.76 65.22 053 13.59 5778 1471
Audit 63.35 49.72 55.14 5591 56.82 42,03 53.09
10th . K . X . 3 E
Prec@N A[(a(fk 4984 5168 5057 5206 5218 5291 5140 0.00 50.86 50.39 50.80  50.34 50.69 50.64
Audit 50.61 5221 5670  57.27 57.54 51.62 5528
Rec@N Attac.k 96.84 60.68 51.16  44.96 46.50 3398  32.74 0.00 74.16 642 7900 93.52 33.10 6176
Audit 1420 57.88 6230  62.54 60.46 69.72 6192
FI@N Anac.k 65.81 55.82 50.86  48.25 49.18 4138 40.00 0.00 60.34 1139 6184 6545 40.05 55.65
Audit 22.18 5490 59.37 59.79 58.96 5932 5841
AUC Audit 0.487 0.531 0.513  0.529 0.530 0.528  0.501 - - - - - - -
TPR@0.1%FPR Audit 0.0 1.5 23 23 2.8 1.0 1.6 - - - - - - -

G.7 PERFORMANCE OF MIA METHODS UNDER UNLEARNING SCENARIO

G.8 PERFORMANCE OF MIA METHODS WITH DIFFERENT NUMBER SHADOW MODELS
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Table 21: The performance of different MIA methods for CIFAR-100 under ResNet-18 across pretrain, retrain,
SalUn and SFR-on (full class unlearn setting). The performance of each MIA method is evaluated on retain
data (members) and forget data (non-members).

Membership Inference Attack Algorithms

Model Metric Metric MIA ML-Leaks BlindMI
LiRA RMIA Modified Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi

Entropy Entropy
Accuracy  64.10 61.30 61.40 61.40 61.50 63.90 57.30  50.00 47.20 50.00 50.00  50.00 47.00 47.80
Precision@P 5836 59.31 84.34 85.62 85.71 58.19  71.60  50.00 48.12 50.00 50.00  50.00 48.12 48.29
Recall@P  98.40 72.00 28.00 27.40 27.60 98.80 2420  100.00 71.60 100.00  100.00 100.00  76.80 62.00
Fl@P 73.27 65.04 42.04 41.52 41.75 7324 36.17  66.67 57.56 66.67 66.67  66.67 59.17 54.29
Precision@N 9490 64.38 56.83 56.79 56.85 96.03 5439 0.00 44.53 0.00 0.00 0.00 42.57 46.93

Pre-trin = pecalloN 2080 50.60 9480 9540 9540 2900 9040 000 2280 000 000 000 1720 3360
FI@N 4536 5666 7106 7119 7125 4455 6792 000 306 000 000 000 2450  39.16

AUC 064 061 061 061 0.61 064 057 050 047 050 050 050 047 048
TPR@O.IFPR 0.00 000 000 000 000 000 000 000 000 000 000 000 000 000
Accuracy 6350 6390 6090 6110 6100 6350 5770 8360 8340 9000 8600 9620 8100 _ 69.00
Precision@P  70.15 74.05 8428 8405 8438 6968 7550 7609 9034 8333 8435 10000 73.00 6667
Recall@P  47.00 42.80 2680 2740  27.00 4780 2280 9800  74.80 10000 8840 9240 9840  76.00

FI@P 5629 5425 4067 4133 4091 5670 3502 8566 8184 9091 8633 9605 8382 7103

Rerapy  PECSON@N 60.15 5977 5648 S663 5655 6027 5453 9719 7850 10000 §782 9294 9755 7209
RecalleN  80.00 8500 9500 9480 9500 7920 9260 6920 9200  80.00  83.60 10000 63.60 6200

FI@N 6867 70.19 70.84 7091 7090 6845 68.64 8084 8471 8889 8566 9634 77.00 6667

AUC 064 064 061 06l 0.61 064 058 08 083 09 08 096 081  0.69
TPR@O.IFPR 0.00 000 000 000 000 000 000 000 000 000 000 092 000 000
Accuracy 6350 6130 6130 6140 6140 6350 5650 9960 7720 10000 9980 6720 9980  99.80
Precision@P  69.01 67.28 8466 8476 8476 6979 6970 10000 10000 10000 100.00 6059 10000  99.60
Recall@P  49.00 4400 27.60 27.80  27.80  47.60 2300 9920 5440 10000 99.60 9840  99.60  100.00

FI@P 5731 5320 4163 4187 4187 5660 3459 9960 7047 10000 9980 7500  99.80  99.80

Uy PreciSin@N 6047 5840 5675 5682 5682 6024 5389 9921 6868 10000 9960 9574 9960 10000
RecalloN 7800 7860 9500 9500 9500 7940 90.00 10000 10000 100.00 10000 3600 10000  99.60

FI@N 6812 6701 7105 7LI1  7L11 6851 6742 9960 8143 10000 9980 5233 9980  99.80

AUC 064 061 061 061 0.61 064 056 100 077 100 100 067 100 100
TPR@O.IFPR 0.00 000 000 000 000 000 000 099 054 100 100 000 100 000
Accuracy 6270 6090 6100 6120 6120  63.10 5610 80.60 6880 9800 7680 9840  78.00  73.60
Precision@P 6830 6423 8161 8333 8218 6877 7293 7243 8456 9615 6882 10000 69.89  69.41
Recall@P  47.40 4920 2840 2800 2860 4800 1940 9880 4600 10000 9800 9680 9840  84.40

FI@P 5596 5572 4214 4192 4243 5654 3065 8359 5959 9804 8086 9837 8L73  76.17

SFRop PIECISONGN 5972 5883 S6.66 5673 5678 6006 5352 9811 6291 10000 9653 9690 9730 8010

Recall@N  78.00 72.60  93.60 94.40 93.80 78.20 92.80  62.40 91.60 96.00 55.60  100.00  57.60 62.80
Fl@N 67.65 65.00 70.59 70.87 70.74 67.94 6789  76.28 74.59 97.96 70.56  98.43 72.36 70.40
AUC 0.63  0.61 0.61 0.61 0.61 0.63 0.56 0.81 0.69 0.98 0.77 0.98 0.78 0.74
TPR@0.1FPR  0.00  0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00
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Table 22: The performance of different MIA methods for CIFAR-100 under ResNet-18 across pretrain, retrain,
SalUn and SFR-on (full class unlearn setting). The performance of each MIA method is evaluated on retain
data (members) and test data (non-members).

Membership Inference Attack Algorithms

Model Metric Metric MIA ML-Leaks BlindMI
Lira RMIA Entropy Modified Entropy Confidence Quantile Merlin ML-Leakl ML-Leak3 Shadow One-class Diff-w Diff-single Diff-bi
Accuracy  69.53 74.09 80.84 82.16 82.11 80.81  56.54 72.26 75.19 62.98 68.84  78.29 75.32 67.30
Precision@P  70.06 66.30 75.53 76.31 76.33 7399 57.22 64.35 74.86 57.46 61.62  69.84 67.06 63.13
Recall@P  68.20 97.96 91.25 93.27 93.09 95.03 51.83 99.82 75.85 100.00  99.92  99.58 99.54 83.15
Fl@p 69.12 79.08  82.65 83.94 83.88 83.20 54.39 78.25 75.35 72.98 76.23  82.10 80.13 71.77
Pre-train  Precision@N 69.02 96.09  88.95 91.35 91.14 93.05  55.97 99.59 75.53 100.00  99.79  99.26 99.10 75.33
Recall@N  70.86 5021 70.44 71.04 71.13 66.60 61.24 44.70 74.52 25.96 3777 57.00 51.10 51.44
Fl@N 69.93 65.96 78.62 79.93 79.90 77.64 5849 61.70 75.02 41.23 54.79 72.42 67.43 61.14
AUC 075 082 082 0.83 0.83 0.83 0.51 - - - - - - -
TPR@O.IFPR 0.01 0.19  0.09 0.09 0.09 0.00 0.02 - - - - - - -
Accuracy 67.00 77.41 80.05 82.07 82.04 80.71 56.45 73.22 74.90 65.44 78.46 80.14 75.84 68.24
Precision@P 7120 69.49 74.59 76.31 76.22 73.88  57.36 65.27 73.53 59.13 7222 7217 67.80 64.61
Recall@P  57.10 97.72 91.15 93.01 93.13 95.03  50.25 99.25 71.83 100.00 9250  98.12 98.44 80.66
Fl@P 63.38 81.22  82.04 83.84 83.83 83.13  53.57 78.75 75.62 74.31 81.11 83.16 80.30 71.75
Retrain  Precision@N 64.19 96.16  88.62 91.05 91.17 93.04 55.74 98.44 76.45 100.00  89.58  97.07 97.16 74.27
Recall@N 7690 57.10 68.94 71.13 70.94 66.40  62.64 47.18 71.97 30.87 6442 62.15 53.24 55.81
Fl@N 69.98 71.65 77.55 79.86 79.80 7749  58.99 63.79 74.15 47.18 74.94 75.78 68.79 63.73
AUC 071 086 08I 0.82 0.82 0.83 0.51 - - - - - - -
TPR@O.IFPR 0.01 022  0.06 0.07 0.07 0.00 0.01 - - - - - - -
Accuracy  68.31 74.51 79.98 81.36 81.31 80.30  56.90 74.71 69.01 63.68 68.66 77.90 74.59 67.45
Precision@P  69.50 66.72 74.85 75.76 75.89 7328  57.50 66.59 74.92 57.93 61.50  69.63 66.58 63.80
Recall@P  65.25 97.82  90.30 9224 91.78 9537 52.90 99.17 57.16 99.98 99.80  98.97 98.75 80.68
Fl@P 67.31 79.33  81.85 83.19 83.08 82.88  55.10 79.68 64.85 73.35 76.10 81.75 79.53 71.25
SalUn  Precision@N 67.25 9591 87.78 90.08 89.60 9338 56.39 98.38 65.37 99.93 99.46  98.22 97.58 73.73
Recall@N  71.37 5120 69.65 70.48 70.84 6523 60.90 50.25 80.86 27.38 3752 56.84 50.43 54.21
F1@N 69.25 66.76  77.67 79.08 79.12 76.80  58.56 66.52 72.30 4298 5449  72.01 66.50 62.48
AUC 073 083 082 0.83 0.83 0.83 0.51 - - - - - - -
TPR@O.IFPR 0.0 0.19  0.08 0.08 0.08 0.00 0.02 - - - - - - -
Accuracy  68.81 73.13 78.33 80.30 80.20 78.86  56.88 58.66 65.04 63.06 7255 77.16 74.20 66.84
Precision@P  68.58 68.77 73.55 75.08 74.99 7224 57.79 54.74 72.26 57.52 6476 69.12 66.41 63.30
Recall@P  69.43 84.72 88.48 90.71 90.62 93.76  51.06 99.94 48.84 99.92 98.93  98.18 97.94 80.14
Fl@P 69.00 7592 80.33 82.16 82.07 81.60 5422 70.74 58.28 73.01 7828  81.13 79.15 70.73
SFR-on  Precision@N 69.05 80.11 85.55 88.26 88.15 91.11  56.16 99.65 61.36 99.69 9773 96.86 96.08 72.94
Recall@N  68.20 61.53 68.18 69.89 69.77 6397  62.70 17.38 81.25 26.21 46.17  56.13 50.45 53.55
F1@N 68.62 69.60 75.88 78.01 77.89 75.17  59.25 29.59 69.92 41.50 6271 71.08 66.16 61.76
AUC 074 082 0.0 0.82 0.82 0.82 0.52 - - - - - - -
TPR@O.IFPR 0.01 0.18  0.08 0.08 0.08 0.00 0.02 - - - - - - -

Table 23: The performance of different MIA methods for CIFAR-100 under ResNet-18 on retrain model
(10% random subset unlearn setting). The performance of each MIA method is evaluated on retain data
(members) and forget data (non-members).

Membership Inference Attack Algorithms

Model Metric Metric MIA ML-Leaks BlindMI

Lira RMIA Entropy Modified Entropy Confidence Quantile Merlin MLLeakl MLLeak3 Shadow One-class Diff-w Diff-single Diff-bi
Accuracy  66.22 78.58 80.48 82.74 82.66 81.12  58.60 76.32 69.00 65.90 77.18 80.66 76.68 68.50
Precision@P  70.12 70.96 76.22 78.18 78.09 74.50  59.13 68.16 74.04 59.46 73.04 72.70 68.56 64.98
Recall@P  56.52 96.76  88.60 90.84 90.80 94.64 5568  98.80 58.52 99.96 86.16  98.20 98.56 80.24

Fl@P 62.59 81.88 81.95 84.03 83.97 83.37 57.35  80.67 65.37 74.56 79.06  83.55 80.87 71.81
Retrain Precision@N 63.58 9491 86.39 89.07 89.01 92.65 58.13 97.82 65.71 99.87 83.13 97.23 97.44 74.18
Recall@N 7592 60.40 72.36 74.64 74.52 67.60 61.52 53.84 79.48 31.84 68.20 63.12 54.80 56.76

Fl@N 69.21 73.82 78.75 81.22 81.12 78.17  59.77 69.45 71.94 48.29 74.93 76.55 70.15 64.31

AUC 0.70  0.87 0.81 0.83 0.83 0.84 0.50 - - - - - - -

TPR@O.1FPR  0.00  0.20 0.13 0.14 0.14 0.00 0.03 - - - - - - -
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Table 24: The performance of LiRA and RMIA methods for CIFAR-100 under ResNet-18 with different
numbers of shadow models .

Epochs Metrics Mode LIRA RMIA
#shadow 5 16 2 64 5 16 2
e Attack 6577 6745 6807 6797 7262 7410 7317
Audit 6937 7224 7255 7265 7518 7439 7429
precop | Attack 6941 7578 7587 7302 7302 7050 7258
Audit 0 7763 7132 7709 6926 6620 66,10
Rec@p Attack S64 513 53 5334 7116 8288 7448
Audit 678 6248 6382 6446 90.54 9968  99.74
rep Attack 6223 6118 624 6248 7238 7619 T3S
Audit 6888 6924 6992 7021 7848 7956 7951
Attack 632 6319 6389 639 7224 7923 7379
200 epochs Prec@N Audit 6878 6861 692 6946 8635 9935 9947
Rec@N Attack 7514 836 8314 826 7348 6532 7186
Audit 7094 82 8128 8084 5082  49.10  48.84
e Attack 687 7198 7225 7706 7285 7161 7281
Audit 6984 7471 7475 T4T2 7076 6572 6551
Auc Audit 0745 0772 0774 0776 0839 0839  0.839
PR@O.IFPF  Audit 20 40 60 74 93 110 110
e Attack 6249 6441 6437 6436 7233 7328  73dl
Audit 6672 6906 6946  69.68 7423 7431 7361
precop | Attack 6381 704 6892 7087 7171 7020 7131
Audit 6717 7135 737 7394 6736 6730 6588
Rec@p Attack S77 5837 5234 4876 7376 8090 7734
Audit 654 637 6052 6078 0400 9456  97.94
P Attack 60.6 499 505 5777 7272 1517 7420
Audit 6627 6731 6646 6672 7848 7864 7877
Hoepochs  Precon Atk 614 6117 6158 6095 7299 7747 7525
Audit 6629 6721 6651 6671 9008  90.86  95.99
Rec@N Attack 6728 7892 764 7996 7090 6566  68.88
Audit 68.04 7442 T84  I8S8 5446 5406 4928
FleN Attack 642 6892 682 6907 7193 7108 7192
Audit 6715 7063 7192 7216 6788 6779  65.12
Auc Audit 0711 074 0742 0744 0830 0833  0.832
PR@O.IFPF  Audit 14 38 32 57 67 85 73
e Attack 5235 525 5338 S3.A2 5379 5365  53.64
Audit 5246 5301 5319 5309 5391 5398  53.96
Prec@p Attack 5456 5486 5625 5639 5327 5346 5329
Audit 5288 5351 536 5351 5332 5348 5338
Rec@p Attack 281 282 3044 2754 6180  60.14 5843
Audit 4514 459 4744 4708 6280 6116  62.56
ep Attack 370 3725 395 3701 5722 5660 5597
Audit 4871 4941 5033 5009 5476 5706  57.61
10 epochs precon  Attack 5158 5168 5232 5206 5451 5445 5407
Audit 5215 5264 5286 5276 5476 5465 5478
Rec@N Attack 766 768 1632 787 4578 4764 4834
Audit 5978 60.12 5894  50.1 4502 4680 4536
1o Attack 61.65 6179 6208 6267 4977 5082  51.05
Audit 557 5613 5574 5575 4991 5042 49.36
Auc Audit 0526 0532 0535 0536 0549 0550 0550
PR@0.1 FPF  Audit 002 028 038 02 01 02 02
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